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ABSTRACT

Vision-language models (VLMs) have shown impressive zero- and few-shot per-
formance on real-world visual question answering (VQA) benchmarks, alluding
to their capabilities as visual reasoning engines. However, the benchmarks be-
ing used conflate “pure” visual reasoning with world knowledge, and also have
questions that involve a limited number of reasoning steps. Thus, it remains un-
clear whether a VLM’s apparent visual reasoning performance is due to its world
knowledge, or due to actual visual reasoning capabilities.
Hence, we systematically benchmark and dissect the zero-shot visual reason-
ing capabilities of VLMs through synthetic datasets that require minimal world
knowledge, and allow for analysis over a broad range of reasoning steps. We fo-
cus on two novel aspects of zero-shot visual reasoning: i) evaluating the impact of
conveying scene information as either visual embeddings or purely textual scene
descriptions to the underlying large language model (LLM) of the VLM, and ii)
comparing the effectiveness of chain-of-thought prompting to standard prompting
for zero-shot visual reasoning.
We find that the underlying LLMs, when provided textual scene descriptions, con-
sistently perform better compared to being provided visual embeddings. In par-
ticular, ∼18% higher accuracy is achieved on the PTR dataset. We also find that
CoT prompting performs marginally better than standard prompting only for the
comparatively large GPT-3.5-Turbo (175B) model, and does worse for smaller-
scale models. This suggests the emergence of CoT abilities for visual reasoning
in LLMs at larger scales even when world knowledge is limited. Overall, we find
limitations in the abilities of VLMs and LLMs for more complex visual reasoning,
and highlight the important role that LLMs can play in visual reasoning.

1 INTRODUCTION

The development of vision-language models or VLMs (Tan & Bansal, 2019; Li et al., 2020; Wang
et al., 2022; Alayrac et al., 2022; Li et al., 2023b; Liu et al., 2023) has gained considerable atten-
tion in recent years given their application in developing general-purpose multimodal intelligence.
Similar to the zero-shot abilities observed in large language models or LLMs (Brown et al., 2020;
Chung et al., 2022; Chowdhery et al., 2022; Touvron et al., 2023) for language tasks, VLMs such
as Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al., 2023b) have shown impressive zero- or
few-shot reasoning abilities for language-vision tasks. Notably, they have been shown to surpass
task-specific state-of-the-art models (Alayrac et al., 2022; Li et al., 2023b) when finetuned on com-
mon visual question answering (VQA) benchmarks, including VQAv2 (Goyal et al., 2017) and OK-
VQA (Marino et al., 2019). Furthermore, recent works (Lu et al., 2022; Zhang et al., 2023) have
also shown how multimodal chain-of-thought (CoT) reasoning, wherein both language and vision
modalities are used to elicit multi-step inference, improves the performance of models on multi-
modal question answering benchmarks such as ScienceQA (Lu et al., 2022). These findings suggest
that similar to LLMs, with increases in model size (Wei et al., 2022a) and advanced prompting
techniques (Wei et al., 2022b; Kojima et al.; Jin et al., 2022), VLMs can exhibit stronger reasoning
capabilities and operate as instruction-prompted zero- or few-shot visual reasoning engines.

However, the current VQA benchmarks (Goyal et al., 2017; Marino et al., 2019; Hudson & Man-
ning, 2019) used to evaluate the visual reasoning abilities of VLMs predominantly contain questions
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requiring only a few reasoning steps, and they often conflate visual reasoning with factual or world
knowledge. While open-world visual reasoning certainly relies on knowledge of the world, it is im-
portant to recognize that visual reasoning at its core encompasses a wide range of cognitive processes
including scene interpretation, memory manipulation, spatial reasoning or attention, and logical or
semantic inference. To illustrate the above points further, consider the example question “Who is
wearing glasses?” (given an image of two individuals) in the popularly-used VQAv2 benchmark.
A VLM’s accurate answer to this question may simply be due to world knowledge about “glasses”
and different categories of “persons”, and not necessarily due to better visual reasoning capabilities.
Similarly, the OK-VQA dataset is particularly designed to test how well models can utilize general
world knowledge for VQA, and contains questions such as “What phylum does this animal belong
to?” (given an animal image). As such, based on the evaluation benchmarks and analysis in ex-
isting works, it is uncertain whether a model’s apparent visual reasoning performance is due to its
knowledge of the world, or its actual visual reasoning capabilities.

Thus, in this work, we propose to systematically analyze and benchmark zero-shot visual reasoning
capabilities of VLMs through the usage of synthetic datasets. Specifically, we utilize the CLEVR
(Johnson et al., 2017) and PTR (Hong et al., 2021) datasets, which contain questions requiring
minimal world knowledge, but a broader range of “reasoning steps” and primitive visual reasoning
operations. Moreover, these datasets provide detailed meta-information for each (question, image)
pair, including a complete symbolic scene description, as well as a step-by-step functional program
for the question. Cumulatively, the broader range of complexities and associated meta-information
allow us to better quantify and draw conclusions regarding the “pure” visual reasoning capabilities
of VLMs. Additionally, they enable us to assess performance across different fundamental visual
operations such as counting, attribute or relationship detection and physical or analogical inferences.

1.1 SUMMARY OF EXPERIMENTS AND FINDINGS

We focus on investigating two novel aspects of zero-shot visual reasoning in VLMs. Firstly, we
compare the performances of VLMs versus LLMs. Specifically, we compare a “traditional VLM”
(i.e. an LLM receiving scene information as visual embeddings from a base vision model) against
an LLM simply receiving a completely textual representation of the scene. We find that LLMs
consistently outperform VLMs that utilize the same base LLMs. Specifically, in the case of the
BLIP2-Flan-T5 (Li et al., 2023b) model, using only its base LLM, i.e. Flan-T5 (Chung et al., 2022),
without the visual front-end achieves ∼18% higher accuracy on the PTR dataset. One key takeaway
is that for questions which can be solved in 2 to 5 “reasoning steps”, LLMs show performance
levels which are significantly above chance, suggesting that LLMs may in fact possess reasonable
capabilities as zero-shot visual reasoning engines.

Secondly, we study how CoT prompting compares to standard prompting for zero-shot application
of these models in the context of VQA. We find that CoT prompting for visual reasoning in LLMs
only obtains better results than standard prompting at large model scales (in our case for the 175B
GPT-3 turbo model) and performs worse for smaller models. For LLMs and VLMs, we observe
trends of emergence of CoT reasoning in zero shot settings even when the model’s knowledge and
context about the world is restricted. Furthermore, owing to the use of synthetic datasets to bench-
mark VLMs which are not explicitly trained on reasoning on synthetically rendered scenes, we
also observe than increase model scale shows signs of improving CoT reasoning capabilities. This
indicates that model scaling and CoT could potentially be used to extend and improve zero-shot
reasoning performance for multimodal models on previously unseen settings.

1.2 CONTRIBUTIONS

(1) To our knowledge, we are the first to systematically benchmark zero-shot visual reasoning ca-
pabilities of VLMs using synthetic datasets. This is in order to disentangle the impact of world
knowledge, so as to assess the “pure” visual reasoning of models.

(2) We compare the zero-shot VQA performance of VLMs against LLMs, and find that LLMs re-
ceiving only ground-truth textual scene information consistently perform better than when provided
with visual embeddings.

2



Under review as a conference paper at ICLR 2024

(3) Consistent with previous studies on CoT for language tasks (Wei et al., 2022b), we find CoT for
visual reasoning in LLMs also seems to emerge for larger model sizes even when the model’s world
knowledge is limited.

(4) We analyze the visual reasoning performance of VLMs and LLMs under various factors includ-
ing the number of “reasoning steps”, question types and model scale. Our overall analysis indicates
the limitations of VLMs and LLMs for complex visual reasoning and highlights the important role
LLMs can play in enhancing visual reasoning capabilities.

2 RELATED WORK

Benchmarking reasoning capabilities of LLMs and VLMs. Since the initial demonstration of
LLMs as being effective few-shot learners (Brown et al., 2020), multiple works (Brown et al., 2020;
Chung et al., 2022; Zhang et al., 2022; Ouyang et al., 2022; Jin et al., 2022; Chowdhery et al.,
2022; Touvron et al., 2023) have sought to refine the design and training of LLMs, besides compre-
hensively benchmarking (Liang et al., 2022; Srivastava et al., 2022; Valmeekam et al., 2022) their
reasoning abilities on language-specific tasks. More recently, the development of VLMs (Tan &
Bansal, 2019; Li et al., 2020; Wang et al., 2022; Alayrac et al., 2022; Li et al., 2023b; Liu et al.,
2023) has drawn on advancements in both LLMs and vision-foundation models leading to their
prompt-based application for vision-language tasks (Alayrac et al., 2022; Li et al., 2023b; Liu et al.,
2023; Wu et al., 2023) such as image captioning, text-guided image editing and general VQA. These
works have evaluated the performances of VLMs on prominent VQA benchmarks including VQA-
v2 (Goyal et al., 2017), OK-VQA (Marino et al., 2019), GQA (Hudson & Manning, 2019) and
VizWiz (Gurari et al., 2018) in zero-shot, few-shot and fine-tuned settings. However, as mentioned
before, these analyses are not sufficient to conclude the “true” visual reasoning capabilities of VLMs
since the datasets typically conflate world knowledge with visual reasoning and require limited num-
ber of “reasoning steps”. Further, these works have not assessed whether LLMs by themselves when
provided textual (symbolic) scene representations can be capable of visual reasoning in comparison
to VLMs. Thus, our work aims to more comprehensively evaluate the zero-shot visual reasoning
capabilities of VLMs and their underlying LLMs by utilizing synthetic datasets.

CoT prompting for zero- or few-shot reasoning. The development of CoT techniques (Wei et al.,
2022b; Kojima et al.; Jin et al., 2022; Yao et al., 2023), wherein models are elicited to reason in
multiple steps, has been shown to significantly benefit zero- or few-shot performance of LLMs on
diverse language and logical reasoning tasks. More recently, CoT techniques have been developed
(Lu et al., 2022; Zhang et al., 2023) to incorporate both vision and language modalities in finetuning
LLMs for multimodal question-answering benchmarks such as ScienceQA (Lu et al., 2022). In
contrast to these works, we specifically analyze the impact of CoT prompting in the context of zero-
shot VQA for both LLMs and VLMs. Further, to better evaluate how CoT prompting compares with
standard prompting for different question types, we provide a breakdown of its performance by the
question family for both the PTR and CLEVR datasets.

Synthetic datasets to disentangle reasoning capabilities from world knowledge. There are sev-
eral synthetic datasets which can disentangle world knowledge from reasoning in different ways.
(Suhr et al., 2017) is a dataset designed for visual reasoning tasks. The images are synthetic and often
involve simple shapes and layouts, ensuring the focus is on reasoning rather than world knowledge.
(Kuhnle & Copestake, 2017) generates abstract visual scenes and accompanying textual descrip-
tions designed to test various linguistic and visual phenomena. (Zhang et al., 2019) is a synthetic
visual reasoning dataset inspired by the structure of Raven’s Progressive Matrices, a popular human
IQ test. This format ensures that success on the task requires genuine visual reasoning and pattern
recognition, rather than relying on learned associations or world knowledge. (Johnson et al., 2017)
and (Hong et al., 2021), the datasets used in this study, are uniquely tailored for disentangling world
knowledge from visual reasoning. Their machine-generated questions ensure controlled complexity
to test visual reasoning abilities without relying on pre-trained visual or linguistic biases. Their rich
annotations and scene metadata are ideal for testing reasoning abilities in VLM as well as LLM
models about not only the visual and spatial aspects of the scene, but also the potential physical
interactions and outcomes in a wide range of scenarios and reasoning types.
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Figure 1: The experimental setup. We perform experiments on pure LLMs as well as their VLM
variants with the same set of prompts. In case of LLMs, the image information is provided using the
scene metadata used to render the image.

3 EXPERIMENTS

3.1 EXPERIMENTAL DESIGN

Our experiment design philosophy was primarily guided by the major benchmarks and analysis
which we wanted to perform in this study. Our first goal was to analyze the impact of scene infor-
mation representation in the form of text or images on the model’s zero-shot reasoning capabilities.
Based on this, we provided the complete scene information in text format to the LLM (the Flan-
T5 model family) using the scene metadata, while providing the scene image to the model’s VLM
counterpart, which was the BLIP-2 Flan-T5 model family (Li et al., 2023b). To gauge the impact
of the text-based scene metadata on VLM performance, we also ran a set of experiments provid-
ing both the scene metadata and the image to the VLM. Through this setup, we could study areas
where the VLM might fall short in terms of information extraction and reasoning, and also identify
if there were specific reasoning categories where direct visual representation might be a clear advan-
tage. The second goal was to identify the impact of Chain-of-Thought prompting on the reasoning
abilities of LLMs and VLMs as well as its performance trends over scale, when the models world
knowledge is limited. To achieve this we designed experiments which could benchmark different
scale models of the same LLM and their counterpart VLM families on CoT and Standard Prompts.

3.2 EXPERIMENTAL SETUP

Examples of scene metadata and samples of each type of prompt are provided in Appendix A.2.

Datasets. We use two datasets: (1) CLEVR (Johnson et al., 2017), a synthetic Visual Question
Answering dataset containing images of 3D-rendered objects; each image comes with a number of
compositional questions of various types, and (2) PTR (Hong et al., 2021), a dataset for part-based
conceptual, relational and physical reasoning. Since the scene metadata was only provided for the
images in the train and validating sets (and not the test sets), we use the validation sets of each of
these datasets for testing. This allowed us to automatically generate text descriptions of the scenes
to compare performance of Visual Language Models (VLMs) with the pure LLMs. There is neither
training nor validation per se, since our experiments are in a zero-shot setting.

Standard prompting. Our standard prompting procedure included providing the models with the
relevant scene information (the image in the case of VLMs, or the scene metadata in the case of pure
LLMs), a setup prompt and instructing the model to provide the final answer directly in one word.
Since the models were being tested in a purely generative setting, the models would often generate
the correct answer, but not use the correct terminology, e.g. calling a cyan object light blue. In order
to maintain the generative setting but align the model answers to match the scene terminology, it
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Figure 2: LLM versus VLM+Metadata versus VLM performance on CLEVR and PTR.

was provided with the setup prompt, which gave basic information on the possible attributes, colors,
shapes etc which could be present in the scene.

Chain-of-Thought Prompting. To elicit CoT reasoning in a zero-shot setting, we follow the prompt
template of Kojima et al.. In addition to the same information and setup prompt provided in the
standard prompt, we add “Let’s think step by step” before each answer. We also developed a format
prompt to force the model to give its final one word answer at the end of its reasoning chain.

Visual Language Models. We used two VLMs tuned for instructed generation for the experiments.
These are BLIP2-Flan-T5-XL (3B) and BLIP2-Flan-T5-XXL (11B). Using the BLIP-2 (Li et al.,
2023b) based models allowed us to compare the performance of the VLMs against the pure LLM
versions of these models. Pretrained weights from LAVIS (Li et al., 2022) were used.

Language Models. We use two LLMs to compare pure language models to VLMs. These are
Flan-T5-XL (3B) and Flan-T5-XXL (11B) (Chung et al., 2022). While using the same models at
different sizes allowed us to measure the emergent CoT abilities with scale, the true abilities of CoT
reasoning have been shown to emerge at a scale of more than 100B. Thus, we also tested our setup
on GPT-3.5-Turbo (175B) (Ouyang et al., 2022) and smaller-scale versions of GPT.

4 RESULTS AND ANALYSES

4.1 COMPARING LLMS WITH SCENE DESCRIPTIONS VERSUS VLMS

LLMs with scene descriptions outperform VLMs: Figure 2 shows the impact of visual grounding
using BLIP-2 on the reasoning effectiveness of the models. Pure LLMs generally outperform or
have similar performance to their counterpart VLM models across both scales and datasets. A t-test
was performed to test if the pure LLMs performed better than VLMs. A p-value of 0.0088 indicates
that the difference is statistically significant. This might seem counter-intuitive, as one might expect
the VLM to be able to effectively utilize the “visual frontend” provided by the image encoder used in
the BLIP-2 setup for querying the relevant aspects of the image. There are 2 possible explanations:
1) There are underlying issues in the VLM architecture which prevent the visual front-end from
providing relevant information to the model. 2) The complexity of the tasks is not enough that
a visual front-end which queries only the relevant information from the scene can be better than
providing the complete, unfiltered information to the reasoning engine: which in this case is the
LLM. To guard against data contamination (i.e. LLMs trained on CLEVR or PTR), we ran image-
free baselines (Appendix A.8), which performed at chance, indicating no contamination.

LLM advantage for CLEVR versus PTR: The difference in performance between the LLM and
the VLM is more pronounced in PTR than CLEVR. For CLEVR, the LLM outperforms the VLM by
roughly 6-7%, while for PTR the gap is roughly 17-18%. One possible explanation is that the objects
in PTR are more complex, with multiple parts, hence the task for the VLM’s visual frontend is
more challenging, and more errors and uncertainty are introduced. Providing the ground-truth scene
description to the LLM eliminates this challenging visual frontend task. Conversely, the objects in
CLEVR are simple geometric objects, hence access to the ground-truth scene description provides
less of an advantage to the LLM.
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Figure 3: LLM versus VLM performance of Flan-T5-XXL on CLEVR and PTR, analyzed by length
of functional programa (a proxy for number of reasoning steps). Error bars represent standard error;
large error bars for functional programs longer than 18 are due to the small number of questions.

Figure 4: LLM versus VLM model performance of Flan-T5-XXL on CLEVR and PTR using stan-
dard prompting, organized by question family.

Analysis by number of “reasoning steps”: Both CLEVR and PTR provide functional programs
which programmatically describe the solution for the reasoning tasks. We used the length of these
functional programs as a proxy for the number of “reasoning steps” needed. We analyzed the
results by number of “reasoning steps” (Fig. 3). For questions requiring relatively fewer “reasoning
steps” (up to around 12-17), LLMs generally outperform VLMs. As seen in Fig. 3 (right), for PTR,
both LLMs and VLMs generally show declining performance as the number of “reasoning steps”
increases, unsurprisingly. However, when it comes to CLEVR (Fig. 3, left), the performance of
VLMs seems to be somewhat independent of the number of “reasoning steps”. This could be due to
the nature of the CLEVR dataset. CLEVR questions are usually abstract and require deep reasoning,
regardless of the number of steps. As such, even tasks with fewer steps might be inherently complex
in nature, demanding similar levels of abstraction and reasoning as tasks with more steps.

Moreover, because CLEVR consists of geometric shapes rather than recognizable object parts, the
VLMs may not gain as much valuable information from the visual encoder for each additional rea-
soning step. It is important to note that while the program length provides a heuristic for reasoning
complexity, it might not always perfectly capture the cognitive complexity for humans. However, it
is still worthwhile to study the impact of length of functional programs on performance.

Analysis by question family (CLEVR): The LLM performs better than the VLM in most categories
(Fig. 4, left). The “exist” and “query attribute” categories show the most significant difference in
performance, with the LLM noticeably better. Interestingly, the multimodal model performs better
in the “count” category. The observed results could potentially be explained by a few factors. For
the LLMs, the “exist” and “query attribute” questions are the most straightforward tasks since this
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information requires a direct lookup from the scene metadata which already contains this informa-
tion. The VLMs, on the other hand, require identification of the correct object(s) and their attributes
even for “exist” and “query attribute” questions. For “counting” questions, on the other hand, it’s
possible that VLMs, with their ability to process visual data, are more efficient in tasks like counting
where visual cues can be valuable.

Analysis by question family (PTR): The LLM outperforms the VLM across all question families
on PTR (Fig. 4, right). The largest performance gap is observed in the “concept” and “relation” cat-
egories. “Concept” questions in PTR evaluate a model’s capability to understand and reason about
basic part-whole relations. Similar to the findings in CLEVR, the question families which require
simple “lookups” from the metadata for the LLM have the largest gap in performance. Interestingly,
the performance of LLMs on “arithmetic” questions is better than VLMs for this dataset (unlike the
“count” questions in CLEVR). This can be attributed to the fact that the level of reasoning required
for arithmetic questions is much higher. While such questions in CLEVR were limited to counting
objects or comparing numbers, PTR questions require making complex selections of object parts
based before performing arithmetic operations.

Visual analogy questions in the PTR dataset require complex reasoning that pose significant chal-
lenges for both LLMs and VLMs. This is evident from both the models having their worst per-
formance on the “analogy” question family. This process involves multiple stages of reasoning,
including identifying the relevant relationship, applying it to a new context, and generating or se-
lecting the correct answer. The models must not only identify the relationship between A and B,
but also accurately project it onto C and D. This complexity could make these tasks particularly
challenging for both types of models. Additionally, the geometric and spatial properties involved in
analogical reasoning may be difficult for both models.

This question family can also provide insights into the abilities of LLMs to make visual representa-
tions of textual descriptions. When provided such a text description of a scene, most humans will
try to create a visualization to easily identify the parts or objects which are relevant to the problem
at hand. This ability to generate abstract representations from descriptions, or use visual inputs to
perform complex projections and analogies still seems to be lacking in existing systems.

Drawbacks of current VLM Architecture: VLMs, even those leveraging LLMs, have inherent
architectural bottlenecks that may hinder their performance. During inference, they function in two
separate phases: 1) visual information querying, where the model’s visual frontend extracts scene
details based on an initial text query, and 2) text generation, where the LLM uses this extracted
information for reasoning and response. This process lacks a feedback loop, preventing the LLM
from requesting additional visual information if needed during the generation phase. In contrast,
when LLMs receive full scene descriptions in text form, they can access the entire description while
generating responses, thereby better retrieving relevant information to answer the question. These
drawbacks of VLM architecture are further evidenced by the fact that even when given access to
scene metadata, VLMs consistently perform similar to LLMs. This indicates that they are unable to
take significant advantage of the additional visual information.

VLM performance on synthetic vs real images. One concern of using VLMs on synthetic datasets
is that the vision models are not trained on synthetic data, which could lead to lower performance
compared to LLMs. We conducted experiments on the GQA (Hudson & Manning, 2019) dataset
using a similar LLM vs VLM comparison, and confirmed that the LLMs also performed better than
VLMs on natural images. Full analysis and results are in Appendix A.7.

4.2 CHAIN-OF-THOUGHT REASONING

Overall results: Figure 5 presents a concise summary of the main outcomes of Chain-of-Thought
reasoning on the two datasets. Interestingly, the open source Flan-T5-XXL (11B) model with stan-
dard prompting achieves the best performance, outperforming even GPT-3.5-Turbo (175B), which
is over 15x larger. This is true for both datasets, and regardless of CoT or standard prompting for
GPT-3.5-Turbo. Flan-T5-XL (3B) only performed marginally worse than its larger 11B cousin.

Analysis by number of “reasoning steps”: As expected, performance generally drops with more
“reasoning steps” (Fig. 6). For CLEVR, CoT prompting produced a small but consistent perfor-
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Figure 5: LLM performance on CLEVR and PTR datasets using standard and CoT prompting over
scale. The top row represents the GPT models, while the bottom row represents the Flan-T5 models.
The x-axis scale is logarithmic for better clarity.

Figure 6: Standard versus CoT prompting performance of GPT-3.5-Turbo on CLEVR and PTR,
analyzed by length of functional programs. The vertical black bars indicate standard error bars.

Figure 7: Standard versus CoT prompting performance of GPT-3.5-Turbo on CLEVR and PTR.
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mance gain over standard prompting. For PTR, the CoT advantage is less consistent, with standard
prompting sometimes performing better.

Analysis by question family (CLEVR): From Fig. 7 (left), CoT prompting shows a noticeable
improvement in the “count” question family, with some improvement in “compare attribute”, “com-
pare numbers” and “exist” categories. “Query attribute” questions in CLEVR typically involve
direct queries about object properties, often solvable in a single step – consistent with the fact that
overall accuracy is highest for this question family. This could explain why CoT does not provide a
significant advantage in this simple, often one-step question family.

Analysis by question family (PTR): From Fig. 7 (right), CoT prompting leads to improvements
for “relation” and “arithmetic” questions. For “analogy” questions, CoT prompting seems to lower
performance. CoT prompting assists in “relation” and “arithmetic” questions by breaking down
the task into simpler steps, aiding in the understanding of relationships and sequential arithmetic
operations. On the other hand, for “analogy” questions, CoT prompting might hinder performance
by overly decomposing the problem, possibly losing sight of the overarching relationship.

Impact of Chain-of-Thought performance across datasets: CoT prompting resulted in significant
improvements in the “count” category in CLEVR and “arithmetic” in PTR, both involving numerical
understanding. A possible explanation could be that these tasks are similar to text-based reasoning
or step-by-step reasoning examples that the LLMs may have encountered during training. However,
the same degree of improvement was not observed in categories such as “analogy” and “query
attribute”, which are unique to visual reasoning tasks and have no text-based equivalents. The
absence of significant improvement in visual reasoning tasks might be due to the fact that base LLMs
are not exposed to step-by-step visual reasoning samples or data during training. Consequently,
CoT prompting might not be effective for such tasks. This observation could also imply that the
generalizability of CoT prompting may be limited. Its effectiveness seems to be largely constrained
to tasks that are similar to those the model has previously encountered during training.

Chain-of-Thought Reasoning over scale: As seen in Fig. 5, CoT prompting performs better than
standard prompting only for a comparatively large GPT-3.5-Turbo (175B) model and does worse
for smaller scale models, suggesting the emergence of CoT reasoning at larger scales for visual
reasoning tasks, similar to prior observations for other reasoning categories (Wei et al., 2022b).

5 LIMITATIONS AND FUTURE WORK

More varied tasks. We used datasets for physical reasoning, due to the availability of compre-
hensive scene metadata and minimal dependency on world knowledge. Future work can extend to
a broader range of visual reasoning tasks, such as abstract data interpretation (Kafle et al., 2018),
image-based statement classification (Suhr et al., 2017), etc.

Future work. We plan to extend our study by benchmarking some of the latest instructed-generation
capable VLMs such as Otter (Li et al., 2023a), MultiModal-GPT (Gong et al., 2023) and Instruct-
BLIP (Dai et al., 2023) besides recent LLMs such as Chat-GLM (Du et al., 2022), Vicuna (Chiang
et al., 2023), OPT (Zhang et al., 2022) and Bloom (Scao et al., 2023) in order to capture trends, bot-
tlenecks and emergent properties for visual reasoning. Additionally, we will benchmark the models
on other datasets comprising functional programs such as GQA (Hudson & Manning, 2019) as well
as other CoT prompting techniques such as the recent “Tree of Thoughts” (Yao et al., 2023) method.

6 CONCLUSION

In this work, we systematically analyzed and benchmarked the zero-shot visual reasoning capabili-
ties of VLMs and LLMs. We specifically utilized synthetic VQA datasets to mitigate the impact of
a model’s world knowledge on its visual reasoning performance and to also evaluate reasoning over
a broader range of “reasoning steps” and primitive visual operations. We studied two novel aspects
of zero-shot visual reasoning: i) evaluating how a VLM’s base LLM performs when only provided
ground-truth textual scene description in comparison to when it is provided with a visual embed-
ding, and ii) comparing the effectiveness of CoT prompting to standard prompting in the context of
zero-shot VQA. Further, we extensively analyzed the visual reasoning performance of VLMs and
LLMs under various factors, such as number of “reasoning steps”, question types and model scale.
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7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have provided a detailed description of the experiment design, as well
as experimental setup in section 3. Section A.1 in the appendix contains links to download the
relevant datasets, and details on the code submissions as well as general technical documentation to
run the experiments.
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Daniel Hesslow, and et al. BLOOM: A 176b-parameter open-access multilingual language model,
2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

11



Under review as a conference paper at ICLR 2024

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. A corpus of natural language for visual
reasoning. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 217–223, 2017.

Hao Tan and Mohit Bansal. LXMERT: Learning cross-modality encoder representations from trans-
formers. arXiv preprint arXiv:1908.07490, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan (a benchmark for LLMs on planning and reasoning about change).
arXiv preprint arXiv:2206.10498, 2022.

Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit Som, et al. Image as a foreign language:
BEiT pretraining for all vision and vision-language tasks. arXiv preprint arXiv:2208.10442, 2022.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, 2022b.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual ChatGPT: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. RAVEN: A dataset for
Relational and Analogical Visual REasoNing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
chain-of-thought reasoning in language models. arXiv preprint arXiv:2302.00923, 2023.

A APPENDIX

A.1 EXPERIMENT CODE AND REPRODUCIBILITY

All the relevant code and scripts to process the dataset, run all experiments and evaluate the results
is available with the supplemental submission . The code uses 2 major libraries for the experiments:

1. The huggingface transformers library for LLM experiments.

2. The Salesforce-LAVIS library for VLM experiments.

Setup instructions have been included in markdown where required.

The 2 major datasets used (CLEVR, PTR and GQA), can be downloaded from these links:

1. CLEVR
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2. PTR
3. GQA

The experiment code can be found in the code folder provided along with the supplemental submis-
sion. The folder structure is provided in the README.md in the root folder and separate files are
provided to process the dataset as well as run each experiment for the different model families on
different datasets.

A.2 FULL PROMPT EXAMPLES

A.3 CLEVR PROMPT EXAMPLE

A.3.1 IMAGE

The example image used to demonstrate the prompting is provided in figure 8.

A.3.2 STANDARD PROMPT

Given the following scene:

Scene 0:

Objects: 5 Object: Color: brown Size: large Rotation: 178.92387258999463 Shape: cylinder Ma-
terial: rubber 3D Coords: [-1.4937210083007812, -1.9936031103134155, 0.699999988079071]
Pixel Coords: [119, 131, 10.801968574523926]

Object: Color: gray Size: large Rotation: 243.405459279722 Shape: cube Material: rubber 3D Co-
ords: [1.555708646774292, -2.104736566543579, 0.699999988079071] Pixel Coords: [198, 190,
8.60103988647461]

Object: Color: green Size: small Rotation: 230.45235024165092 Shape: cylinder Material: rubber
3D Coords: [-2.342184543609619, -0.5205014944076538, 0.3499999940395355] Pixel Coords:
[161, 118, 12.372727394104004]

Object: Color: purple Size: large Rotation: 31.654351858799153 Shape: sphere Material: metal 3D
Coords: [-0.8073106408119202, 1.914123773574829, 0.699999988079071] Pixel Coords: [282,
100, 12.495001792907715]

Object: Color: gray Size: small Rotation: 42.183287560575 Shape: cube Material: metal 3D
Coords: [2.6763813495635986, 0.03453871235251427, 0.3499999940395355] Pixel Coords: [337,
195, 9.161211967468262]

Relationships: ’right’: [[1, 2, 3, 4], [3, 4], [1, 3, 4], [4], []], ’behind’: [[2, 3], [0, 2, 3, 4], [3], [], [0,
2, 3]], ’front’: [[1, 4], [], [0, 1, 4], [0, 1, 2, 4], [1]], ’left’: [[], [0, 2], [0], [0, 1, 2], [0, 1, 2, 3]]

Directions: ’right’: [0.6563112735748291, 0.7544902563095093, -0.0], ’behind’: [-
0.754490315914154, 0.6563112735748291, 0.0], ’above’: [0.0, 0.0, 1.0], ’below’: [-0.0, -0.0,
-1.0], ’left’: [-0.6563112735748291, -0.7544902563095093, 0.0], ’front’: [0.754490315914154,
-0.6563112735748291, -0.0]

Image Filename: CLEVR val 000000.png

You may assume that any metal object is shiny, and any rubber object is not shiny (”matte”). All
objects are either ”metal” or ”rubber”, and in 2 sizes: ”large” or ”small”. All objects are one of the
following colours: ”blue”, ”brown”, ”cyan”, ”gray”, ”green”, ”purple”, ”red”, ”yellow”. All objects
are one of the following shapes: ”cube”, ”cylinder”, ”sphere”. For numeric answers, give an integer
and not in words.

Now answer the following question in one word.

Question: Are there any other things that are the same shape as the big metallic object? Answer:

A.3.3 CHAIN-OF-THOUGHT PROMPT

Given the following scene:
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Scene 0:

Objects: 5 Object: Color: brown Size: large Rotation: 178.92387258999463 Shape: cylinder Ma-
terial: rubber 3D Coords: [-1.4937210083007812, -1.9936031103134155, 0.699999988079071]
Pixel Coords: [119, 131, 10.801968574523926]

Object: Color: gray Size: large Rotation: 243.405459279722 Shape: cube Material: rubber 3D Co-
ords: [1.555708646774292, -2.104736566543579, 0.699999988079071] Pixel Coords: [198, 190,
8.60103988647461]

Object: Color: green Size: small Rotation: 230.45235024165092 Shape: cylinder Material: rubber
3D Coords: [-2.342184543609619, -0.5205014944076538, 0.3499999940395355] Pixel Coords:
[161, 118, 12.372727394104004]

Object: Color: purple Size: large Rotation: 31.654351858799153 Shape: sphere Material: metal 3D
Coords: [-0.8073106408119202, 1.914123773574829, 0.699999988079071] Pixel Coords: [282,
100, 12.495001792907715]

Object: Color: gray Size: small Rotation: 42.183287560575 Shape: cube Material: metal 3D
Coords: [2.6763813495635986, 0.03453871235251427, 0.3499999940395355] Pixel Coords: [337,
195, 9.161211967468262]

Relationships: ’right’: [[1, 2, 3, 4], [3, 4], [1, 3, 4], [4], []], ’behind’: [[2, 3], [0, 2, 3, 4], [3], [], [0,
2, 3]], ’front’: [[1, 4], [], [0, 1, 4], [0, 1, 2, 4], [1]], ’left’: [[], [0, 2], [0], [0, 1, 2], [0, 1, 2, 3]]

Directions: ’right’: [0.6563112735748291, 0.7544902563095093, -0.0], ’behind’: [-
0.754490315914154, 0.6563112735748291, 0.0], ’above’: [0.0, 0.0, 1.0], ’below’: [-0.0, -0.0,
-1.0], ’left’: [-0.6563112735748291, -0.7544902563095093, 0.0], ’front’: [0.754490315914154,
-0.6563112735748291, -0.0]

Image Filename: CLEVR val 000000.png

You may assume that any metal object is shiny, and any rubber object is not shiny (”matte”). All
objects are either ”metal” or ”rubber”, and in 2 sizes: ”large” or ”small”. All objects are one of the
following colours: ”blue”, ”brown”, ”cyan”, ”gray”, ”green”, ”purple”, ”red”, ”yellow”. All objects
are one of the following shapes: ”cube”, ”cylinder”, ”sphere”. For numeric answers, give an integer
and not in words.

Now answer the following questions with step-by-step reasoning. Give the final one word answer at
the end of your reasoning. Thus, your response format should be:

Reasoning for the answer
Final answer:
Final one word answer

Question: Are there any other things that are the same shape as the big metallic object? Answer:
Let’s think step by step.

A.4 PTR PROMPT EXAMPLE

A.4.1 IMAGE

The example image used to demonstrate the prompting is provided in figure 9.

A.4.2 STANDARD PROMPT

Given the following scene:

Scene PTR val 007239:

Objects: 4 Object: Category: Chair Rotation: [3.1370301246643066, 0.17649400234222412,
3.115612745285034] Scale: 1.0257009267807007 Stability: no 3D Coords: [4.433284759521484,
-6.149937629699707, 0.6772643327713013] Support: [645, 369, 14.225968360900879] Part Col-
ors: ’arm’: [’green’, [29, 105, 20]], ’back’: [’red’, [173, 35, 35]], ’central support’: [’cyan’, [41,
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Figure 8: Example CLEVR Image used provided to the Multimodal Models.

Figure 9: Example PTR Image used provided to the Multimodal Models.
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208, 208]], ’leg’: [’cyan’, [41, 208, 208]], ’seat’: [’green’, [29, 105, 20]], ’wheel’: [’cyan’, [41, 208,
208]] Part Count: ’leg’: 5, ’wheel’: 5

Object: Category: Table Rotation: [1.5707963705062866, -0.0, 3.115298271179199] Scale:
0.7057468096415201 Stability: yes 3D Coords: [0.4326867163181305, -6.359785556793213,
0.8900529742240906] Support: [398, 355, 14.242145538330078] Part Colors: ’leg’: [’blue’, [42,
75, 215]], ’top’: [’green’, [29, 105, 20]] Part Count: ’leg’: 3

Object: Category: Chair Rotation: [-1.5707963705062866, -0.0, 1.5445020198822021] Scale:
1.0358330011367798 Stability: no 3D Coords: [1.8846343755722046, -6.353758335113525,
1.1621549129486084] Support: [489, 341, 14.07287311553955] Part Colors: ’back’: [’gray’, [87,
87, 87]], ’leg’: [’blue’, [42, 75, 215]], ’leg bar’: [’yellow’, [255, 238, 51]], ’seat’: [’red’, [173, 35,
35]] Part Count: ’leg’: 4, ’leg bar’: 2

Object: Category: Table Rotation: [2.6077208518981934, -1.005200743675232,
2.0337021350860596] Scale: 0.6892068386077881 Stability: no 3D Coords:
[4.483290195465088, -2.520329236984253, 1.323003888130188] Support: [614, 275,
17.525205612182617] Part Colors: ’leg’: [’purple’, [129, 38, 192]], ’leg bar’: [’brown’,
[129, 74, 25]], ’top’: [’cyan’, [41, 208, 208]] Part Count: ’leg’: 2, ’leg bar’: 2

Relationships: ’above’: [[], [2], [], []], ’behind’: [[3], [3], [3], []], ’below’: [[], [], [1], []], ’front’:
[[], [], [], [0, 1, 2]], ’left’: [[1, 2], [], [], [0, 1, 2]], ’right’: [[3], [0, 3], [0, 3], []]

Directions: ’above’: [0.0, 0.0, 1.0], ’behind’: [-0.05208918824791908, 0.9986424446105957,
0.0], ’below’: [-0.0, -0.0, -1.0], ’front’: [0.05208918824791908, -0.9986424446105957, -
0.0], ’left’: [-0.9986424446105957, -0.05208919197320938, 0.0], ’right’: [0.9986424446105957,
0.05208919197320938, -0.0]

Image Filename: PTR val 007239.png

Physics: True

Cam location: [1.4220809936523438, -19.768001556396484, 5.674197196960449]

Cam Rotation: [0.7979968190193176, 0.6015914678573608, 0.02161088027060032,
0.028666317462921143] The objects or things can have the following categories: ’Bed’,
’Cart’, ’Chair’, ’Refrigerator’, ’Table’. The different parts of the things can have the following
categories: arm’, ’arm horizontal bar’, ’arm vertical bar’, ’back’, ’behind’, ’body’, ’central support’,
’door’, ’drawer’, ’leg’, ’leg bar’, ’pedestal’, ’seat’, ’shelf’, ’sleep area’, ’top’, ’wheel’. The things
or objects can move in the following directions to make themselves stable: ’front’, ’left’, ’right’.
The objects or their parts can have the following colors: ’blue’, ’brown’, ’cyan’, ’gray’, ’green’,
’purple’, ’red’, ’yellow’. For numeric answers, give an answer in integers and not in words.

Now answer the following question in one word.

Question: how many objects are stable? Answer:

A.4.3 CHAIN-OF-THOUGHT PROMPT

Given the following scene:

Scene PTR val 007239:

Objects: 4 Object: Category: Chair Rotation: [3.1370301246643066, 0.17649400234222412,
3.115612745285034] Scale: 1.0257009267807007 Stability: no 3D Coords: [4.433284759521484,
-6.149937629699707, 0.6772643327713013] Support: [645, 369, 14.225968360900879] Part Col-
ors: ’arm’: [’green’, [29, 105, 20]], ’back’: [’red’, [173, 35, 35]], ’central support’: [’cyan’, [41,
208, 208]], ’leg’: [’cyan’, [41, 208, 208]], ’seat’: [’green’, [29, 105, 20]], ’wheel’: [’cyan’, [41, 208,
208]] Part Count: ’leg’: 5, ’wheel’: 5

Object: Category: Table Rotation: [1.5707963705062866, -0.0, 3.115298271179199] Scale:
0.7057468096415201 Stability: yes 3D Coords: [0.4326867163181305, -6.359785556793213,
0.8900529742240906] Support: [398, 355, 14.242145538330078] Part Colors: ’leg’: [’blue’, [42,
75, 215]], ’top’: [’green’, [29, 105, 20]] Part Count: ’leg’: 3
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Object: Category: Chair Rotation: [-1.5707963705062866, -0.0, 1.5445020198822021] Scale:
1.0358330011367798 Stability: no 3D Coords: [1.8846343755722046, -6.353758335113525,
1.1621549129486084] Support: [489, 341, 14.07287311553955] Part Colors: ’back’: [’gray’, [87,
87, 87]], ’leg’: [’blue’, [42, 75, 215]], ’leg bar’: [’yellow’, [255, 238, 51]], ’seat’: [’red’, [173, 35,
35]] Part Count: ’leg’: 4, ’leg bar’: 2

Object: Category: Table Rotation: [2.6077208518981934, -1.005200743675232,
2.0337021350860596] Scale: 0.6892068386077881 Stability: no 3D Coords:
[4.483290195465088, -2.520329236984253, 1.323003888130188] Support: [614, 275,
17.525205612182617] Part Colors: ’leg’: [’purple’, [129, 38, 192]], ’leg bar’: [’brown’,
[129, 74, 25]], ’top’: [’cyan’, [41, 208, 208]] Part Count: ’leg’: 2, ’leg bar’: 2

Relationships: ’above’: [[], [2], [], []], ’behind’: [[3], [3], [3], []], ’below’: [[], [], [1], []], ’front’:
[[], [], [], [0, 1, 2]], ’left’: [[1, 2], [], [], [0, 1, 2]], ’right’: [[3], [0, 3], [0, 3], []]

Directions: ’above’: [0.0, 0.0, 1.0], ’behind’: [-0.05208918824791908, 0.9986424446105957,
0.0], ’below’: [-0.0, -0.0, -1.0], ’front’: [0.05208918824791908, -0.9986424446105957, -
0.0], ’left’: [-0.9986424446105957, -0.05208919197320938, 0.0], ’right’: [0.9986424446105957,
0.05208919197320938, -0.0]

Image Filename: PTR val 007239.png

Physics: True

Cam location: [1.4220809936523438, -19.768001556396484, 5.674197196960449]

Cam Rotation: [0.7979968190193176, 0.6015914678573608, 0.02161088027060032,
0.028666317462921143] The objects or things can have the following categories: ’Bed’,
’Cart’, ’Chair’, ’Refrigerator’, ’Table’. The different parts of the things can have the following
categories: arm’, ’arm horizontal bar’, ’arm vertical bar’, ’back’, ’behind’, ’body’, ’central support’,
’door’, ’drawer’, ’leg’, ’leg bar’, ’pedestal’, ’seat’, ’shelf’, ’sleep area’, ’top’, ’wheel’. The things
or objects can move in the following directions to make themselves stable: ’front’, ’left’, ’right’.
The objects or their parts can have the following colors: ’blue’, ’brown’, ’cyan’, ’gray’, ’green’,
’purple’, ’red’, ’yellow’. For numeric answers, give an answer in integers and not in words.

Now answer the following questions with step-by-step reasoning.Give the final one word answer at
the end of your reasoning. Thus, your response format should be:

Reasoning for the answer
Final answer:
Final one word answer

Question: how many objects are stable? Answer: Let’s think step by step.

A.5 PROMPT FOR VLM WITH FULL SCENE METADATA

In the case of VLMs with full scene metadata, we use the same exact scene description as provided
for Standard prompts, with the image input used the same as in VLM experiments.

A.6 FULL EXPERIMENTAL RESULTS

The results for all experiments performed are given in the Table 1

A.6.1 VLM COT PERFORMANCE DISCUSSION

The decision to omit the VLM CoT results from the main paper was mainly due to space constraints
and our initial assessment that these results might not offer as much insight as the other findings.
We aimed to streamline the main content of the paper for clarity and conciseness.

Here are the results and discussion for the VLM CoT Prompting performance:

Observations

For both the CLEVR and PTR datasets, the accuracy of BLIP-2 Flan-T5 XXL models is generally
higher than the BLIP-2 Flan-T5 XL models, regardless of the prompting technique. Across both
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Table 1: Experiment Results
Model Scale (Billions of parameters) Dataset Type Prompting Technique Accuracy

FLAN T5 3.00 CLEVR LLM CoT 0.250172
BLIP-2 FLAN T5 3.00 CLEVR Multimodal CoT 0.138455

FLAN T5 3.00 CLEVR LLM Standard 0.463932
BLIP-2 FLAN T5 3.00 CLEVR Multimodal Standard 0.396497
BLIP-2 FLAN T5 3.00 CLEVR Multimodal + Full

Scene Metadata
Standard 0.455474

FLAN T5 11.00 CLEVR LLM CoT 0.360632
BLIP-2 FLAN T5 11.00 CLEVR Multimodal CoT 0.282964

FLAN T5 11.00 CLEVR LLM Standard 0.463932
BLIP-2 FLAN T5 11.00 CLEVR Multimodal Standard 0.402938
BLIP-2 FLAN T5 11.00 CLEVR Multimodal + Full

Scene Metadata
Standard 0.481456

GPT 0.35 CLEVR LLM CoT 0.085992
GPT 0.35 CLEVR LLM Standard 0.095729
GPT 1.30 CLEVR LLM CoT 0.127561
GPT 1.30 CLEVR LLM Standard 0.175713
GPT 6.70 CLEVR LLM CoT 0.124974
GPT 6.70 CLEVR LLM Standard 0.296915
GPT 175.00 CLEVR LLM CoT 0.457613
GPT 175.00 CLEVR LLM Standard 0.409037

FLAN T5 3.00 PTR LLM CoT 0.349455
BLIP-2 FLAN T5 3.00 PTR Multimodal CoT 0.071239

FLAN T5 3.00 PTR LLM Standard 0.508657
BLIP-2 FLAN T5 3.00 PTR Multimodal Standard 0.336524
BLIP-2 FLAN T5 3.00 PTR Multimodal + Full

Scene Metadata
Standard 0.488672

FLAN T5 11.00 PTR LLM CoT 0.375339
BLIP-2 FLAN T5 11.00 PTR Multimodal CoT 0.228783

FLAN T5 11.00 PTR LLM Standard 0.531447
BLIP-2 FLAN T5 11.00 PTR Multimodal Standard 0.352028
BLIP-2 FLAN T5 11.00 PTR Multimodal + Full

Scene Metadata
Standard 0.522143

GPT 0.35 PTR LLM CoT 0.036834
GPT 0.35 PTR LLM Standard 0.038419
GPT 1.30 PTR LLM CoT 0.053044
GPT 1.30 PTR LLM Standard 0.149849
GPT 6.70 PTR LLM CoT 0.057316
GPT 6.70 PTR LLM Standard 0.242263
GPT 175.00 PTR LLM CoT 0.486693
GPT 175.00 PTR LLM Standard 0.461586

datasets and both model sizes, the Standard Prompting technique consistently outperforms the CoT
(Chain of Thought) prompting technique. The performance drop due to CoT is more pronounced
in the smaller BLIP-2 Flan-T5 XL models compared to the larger XXL variants. For example, in
the CLEVR dataset, the XL model shows a drop of 25.8% (from 39.65% to 13.85%) when using
CoT compared to Standard Prompting, while the XXL variant shows a smaller drop of 12% (from
40.29% to 28.29%). A similar trend is observed in the PTR dataset where the performance drop in
the XL model is 26.53% (from 33.65% to 7.12%) compared to a drop of 12.32% (from 35.20% to
22.88%) in the XXL model when switching from Standard Prompting to CoT.

Analysis

Prompting Technique Influence. While Standard Prompting seems to be the more effective method
across both datasets, the Chain of Thought (CoT) reasoning does show potential, and trends of
emergence over scale. This is especially important considering that the VLMs are not explicitly
trained on synthetic images, suggesting that CoT emergence in VLMs is not limited to the tasks
or image categories for which they were trained. Additionally, it provides further evidence for the
observation that CoT does seem to emerge even in the absence of world knowledge.

Implications for Future Research. While scale evidently improves performance, there’s a need to
further investigate the interaction between prompting techniques and model scale. The larger drop in
performance in smaller models when using CoT indicates that certain reasoning capabilities emerge
more robustly at higher scales. Future research could delve deeper into optimizing prompting tech-
niques specifically for smaller models or further enhancing the performance of larger models.
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A.7 GQA EXPERIMENTS

The GQA dataset was used to test the experimental setup on a dataset which uses natural images
instead of synthetically generated images. This was done in order to check the fairness of the VLM
vs LLM comparision on the original datasets. The rationale behind this was that the Visual en-
coders in the VLMs were not trained on synthetic images, which affect the performance on the
datasets selected in the original paper. The GQA dataset was as it provided access to comprehensive
scene metadata as well as functional programs to arrive at the answer, similar to the (Johnson et al.,
2017) and (Hong et al., 2021) datasets used in the main experiments. To facilitate our analysis, we
used annotated scene graphs as a proxy for perfect scene information. Further, since GQA contains
1469 labels which can hinder a model’s effectiveness (when providing the label vocabulary through
prompting), we drew a subset of questions for the top-25 labels and used a maximum prompt length
of 20,000 tokens. This resulted in 78536 questions out of the original 132062 questions in the
official validation set. The code to sample the dataset and run the experiments is provided along
with the supplemental submission A.1. we observe that the LLM (Flan-T5-XXL) has accuracy of
78.72% while the VLM (BLIP2-Flan-T5-XXL) with the same base language model has accuracy of
56.81%. The overall model performance is provided in Table 2, performance over length of func-
tional programs is provided in Table 3 and the performance over the question families is provided in
Table 4.

Analysis of the results. We can see that the LLM outperforms the VLM on the dataset, as well as
over the length of functional programs and question families. This result is consistent with the find-
ings of the main paper. It is important to note that there are not many questions with a large length of
the functional programs in the dataset, the scene metadata covers all the important relationships and
informations in a more verbose manner and the answers seem to be generally simpler to answer than
the synthetic datasets, which could explain a relatively larger gap in the LLM vs VLM performance.

Table 2: Experiment Results on Sampled GQA Dataset
Model Dataset Accuracy

Flan-T5 XXL Sampled GQA Dataset 78.72
Blip-2 Flan-T5 XXL Sampled GQA Dataset 56.81

Table 3: Performance Over Length of Functional Programs on GQA
Length Model Correct Total Accuracy (%)

2 Flan-T5 XXL 20404 26977 75.63
2 Blip-2 Flan-T5 XXL 14517 26977 53.81
3 Flan-T5 XXL 23921 29574 80.88
3 Blip-2 Flan-T5 XXL 16914 29574 57.19
4 Flan-T5 XXL 6685 8100 82.53
4 Blip-2 Flan-T5 XXL 4920 8100 60.74
5 Flan-T5 XXL 7819 10369 75.40
5 Blip-2 Flan-T5 XXL 6538 10369 63.05
6 Flan-T5 XXL 77 83 92.77
6 Blip-2 Flan-T5 XXL 56 83 67.47
7 Flan-T5 XXL 2908 3426 84.88
7 Blip-2 Flan-T5 XXL 1664 3426 48.57
8 Flan-T5 XXL 6 6 100.0
8 Blip-2 Flan-T5 XXL 5 6 83.33
9 Flan-T5 XXL 1 1 100.0
9 Blip-2 Flan-T5 XXL 1 1 100.0

A.7.1 GQA EXAMPLE PROMPT

Image The example image used to demonstrate the prompting for GQA is provided in 10

Standard Prompt
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Table 4: Performance Over Question Families on GQA
Question Family Model Correct Total Accuracy (%)

Logical Flan T5 XXL 12503 15590 80.19
Logical Blip-2 Flan T5 XXL 9829 15590 59.58
Verify Flan T5 XXL 21145 26355 80.23
Verify Blip-2 Flan T5 XXL 15967 26355 60.58
Query Flan T5 XXL 18027 21910 82.27
Query Blip-2 Flan T5 XXL 12669 21910 57.82

Choose Flan T5 XXL 7585 11374 66.68
Choose Blip-2 Flan T5 XXL 4925 11374 45.30

Compare Flan T5 XXL 2561 3307 77.44
Compare Blip-2 Flan T5 XXL 1765 3307 53.27

context: Given the following scene: Image Dimensions: 500x347 Objects: 34 Object ID 1231798:
Name: face Coordinates: x=442, y=55 Dimensions: w=16, h=25 Attributes: Relation: Name: of
Object: 1231760 Relation: Name: to the right of Object: 1231777 Relation: Name: to the right of
Object: 1231778

Object ID 1231799: Name: face Coordinates: x=68, y=20 Dimensions: w=25, h=36 Attributes:
Relation: Name: to the right of Object: 1231788 Relation: Name: of Object: 1231770 Relation:
Name: to the left of Object: 1231781 Relation: Name: to the left of Object: 1231773

Object ID 1231790: Name: cart Coordinates: x=168, y=141 Dimensions: w=168, h=192 Attributes:
Relation: Name: to the right of Object: 1231781 Relation: Name: to the right of Object: 1231780
Relation: Name: to the right of Object: 1231770 Relation: Name: to the right of Object: 1231779
Relation: Name: to the right of Object: 1231797 Relation: Name: to the right of Object: 1231796
Relation: Name: to the left of Object: 1231760 Relation: Name: to the right of Object: 1231768
Relation: Name: to the right of Object: 1231767 Relation: Name: to the left of Object: 1231763

Object ID 1231792: Name: outlet Coordinates: x=199, y=338 Dimensions: w=13, h=7 Attributes:
Relation: Name: on Object: 1231793

Object ID 1231793: Name: floor Coordinates: x=0, y=167 Dimensions: w=498, h=180 Attributes:

Object ID 1231794: Name: arm Coordinates: x=43, y=76 Dimensions: w=70, h=48 Attributes:
Relation: Name: to the left of Object: 1231781 Relation: Name: to the right of Object: 1231786
Relation: Name: to the left of Object: 1231802 Relation: Name: to the left of Object: 1231783

Object ID 1231796: Name: leg Coordinates: x=96, y=184 Dimensions: w=31, h=104 Attributes:
Relation: Name: of Object: 1231770 Relation: Name: to the left of Object: 1231781 Relation:
Name: to the right of Object: 1231797 Relation: Name: to the left of Object: 1231790 Relation:
Name: to the left of Object: 1231767 Relation: Name: to the left of Object: 1231766

Object ID 1231797: Name: leg Coordinates: x=13, y=187 Dimensions: w=56, h=123 Attributes:
Relation: Name: to the left of Object: 1231796 Relation: Name: to the left of Object: 1231768
Relation: Name: of Object: 1231770 Relation: Name: to the left of Object: 1231767 Relation:
Name: to the left of Object: 1231766 Relation: Name: to the left of Object: 1231781 Relation:
Name: to the left of Object: 1231790

Object ID 1231800: Name: shirt Coordinates: x=20, y=56 Dimensions: w=95, h=136 Attributes:
Relation: Name: to the left of Object: 1231802 Relation: Name: to the left of Object: 1231781
Relation: Name: to the left of Object: 1231764 Relation: Name: to the left of Object: 1231779
Relation: Name: to the right of Object: 1231786

Object ID 1231802: Name: shirt Coordinates: x=113, y=57 Dimensions: w=60, h=93 Attributes:
Relation: Name: to the left of Object: 1231783 Relation: Name: to the left of Object: 1231764
Relation: Name: to the right of Object: 1231800 Relation: Name: to the right of Object: 1231794
Relation: Name: to the right of Object: 1231786 Relation: Name: to the left of Object: 1231782
Relation: Name: to the left of Object: 1231777 Relation: Name: to the left of Object: 1231778
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Object ID 1231769: Name: sandal Coordinates: x=2, y=304 Dimensions: w=31, h=38 Attributes:
brown

Object ID 1231768: Name: sandal Coordinates: x=96, y=286 Dimensions: w=51, h=26 Attributes:
brown Relation: Name: to the left of Object: 1231790 Relation: Name: to the right of Object:
1231797

Object ID 1231761: Name: arm Coordinates: x=430, y=85 Dimensions: w=40, h=64 Attributes:
Relation: Name: to the right of Object: 1231762 Relation: Name: to the right of Object: 1231782
Relation: Name: to the right of Object: 1231777

Object ID 1231760: Name: girl Coordinates: x=370, y=48 Dimensions: w=107, h=224 Attributes:
Relation: Name: to the right of Object: 1231777 Relation: Name: carrying Object: 1231762 Re-
lation: Name: to the right of Object: 1231790 Relation: Name: to the right of Object: 1231764
Relation: Name: to the right of Object: 1231783 Relation: Name: to the right of Object: 1231782
Relation: Name: with Object: 1231762 Relation: Name: to the right of Object: 1231778

Object ID 1231763: Name: sneakers Coordinates: x=427, y=251 Dimensions: w=27, h=20 At-
tributes: white Relation: Name: to the right of Object: 1231790

Object ID 1231762: Name: purse Coordinates: x=392, y=114 Dimensions: w=52, h=55 Attributes:
Relation: Name: to the right of Object: 1231777 Relation: Name: to the right of Object: 1231764
Relation: Name: to the right of Object: 1231782 Relation: Name: to the left of Object: 1231761

Object ID 1231764: Name: projector Coordinates: x=196, y=126 Dimensions: w=74, h=30 At-
tributes: Relation: Name: to the right of Object: 1231800 Relation: Name: to the right of Object:
1231802 Relation: Name: to the left of Object: 1231760 Relation: Name: to the left of Object:
1231762 Relation: Name: to the left of Object: 1231782 Relation: Name: to the right of Object:
1231781 Relation: Name: to the left of Object: 1231777 Relation: Name: to the right of Object:
1231770 Relation: Name: to the right of Object: 1231779

Object ID 1231767: Name: sandal Coordinates: x=134, y=246 Dimensions: w=31, h=19 Attributes:
brown Relation: Name: to the left of Object: 1231790 Relation: Name: to the right of Object:
1231770 Relation: Name: to the right of Object: 1231797 Relation: Name: to the right of Object:
1231796

Object ID 1231766: Name: sandal Coordinates: x=164, y=237 Dimensions: w=39, h=12 Attributes:
brown Relation: Name: to the right of Object: 1231780 Relation: Name: to the right of Object:
1231797 Relation: Name: to the right of Object: 1231796 Relation: Name: to the right of Object:
1231770

Object ID 1231788: Name: books Coordinates: x=41, y=21 Dimensions: w=9, h=19 Attributes:
Relation: Name: to the left of Object: 1231799 Relation: Name: to the left of Object: 1231771
Relation: Name: to the left of Object: 1231773 Relation: Name: to the left of Object: 1231781

Object ID 1231783: Name: wall Coordinates: x=223, y=0 Dimensions: w=72, h=120 Attributes:
brick Relation: Name: to the right of Object: 1231781 Relation: Name: to the left of Object:
1231760 Relation: Name: to the left of Object: 1231777 Relation: Name: to the right of Object:
1231787 Relation: Name: to the right of Object: 1231802 Relation: Name: to the right of Object:
1231794 Relation: Name: to the right of Object: 1231770 Relation: Name: to the left of Object:
1231778 Relation: Name: to the right of Object: 1231773

Object ID 1231782: Name: game Coordinates: x=268, y=135 Dimensions: w=40, h=18 Attributes:
Relation: Name: to the right of Object: 1231770 Relation: Name: to the right of Object: 1231779
Relation: Name: to the left of Object: 1231762 Relation: Name: to the right of Object: 1231764
Relation: Name: to the right of Object: 1231781 Relation: Name: to the right of Object: 1231802
Relation: Name: to the left of Object: 1231761 Relation: Name: to the left of Object: 1231760

Object ID 1231781: Name: people Coordinates: x=112, y=24 Dimensions: w=88, h=240 Attributes:
Relation: Name: to the right of Object: 1231788 Relation: Name: to the left of Object: 1231783
Relation: Name: to the left of Object: 1231764 Relation: Name: to the right of Object: 1231787
Relation: Name: to the right of Object: 1231786 Relation: Name: to the left of Object: 1231782
Relation: Name: to the right of Object: 1231780 Relation: Name: to the left of Object: 1231777
Relation: Name: in front of Object: 1231786 Relation: Name: wearing Object: 1231779 Relation:
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Name: to the right of Object: 1231774 Relation: Name: to the left of Object: 1231778 Relation:
Name: to the right of Object: 1231770 Relation: Name: playing Object: 1231782 Relation: Name:
to the right of Object: 1231794 Relation: Name: to the left of Object: 1231790 Relation: Name:
to the right of Object: 1231799 Relation: Name: to the right of Object: 1231800 Relation: Name:
to the right of Object: 1231797 Relation: Name: to the right of Object: 1231796 Relation: Name:
wearing Object: 1231780 Relation: Name: wearing Object: 1231802

Object ID 1231780: Name: shorts Coordinates: x=22, y=175 Dimensions: w=106, h=74 Attributes:
Relation: Name: to the left of Object: 1231779 Relation: Name: to the left of Object: 1231766
Relation: Name: to the left of Object: 1231790 Relation: Name: to the left of Object: 1231781

Object ID 1231787: Name: shelf Coordinates: x=16, y=7 Dimensions: w=97, h=39 Attributes:
brown Relation: Name: to the left of Object: 1231781 Relation: Name: to the left of Object:
1231783 Relation: Name: by Object: 1231786 Relation: Name: to the left of Object: 1231773

Object ID 1231786: Name: window Coordinates: x=1, y=76 Dimensions: w=20, h=58 Attributes:
Relation: Name: to the left of Object: 1231781 Relation: Name: behind Object: 1231781 Relation:
Name: to the left of Object: 1231794 Relation: Name: to the left of Object: 1231802 Relation:
Name: to the left of Object: 1231800

Object ID 1231776: Name: hair Coordinates: x=432, y=49 Dimensions: w=22, h=17 Attributes:
Relation: Name: to the right of Object: 1231778 Relation: Name: to the right of Object: 1231777

Object ID 1231777: Name: girl Coordinates: x=274, y=42 Dimensions: w=60, h=194 Attributes:
Relation: Name: to the right of Object: 1231802 Relation: Name: to the right of Object: 1231764
Relation: Name: to the left of Object: 1231762 Relation: Name: to the left of Object: 1231760
Relation: Name: to the right of Object: 1231783 Relation: Name: to the right of Object: 1231781
Relation: Name: to the left of Object: 1231776 Relation: Name: to the right of Object: 1231779
Relation: Name: to the left of Object: 1231798 Relation: Name: to the left of Object: 1231761

Object ID 1231774: Name: beard Coordinates: x=73, y=49 Dimensions: w=17, h=12 Attributes:
Relation: Name: to the left of Object: 1231781 Relation: Name: to the left of Object: 1231773

Object ID 1231773: Name: hair Coordinates: x=124, y=25 Dimensions: w=30, h=35 Attributes:
Relation: Name: to the right of Object: 1231774 Relation: Name: to the right of Object: 1231799
Relation: Name: to the left of Object: 1231783 Relation: Name: to the right of Object: 1231787
Relation: Name: to the right of Object: 1231788

Object ID 1231770: Name: man Coordinates: x=3, y=7 Dimensions: w=145, h=333 Attributes:
Relation: Name: to the left of Object: 1231779 Relation: Name: to the left of Object: 1231764
Relation: Name: to the left of Object: 1231790 Relation: Name: wearing Object: 1231762 Relation:
Name: to the left of Object: 1231766 Relation: Name: to the left of Object: 1231767 Relation:
Name: wearing Object: 1231800 Relation: Name: wearing Object: 1231780 Relation: Name: to
the left of Object: 1231781 Relation: Name: to the left of Object: 1231782 Relation: Name: to the
left of Object: 1231783 Relation: Name: with Object: 1231774

Object ID 1231771: Name: hair Coordinates: x=48, y=7 Dimensions: w=48, h=33 Attributes:
Relation: Name: to the right of Object: 1231788

Object ID 1231778: Name: hair Coordinates: x=286, y=42 Dimensions: w=38, h=43 Attributes:
Relation: Name: to the right of Object: 1231802 Relation: Name: to the left of Object: 1231760
Relation: Name: to the right of Object: 1231783 Relation: Name: to the right of Object: 1231781
Relation: Name: to the left of Object: 1231798 Relation: Name: to the left of Object: 1231776

Object ID 1231779: Name: shorts Coordinates: x=119, y=133 Dimensions: w=59, h=83 Attributes:
Relation: Name: to the left of Object: 1231790 Relation: Name: to the right of Object: 1231770
Relation: Name: to the right of Object: 1231800 Relation: Name: to the left of Object: 1231764
Relation: Name: to the right of Object: 1231780 Relation: Name: to the left of Object: 1231782
Relation: Name: to the left of Object: 1231777

The possible answers could be: yes, no, left, right, man, white, black, bottom, woman, blue, chair,
top, brown, table, boy, gray, bed, green, girl, red, cat, dog, car, bus, horse.Now answer the following
question in one word. Question: What color is the helmet in the middle of the image?
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Figure 10: Example GQA Image used provided to the VLM Models.

A.8 IMAGE-FREE BASELINE AND RANDOM CHANCE

We conducted image-free experiments for GPT 3.5 models on both CLEVR and PTR to establish
a baseline to which the model performance could be compared. This meant providing the Dataset
name, dataset split (val) and image name, followed by answer vocabulary hint to the model,
similar to the original prompt, and then asking the question, without providing any scene meta-
data. Since the GPT 3.5 model was trained on the open internet, there is a chance that it could have
seen some of the dataset during its training process. Establishing an image-free baseline enabled us
to gauge whether the model had prior information about the questions and the scenes.

For Flan-T5, the datasets on which the model was trained have been disclosed and do not contain
CLEVR or PTR. More details about Flan-T5 training and fine-tuning is available in Appendix F of
the main paper.

The code required to run the experiments have been provided with the supplemental submission
under the ”image free” folder

Image-free baseline prompt – CLEVR

Answer the following question from the val split of the CLEVR Dataset for image
CLEVR val 000000.png You may assume that any metal object is shiny, and any rubber object
is not shiny (”matte”). All objects are either ”metal” or ”rubber”, and in 2 sizes: ”large” or ”small”.
All objects are one of the following colours: ”blue”, ”brown”, ”cyan”, ”gray”, ”green”, ”purple”,
”red”, ”yellow”. All objects are one of the following shapes: ”cube”, ”cylinder”, ”sphere”. For nu-
meric answers, give an integer and not in words. Always answer the following question in a single
word from the options provided above. Your response should only be a single word. Question: Is
there a big brown object of the same shape as the green thing?

Answer:

Image-free baseline prompt – PTR

Answer the following question from the val split of the PTR Dataset for image PTR val 007239.png
The objects or things can have the following categories: ’Bed’, ’Cart’, ’Chair’, ’Refrigerator’, ’Ta-
ble’. The different parts of the things can have the following categories: arm’, ’arm horizontal
bar’, ’arm vertical bar’, ’back’, ’behind’, ’body’, ’central support’, ’door’, ’drawer’, ’leg’, ’leg bar’,
’pedestal’, ’seat’, ’shelf’, ’sleep area’, ’top’, ’wheel’. The things or objects can move in the follow-
ing directions to make themselves stable: ’front’, ’left’, ’right’. The objects or their parts can have
the following colors: ’blue’, ’brown’, ’cyan’, ’gray’, ’green’, ’purple’, ’red’, ’yellow’. For numeric
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answers, give an answer in integers and not in words. Always answer the following question in a
single word from the options provided above. Your response should be just a single word. Question
: how many objects are stable?

Answer:

Image-free baseline – Results

The models response for most such questions would be that ”The question cannot be answered
without more information”. Thus, we forced a valid response from the model by asking it to
always give a one word answer from the answer vocabulary provided.

CLEVR Image-free Baseline

The Image free baseline performance of GPT 3.5 on CLEVR was 36.85%. Table 5 calculates the
random chance of getting a question from CLEVR right. We see that the image free baseline results
indicate that the model performance in the absence of scene metadata is basically random chance.

Table 5: Random Chance and Total Questions for CLEVR
Category Random Chance (%) Total Questions

exist 50.00 20196
colors 12.50 13404
material 50.00 30545
compare attribute 50.00 35422
shape 33.33 13544
size 50.00 10094
count 10.00 13273
compare numbers 50.00 13513

Overall random chance 36.86

PTR Image-free Baseline

The Image free baseline performance of GPT 3.5 on CLEVR was 10.16%. Table 6 calculates the
random chance of getting a question from CLEVR right. Again, we see that the image free baseline
results indicate that the model performance in the absence of scene metadata is basically random
chance.

Table 6: Random Chance and Total Questions for PTR
Category Random Chance (%) Total Questions

concept 2.63 38972
relation 4.35 22905
physics 50.00 7413
analogy 5.26 7472
arithmetic 8.33 14958

Overall random chance 8.03

A.9 COMPUTE USED

The models were trained using different compute resources depending on the scale. All Multimodal
models were run on NVIDIA A100 (40GB) VRAM GPUs. For the FLAN-T5 family, the 11B
models used NVIDIA A100 (40GB), while the smaller ones (3B) used NVIDIA A40’s. Complete
details can be found in 7.
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Table 7: Compute Used for Different Models
Model Compute Used Experiment (Both CLEVR and PTR)

BLIP-2 FLAN-T5 (3B) NVIDIA A40 Multimodal CoT
BLIP-2 FLAN-T5 (3B) NVIDIA A40 Multimodal Standard

FLAN-T5 (3B) NVIDIA A40 LLM CoT
FLAN-T5 (3B) NVIDIA A40 LLM Standard

BLIP-2 FLAN-T5 (3B) NVIDIA A40 Multimodal CoT
BLIP-2 FLAN-T5 (3B) NVIDIA A40 Multimodal Standard

FLAN-T5 (3B) NVIDIA A40 LLM CoT
FLAN-T5 (3B) NVIDIA A40 LLM Standard

BLIP-2 FLAN-T5 (11B) NVIDIA A100 (40GB) Multimodal CoT
BLIP-2 FLAN-T5 (11B) NVIDIA A100 (40GB) Multimodal Standard

FLAN-T5 (11B) NVIDIA A100 (40GB) LLM CoT
FLAN-T5 (11B) NVIDIA A100 (40GB) LLM Standard

BLIP-2 FLAN-T5 (11B) NVIDIA A100 (40GB) Multimodal CoT
BLIP-2 FLAN-T5 (11B) NVIDIA A100 (40GB) Multimodal Standard

FLAN-T5 (11B) NVIDIA A100 (40GB) LLM CoT
FLAN-T5 (11B) NVIDIA A100 (40GB) LLM Standard

GPT (175B) OpenAI API LLM CoT
GPT (175B) OpenAI API LLM Standard
GPT (175B) OpenAI API LLM CoT
GPT (175B) OpenAI API LLM Standard
GPT (350M) OpenAI API LLM CoT
GPT (350M) OpenAI API LLM Standard
GPT (350M) OpenAI API LLM CoT
GPT (350M) OpenAI API LLM Standard
GPT (1.3B) OpenAI API LLM CoT
GPT (1.3B) OpenAI API LLM Standard
GPT (1.3B) OpenAI API LLM CoT
GPT (1.3B) OpenAI API LLM Standard
GPT (6.7B) OpenAI API LLM CoT
GPT (6.7B) OpenAI API LLM Standard
GPT (6.7B) OpenAI API LLM CoT
GPT (6.7B) OpenAI API LLM Standard

A.10 EXAMPLES OF LIMITATIONS

A.10.1 GIBBERISH ANSWERS

We will use the full example for the CLEVR dataset provided in A.3.3 to demonstrate some com-
monly types of non-sensical answers which the models provide.

Repeating the Question The following question was provided to the Flan-T5 3B parameter LLM
model with the chain-of-thought prompt provided in section A.3.3 as scene description.

Question: There is a small gray block; are there any spheres to the left of it?

Model Response: There is a small gray block; are there any spheres to the right of it?

Here the model just repeats the question provided to it.

Repeating the input prompt The following question was provided to the Flan-T5 3B parameter
LLM model with the chain-of-thought prompt provided in section A.3.3 as scene description.

Question: What is the color of the large shiny sphere?

Model Response: You may assume that any metal object is shiny, and any rubber object is not
shiny (”matte”). All objects are either metallic or rubbery, and in 2 sizes: ”large” or ”small”. All
objects are one of the following colours: ”blue”, ”brown”, ”cyan”, ”gray”, ”green”, ”purple”, ”red”,
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”yellow”. All objects are one of the following shapes: ”cube”, ”cylinder”, ”sphere”. For numeric
answers, give an integer and not in words.

Here the model simply repeats the setup prompt which was used to align its responses with the
dataset answer vocabulary.

Repeating the same logic over and over

Question: Are there any other things that are the same shape as the big metallic object?

Model Response: The big metallic object is a cube. The small metallic object is a cube. The purple
object is a cube. The red object is a cube. The yellow object is a cube. The blue object is a cube.
The brown object is a cube. The green object is a cube. The red object is a cube. The yellow object
is a cube. The blue object is a cube. The brown object is a cube. The purple object is a cube. The
red object is a cube. The yellow object is a cube. The blue object is a cube. The brown object is a
cube. The green object is a cube. The purple object is a cube. The red object is a cube. The yellow
object is a cube. The blue object is a cube. The brown object is a cube. The purple object is a cube.
The yellow object is a cube. The red object is a cube. The brown object is a cube. The green object
is a cube. The yellow object is a cube. The blue object is a cube. The brown object is a cube. The
purple object is a cube. The yellow object is a cube. The blue object is a cube. The brown object
is a cube. The purple object is a cube. The yellow object is a cube. The blue object is a cube. The
brown object is a cube. The purple object is a cube. The yellow object is a cube. The blue object is
a cube. The brown object is a cube. The purple object is a cube. The yellow object is a cube. The
blue object is a cube. The brown object is a cube. The purple object is a cube. The yellow object
is a cube. The blue object is a cube. The brown object is a cube. The purple object is a cube. The
yellow object is a cube. The blue object is a cube. The brown object is a cube. The purple object

As seen here, the model gets lost in its own explanations and keeps repeating the same logic over
and over.

Not adhere to the response format The following question was provided to the Flan-T5 3B param-
eter LLM model with the chain-of-thought prompt provided in section A.3.3 as scene description.

Question: Is there a big brown object of the same shape as the green thing?

Model Response: The green object is a cube, and the brown object is a cube too

As seen here, while the model response is correct, it does not follow the response format provided
to it.

A.10.2 PROMPT ENGINEERING

Prompt engineering plays an important role in eliciting the required reasoning behaviour from the
instruction based LLMs used in the project. Changes in the wording of the prompt, or emphasis on
different aspects of the instructions can have drastic changes in the model response.

Guidance for Response Structure. We noticed the most impact in model responses on the answer
formatting aspect of the prompt. The larger scale models were significantly better in following a
required format for their response, while the smaller models required further emphasis for the same.
For example, the smaller model variants of both the GPT as well as Flan-T5 models adhered to the
required format much better when the response format was repeated at the end of the prompt as well.

Impact of prompt format. The formatting of the input prompt affects the model response as well.
The Flan-T5 models are text-to-text models which have been trained on question answering in a
specific format. During their training, they were made to elicit CoT reasoning for their responses by
providing samples in the following format:

Example of the ideal prompt
<Scene metadata + setup prompt>
Question: <Question about the provided scene>
Answer: Lets think step-by-step.

From our observations, the Flan-T5 models were able to provide best responses for CoT reasoning
when provided the prompt in this exact format. Other formats for the prompts, such as those given
below, were not as effective in making the models perform CoT reasoning.
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Examples of ineffective prompts

Example 1
<Scene metadata + setup prompt>
Answer the following question with step-by-step reasoning:
Question: <Question about the provided scene>
Answer:

Example 2
<Scene metadata + setup prompt>
Answer the following question with step-by-step reasoning:
Question: <Question about the provided scene>
Lets think step-by-step.

This indicates that while the models can exhibit general reasoning abilities, their performance is not
yet flexible or robust to prompts they might not have observed in their training data before. Their
performance for the same task still heavily depends on the format and content of the training data.

Observations: From empirical observations, it seems like the models become more robust to prompt
format and better at following instructions with scale, since the models of the same type show
progressive improvements in both these aspects as scale increases.
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