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ABSTRACT

Large language models (LLMs) are typically specialized for domain tasks through
supervised fine-tuning, which optimizes LLMs for likelihood-based objectives.
While supervised fine-tuning enables LLMs to generate text that conforms to the
language style of a specific domain, such as radiology, it often falls short in en-
hancing the model’s ability to perform detailed diagnostic reasoning that tailors
to the need of individual patients. In this paper, we explore the use of reinforce-
ment learning to better align LLMs with the intricate requirements of radiological
practice. By framing the report generation process as sequential decision-making
stages, we present Radiology-Guided Reinforcement Optimization (RGRO), a tai-
lored policy optimization framework designed specifically for medical language
tasks. RGRO moves beyond conventional likelihood-based training by directly
optimizing for radiology-specific objectives, including consistency with radiol-
ogy findings and adherence to established professional guidelines. Our empirical
evaluations demonstrate that RGRO significantly enhances the diagnostic preci-
sion and clinical utility of radiology reports generated by LLMs, outperforming
supervised fine-tuning methods and state-of-the-art models. Furthermore, RGRO
enables the seamless integration of expert radiologist feedback and external diag-
nostic tools, all without the need for large-scale annotated datasets.

1 INTRODUCTION

The advent of large language models (LLMs) marks a major milestone in the field of natural lan-
guage processing, and has led to unprecedented advancements in various fields (Elyoseph et al.,
2024; |Dagdelen et al.l |2024; Wagner & Ertl-Wagner, [2023)) such as text generation, text compre-
hension, and interactive dialogue. To adapt to target use cases, models are typically fine-tuned on
large corpora using supervised learning techniques that optimize likelihood-based objectives (Min
et al.| [2023). This fine-tuning process enables them to excel at generating coherent and contextually
relevant text, aligning with the patterns observed in the training data. However, while fine-tuning
enhances language contextualization and stylistic adherence, it does not address the deeper require-
ments of specialized domains, where reasoning and insights are paramount (Bhayana, [2024; Tang
et al., [2023)). Specifically, radiologists generate reports by synthesizing both positive and negative
findings from medical images before forming a diagnostic impression (Omiye et al.| [2024). This
process demands not only language fluency but also meticulous diagnostic reasoning, adherence to
clinical standards, and relevance to individual patient cases. Given the high stakes involved in med-
ical diagnoses, precision and reliability in generated reports are crucial. These challenges call for a
paradigm shift in how LLMs are trained and applied in specialized fields.

Conventional methods for adapting LLMs to radiology rely on prompt engineering and supervised
fine-tuning (Yan et al., [2024; Ma et al., 2024} [Jiang et al., [2023; [Luo et al., 2022)). While these ap-
proaches can infuse some domain-specific features into the model, it is heavily reliant on the avail-
ability of large-scale, high-quality annotated data—a scarce resource in the medical field (Bhayana),
2024;|Liu et al.,[2023a)) due to confidentiality concerns, regulatory restrictions, and the considerable
effort required for expert annotations. Moreover, traditional likelihood-based training objectives,
which aim to maximize the probability of observed text sequences, may not align with the nuanced
demands of radiological practice (Lecler et al., 2023). This misalignment can result in outputs
that, although linguistically coherent, lack clinical efficacy or fail to adhere to professional guide-
lines (Zhong et al.| 2023). This gap underscores a critical challenge in deploying LLMs for decision
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reasoning process and highlights the need for the alignment strategies tailored to domain-specific
requirements.

In this paper, we present radiology-guided reinforcement optimization (RGRO), a novel policy op-
timization framework (Buffet et al.| 2020) designed explicitly for radiology. By modeling the ra-
diology report generation process as a continuous multi-stage decision phase, we first leverage in-
struction fine-tuning to adapt LLMs to comprehend and synthesize detailed findings into coherent
impressions (Nie et al.,[2018). This initial phase conditions the model on the unique characteristics
of radiological language, training it to distill intricate imaging observations into meaningful sum-
maries. Subsequently, RGRO employs reinforcement learning guided by enhancement feedback
leveraging generative language models to iteratively align the model’s outputs with expert-driven
benchmarks based on explicit reward signals and directly optimizes for radiology-specific objectives.
This approach reduces reliance on the typically scarce and costly large-scale annotated datasets in
the medical domain. Distinctly differing from traditional likelihood-based training schemes, RGRO
focuses on enhancing fine-grained reasoning (Cosentino & Shekkizhar, [2024)) performance within
a specific domain. Rather than relying solely on likelihood maximization, we directly optimize
for domain-specific goals. This perspective allows the model to learn strategies that are not only
generally plausible but are meticulously tailored to the radiological context.

Our contributions include:

* We develop RGRO, a reinforcement learning-based policy optimization framework specif-
ically tailored for medical language tasks, which transforms the report generation process
into a sequential decision-making problem.

* By formulating custom reward functions, RGRO directly optimizes critical domain-specific
objectives, such as clinical accuracy, diagnostic reasoning, and adherence to established
reporting standards.

* Our approach enables the incorporation of pre-existing expert radiologist insights and exter-
nal diagnostic information, which reduces the dependency on large-scale annotated datasets
and addresses data scarcity challenges.

Through comprehensive experiments, we demonstrate that RGRO significantly improves the diag-
nostic precision and clinical utility of generated radiology reports, outperforming the state-of-the-art
models. While tailored for radiology, our framework lays the groundwork for applying reinforce-
ment learning to other specialized domains requiring precise and context-specific tasks.

2 RELATED WORK

The general capabilities of large language models. Large language models have demonstrated
impressive capabilities in natural language understanding and generation. They can perform vari-
ous tasks such as text summarization, translation, question answering, sentiment analysis, and be-
yond (Zhou et al.; 2023). The expressive transformer architecture (Vaswani, 2017 enables LLMs
to capture complex relationships within data. Furthermore, fine-tuning techniques enable LLMs
to adapt to specific tasks or domains, which enhances their performance and applicability across
different fields.

Large language models for radiology report generation. In the medical domain, large language
models (Vaswani, 2017) have shown significant potential in generating radiology reports (Ma et al.,
2024; Bhayanal 2024} Jiang et al., 2023} [Liu et al., |2023b). By understanding the context and
structure of radiology findings (Yuan et al.l [2019; |Chen et al., [2020), these models can assist in
creating accurate and coherent reports. The ability of LLMs to synthesize information from various
sources allows for the generation of reports that adhere to clinical standards while ensuring clarity
and precision (Liu et al., 2019).

Reasoning capabilities of large language models. Large language models exhibit notable reason-
ing capabilities that enable them to process and analyze complex information (Kojima et al., [2022).
They can perform logical reasoning, make inferences, and understand nuanced prompts, which is
essential for tasks requiring deep comprehension. These reasoning abilities arise from training on
diverse datasets, which allows LLMs to understand context, relationships, and implications (Li et al.,
2024)). However, since LLMs are autoregressive models that generate text one token at a time based
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on previously generated tokens, they often face challenges in maintaining consistent and coherent
reasoning over long sequences. This autoregressive nature (Dalal et al.,[2019)) can lead to difficulties
in handling complex logical structures and maintaining accuracy across multiple steps of reasoning,
limiting their performance in tasks requiring deep, multi-step inference (Kalyanpur et al., 2024).

Applying reinforcement learning to align with physicians. Reinforcement learning (RL) has
become crucial for enhancing decision-making in large language models, refining model behavior
based on user feedback (Kaufmann et al., 2023} |Ouyang et al.l 2022). Previously, Proximal Policy
Optimization (PPO) (Schulman et al.,[2017), a reinforcement learning algorithm, demonstrated how
policies could be efficiently updated using a surrogate objective, ensuring stability while allowing
multiple updates. More recently, Direct Preference Optimization (DPO) (Rafailov et al.| 2023)) has
been introduced to align models with human preferences while retaining their domain knowledge,
ensuring that fine-tuning does not compromise the expertise gained during pretraining. Applying
DPO to radiology impression generation represents a novel approach, offering a promising way to
adapt LLMs to meet the specific requirements of medical professionals.

3 PRELIMINARIES

In this section, we briefly review the key concepts and techniques from reinforcement learning that
serve as the foundation for our proposed framework.

3.1 MARKOV DECISION PROCESS (MDP)

A reinforcement learning problem is typically modeled as a Markov Decision Process (MDP) (Black:
et al.,2023). An MDP is defined by a tuple (S, A, P,r, ) where:

» S is the state space, representing all possible states of the environment.

» A is the action space, which includes all possible actions the agent can take.

* P(s'|s, a) is the transition probability, representing the probability of reaching state s’ from
state s after taking action a.

* r:S x A — Ris the reward function, which provides feedback to the agent based on the
action taken.

* v € [0,1] is the discount factor, which trades off the importance of immediate and future
rewards.

The objective in reinforcement learning (Flageat et al.,2023) is to learn a policy m(a|s) that maxi-
mizes the expected cumulative reward (return), defined as:

E lz yir(sq, at)]
t=0

where s; and a; are the state and action at time step ¢.

3.2 PoLICY OPTIMIZATION

Policy optimization methods aim to directly optimize the policy 7y parameterized by 6. One com-
mon approach is to use policy gradient methods (Black et al., 2023)), which optimize the expected
return by estimating the gradient of the objective with respect to the policy parameters:

VoJ(76) = Esmpr anmy [V log mg(als)Q7 (s, a)]

where Q™ (s, a) is the action-value function under the policy g and p™(s) is the stationary distribu-
tion of states.

3.3 PROXIMAL PoLICY OPTIMIZATION (PPO)

Proximal Policy Optimization (PPO) (Schulman et all 2017} [Yu et al.l 2022) is a policy gradient
method designed to maintain a balance between exploration and exploitation. It prevents large
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updates to the policy by using a clipped objective function:
LP9(9) = E, [min (rtw)At, clip(r¢(6),1 — €, 1+ e)At)}

where r;(0) is the probability ratio between the new and old policy, and Ay is the advantage estimate.
The clipping mechanism ensures that the policy update is conservative, improving the stability of
training.

A. Training Stage
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Figure 1: Radiology-Guided Reinforcement Optimization. We propose a reinforcement learning
framework, RGRO, to optimize large language models on clinical objectives of radiology reports.
Leveraging this framework, we develop a finding-impression alignment structure with radiologists
knowledge. Each row shows the detailed process of each stage of the different training phases, such
as data evaluation, clinical processing and model optimization.

4 RADIOLOGY-GUIDED REINFORCEMENT OPTIMIZATION

In this section, we detail the two phases used to develop our framework: the Instruction Fine-tuning
phase and the Reinforcement Learning phase, as illustrated in Figure[I] Our objective is to generate
radiology impressions that are more closely aligned with doctors’ expectations, ensuring they are
both coherent and clinically accurate based on the findings in radiology reports.

4.1 INSTRUCTION FINE-TUNING WITH LORA

In the instruction fine-tuning phase, we aim to teach the model to transform the findings in radiology
reports into structured and accurate impression sections. By integrating the Low-Rank Adaptation
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(LoRA) technique (Hu et al.| | 2021), this phase becomes crucial for establishing a robust foundation
in medical impression generation.

We utilize a large-scale radiology dataset where each sample consists of a finding-impression pair,
denoted as Drr = {(z;,vi)},, where z; represents the findings (e.g., detailed descriptions of
radiological observations), and y; represents the corresponding impression (e.g., summarized diag-
nostic conclusions or recommendations).

LoRA allows us to adapt the pre-trained model efficiently by introducing trainable low-rank matri-
ces into each layer of the Transformer architecture, significantly reducing the number of trainable
parameters required for fine-tuning. Specifically, given a weight matrix W € R?** in a pre-trained
model, LoRA approximates the adaptation of W by representing it as:

W'=W + AB

where A € R¥" and B € R"** are low-rank matrices with rank » < min(d, k). During fine-
tuning, only A and B are updated, while the original weights W remain fixed, allowing for a more
memory-efficient adaptation process.

The goal during this phase is to optimize the model’s parameters € (in this case, the parameters of
matrices A and B introduced by LoRA) to generate clinically accurate impressions based on the
given findings. To achieve this, we minimize the cross-entropy loss:

N
1
Lrr(0) = N Zlogwa(yﬁxi),
=1

where 7y (y;|x;) represents the probability that the model assigns to the correct impression y; given
the findings x;. This loss function encourages the model to produce impressions that closely match
those written by expert radiologists in the dataset. By leveraging the LoRA method, the model
efficiently learns to interpret findings and generate concise and informative impressions, establishing
a strong baseline for subsequent reinforcement learning optimization.

4.2 LLM PARSER AND PREFERENCE OPTIMIZATION FOR HUMAN FEEDBACK

In this study, we utilized LLM Parser (OpenAll[2023)) as a substitute for human evaluators to stream-
line the feedback process. Instead of relying on human annotators to provide preference feedback
on the model’s outputs, we leveraged LLLM Parser to select the preferred output between two gener-
ated responses. Specifically, for each pair of outputs from the model, LLM Parser was tasked with
determining which output better aligned with the desired criteria, such as accuracy, relevance, and
clarity. This approach allowed for a more efficient and consistent evaluation process, reducing the
reliance on human involvement while maintaining a high standard of feedback quality.

After that, our approach leverages a modified version of Direct Preference Optimization (DPO)
(Rafailov et al.,|2023) to align the model’s behavior with expert radiologists’ preferences in gener-
ating clinically relevant impressions from findings. Instead of strictly following the original DPO
methodology, we directly use impressions written by radiologists during their routine work as the
accepted responses, while the samples unpreferred by LLM Parser serve as the rejected responses.

In this framework, we construct preference data as tuples ( f;, imp,, imp,.), where f; represents the
detailed radiology findings, and imp, and imp, are two impressions generated by the model. The
LLM Parser (acting as the evaluator) is used to decide which impression to “accept” (¢mp,) and
which to “reject” (imp,.), based on alignment with expert radiologist annotations. By comparing
high-quality, expert-aligned impressions with those that are deemed suboptimal by the LLM Parser,
our approach leverages domain-specific expertise to guide the model’s learning process. By employ-
ing the LLM Parser as a judge instead of relying only on traditional preference data, this approach
brings a fresh variation to the standard DPO framework. It allows the model to engage with a wide
range of preferred and unpreferred outputs. This contrast between expert-level impressions and less
optimal ones provides the model with a richer learning signal, which helps it to capture the subtleties
that distinguish truly expert-level impressions from samples that are superficially coherent. The loss
function is defined as:
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7o (imp,|fi)

41 o (imp,.| fi) )}
Trer (impalf) P ’

Lppo (7T«9a Wref) ]E(fiﬂmpmzmpr)ND |:10g a <B log Tres (impr |f7,)
where 7y represents the policy we aim to optimize, m,.¢ is the reference policy obtained from
the instruction fine-tuning phase, and [ is a scaling factor that controls the sensitivity of the loss
function to preference differences. This loss function guides the model in distinguishing between
clinically relevant and less relevant impressions, allowing it to refine its outputs towards meeting the
high standards expected in radiological reporting, ultimately aligning more closely with the nuanced
preferences of medical professionals.

To ensure the model generates high-quality impressions, the reward function r(f;, émp), which
measures how well an impression aligns with the accepted dataset labels:

mo(impl fi)

r(fi,imp) = Blog e (impl f:)

where Z(f;) is a normalization term. This reward function evaluates the alignment of generated
impressions with the expert-labeled data over the LLM Parser generated alternatives.

The preference probability, indicating the likelihood that the accepted impression ¢mp,, is preferred
over the rejected impression imp,., is calculated as:

p* (impa s impr | fz) =0 (r(.fia Z"rnpa) - T(f’ia Zmpr)) )
or equivalently:

1
1+ exp (ﬁlogwpr‘ﬁ)) _mogw)'

Tref(imp,.| fi Tref(1mp,|fi)

p*(imp, = imp, | fi) =

This framework ensures that the model learns to prefer impressions aligned with radiologist-labeled
data over less accurate LLM Parase-generated impressions. By optimizing the model in this way,
this process ensures that the generated outputs not only meet clinical and diagnostic standards but
also align more closely with the expectations of medical professionals.

5 EXPERIMENTAL EVALUATIONS

We designed our experiments to systematically evaluate the performance of our model in generating
radiology impressions from findings. The experiments are divided into multiple phases, each ad-
dressing different aspects of model training and evaluation, including ablation studies, comparative
experiments, multi-center generalization, and visualizations. For the experimental setup, we utilized
12 A100 GPUs to train and 8 A5000 GPUs to conduct our tests efficiently.

5.1 EVALUATION METRICS: ROUGE AND BERTSCORE

To evaluate the performance of our model in generating clinically relevant and accurate radiology
impressions, we employed two widely used metrics: ROUGE and BERTScore.

ROUGE (Lin, 2004) (Recall-Oriented Understudy for Gisting Evaluation): ROUGE is a set
of metrics for evaluating text generation by comparing the overlap between the generated text and
reference text. ROUGE-N measures n-gram overlap, such as Rouge-1 (R1) and Rouge-2 (R2), while
ROUGE-L (RL) focuses on the longest common subsequence. Higher ROUGE scores indicate
greater similarity to the reference, making it useful for assessing alignment with expert annotations.

BERTScore: BERTScore (Zhang et al., 2020) uses pre-trained BERT embeddings to evaluate the
semantic similarity between generated and reference texts. Unlike ROUGE, which focuses on token
overlap, BERTScore captures deeper contextual meaning by computing cosine similarity between
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token embeddings, making it ideal for assessing clinically relevant impressions. By combining
ROUGE and BERTScore, we evaluate both lexical similarity and semantic alignment with expert-
generated impressions.

5.2 PHASE 1: ABLATION AND COMPARATIVE STUDY

Experimental Design: We conducted an ablation study to assess different training methodologies
for generating radiology impressions from findings. Using LLAMA2-7B (Touvron et al., [2023)
as the foundational model, pre-trained on a radiology dataset, we fine-tuned it on two prominent
datasets: MIMIC (Johnson et al.,|2019) and Openl (Demner-Fushman et al., |2016), partitioned into
70% training and 30% testing. The study investigated two paradigms: Supervised Fine-tuning (SFT)
(Ouyang et al., 2022)) and a hybrid approach combining SFT with Direct Preference Optimization
(DPO) (Rafailov et al.,|2023)). We examined following configurations:

* SFT-50: Trained using 50% of the available data to assess performance with limited super-
vision.

* SFT-70: Trained with 70% of the data to evaluate improvements with additional annotated
data.

e SFT-80: Trained on 80% of the data to analyze performance with a higher level of super-
vision.

* RGRO-50: Applied SFT on 50% of the data, followed by DPO on the remaining 50%, to
study the impact of preference-based alignment.

* RGRO-70: Combined 80% SFT with 20% DPO to examine the influence of a predomi-
nantly supervised approach with some preference optimization.

* RGRO-80: Utilized 70% SFT and 30% DPO to explore the effects of integrating prefer-
ence optimization with substantial supervision.

Experiment Objective: The aim was to evaluate how each training strategy affects the model’s
ability to generate impressions that are accurate and better aligned with expert radiologists’ expec-
tations. By exploring different ratios of SFT and DPO, we sought to identify the optimal training
methodology that balances accuracy and alignment with clinical preferences, enhancing the model’s
capability to produce high-quality radiological impressions.

Experimental Results:

Table 1: Performance comparison of models across two datasets using various metrics.
OPENI MIMIC

RI R2 RL  BS-P BS-R BS-FI | RI R2 RL  BS-P BS-R BS-FI
SFT-50 38299 29.673 40.869 73.357 79.589 75.185 | 41.683 40204 46,752 75.230 81.348 79.672
SFT.70 46721 28.996 45263 81.146 86.849 83.619 | 53.159 48.106 52.592 82.492 87.805 85.093
SFT-80 57329 47396 53.673 86439 89.328 88.928 | 58385 53.992 59.472 85.590 89.945 87.391
RGRO-50 56367 45280 50.381 80.203 81439 79.715 | 52.647 48396 51.942 81730 87.228 53.370
RGRO-70  57.258 48.492 53.540 87.842 86.873 89.226 | 58.579 54.901 60.245 84.682 88.472 88.361
RGRO-80 61367 61.082 66.652 88.301 90.662 89.358 | 68.376 56472 66.936 88.739 90.267 89.240

In Table[I} we present the performance comparison between models trained using supervised fine-
tuning (SFT) and our proposed Radiology-Guided Reinforcement Optimization (RGRO) framework
across two datasets: OPENI and MIMIC. The metrics used for evaluation include ROUGE (R1, R2,
RL) and BERTScore (BS-P, BS-R, BS-F1).

For both datasets, we observe a consistent improvement in performance as we increase the propor-
tion of training data used in the SFT models. Specifically, SFT-80, which utilizes 80% of the training
data, significantly outperforms SFT-50 and SFT-70 in both ROUGE and BERTScore metrics. This
trend suggests that larger training sets improve the model’s ability to generate clinically accurate
radiology impressions.

However, the introduction of RGRO, which integrates reinforcement learning into the model training
process, further enhances the model’s performance. For instance, RGRO-80 achieves the highest
scores across all metrics, particularly in BERTScore F1, where it attains values of 89.358 and 89.240
on OPENI and MIMIC, respectively. This demonstrates that by framing the generation of radiology
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impressions as a sequential decision-making process, RGRO better aligns the model’s outputs with
clinical standards, outperforming models that rely solely on supervised fine-tuning.

The increase in both ROUGE and BERTScore metrics for RGRO-80 compared to SFT-80 highlights
the effectiveness of incorporating reinforcement learning with expert-driven feedback in the training
process. While supervised fine-tuning is able to capture language fluency, RGRO ensures that the
generated outputs maintain clinical relevance, enhancing diagnostic precision.

5.3 PHASE 2: ZERO SHOT PERFORMANCE IN MULTI-CENTER GENERALIZATION

Experimental Design: In this phase, we tested the generalization ability of our model across multi-
ple regions and clinical systems to evaluate how well it handles data from different clinical centers,
including both domestic and international datasets. We conducted three sets of experiments:

» Data Split 1: The model was trained on a combination of private data from XiangYa
Hospital (Zhong et al., [2023)) and public datasets (MIMIC and Openl). The test set was
divided into three parts: MIMIC, Openl, and the XiangYa dataset.

» Data Split 2: The model was trained on both the Xiangya private dataset and the combined
MIMIC + Openl datasets. Testing was performed separately on MIMIC, Openl, and the
Xiangya dataset, with the results stored in corresponding directories for each dataset.

Experiment Objective: The goal was to assess the model’s ability to generate accurate and clini-
cally relevant impressions across different clinical datasets, including its zero-shot capabilities. In
addition to using automatic metrics from previous phases (Rouge, BLEU), we evaluated the model’s
performance on unseen datasets to test its zero-shot ability. Furthermore, we conducted a manual
evaluation by having four radiologists review 500 samples each from the test datasets, providing
additional insights into the clinical relevance and correctness of the model’s output.

Experimental Results:

Table 2: Zero-Shot Performance trained on XiangYa Hospital Dataset
OPENI MIMIC
RI R2 RL  BS-P_ BS-R BSFI | RI R2 RL  BS-P_ BS-R_BS-FI
SFT-50 21.483 15847 20371 50375 55749 46.384 | 20.792 18394 23.489 48492 50.284 43.681
SFT-70 34284 21.583 28.384 62.589 60.385 52478 | 40.738 32.582 30.472 65396 69.372 58.385
SFT-80 44384 29.348 38280 76.227 69352 66.482 | 52.374 40275 35382 71367 75273 71.385
RGRO-50 40.296 23.458 35.286 71.348 64329 62367 | 43.175 35356 31351 69.260 71.014 69.175
RGRO-70 45.703 28.473 39270 75.632 70.264 65389 | 51.473 39.995 34.671 72482 75.832 72492
RGRO-80 50.346 29.403 43471 80.143 75.672 72431 | 59.250 43.762 38371 75386 80.237 76.381

Table 2] demonstrates the zero-shot performance of models trained on the XiangYa Hospital dataset
when evaluated on two external datasets: OPENI and MIMIC. This evaluation assesses the models’
ability to generalize without being directly fine-tuned on the test datasets.

Our results reveal that while all models exhibit lower performance in the zero-shot setting com-
pared to the supervised fine-tuning setup, the models trained with RGRO (RGRO-50, RGRO-70,
RGRO-80) demonstrate stronger generalization capabilities than the SFT models. Notably, RGRO-
80 outperforms all other configurations in both ROUGE and BERTScore metrics on both datasets,
achieving an R1 score of 50.346 on OPENI and 59.250 on MIMIC. The superior performance of
RGRO models in zero-shot settings suggests that reinforcement learning contributes to a more ro-
bust understanding of domain-specific language, allowing the model to generate clinically relevant
impressions even when encountering previously unseen data.

This improvement highlights the advantage of aligning the model’s decision-making process with
domain-specific requirements, which is crucial for medical applications where accuracy and relia-
bility are paramount.

5.4 QUALITATIVE ANALYSIS

The figures (Figure [2] and Figures [3] {6] in the Appendix) illustrate how the model processes and
interprets radiological data across different anatomical contexts. The evaluation results indicate that
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while our model shows slight improvements across both ROUGE and BERTScore metrics, the over-
all gains are modest. Specifically, the refined training strategy has contributed to better alignment
with expert annotations, particularly in terms of semantic relevance as captured by BERTScore.
This alignment reflects the model’s enhanced ability to understand the nuances of clinical language
and terminology. For example, the findings from the liver and lung systems highlight the model’s
capacity to generate clinically pertinent impressions based on the radiological data provided.

However, the improvements observed do not represent a significant leap in performance compared
to earlier evaluations. The current results suggest that, although the model’s ability to generate
clinically relevant impressions has been enhanced, further optimization may be required to achieve
more substantial advancements. This could involve exploring additional training datasets, refining
the model architecture, or incorporating more sophisticated reinforcement learning techniques to
better capture the intricacies of clinical reasoning.

Additionally, the qualitative insights from this analysis emphasize the importance of continuous
feedback from medical professionals. Regular evaluations in diverse clinical scenarios are essential
to ensure that the model remains robust and reliable in real-world applications. Such iterative ad-
justments will be vital for enhancing the model’s performance and ensuring it effectively supports
clinical decision-making. Overall, while the current results are promising, they also underscore the
need for ongoing research and development to fully leverage the potential of machine learning in
the clinical domain.
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Figure 2: The First Visualization of Radiology Finding and Impression. We present five body-
systems impressions generated by RGRO coupled with radiology findings. Each row shows the
detailed process of each stage of the different diagnosis on systems of liver, lung, musculoskeletal
system, head and sensory organs.

6 DISCUSSION & CONCLUSION

In this paper, we presented Radiology-Guided Reinforcement Optimization (RGRO), a fundamental
reinforcement learning-based framework designed to optimize large language models for radiology
reports. By framing the generation process as a sequential decision-making task, RGRO enables
the model to better align with clinical requirements, moving beyond traditional likelihood-based
objectives. Our empirical results demonstrate that RGRO improves diagnostic accuracy and clinical
utility compared to supervised fine-tuning and other baseline models.

While RGRO shows significant promise in enhancing the alignment of LLMs with radiology-
specific objectives, several limitations must be acknowledged. First, the scope of our experiments
was limited to a subset of radiology tasks, primarily focusing on diagnostic impressions derived
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from radiology reports. Future work could explore more diverse medical specialties and imaging
modalities to further validate the generalizability of our approach. Additionally, our reliance on
expert-labeled datasets, though partially mitigated by reinforcement learning, still presents chal-
lenges in terms of scalability, as large-scale expert annotations remain costly and time-consuming.

Another limitation lies in the potential problem of overoptimization, a common issue in reinforce-
ment learning when models become excessively tuned to specific feedback, diverging from the
broader distribution of acceptable outputs. In this work, we did not explicitly address this con-
cern, leaving it as an important direction for future research. Expanding the framework to include
mechanisms for preventing overfitting to specific datasets or feedback loops is critical for ensuring
robustness across diverse clinical environments. Future iterations could incorporate more dynamic
and interactive feedback mechanisms, enabling models to adapt continuously to evolving clinical
guidelines and practices.

RGRO is cost-effective compared to traditional approaches. Moreover, the use of reinforcement
learning in specialized domains provides a flexible mechanism to incorporate real-time feedback and
evolving clinical standards. While the RGRO framework shows great potential in generating better
radiology reports through reinforcement learning, further exploration into data diversity, feedback
mechanisms, and the prevention of overoptimization is necessary. We hope this work provides a
foundational step toward targeted optimization of LLMs for medical applications and improves the
practical utility of Al-driven radiology solutions.
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A APPENDIX
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Multiple Human Organs

Radiology Findings

A patchy low-density area is observed in the left upper abdomen, with an irregular shape

The liver is normal in size and shape, with a smooth surface and proportionate lobes. The density of
the liver parenchyma s lower than that of the

The lver is normal in size and shape, with a smooth surface and normal proportions
among the lobes, displaying uniform density with no abnormal density shadows ...

Musculoskeletal Finding

The liver is normal in size and shape, with a smooth surface and proportionate lobes, displaying
with no abnormal density shadows observed within the liver parenchyma. The
gallbladder is not enlarged ...

‘The liver is normal in size and shape, with a smooth

surface and normal proportions among the
bserved ...

lobes, displaying

Sensory Organs Finding

Impression Generation

Liver Impression

Lungs Impression

Musculoskeletal Impression

Head Impression

Sensory Organs Impression

Figure 3: The Second Visualization of Radiology Finding and Impression. We present five
body-systems impressions generated by RGRO coupled with radiology findings. Each row shows
the detailed process of each stage of the different diagnosis on systems of liver, lung, musculoskeletal

system, head and sensory organs.

Multiple Human Organs

Radiology Findings

is thick g
Liver System

‘The bladder is well-filled, but the bladder wall shows irregular thickening with enhancement. There
b e b

The liver is slightly enlarged, with a smooth surface and normal proportions among the lobes. A
round low-density lesion is observed in segment S

The left kidney shows postoperative changes, with a linear dense shadow in the surgical
area unchanged from previous imaging ..

System

Musculoskeletal Finding

‘The liver appears normal in size and shape, with a smooth surface and proportionate lobes. The.

—T1> density is diffusely decreased and somewhat heterogeneous ..

1| heliveris normal in size and shape, with a smooth surface and normal proportions among the
[————————L>|  iobes. Small cystic lesions scattered throughout the liver remain unchanged, with the largest
measuring approximately 6mm in diameter ...

ding
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Liver Impression

Lungs Impression

Musculoskeletal Impression

Head Impression

Sensory Organs Impression

Figure 4: The Third Visualization of Radiology Finding and Impression. We present five body-
systems impressions generated by RGRO coupled with radiology findings. Each row shows the
detailed process of each stage of the different diagnosis on systems of liver, lung, musculoskeletal

system, head and sensory organs.
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Multiple Human Organs

Radiology Findings

Both kidneys exhibit normal shape and size. Multiple nodular high-dlensity shadows are observed
within the renal calyces of both kidneys, with the largest measuring approximately 139..

Liver Finding

Post-gastrectomy changes are observed, with metalic sutures visible in the surgical area. No
significant thickening of the gastric wallis seen at the anastomosis site

Lungs Finding

“The rectal wall of the midde and upper segments is unevenly thickened, with eccentric
fuminal narrowing. The thickest part meastires approximately 13mm ...

Musculoskeletal Finding

The liver exhibits multiple scattered low or lower density nodular cystic lesions, some with
poorly defined borders ...

Head Finding

“The liver appears normal in size and shape, with a smooth surface and proportionate lobes,
displaying uniform density

Sensory Organs Finding

Impression Generation

Liver Impression

Lungs Impression

Musculoskeletal Impression

Head Impression

Sensory Organs Impression

Figure 5: The Forth Visualization of Radiology Finding and Impression. We present five body-
systems impressions generated by RGRO coupled with radiology findings. Each row shows the
detailed process of each stage of the different diagnosis on systems of liver, lung, musculoskeletal

system, head and sensory organs.

Multiple Human Organs

Radiology Findings

“The lver is normal n size and shape, with a smooth surface and proportionate lobes. A notable:
enhancement is observed at the junction ...

Liver Finding

‘The liver is normal in size and shape, with a smooth surface and proportionate lobes. Slightly low-
density nodules are abserved in segments S2 and 7 of the liver, with the S2 nodule showing
on contrast imaging

Lungs Finding
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“The lver is normal n size and shape, with a smooth surface and proportionate lobes,
displaying uniform density, and no abnormal density shadows are seen ..

Musculoskeletal Finding

The liver appears normal in shape and size, with a smooth surface and normal proportions
among the lobes, displaying uniform densiy .

Head System

Head Finding

Sensory Organs
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(| e iver shows sighty reduced volume with uneven densit. No significant dilation of the
7 i i ic bile ducts i rved ..
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Figure 6: The Fifth Visualization of Radiology Finding and Impression. We present five body-
systems impressions generated by RGRO coupled with radiology findings. Each row shows the
detailed process of each stage of the different diagnosis on systems of liver, lung, musculoskeletal

system, head and sensory organs.
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