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Figure 1: Diffusion ConvNet achieves superior image quality with high efficiency. We show
samples from two of our DiCo-XL models trained on ImageNet at 512x512 and 256 x 256 resolution.

Abstract

Diffusion Transformer (DiT), a promising diffusion model for visual generation,
demonstrates impressive performance but incurs significant computational over-
head. Intriguingly, analysis of pre-trained DiT models reveals that global self-
attention is often redundant, predominantly capturing local patterns—highlighting
the potential for more efficient alternatives. In this paper, we revisit convolution
as an alternative building block for constructing efficient and expressive diffusion
models. However, naively replacing self-attention with convolution typically re-
sults in degraded performance. Our investigations attribute this performance gap
to the higher channel redundancy in ConvNets compared to Transformers. To
resolve this, we introduce a compact channel attention mechanism that promotes
the activation of more diverse channels, thereby enhancing feature diversity. This
leads to Diffusion ConvNet (DiCo), a family of diffusion models built entirely from
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standard ConvNet modules, offering strong generative performance with significant
efficiency gains. On class-conditional ImageNet generation benchmarks, DiCo-XL
achieves an FID of 2.05 at 256 <256 resolution and 2.53 at 512x512, with a 2.7 x
and 3.1 x speedup over DiT-XL/2, respectively. Furthermore, experimental results
on MS-COCO demonstrate that the purely convolutional DiCo exhibits strong
potential for text-to-image generation.

1 Introduction

Diffusion models [73, 75, 33, 74, 76] have sparked a transformative advancement in generative
learning, demonstrating remarkable capabilities in synthesizing highly photorealistic visual content.
Their versatility and effectiveness have led to widespread adoption across a broad spectrum of real-
world applications, including text-to-image generation [66, 69, 67], image editing [59, 46, 10], image
restoration [45, 3, 4], video generation [36, 88, 7], and 3D content creation [64, 87, 84].

Early diffusion models (e.g., ADM [14] and Stable Diffusion [67]) primarily employed hybrid
U-Net [68] architectures that integrate convolutional layers with self-attention. More recently,
Transformers [83] have emerged as a more powerful and scalable backbone [62, 6], prompting
a shift toward fully Transformer-based designs. As a result, Diffusion Transformers (DiTs) are
gradually supplanting traditional U-Nets, as seen in leading diffusion models such as Stable Diffusion
3 [20], FLUX [49], and Sora [9]. However, the quadratic computational complexity of self-attention
presents substantial challenges, especially for high-resolution image synthesis. Recent efforts [100,
79, 25, 63, 91, 2] have explored more efficient alternatives, focusing on linear-complexity RNN-
like architectures, such as Mamba [26] and Gated Linear Attention [92]. While these models
improve efficiency, their causal design inherently conflicts with the bidirectional nature of visual
generation [30, 55], limiting their effectiveness. Furthermore, as illustrated in Fig. 3, even with highly
optimized CUDA implementations, their runtime advantage over conventional DiTs remains modest
in high-resolution settings. This leads us to a key question: Is it possible to design a hardware-efficient
diffusion backbone that also preserves strong generative capabilities like DiTs?

To approach this question, we begin by examining the characteristics that underlie the generative
power of DiTs. In visual recognition tasks, the success of Vision Transformers [18] is often credited
to the self-attention’s ability to capture long-range dependencies [42, 23, 22]. However, in generative
tasks, we observe a different dynamic. As depicted in Fig. 4, for both pre-trained class-conditional
(DiT-XL/2 [62]) and text-to-image (PixArt-« [12] and FLUX [49]) DiT models, when queried with
an anchor token, attention predominantly concentrates on nearby spatial tokens, largely disregarding
distant ones. This finding suggests that computing global attention may be redundant for generation,
underscoring the significance of local spatial modeling. Unlike recognition tasks, where long-range
interactions are critical for global semantic reasoning, generative tasks appear to emphasize fine-
grained texture and local structural fidelity. These observations reveal the inherently localized nature
of attention in DiTs and motivate the pursuit of more efficient architectures.

In this work, we revisit convolutional neural networks (ConvNets) and propose Diffusion ConvNet
(DiCo), a simple yet highly efficient convolutional backbone tailored for diffusion models. Compared
to self-attention, convolutional operations are more hardware-friendly, offering significant advantages
for large-scale and resource-constrained deployment. While substituting self-attention with convolu-
tion substantially improves efficiency, it typically results in degraded performance. As illustrated
in Fig. 5, this naive replacement introduces pronounced channel redundancy, with many channels
remaining inactive during generation. We hypothesize that this stems from the inherently stronger
representational capacity of self-attention compared to convolution. To address this, we introduce
a compact channel attention (CCA) mechanism, which dynamically activates informative channels
with lightweight linear projections. As a channel-wise global modeling approach, CCA enhances the
model’s representational capacity and feature diversity while maintaining low computational over-
head. Unlike modern recognition ConvNets that rely on large, costly kernels [15, 28], DiCo adopts
a streamlined design based entirely on efficient 1x 1 pointwise convolutions and 3x3 depthwise
convolutions. Despite its architectural simplicity, DiCo delivers strong generative performance.

As shown in Fig. 2 and Fig. 3, DiCo models outperform recent diffusion models on both the ImageNet
256256 and 512512 benchmarks. Notably, our DiCo-XL models achieve impressive FID scores
of 2.05 and 2.53 at 256256 and 512x512 resolution, respectively. In addition to performance gains,
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Figure 2: Comparison of performance and efficiency with recent diffusion models (DiT [62],
DiC [81], and DiG [100]) on ImageNet 256 x256. Our proposed DiCo achieves the best performance
while maintaining high efficiency. Compared to DiG-XL/2 with CUDA-optimized Flash Linear
Attention [92], DiCo-XL runs 2.9 faster and achieves a 1.6 x improvement in FID.
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Figure 3: (a) Runtime comparison between DiT [62], DiS [25] (with Mamba [26]), DiG [100] (with
Gated Linear Attention [92]), and our DiCo at 512x512 resolution. DiCo is 3.3 x faster than DiS at
the small model scale and 6.8 x faster at the XL scale. (b) FID vs. runtime of various methods on
ImageNet 512x512. DiCo-XL achieves an FID of 2.53 while maintaining high efficiency.

DiCo models exhibit considerable efficiency advantages over attention-based [83], Mamba-based [26],
and linear attention-based [44] diffusion models. Specifically, at 256256 resolution, DiCo-XL
achieves a 26.4% reduction in Gflops and is 2.7 x faster than DiT-XL/2 [62]. At 512x512 resolution,
DiCo-XL operates 7.8 x and 6.7x faster than the Mamba-based DiM-H [79] and DiS-H/2 [25]
models, respectively. Our largest model, DiCo-H with 1 billion parameters, further reduces the FID
on ImageNet 256 x256 to 1.90. In addition, we validate the applicability of DiCo for text-to-image
generation on the MS-COCO dataset. These results collectively highlight the strong potential of
DiCo in diffusion-based generative modeling.

Opverall, the main contributions of this work can be summarized as follows:

* We analyze pre-trained DiT models and reveal significant redundancy and locality within
their global attention mechanisms. These findings may inspire researchers to develop more
efficient strategies for constructing high-performing diffusion models.

* We propose DiCo, a simple, efficient, and powerful ConvNet backbone for diffusion models.
By incorporating compact channel attention, DiCo significantly improves representational
capacity and feature diversity without sacrificing efficiency.

* We conduct extensive experiments on class-conditional ImageNet benchmarks. DiCo

outperforms recent diffusion models in both generation quality and speed. Furthermore, the
purely convolutional DiCo demonstrates strong potential in text-to-image generation.
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(a) Attention maps from DiT blocks of DiT-XL/2-512 [62].
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(b) Attention maps from DiT blocks of PixArt-«-512 [12].
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(c) Attention maps from MM-DiT [20] blocks of FLUX.1-dev [49].

Figure 4: Visualization of attention maps from well-known DiT models. The intensity of the blue
color indicates the magnitude of attention scores. For self-attention across different layers in these
models, only a few neighboring tokens contribute significantly to the attention distribution of a given
anchor token (red box), resulting in highly redundant and localized representations.
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Figure 5: Comparison of channel activation scores across different diffusion models. Channel
activation scores are computed using ReLU followed by global average pooling on the final layer’s
self-attention or convolution outputs [102]. Directly replacing self-attention in DiT with convolution
introduces significant channel redundancy, as most channel activation scores remain at low levels.

2 Related Work

Architecture of Diffusion Models. Early diffusion models commonly employ U-Net [68] as the
foundational architecture [14, 34, 67]. More recently, a growing body of research has explored
Vision Transformers (ViTs) [18] as alternative backbones for diffusion models, yielding remarkable
results [62, 6, 58, 96, 65, 54]. Notably, DiT [62] has demonstrated the excellent performance of
transformer-based architectures, achieving SOTA performance on ImageNet generation. However,
the quadratic computational complexity inherent in ViTs presents significant challenges in terms
of efficiency for long sequence modeling. To mitigate this, recent studies have explored the use of
RNN:-like architectures with linear complexity, such as Mamba [26] and linear attention [44], as
backbones for diffusion models [25, 100, 79, 91, 63]. DiS [25] and DiM [79] employ Mamba to
reduce computational overhead, while DiG [100] leverages Gated Linear Attention [92] to achieve
competitive performance with improved efficiency. In this work, we revisit ConvNets as backbones
for diffusion models. We show that, with proper design, pure convolutional architectures can achieve
superior generative performance, providing an efficient and powerful alternative to DiTs.

ConvNet Designs. Over the past decade, convolutional neural networks (ConvNets) have achieved
remarkable success in computer vision [31, 41, 89, 5, 19]. Numerous lightweight ConvNets have been
developed for real-world deployment [39, 71, 38, 16]. Although Transformers have gradually become
the dominant architecture across a wide range of tasks, their substantial computational overhead
remains a significant challenge. Many modern ConvNet designs achieve competitive performance



while maintaining high efficiency. ConvNeXt [57] explores the modernization of standard ConvNets
and achieves superior results compared to transformer-based models. RepLKNet [15] investigates
the use of large-kernel convolutions, expanding kernel sizes up to 31x31. UniRepLKNet [17] further
generalizes large-kernel ConvNets to domains such as audio, point clouds, and time-series forecasting.
In this work, we explore the potential of pure ConvNets for diffusion-based image generation, and
show that simple, efficient ConvNet designs can also deliver excellent performance.

3 Method

3.1 Preliminaries

Diffusion formulation. We first revisit essential concepts underpinning diffusion models [33, 76].
Diffusion models are characterized by a forward noising procedure that progressively injects noise
into a data sample z. Speciﬁcally, this forward process can be expressed as:

q(z1:7|z0) = Hq Ti|zi-1), q(2¢]20) = N(2438/ Qe 0, (1 — 800)1T), o

where & are predefined hyperparameters. The objective of a diffusion model is to learn the reverse
process: pgo(zi—1]z:) = N(po(ze), Lo(xt)), where neural networks parameterize the mean and
covariance of the process. The training involves optimizing a variational lower bound on the log-
likelihood of xg, which simplifies to:

L(6) = —p(xol|z1) + ZDKL (@e—1]ze, T0)|po (ze—1]¢)). 2

To simplify training, the model’s predlcted mean [ty can be reparameterized as a noise predictor €.
The objective then reduces to a straightforward mean-squared error between the predicted noise and
the true noise €;: Lgimpie(0) = ||€o(x1) — €:]|3. Following DiT [62], we train the noise predictor €p
using the simplified loss L;mpie, While the covariance X is optimized using the full loss L.

Classifier-free guidance. Classifier-free guidance (CFG) [35] is an effective method to enhance
sample quality in conditional diffusion models. It achieves such enhancement by guiding the
sampling process toward outputs strongly associated with a given condition c. Specifically, it
modifies the predicted noise to obtain high p(x|c) as: €g(xt, ¢) = eg(zy, D) + s - Vi log p(x|c)
eg(xy,0) + s (eg(xy, c) — €a(wy,D)). where s > 1 controls the guidance strength, and eg(x¢, ) is an
unconditional prediction obtained by randomly omitting the conditioning information during training.
Following prior works [62, 100], we adopt this technique to enhance the quality of generated samples.

3.2 Network Architecture

Currently, diffusion models are primarily categorized into three architectural types: (1) Isotropic
architectures without any downsampling layers, as seen in DiT [62]; (2) Isotropic architectures
with long skip connections, exemplified by U-ViT [6]; and (3) U-shaped architectures, such as
U-DiT [82]. Motivated by the crucial role of multi-scale features in image denoising [97, 1], we
adopt a U-shaped design to construct a hierarchical model. We also conduct an extensive ablation
study to systematically compare the performance of these different architectural choices in Table 4.

As illustrated in Fig. 6 (a), DiCo employs a three-stage U-shaped architecture composed of stacked
DiCo blocks. The model takes the spatial representation z generated by the VAE encoder as input.
For an image of size 256 x 256 x 3, the corresponding z has dimensions 32 x 32 x 4. To process
this input, DiCo applies a 3 x 3 convolution that transforms z into an initial feature map zy with D
channels. For conditional information—specifically, the timestep ¢ and class label y—we employ a
multi-layer perceptron (MLP) and an embedding layer, serving as the timestep and label embedders,
respectively. At each block [ within DiCo, the feature map z;_; is passed through the I-th DiCo block
to produce the output z;.

Within each stage, skip connections between the encoder and decoder facilitate efficient information
flow across intermediate features. After concatenation, a 1 X 1 convolution is applied to reduce the
channel dimensionality. To enable multi-scale processing across stages, we utilize pixel-unshuffle
operations for downsampling and pixel-shuffle operations for upsampling. Finally, the output feature
zr, 1s normalized and passed through a 3 x 3 convolutional head to predict both noise and covariance.
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Figure 6: Architecture of DiCo, which consists of (b) DiCo Block, (c) Conv Module, and (d)
Compact Channel Attention (CCA). DConv denotes depthwise convolution.

3.3 DiCo Block

Motivation. As shown in Fig. 4, the self-attention computation in DiT models—whether for
class-conditional or text-to-image generation—exhibits a distinctly local structure and significant
redundancy. This observation motivates us to replace the global self-attention in DiT with more
hardware-efficient operations. A natural alternative is convolution, which is well-known for its ability
to efficiently model local patterns. We first attempt to substitute self-attention with a combination of
1 x 1 pointwise convolutions and 3 x 3 depthwise convolutions.

However, the direct replacement leads to a degradation in generation performance. As shown in
Fig. 5, compared to DiT, many channels in the modified model remain inactive, indicating substantial
channel redundancy. We hypothesize that this performance drop stems from the fact that self-attention,
being dynamic and content-dependent, provides greater representational power than convolution,
which relies on static weights. To address this limitation, we introduce a compact channel attention
mechanism to dynamically activate informative channels. We describe the full design in detail below.

Block designs. The core design of DiCo is centered around the Conv Module, as shown in Fig. 6
(c). We first apply a 1 x 1 convolution to aggregate pixel-wise cross-channel information, followed
by a 3 x 3 depthwise convolution to capture channel-wise spatial context. A GELU activation is
employed for non-linear transformation. To further address channel redundancy, we introduce a
compact channel attention (CCA) mechanism to activate more informative channels. As illustrated
in Fig. 6 (d), CCA first aggregates features via global average pooling (GAP) across the spatial
dimensions, then applies a learnable 1 x 1 convolution followed by a sigmoid activation to generate
channel-wise attention weights. Generally, the whole process of Conv Module can be described as:

Y = W,,CCA(GELU(W,W,, X)), CCA(X) = X ® Sigmoid(W,GAP(X)), 3)

where W), o is the 1 x 1 point-wise conv, Wy is the depthwise conv, and ® denotes the channel-wise
multiplication. As shown in Fig. 5 (c), this simple and efficient design effectively reduces feature
redundancy and enhances the representational capacity of the model. To incorporate conditional
information from the timestep and label, we follow DiT by adding the input timestep embedding ¢
and label embedding ¥, and using them to predict the scale parameters «, -« and the shift parameter .

Modification for text-to-image. We investigate two different approaches for incorporating textual
features into DiCo. The first uses the widely adopted cross-attention [12] mechanism, integrated into
the DiCo architecture to fuse text and visual features. The second transforms CLIP text embeddings
into dynamic depthwise convolution (DWC) kernels. We pad the text embeddings to a length of
81, feed them through a learnable MLP, and reshape the output into a 9 x 9 kernel. This kernel
dynamically modulates DiCo’s features via depthwise convolution. In this way, we can construct a



Algorithm 1 PyTorch code of text conditional depthwise convolution

import torch
import torch.nn.functional as F

def text_conditional_dwconv(x, context):
# x: (B, C, H, W) input feature maps
# context: (B, 77, C) CLIP text embeddings after an MLP
# output: (B, C, H, W) output after depthwise convolution
B, C, H, W = x.shape
context_pad = torch.cat([context, context[:, -1:].expand(-1, 4, -1)], dim=1) # (B, 81, C)
kernels = context_pad.reshape(B, 9, 9, C).permute(0, 3, 1, 2).reshape(B * C, 1, 9, 9)
x_flat = x.view(1, B *x C, H, W)
output = F.conv2d(x_flat, kernels, padding=4, groups=B * C).view(B, C, H, W)
return output

fully convolutional text-to-image DiCo model without relying on any self-attention or cross-attention
operations. We provide its detailed PyTorch implementation in Algorithm 1. Both feature fusion
modules are inserted after the Conv Module within each DiCo block.

3.4 Architecture Variants

We establish four model variants—DiCo-S, DiCo-B, DiCo-L, and DiCo-XL—whose parameter
counts are aligned with those of DiT-S/2, DiT-B/2, DiT-L/2, and DiT-XL/2, respectively. Compared
to their DiT counterparts, our DiCo models achieve a significant reduction in computational cost,
with Gflops ranging from only 70.1% to 74.6% of those of DiT. Furthermore, to explore the potential
of our design, we scale up DiCo to 1 billion parameters, resulting in DiCo-H. The architectural
configurations of these models are detailed in Appendix Table 6.

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. Following previous works [62, 100, 81], we conduct experiments on class-
conditional ImageNet-1K [13] generation benchmark at 256 x256 and 512x512 resolutions. We use
the Fréchet Inception Distance (FID) [32] as the primary metric to evaluate model performance. In
addition, we report the Inception Score (IS) [70], Precision, and Recall [48] as secondary metrics.
All these metrics are computed using OpenAl’s TensorFlow evaluation toolkit [14].

Implementation Details. For DiCo-S/B/L/XL, we adopt exactly the same experimental settings as
used for DiT. Specifically, we employ a constant learning rate of 1 x 10, no weight decay, and a
batch size of 256. The only data augmentation applied is random horizontal flipping. We maintain an
exponential moving average (EMA) of the DiCo weights during training, with a decay rate of 0.9999.
The pre-trained VAE [67] is used to extract latent features. For our largest model, DiCo-H, we follow
the training settings of U-ViT [6], increasing the learning rate to 2 x 10~* and scaling the batch size
to 1024 to accelerate training. Additional details are provided in Appendix Sec. B.

4.2 Main Results

Comparison under the DiT Setting. In addition to DiT [62], we also select recent diffusion
models, DiG [100] and DiC [81], as baselines, since they similarly follow the experimental setup of
DiT.Table 1 presents the comparison results on ImageNet 256 x256. Across different model scales
trained for 400K iterations, our DiCo consistently achieves the best or second-best performance
across all metrics. Furthermore, when using classifier-free guidance (CFG), our DiCo-XL achieves
an FID of 2.05 and an IS of 282.17. Beyond performance improvements, DiCo also demonstrates
significant efficiency gains compared to both the baselines and Mamba-based models.

Table 2 presents the results on ImageNet 512x512. At higher resolutions, our model demonstrates
greater improvements in both performance and efficiency. Specifically, DiCo-XL achieves an FID of
2.53 and an IS of 275.74, while reducing Gflops by 33.3% and achieving a 3.1 x speedup compared
to DiT-XL/2. These results highlight that our convolutional architecture remains highly efficient and
effective for high-resolution image generation.



Table 1: Comparison under the DiT setting on ImageNet 256 x256. The performance at 400K
training steps is reported without CFG for early-stage comparison. We mark the best results for each
model scale in bold. Throughput (image/s) is measured on A100 with batch size 64 at fp32 precision.
DiT and DiG are optimized with FlashAttention-2 and Flash Linear Attention, respectively.

Model | Token Mixing Type | Gflops Throughput | FID| ISt | Pret Rec.t
ADM-U [14] Conv + Attn 742 - 394 21584 | 0.83 0.53
LDM-4 [67] Conv + Attn - - 395 17822 | 0.81 0.55
U-ViT-H/2 [6] Attn 133.25 73.45 229 263.88 | 0.82 0.57
Mamba-based diffusion models.

DiM-H [79] Conv + SSM 210 25.06 2.21 - - -
DiS-H/2 [25] Conv + SSM - 33.95 2.10 27132 | 0.82 0.58
DiffuSSM-XL [91] SSM 280.3 - 228 259.13 | 0.86 0.56
DiIMSUM-L/2 [63] Attn + SSM 84.49 59.13 2.11 - - 0.59
Baselines and Ours (w/ the same hyperparameters).

DiT-S/2 (400K) [62] Attn 6.06 1234.01 68.40 - - -
DiC-S (400K) [81] Conv 59 - 58.68  25.82 - -
DiG-S/2 (400K) [100] Conv + Attn 4.30 961.24 62.06 2281 | 039 0.6
DiCo-S (400K) Conv 4.25 1695.73 49.97 31.38 | 048 0.58
DiT-B/2 (400K) Attn 23.02 380.11 43.47 - - -
DiC-B (400K) Conv 23.5 - 3233 48.72 - -
DiG-B/2 (400K) Conv + Attn 17.07 345.89 39.50 3721 | 051  0.63
DiCo-B (400K) Conv 16.88 822.97 27.20 56.52 | 0.60 0.61
DiT-L/2 (400K) Attn 80.73 114.63 23.33 - - -
DiG-L/2 (400K) Conv + Attn 61.66 109.01 2290 59.87 | 0.60 0.64
DiCo-L (400K) Conv 60.24 288.32 13.66 91.37 | 0.69 0.61
DiT-XL/2 (400K) Attn 118.66 76.90 19.47 - - -
DiC-XL (400K) Conv 116.1 - 13.11  100.15 - -
DiG-XL/2 (400K) Conv + Attn 89.40 71.74 1853 68.53 | 0.63 0.64
DiCo-XL (400K) Conv 87.30 208.47 11.67 10042 | 0.71 0.61
DiT-XL/2 (w/ CFG) Attn 118.66 76.90 227 27824 | 0.83 0.57
DiG-XL/2 (w/ CFG) Conv + Attn 89.40 71.74 2.07 27895 | 0.82 0.60
DiCo-XL (w/ CFG) Conv 87.30 208.47 2,05 282.17 | 0.83 0.59
DiC-H (w/ CFG) Conv 204.4 - 2.25 - - -
DiCo-H (w/ CFG) Conv 194.15 117.57 190 28431 | 0.83 0.61

Scaling the model up. To further explore the potential of our model, we scale it up to 1 billion
parameters. As shown in Table 1, compared to DiCo-XL, the larger DiCo-H achieves further
improvements in FID (1.90 vs. 2.05), demonstrating the great scalability of our architecture. More
comparison results and generated images can be found in the Appendix Sec. D and Sec. E.

Text-to-Image Generation. We follow [6] to conduct small-scale text-to-image generation experi-
ments. Specifically, we adopt the same experimental setup as [96]: training and evaluating models
from scratch on MS-COCO [53], using CLIP as the text encoder with a token length of 77.

As shown in Table 3, our DiCo achieves superior generation quality for text-to-image generation.
Notably, using text conditional DWC in place of cross-attention further improves throughput while
maintaining competitive performance. This suggests that the fully convolutional DiCo has the
potential to serve as the backbone for large-scale text-to-image diffusion models.

4.3 Ablation Study

For the ablation study, we use the small-scale model and evaluate performance on the ImageNet
256256 benchmark to enable fast training speed. All models are trained for 400K iterations
and evaluated without CFG. Notably, in this section, self-attention in DiT is not accelerated us-
ing FlashAttention-2 to ensure a fair speed comparison with other efficient attention mechanisms.



Table 2: Comparison under the DiT setting on ImageNet 512 512. We mark the best performance
with CFG in bold. The performance at 1.3M/3M training steps is reported without using CFG.

Model | Token Mixing Type | Gflops  Throughput | FID| ISt | Pret  Rec.t
ADM-U [14] Conv + Attn 2813 - 385 221.72 | 0.84 0.53
U-ViT-L/4 [6] Attn 76.52 128.49 4.67 21328 | 0.87 045
U-ViT-H/4 [6] Attn 133.27 73.42 4.05 26379 | 0.84 048
Mamba-based diffusion models.

DiM-H [79] Conv + SSM 708 7.39 3.78 - - -
DiS-H/2 [25] Conv + SSM - 8.59 288 27233 | 0.84 056
DiffuSSM-XL [91] Attn + SSM 1066.2 - 341 25506 | 0.85 0.49
Baselines and Ours (w/ the same hyperparameters).

DiT-XL/2 (1.3M) [62] Attn 524.70 18.58 13.78 - - -
DiCo-XL (1.3M) Conv 349.78 57.45 8.10 132.85 | 0.78 0.62
DiT-XL/2 (3M) Attn 524.70 18.58 12.03 10525 | 0.75 0.64
DiCo-XL (3M) Conv 349.78 57.45 748 14635 | 0.78  0.63
DiT-XL/2 (w/ CFG) Attn 524.70 18.58 3.04 240.82 | 0.84 0.54
DiCo-XL (w/ CFG) Conv 349.78 57.45 253 27574 | 0.83  0.56

We analyze both the overall architecture and the
contributions of individual components within
DiCo to better understand their impact on model
performance.

Architecture Ablation. We evaluate the perfor-
mance of DiCo under various architectural de-
signs and conduct a fair comparison with DiT. As
shown in Table 4, DiCo consistently outperforms
DiT across all structures while also delivering sig-
nificant efficiency gains. These results highlight
the potential of DiCo as a strong and efficient
alternative to DiT.

Component-wise Ablation. We conduct a
component-wise analysis of DiCo, examining the
effects of the activation function, convolutional
kernel size, compact channel attention (CCA),
and the conv module (CM). The overall ablation
results are summarized in Table 5. Increasing the
convolutional kernel size leads to further perfor-

\

A

W

Table 3: Comparison for text-to-image genera-
tion on MS-COCO. We follow the setup in [96].

Model Type FID
AttnGAN [90] GAN 35.49
DM-GAN [101] GAN 32.64
VQ-Diffusion [27] Discrete Diffusion  19.75
DF-GAN [78] GAN 19.32
XMC-GAN [98] GAN 9.33
Frido [24] Diffusion 8.97
LAFITE [99] GAN 8.12
U-Net [6] Diffusion 7.32
U-ViT-S/2 [6] Diffusion 5.95
U-ViT-S/2 (Deep) [6] Diffusion 5.48
MMDIT [96] Diffusion 5.30
MMDIiT+REPA [96] Diffusion 4.14
DiCo-CrossAttn Diffusion 4.87
DiCo-DWC Diffusion 493

Figure 7: CCA effectively reduces channel redundancy and enhances feature diversity. Left:
Features from the first stage of DiCo without CCA. Right: Features from the first stage of DiCo.



Table 4: Ablation study on architectural design. We compare different architectural variants,
including isotropic, isotropic with skip connections, and U-shape. For all these architectural designs,
our DiCo consistently outperforms DiT.

Model | Skip Hierarchy | #Params Gflops Throughput | FID| ISt | Pre.t Rec.t
DiT (iso.) [62] X X 32.9M 6.06 1086.81 67.16 2041 | 037 0.57
DiCo (iso.) X X 33.7M 5.67 1901.39 60.58 2544 | 0.44 055
DiT (iso. &skip) v X 34.3M 6.44 1037.55 62.63 22.08 | 039 0.56
DiCo (iso.&skip) v X 35.1M 6.04 1807.22 5695 26.84 | 0.46 0.56
DiT (U-shape) v v 33.0M 4.23 1140.93 54.00 2852 | 042  0.59
DiCo (U-shape) v v 33.1M 4.25 1695.73 49.97 3138 | 0.48 0.58

Table 5: Ablation study on the components of DiCo. i indicates that the model depth and width are
adjusted for a fair comparison. We analyze the effects of the activation function, DWC kernel size,
compact channel attention (CCA), and the conv module (CM). For the CM, we compare it against
several advanced efficient attention mechanisms to validate its effectiveness and efficiency.

Model | #Params  Gflops Throughput | FID| ISt | Pre.t Rec.t
DiCo-S 33.1M 4.25 1695.73 4997 3138 | 048 0.58
GELU—ReLU 33.1M 4.25 1695.68 51.26 30.23 | 047 057
3x3—5%x5 DWC 33.2M 4.29 1628.59 48.03 3251 | 049 0.58
3x3—7x7DWC 33.4M 4.34 1469.45 47.49 3293 | 049 0.59
Compact Channel Attn (CCA) 33.1M 4.25 1695.73 4997 3138 | 048 0.58
w/o CCA % 33.0M 4.24 1731.13 5478 28.40 | 048 0.57
CCA—SE module i [40] 32.9M 4.25 1657.10 50.89 30.49 | 048 0.57
CCA—Channel Self-Attn % [97] 33.2M 4.26 1569.51 50.24 30.85 | 045 0.59
Conv Module (CM) 33.1M 4.25 1695.73 4997 3138 | 048 0.58
CM—Self-Attn i [83] 33.0M 4.23 1140.93 54.00 28.52 | 042 0.59
CM—Window Attn § [56] 33.0M 4.34 1165.22 53.23 2833 | 043 0.59
CM—Focused Linear Attn } [29] 32.9M 4.33 971.49 50.60 30.85 | 046  0.60
CM—Agent Attn  [65] 33.3M 4.24 1160.89 52.07 28.82 | 043  0.60

mance gains but at the expense of reduced efficiency, highlighting a trade-off between performance
and computational cost.

The introduction of CCA results in a 4.81-point improvement in FID. As illustrated in Fig. 7, CCA
significantly enhances feature diversity, demonstrating its effectiveness in improving the model’s
representational capacity. We also compare CCA with SE module [40] and Channel-wise Self-
Attention [97]; despite its simplicity, CCA achieves superior performance and higher efficiency.

For the Conv Module, we benchmark it against several advanced efficient attention mechanisms
(Window Attention [56], Focused Linear Attention [29], Agent Attention [65]). The results show that
our CM offers both better performance and computational efficiency.

5 Conclusion

We propose a new backbone for diffusion models, Diffusion ConvNet (DiCo), as a compelling
alternative to the Diffusion Transformer (DiT). DiCo replaces self-attention with a combination
of 1 x 1 pointwise convolutions and 3 x 3 depthwise convolutions, and incorporates a compact
channel attention mechanism to reduce channel redundancy and enhance feature diversity. As a
fully convolutional network, DiCo surpasses recent diffusion models on the ImageNet 256256
and 512x512 benchmarks, while achieving significant efficiency gains. Furthermore, the purely
convolutional DiCo demonstrates strong potential in text-to-image generation. We look forward to
further scaling up DiCo and extending it to broader generative tasks.
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* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Sec. F.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This work does not include theoretical derivations.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a clear description of the proposed method in Sec.3, and detail the
experimental setup and implementation in Sec.4.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use the publicly available ImageNet dataset, and provide code and usage
instructions in the Supplementary Material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Detailed experimental settings are provided in Sec. 4.1.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our model is trained on a large-scale dataset, and the inference process of
diffusion models is relatively slow. Due to limited computational resources, we were unable
to conduct extensive statistical significance testing.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the information in Table 7.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All the authors have reviewed the code of ethics and obey the code.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the impacts in Sec. G.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: As a purely academic study, this work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited related original papers in our paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

19


paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our core method development does not involve LLM:s.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

We provide the following supplementary information in the Appendix:

* Sec. A. detailed configurations of DiCo model variants.

* Sec. B. additional implementation details of DiCo.

* Sec. C. scalability analysis of DiCo models.

* Sec. D. additional comparison results with generative model family.

* Sec. E. additional samples generated by DiCo-XL models.

e Sec. F. discussion of limitations of this work.

* Sec. G. discussion of broader impacts of this work.

A DiCo Model Variants

We introduce several variants of DiCo, each scaled to different model sizes. Specifically, we present
five variants: Small (33M parameters), Base (130M), Large (460M), XLarge (700M), and Huge (1B).
These variants are created by adjusting the hidden size D, the number of layers (L1, Lo, L3, Ly, Ls),
and the FFN ratio. They span a wide range of parameter counts and FLOPs, from 33M to 1B
parameters and from 4.25 Gflops to 194.15 Gflops, offering a comprehensive foundation for evaluating
scalability and efficiency. Notably, when compared to their corresponding DiT counterparts, our
DiCo models require only 70.1% to 74.6% of the FLOPs, demonstrating the computational efficiency
of our design. The detailed configurations for these variants are provided in Table 6.

Table 6: Architecture variants of DiCo. Gflops are measured with an input size of 32 x 32 x 4.
Compared to DiT, our DiCo models are more computationally efficient.

Model #Params (M)  Gflops %ﬁﬁ? Hidden Size D #Layers FFN Ratio
DiCo-S 33.1 4.25 70.1% 128 [5,4,4,4,4] 2
DiCo-B 130.0 16.88 73.3% 256 [5,4,4,4,4] 2
DiCo-L 463.9 60.24 74.6% 352 [9,8,9,8,9] 2
DiCo-XL 701.2 87.30 73.6% 416 [9,9,10,9,9] 2
DiCo-H 1037.4 194.15 - 416 [14, 12, 10, 12, 14] 4

Table 7: Implementation details of DiCo variants. For DiCo-S/B/L/XL, we follow the same experi-
mental settings as DiT [6]. For the largest variant DiCo-H, we adopt the training hyperparameters
from U-VIiT [6], increasing the batch size and learning rate to accelerate training.

Model DiCo-S DiCo-B DiCo-L DiCo-XL DiCo-XL DiCo-H
Resolution 256 x 256 256 x 256 256 x 256 256 x 256 512 x 512 256 x 256
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Betas (0.9,0.999) (0.9,0.999) (0.9,0.999) (0.9,0.999) (0.9,0.999) (0.99,0.99)
Weight decay 0 0 0 0 0 0
Peak learning rate 1x107* 1x107* 1x107* 1x107* 1x107* 2x 1074
Learning rate schedule constant constant constant constant constant constant
Warmup steps 0 0 0 0 0 5K
Global batch size 256 256 256 256 256 1024
Numerical precision fp32 fp32 fp32 fp32 fp32 fp32
Training steps 400K 400K 400K 3750K 3000K 1000K
Computational resources 8 A100 8 A100 16 A100 32 A100 64 A100 64 A100
Training Time 11 hours 16 hours 29 hours 266 hours 256 hours 113 hours
Data Augmentation random flip  random flip  random flip  random flip  random flip  random flip
VAE sd-ft-ema sd-ft-ema sd-ft-ema sd-ft-ema sd-ft-ema sd-ft-ema
Sampler iDDPM iDDPM iDDPM iDDPM iDDPM iDDPM
Sampling steps 250 250 250 250 250 250
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Figure 8: Scaling the DiCo models consistently improves performance throughout training. We
report FID-50K and Inception Score across training iterations for four DiCo variants.
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Figure 9: Training loss curves for DiCo models. We also highlight early training dynamics during
the first 100K iterations. Larger DiCo variants exhibit lower training losses, reflecting improved
optimization with scale.

B Additional Implementation Details

For DiCo-S/B/L/XL models, we adopt the same experimental settings as those used for DiT. For
DiCo-H, the largest variant, we use the hyperparameters from U-ViT, increasing the batch size and
learning rate to expedite training. All experiments are conducted on NVIDIA A100 (80G) GPUs.
During inference, all models use the iDDPM [60] sampler with 250 sampling steps. The whole
implementation details are summarized in Table 7.

C Scalability Analysis

Impact of scaling on metrics. Table 8 and Fig. 8 illustrate the impact of DiCo model scaling across
various evaluation metrics. Our results show that scaling DiCo consistently enhances performance
across all metrics throughout training, highlighting its potential as a strong candidate for a large-scale
foundational diffusion model.
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Table 8: Performance of DiCo models without CFG at different training steps on ImageNet
256 x256. Scaling the ConvNet backbone consistently leads to improved generative performance.

Model | Gflops | Training Steps | FID | sFID| ISt | Precision? Recall 1

50K 10950 1828 1200 | 0283 0322
100K 7979 1560 1639 | 0382 0.440
150K 6893 1398 1993 | 04l 0.498
. 200K 6261 1318 2287 | 0433 0.531
DiCo-5 | 4.25 250K 57.05 1247 2558 |  0.450 0.546
300K 5458 1199 2774 | 0467 0.565
350K 5177 1169 2968 | 0479 0.576
400K 4997 1141 3138 | 0481 0.582
S0K 8478 1424 1485 | 0392 0.423
100K 53.66 9.3 2501 | 0494 0.544
150K 43.00 821  33.02 | 0536 0.571
. 200K 3724 803 3910 | 0561 0.596
DiCo-B | 16.88 250K 3331 772 44.89 0.577 0.598
300K 3068 759 4934 | 0584 0.597
350K 2872 755 5295 | 0.594 0.599
400K 2720 743 5652 |  0.603 0.617
SOK 68.11 1150 1862 | 0.480 0.465
100K 3542 652 3812 | 0.607 0.561
150K 2560 604 5391 | 0.643 0.579
. 200K 2081 580 6578 | 0.665 0.589
DiCo-L | 60.24 250K 1819 570 7477 | 0676 0.588
300K 1611 560 8147 | 0685 0.594
350K 1492 558 8601 | 0.689 0.602
400K 13.66 550 9137 | 0.694 0.604
S0K 6653 1135 1941 | 0501 0472
100K 3178 639 4281 | 0.637 0.563
150K 261 594 6049 | 0.672 0.572
. 200K 1795 567 7321 | 0693 0.582
DiCo-XL | 87.30 250K 1560 558 8296 | 0.697 0.591
300K 1370 552 8944 | 0707 0.599
350K 1259 548 9549 | 0710 0.605
400K 11.67 538 10042 | 0711 0.606

Impact of scaling on training loss. We further analyze the effect of model scale on training loss.
As shown in Fig. 9, larger DiCo models consistently achieve lower training losses, indicating more
effective optimization with increased scale.

D Additional Comparison Results

ImageNet 256 x256. Table 9 presents a comparison across generative model family on ImageNet
256x256. Among diffusion models, our DiCo-XL achieves a strong FID of 2.05 with only 87.3
Gflops. Our largest variant, DiCo-H, attains an FID of 1.90. When compared to other generative
model types, DiCo also demonstrates competitive performance. Notably, DiCo-H, with just 1B
parameters, outperforms VAR-d30—which has 2B parameters—in terms of FID.

ImageNet 512x512. Table 10 presents the results on ImageNet 512x512. Among diffusion models,
our DiCo-XL achieves an FID of 2.53 with only 349.8 GFLOPs. Compared to other generative
models, DiCo continues to demonstrate strong performance. Specifically, DiCo-XL, with only
701M parameters, outperforms VAR-d36-s, which has 2.3B parameters, achieving superior FID
performance with significantly fewer parameters.
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Table 9: Comparison with generative model family on ImageNet 256x256. We report the
performance of state-of-the-art generative models across different paradigms, including GAN-based,
masked prediction (Mask.)-based, autoregressive (AR), visual-autoregressive (VAR), and diffusion
(Diff.)-based models.

Type | Model | #Params  Gflops | FID | IS | Precision? Recall
GAN | BigGAN-deep [8] 160M - 695 1714 0.87 0.28
GAN | GigaGAN [43] 56OM - 345 2255 0.84 0.61
GAN | StyleGAN-XL [72] 166M - 2.30  265.1 0.78 0.53
Mask. | MaskGIT [11] 227M - 6.18 182.1 0.80 0.51
Mask. | RCG [51] 502M - 3.49 2155 - -
Mask. | TiTok-S-128 [95] 287TM - 1.97 281.8 - -
AR VQ-GAN-re [21] 1.4B - 5.20 280.3 - -
AR ViTVQ-re [94] 1.7B - 3.04 2274 - -
AR RQTran.-re [50] 3.8B - 3.80 323.7 - -
AR LLamaGen-3B [77] 3.1B - 2.18 2633 0.81 0.58
AR MAR-H [52] 943M - 1.55 303.7 0.81 0.62
AR PAR-3B [86] 3.1B - 2.29 2555 0.82 0.58
AR RandAR-XXL [61] 1.4B - 2.15  322.0 0.79 0.62
VAR | VAR-d16 [80] 310M - 330 2744 0.84 0.51
VAR | VAR-d20 600M - 2.57 302.6 0.83 0.56
VAR | VAR-d24 1.0B - 2.09 3129 0.82 0.59
VAR | VAR-d30 2.0B - 1.92  323.1 0.82 0.59
Diff. | ADM-U [14] 608M 742 3.94 2158 0.83 0.53
Diff. | U-ViT-L/2 [6] 287 77 340 2199 0.83 0.52
Diff. | U-ViT-H/2 [6] 501M 133.3 229 2639 0.82 0.57
Diff. | Simple Diffusion [37] 2.0B - 277 2118 - -
Diff. | VDM++ [47] 2.0B - 212 2677 ; ;
Diff. | DIiT-XL/2 [62] 675M 118.7 227 2782 0.83 0.57
Diff. | SiT-XL [58] 675M 118.7 2.06 2775 0.83 0.59
Diff. | DiM-H [79] 860M 210 2.21 - - -
Diff. | DiS-H/2 [25] 901M - 2.10 271.3 0.82 0.58
Diff. | DiffuSSM-XL [91] 673M 280.3 2.28  259.1 0.86 0.56
Diff. | DIMSUM-L/2 [63] 460M 84.49 2.11 - - 0.59
Diff. | DiG-XL/2 [100] 676M 89.40 2.07 279.0 0.82 0.60
Diff. | DiC-H [81] 1.0B 204.4 2.25 - - -
Diff. | DiCo-XL 701M 87.30 2.05 2822 0.83 0.59
Diff. | DiCo-H 1.0B 194.15 | 190 2843 0.83 0.61

ImageNet 1024 x1024. We conduct experiments on ImageNet 1024 x 1024. Since the original DiT
paper does not report results at this resolution, we train both DiT and DiCo from scratch under the
same settings for a fair comparison. We use small-scale models and train them for 400K iterations.
Table 11 clearly shows that DiCo scales much more efficiently to high resolutions—achieving a 5 x
speedup with better generation quality.

Comparison with FlowDCN. Deformable convolution is a strong and widely used convolutional
variant, and FlowDCN [85] represents an important baseline in this space. To fairly compare with
FlowDCN, we retain its original isotropic architecture and training setup, and replace its MultiScale
DCN with our proposed Conv Module. Table 12 shows that our Conv Module achieves better
generative performance and 2.1 x higher throughput compared to MultiScale DCN, despite being
structurally simpler and easier to implement.

Comparison with Modern DiTs. Given the rapid advancements in modern DiTs, it is important
to compare our method with recent DiTs such as LightningDiT [93]. We find that after aligning
with their experimental settings, our method achieves competitive performance along with a clear
efficiency advantage. Table 13 shows that our model achieves an FID score of 1.33 and offers a 2.8 x
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Table 10: Comparison with generative model family on ImageNet 512x512. We report the
performance of state-of-the-art generative models across different paradigms, including GAN-based,
masked prediction (Mask.)-based, autoregressive (AR), visual-autoregressive (VAR), and diffusion
(Diff.)-based models.

Type | Model | #Params  Gflops | FID | IST | Precision? Recall 1
GAN | BigGAN-deep [8] 160M - 843 1779 0.88 0.29
GAN | StyleGAN-XL [72] 166M - 241  267.8 0.77 0.52
Mask. ‘ MaskGIT [11] ‘ 227TM - ‘ 732 156.0 ‘ 0.78 0.50
AR VQ-GAN [21] 227TM - 26.52  66.8 0.73 0.31
VAR | VAR-d36-s [80] 2.3B - 2.63 3032 - -
Diff. | ADM-U [14] 731M 2813 3.85 221.7 0.84 0.53
Diff. | U-ViT-L/4 [6] 287M 76.5 4.67 2133 0.87 0.45
Diff. | U-ViT-H/4 [6] 501M 133.3 4.05 263.8 0.84 0.48
Diff. | Simple Diffusion [37] 2.0B - 453 2053 - -
Diff. | VDM++ [47] 2.0B - 2.65 278.1 - -
Diff. | DiT-XL/2 [62] 675M 524.7 3.04 240.8 0.84 0.54
Diff. | SiT-XL [58] 675M 524.7 2.62 2522 0.84 0.57
Diff. | DiM-H [79] 860M 708 3.78 - - -
Diff. | DiS-H/2 [25] 901M - 2.88 2723 0.84 0.56
Diff. | DiffuSSM-XL [91] 673M 1066.2 | 3.41  255.1 0.85 0.49
Diff. | DiCo-XL 701M 349.8 2.53 2757 0.83 0.56

Table 11: Comparison with DiT on ImageNet 1024 1024. The performance is reported at 400K
iterations without CFG.

Model | #Params FLOPs Throughput | FID |  IS? | Precision? Recall 1

DiT-S/2 33M 241.8G 28 it/s 113.06 12.60 0.25 0.37
DiCo-S 33M 67.8G 143 it/s 102.60 16.45 0.33 0.38

throughput gain over modern DiTs. This demonstrates that our convolutional backbone can match or
exceed the generative quality of modern DiTs while being significantly more efficient.

E Model Samples

We present samples generated by the DiCo-XL models at resolutions of 256x256 and 512x512.
Fig. 10 through 29 display uncurated samples across various classifier-free guidance scales and
input class labels. As illustrated, our DiCo models demonstrate the ability to generate high-quality,
detail-rich images.

F Limitations

While this work demonstrates the strong performance and scalability of DiCo through extensive
experiments, there are some limitations to note. Due to limited computational resources, our model is
scaled to 1B parameters, while some advanced generative models have been scaled to even larger
sizes. We aim to investigate the broader generative potential of DiCo in future research.

G Broader Impacts

Our work on the generative model DiCo contributes to advances in controllable image generation.
This has potential positive applications in data augmentation, scientific visualization, and accessibility
technologies. However, such models may also be misused to generate misleading or harmful content,
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Table 12: Comparison with FlowDCN on ImageNet 256 x256. The performance is reported at
400K iterations without CFG.

Model | #Params FLOPs Throughput 1 | FID | IS
SiT-S/2 [58] 32.9M 6.1G 1234 it/s 57.6 248
FlowDCN-S/2 [85] 30.3M 4.4G 1194 it/s 546 264
Ours-S/2 31.3M 4.6G 2489 it/s 521  29.2

Table 13: Comparison with modern DiTs on ImageNet 256 x256. We follow the setup in [93].

Model | Epochs | #Params FLOPs Throughputt | FID | ISt
REPA [96] 800 675M 118.7G 77 it/s 1.42  305.7
LightningDiT [93] 800 675M 118.8G 73 it/s 1.35 2953
Ours 800 679M 118.3G 201 it/s 1.33  300.2

especially in contexts involving deepfakes or biased representations of specific classes. To mitigate
these risks, we encourage responsible usage aligned with ethical Al guidelines and emphasize the
importance of transparency when deploying generative models in real-world applications.
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Figure 10: Uncurated 512 x 512 DiCo-XL samples. ~ Figure 11: Uncurated 512 x 512 DiCo-XL samples.
Classifier-free guidance scale = 4.0 Classifier-free guidance scale = 4.0
Class label = “arctic wolf” (270) Class label = “volcano” (980)
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Figure 12: Uncurated 512 x 512 DiCo-XL samples.
Classifier-free guidance scale = 4.0
Class label = “husky” (250)
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Figure 13: Uncurated 512 x 512 DiCo-XL samples.
Classifier-free guidance scale = 4.0
Class label = “ulphur-crested cockatoo” (89)



Figure 14: Uncurated 512 x 512 DiCo-XL samples.  Figure 15: Uncurated 512 x 512 DiCo-XL samples.

Classifier-free guidance scale = 4.0 Classifier-free guidance scale = 4.0
Class label = “cliff drop-oft” (972) Class label = “balloon” (417)
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Figure 16: Uncurated 512 x 512 DiCo-XL samples.
Classifier-free guidance scale = 4.0
Class label = “lion” (291)
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Figure 17: Uncurated 512 x 512 DiCo-XL samples.
Classifier-free guidance scale = 4.0
Class label = “otter” (360)



Figure 18: Uncurated 512 x 512 DiCo-XL samples.

Classifier-free guidance scale = 2.0
Class label = “red panda” (387)

32

Figure 19: Uncurated 512 x 512 DiCo-XL samples.
Classifier-free guidance scale = 2.0
Class label = “panda” (388)



Figure 20: Uncurated 512 x 512 DiCo-XL samples.
Classifier-free guidance scale = 1.5
Class label = “coral reef” (973)
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Figure 21: Uncurated 512 x 512 DiCo-XL samples.
Classifier-free guidance scale = 1.5
Class label = “macaw” (88)



Figure 22: Uncurated 256 x 256 DiCo-XL samples.  Figure 23: Uncurated 256 x 256 DiCo-XL samples.
Classifier-free guidance scale = 4.0 Classifier-free guidance scale = 4.0
Class label = “macaw” (88) Class label = “dog sled” (537)
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Figure 24: Uncurated 256 x 256 DiCo-XL samples.

Classifier-free guidance scale = 4.0
Class label = “arctic fox (279)
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Figure 25: Uncurated 256 x 256 DiCo-XL samples.
Classifier-free guidance scale = 4.0
Class label = “loggerhead sea turtle” (33)



Figure 26: Uncurated 256 x 256 DiCo-XL samples. ~ Figure 27: Uncurated 256 x 256 DiCo-XL samples.
Classifier-free guidance scale = 2.0 Classifier-free guidance scale = 2.0
Class label = “golden retriever” (207) Class label = “lake shore” (975)
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Figure 28: Uncurated 256 x 256 DiCo-XL samples.  Figure 29: Uncurated 256 x 256 DiCo-XL samples.
Classifier-free guidance scale = 1.5 Classifier-free guidance scale = 1.5
Class label = “space shuttle” (812) Class label = “ice cream” (928)
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