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ABSTRACT

We present 3D Diffuser Actor, a framework that marries diffusion policies and
3D scene representations for robot manipulation. Diffusion policies capture the
action distribution conditioned on the robot and environment state using conditional
diffusion models. They have recently shown to outperform both deterministic and
alternative generative policy formulations in learning from demonstrations. 3D
robot policies use 3D scene feature representations aggregated from single or
multiple 2D image views using sensed depth. They typically generalize better than
their 2D counterparts in novel viewpoints. We unify these two lines of work and
present a neural policy architecture that uses 3D scene representations to iteratively
denoise robot 3D rotations and translations for a given language task description.
At each denoising iteration, our model “grounds” the current end-effector estimate
in the 3D scene workspace, featurizes it using 3D relative position attentions
and predicts its 3D translation and rotation error. We test 3D Diffuser Actor on
learning from demonstrations in simulation and in the real world. We show our
model outperforms both 3D policies and 2D diffusion policies and sets a new state
of the art on RLBench, an established learning from demonstrations benchmark,
where it outperforms the previous SOTA with a 12% absolute gain. We ablate our
architectural design choices, such as translation invariance through 3D grounding
and relative 3D transformers, and show they help model generalization. Our results
suggest that 3D scene representations and powerful generative modeling are key to
efficient learning of multi-task robot policies.

1 INTRODUCTION

Many robot manipulation tasks are inherently multimodal: at any point during task execution, there
may be multiple actions which yield task-optimal behavior. Demonstrations often contain diverse
ways that a task can be accomplished. Learning from such multimodal data has been a persistent
problem in imitation learning (Ho & Ermon, |[2016} |Tsurumine & Matsubara, [2022; |Hausman et al.,
2017; |Shafiullah et al., [2022). A natural choice is then to treat policy learning as a distribution
learning problem: instead of representing a policy as a deterministic map 7y (z), learn instead the
entire distribution of actions conditioned on the current robot state p(y|x).

Diffusion models (Sohl-Dickstein et al., 2015} [Ho et al.,|2020) are a powerful class of generative
models that learn to map noise to data samples from the distribution of interest, such as images
(Dhariwal & Nichol, [2021;|Ramesh et al.,[2021; Rombach et al.,[2022)), videos (Ho et al., 2022} |Singer
et al.}2022), text (Lin et al., |2023)) through iterative applications of a denoising function that takes
as input the current noisy estimate and any relevant input conditioning information. Recent works
that use diffusion models for learning robot manipulation policies from demonstrations (Pearce et al.,
2023} |Chi et al., 2023} |Reuss et al., |2023)) outperform their deterministic and generative alternatives,
such as variational autoencoders (Mandlekar et al.,|2019), mixture of Gaussians (Chernova & Veloso,
2007), combination of classification and regression objectives (Shafiullah et al., [2022)), or energy
based objectives (Florence et al.| 2021)). Specifically, they exhibit better distrubution coverage and
higher fidelity than alternative formulations. They have so far been used with low-dimensional
engineered state representations (Pearce et al., [2023)) or 2D image encodings (Chi et al., 2023).

3D perception architectures that differentiably map features from 2D perspective views to a 3D or
bird’s eye view (BEV) feature map are the de facto choice currently in autonomous driving perception



Under review as a conference paper at ICLR 2024

Encoder
Average 3D location
within patch

JewlojsuRl| BANRIRY AE

Denoising

(c) Denoise gripper pose estimate

o - e ~°

“Put the grape in the bowl” “Pick up the purple bowl” “Sweep dustpan”

Figure 1: 3D Diffuser Actor is a language and vision conditioned action diffusion model that learns
multi-task multimodal end-effector keyposes from demonstrations. (a) We deploy an image encoder
to extract a feature map from each camera view, where each feature token corresponds to a fixed-size
patch in the input image. We compute the 3D locations of pixels by combining the 2D pixel locations
and depth values using the camera intrinsics and pinhole camera equation. (b) We lift a 2D feature
token to 3D by averaging the 3D locations of all pixels within the patch. (c) We apply a 3D relative
transformer to denoise the robot gripper pose for each keyframe.

(Philion & Fidler} [2020; [Li et al 2022} [Harley et all [2023)). Lifting features from perspective

views to a BEV or 3D robot workspace map has also shown strong results in robot manipulation
(Shridhar et al} 2023} James et al.,[2022}; [Goyal et al., 2023}, [Gervet et al., 2023)). Policies that use
such 2D-to-BEV or 2D-to-3D scene encodings generalize better than their 2D counterparts and can
handle novel camera viewpoints at test time. Interestingly, this improved performance is related to
the way these methods handle multimodality in action prediction. 2D policy formulations, such as,
RT-1 [2022), RT-2 (Brohan et al.l 2023)), Hiveformer (Guhur et al, [2022), InstructRL
discretize the action dimensions directly, such as 3D translation and 3D rotation
angles, and score bins using pooled 2D image features. BEV or 3D policy formulations such as
Transporter Networks 2021), C2F-ARM (James et al.| [2022)), PerAct
[2023), Act3D (Gervet et al., 2023) and Robot view transformer (Goyal et al., instead discretize
the robot’s 3D workspace for localizing the robot’s end-effector, such as the 2D BEV map for pick
and place actions [2021)), the 3D workspace (Gervet et al., 2023} [Shridhar et al.| 2023)), or
multiview re-projected images (Goyal et al.} [2023)). This results in spatially disentangled features
that generalize better thanks to locality of computation: when the input scene changes, the output
predictions change only locally 2021). Such 3D policies have not been combined yet
with diffusion objectives.

In this paper, we propose 3D Diffuser Actor, a model that marries these two lines of work, diffusion
policies for handling action multimodality and 3D scene encodings for effective spatial reasoning.
3D Diffuser Actor trains a denoising neural network that takes as input a 3D scene visual encoding,
the current estimate of the end-effector’s 3D location and orientation, as well as the iteration index,
and predicts the error in 3D translation and rotation. Our model achieves translation invariance in
prediction by “grounding” the current estimate of the robot’s end-effector in the 3D scene workspace
and featurizing them jointly using relative-position 3D attentions (Shaw et al.} 2018} [Su et al, 202T),
as shown in Figure[T} Our output to input grounding operation relates our model to early work on
iterative error feedback for structured prediction (Carreira et al.| 2016), which similarly used an
multi-step inference process and would render output human pose estimates onto the input image and
jointly featurize them using rhetinotopic representations.

We test 3D Diffuser Actor in learning robot manipulation policies from demonstrations on the simu-
lation benchmarks of RLbench (James et al.| [2020) and in the real world. Our model sets a new state
of the art on RLbench and outperforms existing 3D policies and 2D diffusion policies. It outperforms
the previous SOTA with a 12% absolute gain. We ablate design choices of our model such as 3d
scene encodings and 3D relative transformers for translation invariance, and find them all important
in performance. Our models and code will be publicly available upon publication.
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2 RELATED WORK

Learning robot manipulation from demonstrations Though state to action mappings are typi-
cally multimodal, earlier works on learning from demonstrations train deterministic policies with
behaviour cloning (Pomerleau), [1989} [Bojarski et al, 2016). To better handle action multimodality,
other approaches discretize action dimensions and use cross entropy losses (Lynch & Sermanet,
[2020; [Shridhar et al, 2023} [Zeng et al.l [2021). However, the number of bins needed to approxi-
mate a continuous action space grows exponentially with increasing dimensionality. Generative
adversarial networks (Ho & Ermon) 2016}, [Tsurumine & Matsubaral 2022} [Ding et al., 2019)), varia-
tional autoencoders (Mandlekar et al.,[2019) and combined Categorical and Gaussian distributions
(Shafiullah et al,[2022; |Guhur et al.,[2022)) have been used to learn from multimodal demonstrations.
Nevertheless, these models tend to be sensitive to hyperparameters, such as the number of clusters
used (Shafiullah et al.} 2022)). Implicit behaviour cloning represents distributions over actions by
using Energy-Based Models (EBMs) (Florence et al,[202T} [Ta et al, 2022). Optimization through
EBMs amounts to searching the energy landscape for minimal-energy action, given a state. EBMs
are inherently multimodal, since the learned landscape can have more than one minima. EBMs
are also composable, which makes them suitable for combining action distributions with additional
constraints during inference. Diffusion models (SohI-Dickstein et al.| 2013} [Ho et al 2020) are a
powerful class of generative models related to EBMs in that they model the score of the distribution,
else, the gradient of the energy, as opposed to the energy itself (Singh et al,[2023; [Salimans & Ho,
[2021)). The key idea behind diffusion models is to iteratively transform a simple prior distribution into
a target distribution by applying a sequential denoising process. They have been used for modeling
state conditioned action distributions in imitation learning (Ryu et al., 2023} [Urain et al.| 2023} |[Pearce]
et all 2023} Wang et al., 2022 [Reuss et al.} 2023 [Mishra & Chen, [2023) from low dimensional input,
as well as from visual sensory input, and show both better mode coverage and higher fidelity in action
prediction than alternatives. They have not been yet combined with 3D scene representations.

Diffusion models in robotics Beyond policy representations in imitation learning, diffusion models
have been used to model cross-object and object-part arrangements (Liu et al.,[2022b} [Simeonov et al ]
[2023} [Ciu et all, [2023; [Mishra & Chenl 2023} [Fang et al, 2023}, [Gkanatsios et al.,[2023a)), and visual
image subgoals (Kapelyukh et al.|[2023; |Dai et al., 2023} |Ajay et al., 2023)). They have also been used
successfully in offline reinforcement learning (Chen et al.,[2023a; [Chi et al, 2023} [Hansen-Estruch
et al.,[2023), where they model the state-conditioned action trajectory distribution (Hansen-Estruch
et al., 2023}, [Chen et al,[20234) or state-action trajectory distribution (Janner et al, 2022} He et al.,
2023). ChainedDiffuser (Xian et al] proposes to forego motion planners commonly used for
3D keypose to 3D keypose linking, and instead used a trajectory diffusion model that conditions on
the 3D scene feature cloud and the target 3D keypose to predict a trajectory from the current to the
target keypose. 3D Diffuser Actor instead predicts the next 3D keypose for the robot’s end-effector
using 3D scene-conditioned diffusion, which is a much harder task than linking two given keyposes.
ChainedDiffuser is complementary to our work: We can use keyposes predicted by 3D Diffuser Actor
and link them with ChainedDiffuser’s trajectories instead of motion planners. For the tasks in the
Per-Act benchmark that we consider motion planner already work well, and thus we did not consider
it for comparison. Lastly, image diffusion models have been used for augmenting the conditioning
images input to robot policies to help the latter generalize better (Liang et all, 2023} [Chen et all
2023b; Mandi et al.} [2022).

2D and 3D scene representations for robot manipulation End-to-end image-to-action policy
models, such as RT-1 (Brohan et al} 2022), RT-2(Brohan et al.} [2023)), GATO [2022),
BC-Z (Jang et al},[2022), and InstructRL (Liu et al.}[2022a)), leverage transformer architectures for

the direct prediction of 6-DoF end-effector poses from 2D video input. However, this approach
comes at the cost of requiring thousands of demonstrations to implicitly model 3D geometry and
adapt to variations in the training domains. Another line of research is centered around Trans-
porter networks(Zeng et al., 2021}, [Seita et al., 2021} Shridhar et al,[2022} [Gkanatsios et al.,[2023a)),
demonstrating remarkable few-shot generalization by framing end-effector pose prediction as pixel
classification. Nevertheless, these models are confined to top-down 2D planar environments with
simple pick-and-place primitives. Direct extensions to 3D, exemplified by C2F-ARM

[2022)) and PerAct (Shridhar et al.| [2023), involve voxelizing the robot’s workspace and learning to
identify the 3D voxel containing the next end-effector keypose. However, this becomes computa-
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(a) 3D Diffuser Actor model architecture
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Figure 2: 3D Diffuser Actor architecture. Top: 3D Diffuser Actor is a denoising diffusion proba-
bilistic model of the robot 3D keyposes conditioned on sensory input, language instruction, action
history and proprioceptive information. The model is a 3D relative position transformer that featurizes
jointly the scene and the current noisy estimate for the pose of the robot’s end-effector through 3D
relative-position attentions. 3D Diffuser Actor outputs position and rotation residuals for denoising,
as well as the end-effector’s state (open/close). Bottom: 3D Diffuser Actor iteratively denoises the
gripper pose estimate to target pose, where the pose estimate is initialized from pure noise.

tionally expensive as resolution requirements increase. Consequently, related approaches resort to
either coarse-to-fine voxelization or efficient attention operations (Jaegle et al.}, [2021) to mitigate
computational costs. Recently, Act3D (Gervet et al), [2023) uses coarse-to-fine 3D attentions in a
3D scene feature cloud and avoids 3D voxelization altogether. It samples 3D points in the empty
workspace and featurizes them using cross-attentions to the physical 3D point features. Robot view
transformer (RVT) re-projects the input RGB-D image to alternative image views,
featurizes those and lifts the predictions to 3D to infer 3D locations for the robot’s end-effector. Both
Act3D and RVT show currently the highest performance on RLbench (James et al., [2020), the largest

benchmark for learmng from demonstratlons Wﬁ%e%ﬁeﬁaekﬂevmﬂgher—geﬂef&h—z&&eﬂ»due

3 3D DIFFUSER ACTOR FORMULATION

The architecture of 3D Diffuser Actor is shown in Figure[2} 3D Diffuser Actor formulates 3D robot
action prediction as a conditional action distribution learning problem. It is a conditional diffusion
model that takes as input visual observations, a language instruction, a short history trajectory of
the end-effector and the current estimate for the robot’s future action, and predicts the error in 3D
translation and 3D orientation. We review Denoising Diffusion Probabilistic models in Section [3.1]
and describe the architecture and training details of our model in Section 3.2}

3.1 DENOISING DIFFUSION PROBABILISTIC MODELS

A diffusion model learns to model a probability distribution p(x) by inverting a process that gradually
adds noise to a sample x. For us, x represents 3D translations and 3D rotations of the end-effector’s
next keypose. The diffusion process is associated with a variance schedule {3; € (0,1)}Z_,, which
defines how much noise is added at each time step. The noisy version of sample x at time ¢ can then
be written z; = /@;x + /1 — aue where € ~ N(0,1), is a sample from a Gaussian distribution
(with the same dimensionality as =), a; = 1 — (¢, and &y = H§=1 «;. The denoising process is
modeled by a neural network € = €y (z¢; t) that takes as input the noisy sample z; and the noise level
t and tries to predict the noise component €.

Diffusion models can be easily extended to draw samples from a distribution p(x|c) conditioned on
input ¢, which is added as input to the network ey. For us ¢ is the visual scene captured by one or more
calibrated RGB-D images, a language instruction, as well as a short history of the robot’s end-effector.
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Given a collection of D = {(z%,¢’)}/.; of end-effector keyposes #* paired with observation and
robot history context ¢*, the denoising objective becomes:

Law(0:D) = > oV + vVI—are, ¢ t) —el|. (1)

zt,ct€D

This loss corresponds to a reweighted form of the variational lower bound for log p(z|c) (Ho et al.
2020).

In order to draw a sample from the learned distribution py(z|c), we start by drawing a sample
xp ~ N(0,1). Then, we progressively denoise the sample by iterated application of €y T times
according to a specified sampling schedule (Ho et al.| [2020; Song et al., [2020), which terminates with
xo sampled from pg(z):

1 Bt 11—
1= — — ——¢€ t _ h ~N(0,1 2
rs == (0= (ot ) + 0 i where 2~ N0.D) Q)

3.2 3D DIFFUSER ACTOR

We next describe the architecture of our network that predicts the end-effector’s pose error given the
current estimate, a visual scene encoding, a language instruction, the denoising iteration index and
the robot’s history.

Instead of predicting an end-effector pose at each timestep, we extract a set of keyposes that capture
bottleneck end-effector poses in a demonstration, following prior work (James & Davisonl 2022}
Shridhar et al., [2023; /Guhur et al., 2023} |Liu et al.| [2022a). Following Act3D (Gervet et al., [2023)),

“a pose is a keypose if (1) the end-effector changes state (something is grasped or released) or (2)
velocities approach near zero (a common occurrence when entering pre-grasp poses or entering a
new phase of a task). The action prediction problem then boils down to predicting a plausible action
keypose given the current robot state.” At inference time, 3D Diffuser Actor iteratively denoises its
predictions to infer the next 3D keypose. The predicted 3D keypose is reached with a sampling-based
motion planner, following previous works (Shridhar et al.;[2023; /Guhur et al., 2023).

Following Act3D (Gervet et al.||2023)), we assume access to a dataset of N demonstration trajectories.
Each demonstration is a sequence of observations o, = {01, 02, .., 0; } paired with continuous actions
a, = {aj,as,..,a; } and a language instruction [ that describes the task. Each observation o; consists
of a set of posed RGB-D images taken from one or more camera views. An action a; consists
of the 3D position and 3D orientation of the robot’s end-effector, as well as its binary open or
closed state: a = {aP°s € R? a™' € R% a°*® € {0,1}}. We represent rotations using the 6D
rotation representation of Zhou et al.| (2020) for all environments in all our experiments, to avoid the
discontinuities of the quaternion representation that previous approaches use (Guhur et al.| 2023}
Gervet et al., [2023)).

Scene and language encoder We use a scene and language encoder similar to Act3D (Gervet
et al.,|2023)). We describe it here to make the paper self-contained. Our scene encoder maps posed
multi-view RGB-D images into a multi-scale scene feature cloud. We use a pre-trained 2D feature
extractor followed by a feature pyramid network to extract multi-scale visual tokens from each
camera view. We associate every 2D feature grid location in the 2D feature maps with a depth value,
by averaging the depth values of the image pixels that correspond to it. Then we use the camera
intrinsics and pinhole camera equation to map a pixel location and depth value (z,y,d) to a 3D
location (X, Y, Z), and “lift” the 2D feature tokens to 3D to obtain a 3D feature cloud. The language
encoder featurizes language task descriptions or instructions into language feature tokens. We use the
pretrained CLIP ResNet50 2D image encoder (Radford et al.,|2021)) to encode each RGB image into
a 2D feature map and pretrained CLIP language encoder to encode the language task instruction. We
keep those frozen.

3D grounding of the current action estimate We disentangle “what" and “where" when rep-
resenting the end-effector’s action estimate. For “what", we encode the 3D pose estimate into a
high-dimensional representation through an MLP. For “where", we treat the noisy estimate as a 3D
entity rendered at the corresponding 3D location in the scene, as shown in Figure[2] This enables
relative cross-attention with the scene and other physical entities, as we explain in the following.
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We incorporate proprioceptive information as a short history of end-effector positions. These are
represented as scene entities of known 3D positions while their features are learnable.

3D Relative Position Diffusion Transformer We contextualize all tokens, namely visual o, lan-
guage [, proprioception ¢ and current estimate tokens a}’**, a;°’ using 3D relative position attention
layers. Inspired by recent work in visual correspondence (L1 & Harada, 2022} |Gkanatsios et al.}
2023b) and 3D manipulation (Gervet et al.||2023)), we use rotary positional embeddings (Su et al.|
2021). These have the property that the dot product of two positionally encoded features x;, x; is:

PE(pi,x;)"PE(p;,x;) = x{ M(p;)"M(p;)x; = x; M(p; — p;)x; 3)

which depends only on the relative positions of points p; and p; and thus is translation-invariant. The
updated feature token that corresponds to the current action estimate token is fed to MLPs to predict
the position error € °* (0, [, ¢, a} >, aj°*, t), rotation error ¢;°*(o,, ¢, ay*, a}°*, t) and whether the

gripper should be open or closed TP (0,1, ¢, al®, aj°t t).

Denoising process We use a modified version of Equation 2]to update the current estimate of the
end-effector’s pose:

1 s Bt 1 -y
pos __ pos pos Z pOS rot t pos 4
A = o, <at 1_%69 CHNCETRE )) + 1—ay Pz “)
1 t B t t I — i t
_= _(grot — ___“t o, l, c, aro a° Jt S ey AL 5
\/oz<t 1—at9( ai”?) 1 atﬁt )
where zP?, 2™ ~ N(0, 1) variables of appropriate dimension. We use the following two noise
schedulers:

rot __
a1 =

1. a scaled-linear noise scheduler 8; = (Bmax — Bmin)t + Bmin> Where Bmax, Bmin are hyper-
parameters, set to 0.02 and 0.0001 in our experiments,

2
1—cos ( (t+1)1/€ots0 008 z )

2. asquared cosine noise scheduler 5, = -~ (t o008 *1) 5
1.008 2

We found using a scale-linear noise schedule for denoising end-effector’s 3D positions and a squared

cosine noise schedule for denoising the end-effector’s 3D orientations to converge much faster than

using squared cosine noise for both. We justify the use of square cosine noise scheduler for 3D

orientations in the Appendix.

Training 3D Diffuser Actor is trained on a dataset of kinesthetic demonstrations, which consists of
tuples of RGB-D observations, proprioception information of robot’s end-effector pose ¢, action trajec-
tories a = [aP°® a"*!], and corresponding language goals D = {(01,c1,a1,11), (02, c2, az,12), ...}.
During training, we randomly sample a diffusion step ¢ and add noise € = (€%, €;°*) to the ground-
truth target action. We supervise 3D Diffuser Actor using a denoising ob]ecnve conditioning the
tuple of (0,1, ¢, t), our model learns to reconstruct the clean action by predicting the pose transforma-
tion wrt the current estimate. We adopt the L1 loss for reconstructing the 3D position and 3D rotation
error. We use binary cross-entropy loss to supervise end-effector opening. Our objective reformulates

Equation [T]into:

D]

open pos rot open
Lo = E BCE( (0, liyci, aly, &% 1), a7 )+

ID\
H( pog(O’i;li’Ctva??q’a;m t) - ei)oeH + wa - H( mt(oivlivcwag(zg’aim t) _€§Ot”7 (6

where w1, wo are hyperparameters estimated using cross-validation.

Implementation details We render images at 256 x 256 resolution. Based on the depth and camera
parameters, we calculate xyz-coordinates of each image pixel and use such information to lift 2D
image features to 3D. To reduce the memory footprint in our 3D Relative Transformer, we use Farthest
Point Sampling to sample 20% of the points in the input 3D feature cloud. We use FiLM (Perez
et al., 2018)) to inject conditional input, including the diffusion step and proprioception history, to
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”"place the wine on “touch the crimson ”close the the dark ”"put yellow block in ”drag the block into
the right of stack” button” yellow jar” the correct slot” the golden zone”

“press the hand “place the black box “put grapes in the ”flip the bottle” ”stack purple cup
sanitizer in the bowl” on the white box” bowls” with the cyan cup”

Figure 3: Tasks. We conduct experiments on 52 simulated tasks in RLBench (James et al., [2020)
(only 5 shown), and 5 real-world tasks. Please see the supplementary videos for results of our model
in the real world.

every attention layer in the model. We include a detailed architecture diagram of our model in the
Appendix. We augment RGB-D observations with random rescaling and cropping. Nearest neighbor
interpolation is used for rescaling RGB-D observations. During training, we use a batch size of 48,
embedding dimension of 120, and training iterations of 600K for the 18 PerAct-task experiments. We
set the batch size to 32, embedding dimension to 60, and training steps to 200K for the ablations and
real-world experiments. We set the loss weights to w; = 100 and wg = 10. During testing, we use
a low-level motion planner to reach predicted keyposes. We use the native motion planner—BiRRT
(Kuffner & LaValle, [2000) in RLBench. For real-world experiments, we use the same BiRRT planner
provided by the Movelt! ROS package (Coleman et al.| 2014)).

4 EXPERIMENTS

We test 3D Diffuser Actor’ ability to learn manipulation policies from demonstrations in simulation
and in the real-world. Our experiments aim to answer the following questions:

1. How does 3D Diffuser Actor compare against the state-of-the-art manipulation policies in general-
izing across diverse tasks and environments?

2. How does 3D Diffuser Actor compare against 2D policy diffusion models, that use 2D multiview
encodings of the scene instead of 3D ones?

3. How does architectural choices, such as 3D relative attentions and noise schedule selection impact
performance?

Baselines We compare 3D Diffuser Actor to the following state-of-the-art manipulation policy
learning methods: 1. InstructRL (Liu et al. 2022a), a 2D policy that directly predicts 6 DoF
poses from image and language conditioning with a pre-trained vision-and-language backbone. 2.
PerAct (Shridhar et al., 2023)), a 3D policy that voxelizes the workspace and detects the next best
voxel action through global self-attention. 3. Act3D (Gervet et al., 2023)), a 3D policy that featurizes
the robot’s 3D workspace using coarse-to-fine sampling and featurization. 4. RVT (Goyal et al.,
2023)), a 3D policy that deploys a multi-view transformer to predict actions and fuse those across
views by back-projecting back to 3D. 5. 2D Diffuser Actor, our implementation of (Wang et al.,
2022)). We remove the 3D scene encoding from 3D Diffuser Actor, and instead generate per-image
2D representations by average-pooling features within each view, following (Chi et al.| [2023)). We
add learnable embeddings to distinguish different views. We use standard attention layers for joint
encoding the action estimate and 2D image features. 6. 3D Diffuser Actor -RelAtt, an ablative version
of our model that uses standard non-relative attentions to featurize the current rotation and translation
estimate with the 3D scene feature cloud, and does not ground the current gripper estimate in the
scene. This version of our model is not translation-invariant. For InstructRL, PerAct, Act3D and
RVT we report the results from the corresponding papers.
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Avg. Avg. open | slide |sweep to|meatoff| turn putin | close drag
method Success 1| Rank | | drawer | block | dustpan grill tap drawer jar stick
PerAct (Shridhar et al.|[2023) 43 3.1 80 72 56 84 80 68 60 68
RVT (Goyal et al.[[2023) 63 2.7 71 82 72 88 94 88 52 99
Act3D (Gervet et al.[|2023) 65 2.4 93 93 92 94 94 90 92 92
3D Diffuser Actor (ours) 77 (+12) 1.4 87 (-6) |97 (+4) | 99 (+7) | 95 (+1) |97 (+3)| 92 (+2) |53 (-39) 100 (+1)

stack screw | putin | place | putin sort push insert stack place
method blocks bulb safe wine |cupboard| shape |buttons| peg cups cups
PerAct (Shridhar et al.|[2023) 36 24 44 12 16 20 48 0 0 0
RVT (Goyal et al.[[2023) 29 48 91 91 50 36 100 11 26 4
Act3D (Gervet et al.[|2023) 12 47 95 80 51 8 99 27 9 3
3D Diffuser Actor (ours) 68 (+32) |91 (+43) |99 (+4) | 90 (-1) | 74 (+23) | 1(-35) | 99 (-1) |79 (+52) | 34 (+8) | 32 (+28)

Table 1: Multi-Task Performance on RLBench. We report success rates on 18 RLBench tasks with
249 variations. Our 3D Diffuser Actor outperforms prior state-of-the-art baselines—PerAct, RVT, and
Act3D-among most tasks by a large margin.

Evaluation metrics Following previous work (Gervet et al., 2023} |Shridhar et al., |2023)), we
evaluate policies by task completion success rate, the proportion of execution trajectories that lead to
goal conditions specified in language instructions.

instructRL B Act3D [l 3D Diffuser Actor

Method | Avg. Success o
3D Diffuser Actor 68.5

2D Diffuser Actor 40 *
3D Diffuser Actor -RelAtt 62

5 Rate (%)

Table 2: Ablations. We evaluate all policies on 5

Hiveformer tasks under multi-task settings. Both

3D scene encodings and 3D relative attentions mat- wameial  Longlem Vealosusen - Tess
ter in performance.

Figure 4: Single-task performance. On
3D Diffuser Actor| Act3D 34 tasks, spanning four different categories,
3D Diffuser Actor outperforms prior state-of-
the-art models InstructRL and Act3D.

3 secs |0.12 secs

Table 3: Inference time per keypose.

4.1 EVALUATION IN SIMULATION

Datasets We test 3D Diffuser Actor on RLBench in a multi-task multi-variation setting. The
benchmark is build atop CoppeliaSim (Rohmer et al.,[2013)) simulator, where a Franka Panda Robot
is used to complete the tasks. We use four cameras (front, wrist, left shoulder, and right shoulder)
to capture RGB-D visual observations, in accordance to previous works (Gervet et al.,[2023). We
test our model and baselines on a suite of 18 tasks over total 249 variations, initially introduced in
(Shridhar et al., [2023)). Each task has 2-60 variations, which differ in object pose, appearance, and
semantics. These tasks are specified by language descriptions. We train our model and baselines
using 100 demonstrations per task, which are evenly split across variations, and test them on 100
unseen episodes for each task. During evaluation, we allow models to predict and execute a maximum
of 50 actions unless they receive earlier task-completion indicators from the simulation environment.

We show quantitative results for multi-task manipulation in Table[T] Our 3D Diffuser Actor out-
performs Act3D, RVT, and PerAct on most tasks with a large margin. It achieves an average 77%
success rate, an absolute improvement of 12% over Act3D, the previous state-of-the-art. In particular,
3D Diffuser Actor excels at tackling tasks with multiple modes, such as stack blocks, stack cups, and
place cups, which most baselines fail to complete. We obtain substantial improvements of +32%,
+43%, +23%, +52%, and +28% on stack blocks, screw bulb, put in cupboard, insert peg, and place
cups tasks.

We additionally show single-task results in Figure 4| on 34 selected tasks from the setup of
Guhur et al.[(2023)), spanning four categories (multimodal, long-term, visual occlusion, and tools).
3D Diffuser Actor outperforms both InstructRL and Act3D on all tested categories by an average
absolute margin of 6%.
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Task | Success
pick bowl 100
stack bowl 100
put grapes 50 £ ; E
fold towel 70 o | — .
ress sanitizer | 100
— r 2 G

Table 4: Single-Task
Performance on real-
world tasks.

"press hand "fold the towel" '"stack to the
the sanitizer" purple bowl"

Figure 5: Visualized results of our real-world manipulation.

4.2 ABLATIONS

We ablate different design choices of 3D Diffuser Actor, namely, the use of 3D scene represen-
tations and relative attentions. We train multi-task policies on 5 tasks of RLBench proposed in
HiveFormer (Guhur et al) 2023): reach_and_drag, hang_frame, slide_cabinet, stack_cups, and
open_fridge.

We show the ablation results in Table[2} We draw the following conclusions:

2D vs. 3D Diffuser Actor: 3D Diffuser Actor largely outperforms its 2D counterpart where the
input images are featurized, pooled and fed into the model.

3D relative attentions: Our model with absolute attentions performs worse than our model with
relative attentions, showing that translation invariance is important for generalization.

4.3 EVALUATION IN THE REAL WORLD

We validate 3D Diffuser Actor in learning manipulation tasks from real world demonstations. We
use a Franka Emika robot and capture visual observations with a Azure kinect RGB-D sensor at a
front view. Images are originally captured at 1280 x 720 resolution, and downsampled to a resolution
of 256 x 256. Camera extrinsics are calibrated w.r.t the robot base. We choose five tasks—pick a
bowl, stack bowls, put grapes in bowls, fold a towel, and press sanitizer. We collect 20 keypose
demonstrations per task. The evaluation metric is average success rate of each task.

Our 3D Diffuser Actor successfully solves the real-world tasks (Table ). In particular, we show
in Fig[5]that our model is able to predict different modes of manipulation policies for the similar
scene configuration. For example, the model can pick up a bowl with 4 different poses or put
different grapes into the bowl. Video results for these and other tasks are available at our project page
https://sites.google.com/view/3d-diffuser-actor,

4.4  LIMITATIONS

Our framework currently has the following limitations: 1. 3D Diffuser Actor requires multiple
iterations of denoising, which results in higher inference latency than non-diffusion baselines. 2.
Our model conditions on 3D scene representations, which require camera calibration and depth
information. 3. 3D Diffuser Actor requires supervision from kinesthetic demos which are overall
hard to collect. Combining such supervision with reinforcement learning in simulation is an exiting
future direction. 4. 3D Diffuser Actor considers only visual sensory input. Using audio or tactile
input or force feedback would make our model’s predictions more robust. 5. All tasks in RLbench
are quasi-static. Extending our method to dynamic tasks is a direct avenue of future work.

5 CONCLUSION

We present 3D Diffuser Actor, a 3D robot manipulation policy that uses generative diffusion objec-
tives. Our method sets a new-state-of-the-art on RLbench outperforming both existing 3D policies
and 2D diffusion policies. We introduce important architectural innovations, such as 3D grounding of
the robot’s estimate and 3D relative position transformers that render 3D Diffuser Actor translation
invariant, and empirically verify their contribution to performance. We further test out model in
the real world and show it can learn to perform multimodal manipulation tasks from a handful of
demonstrations. Our future work will attempt to train such 3D Diffuser Actor policies large scale in
domain-randomized simulation environments, to help them transfer from simulation to the real world.
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A APPENDIX

We present a detailed version of our architecture in Section[A.T] We visualize the importance of a
square cos variance scheduler for denoising the rotation estimate in Section [A.2]

A.1 DETAILED MODEL DIAGRAM
We present a more detailed architecture diagram of our 3D Diffuser Actor in Figure 6]
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Figure 6: 3D Diffuser Actor architecture in more detail.

The inputs to our network are i) a stream of RGB-D views; ii) a language instruction; iii) proprio-
ception in the form of end-effector’s history poses; iv) the current noisy estimates of position and
rotation; v) the denoising step ¢. The images are encoded into visual tokens using a pretrained 2D
backbone. The depth values are used to “lift" the multi-view tokens into a 3D feature cloud. The
language is encoded into feature tokens using a language backbone. The proprioception is represented
as learnable tokens with known 3D locations in the scene. The noisy estimates are fed to linear layers
that map them to high-dimensional vectors. The denoising step is fed to an MLP.

The visual tokens cross-attend to the language tokens and get residually updated. The proprioception
tokens attend to the visual tokens to contextualize with the scene information. We subsample a
number of visual tokens using Farthest Point Sampling (FPS) in order to decrease the computational
requirements. The sampled visual tokens, proprioception tokens and noisy position/rotation tokens
attend to each other. We modulate the attention using adaptive layer normalization and FiLM (Perez
et al.,[2018)). Lastly, the contextualized noisy estimates are fed to MLP to predict the error terms as
well as the end-effector’s state (open/close).

A.2 THE IMPORTANCE OF NOISE SCHEDULER

We visualize the clean/noised 6D rotation representations as two three-dimensional unit-length vectors
in Figure [/} We plot each vector as a point in the 3D space. We can observe that noised rotation
vectors generated by the squared linear scheduler cover the space more completely than those by the
scaled linear scheduler.
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Figure 7: Visualization of noised rotation based on different schedulers. We split the 6 DoF rotation
representations into 2 three-dimension unit-length vectors, and plot the first/second vector as a point in
3D. The noised counterparts are colorized in magenta/cyan. We visualize the rotation of all keyposes
in RLBench insert_peg task. From left to right, we visualize the (a) clean rotation, (b) noisy rotation
with a scaled-linear scheduler, and (c) that with a square cosine scheduler. Lastly, we compare (d) the
denoising performance curve of two noise schedulers. Using the square cosine scheduler helps our
model to denoise from the pure noise better.
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