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ABSTRACT

We study graph data augmentation by mixup, which has been used successfully
on images. A key operation of mixup is to compute a convex combination of a
pair of inputs. This operation is straightforward for grid-like data, such as images,
but challenging for graph data. The key difficulty lies in the fact that different
graphs typically have different numbers of nodes, and thus there lacks a node-level
correspondence between graphs. In this work, we propose a simple yet effective
mixup method for graph classification by soft alignments. Specifically, given a
pair of graphs, we explicitly obtain node-level correspondence via computing a
soft assignment matrix to match the nodes between two graphs. Based on the soft
assignments, we transform the adjacency and node feature matrices of one graph,
so that the transformed graph is aligned with the other graph. In this way, any
pair of graphs can be mixed directly to generate an augmented graph. We conduct
systematic experiments to show that our method can improve the performance and
generalization of graph neural networks (GNNs) on various graph classification
tasks. In addition, we show that our method can increase the robustness of GNNs
against noisy labels.

1 INTRODUCTION

Data augmentations aim at generating new training samples by applying certain transformations
on the original samples. For example, applying rotations and flipping on images generates new
images with the same labels. Many empirical results have shown that data augmentations can help
improve the invariance and thus the generalization abilities of deep learning models. While data
augmentations are relatively straightforward for grid-like data, such as images, they are particularly
challenging for graph data. A key difficulty lies in the lack of simple graph operations that preserve
the original labels, such as rotations on images. Most existing graph augmentation methods, such
as DropEdge (Rong et al., 2019), DropNode (Feng et al., 2020) and Subgraph (You et al., 2020),
assume labels are the same after simple operations, such as drop a random node or edge, on training
graphs. On one hand, such simple operations may not be able to generate sufficiently diverse new
samples. On the other hand, although the operations are simple, they are not guaranteed to preserve
the original labels.

Recently, mixup (Zhang et al., 2017) has been shown to be an effective method for image data
augmentation. In particular, mixup generates new samples and corresponding labels by performing
convex combinations of a pair of original samples and labels. A key challenge of applying mixup
on graphs lies in the fact that different graphs typically have different numbers of nodes. Even for
graphs with the same number of nodes, there lacks a node-level correspondence that is required to
perform mixup. Several existing graph mixup methods (Han et al., 2022; Park et al., 2022; Yoo
et al., 2022; Guo & Mao, 2021) use various tricks to sidestep this problem. For example, ifMixup
(Guo & Mao, 2021) uses a random node order to align graphs and then interpolate node feature
matrices and adjacency matrices. Han et al. (2022) proposes to learn a Graphon for each class and
performs mixup in Graphon space. Graph Transplant (Park et al., 2022) and SubMix (Yoo et al.,
2022) connect subgraphs from different input graphs to generate new graphs. However, none of
these methods explicitly models the node-level correspondence among different graphs and perform
mixup as in the case of images. A natural question is raised: Can we conduct image-like mixup for
graphs with node-level correspondence to preserve critical information?

In this work, we provide an affirmative answer to this question and propose a simple yet effective
graph mixup approach via soft alignments. A key design principle of our method is to explicitly
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and automatically model the node-level correspondence (i.e., soft alignment matrix) between two
graphs when performing mixup, thereby avoiding random matching noise and preserving critical
graph components in the augmented data. Given a pair of graphs, we first obtain node-level corre-
spondence by computing a soft assignment matrix that measures the similarity of nodes across two
graphs based on node features and graph topology. Then this soft alignment matrix guides the graph
transformation, including adjacency matrix and node feature matrix transformation, to generate the
aligned graph with the same number of nodes and node order as the other graph. In this way, we can
interpolate the adjacency matrices and node feature matrices of any graph pairs to generate synthetic
graphs for training. We conduct comprehensive experiments to evaluate our method. Results show
that our method can improve the performance and generalization of GNNs on various graph classi-
fication tasks. In addition, results show that our method increases the robustness of GNNs against
noisy labels.

2 PRELIMINARIES

2.1 GRAPH CLASSIFICATION WITH GRAPH NEURAL NETWORKS

In this work, we study the problem of graph classification. Let G = (A,X) represent a graph
with n nodes. Here, A ∈ {0, 1}n×n is the adjacency matrix, and Ai,j = 1 if and only if there
exists an edge between nodes i and j. X = [x1, · · · ,xn]

T ∈ Rn×d is the node feature matrix,
where each row xi ∈ Rd represents the d-dimensional feature of node i. Given a set of labeled
graphs, graph classification tasks aim to learn a model that predicts the class label y of each graph
G. Recently, GNNs have shown remarkable performance in various graph classification problems.
GNNs usually use a message passing scheme to learn node representations in graphs. Let H(l) =

[h
(l)
1 , · · · ,h(l)

n ]T ∈ Rn×dl denote the node representations at the l-th layer of a message passing
GNN model, where each row h

(l)
i ∈ Rdl is the dl-dimensional representation of node i. Formally,

one message passing layer can be described as

H(l) = UPDATE(H(l−1),MSG(H(l−1),A)), (1)

where MSG(·) is a message propagation function that aggregates the messages from neighbors of
each node, and UPDATE(·) is a function that updates H(l−1) to H(l) using the aggregated mes-
sages. The node representations H(0) are initialized as X . After L layers of such message passing,
the graph representation hG is obtained by applying a global pooling function READOUT over node
representations as

hG = READOUT(H(L)). (2)

Given the graph representation hG , a multi-layer perceptron (MLP) model computes the probability
that graph G belongs to each class.

Despite the success of GNNs, a primary challenge in graph classification tasks is the lack of labeled
data due to expensive annotations. In this paper, we focus on designing a pairwise graph data
augmentation method to generate more training data, thereby improving the performance of GNNs.

2.2 MIXUP

Mixup (Zhang et al., 2017) is a data augmentation method for regular, grid-like, and Euclidean
data such as images and tabular data. The idea of mixup is to linearly interpolate random pairs of
data samples and their corresponding labels. Given a random pair of samples xi and xj and their
corresponding one-hot class labels yi and yj , Mixup constructs training data as

x̃ = λxi + (1− λ)xj , ỹ = λyi + (1− λ)yj , (3)

where λ ∼ Beta(α, α) is a random variable drawn from the Beta distribution parameterized with α.

Mixup and its variants (Yang et al., 2020; Yun et al., 2019; Berthelot et al., 2019) have shown
great success in improving the generalization and robustness of deep neural networks in image
recognition and natural language processing. However, mixing graphs is a challenging problem due
to the irregular and non-Euclidean structure of graph data. Specifically, the number of nodes varies
in different graphs, making it infeasible to apply the mixing rule in Eq. (3) directly. Even if two
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graphs have the same number of nodes, graphs have no inherent node order. If we don’t consider
the node-level correspondence between graphs and use an arbitrary node order to mix graphs, the
generated graphs are noisy.

3 METHODOLOGY

In this work, we propose S-Mixup, a novel and effective mixup method for graph classification,
which addresses the challenges of mixing graph data. We compute a soft assignment matrix to
match the nodes between a pair of graphs. The assignment matrix guides the graph transformation
to well align graph pairs based on node attributes and graph topology, such that the augmented new
graph can preserve the critical information and avoid random matching noise.

3.1 MIXUP WITH AN ASSIGNMENT MATRIX

Assuming that we already have the desired soft assignment matrix, we first describe how we mix
graphs based on a soft assignment matrix. Given a pair of graphs G1 = (A1,X1) and G2 =
(A2,X2), we use M ∈ Rn1×n2 to denote the soft assignment matrix, where n1 and n2 are the
number of nodes in G1 and G2, respectively. Each row of M corresponds to a node in G1 and each
column of M corresponds to a node in G2. The soft assignment matrix M represents the node-level
correspondence between G1 and G2. In other words, the entry Mi,j denotes the likeness that the
node j in G2 is matched to the node i in G1.

Given the assignment matrix M , we transform G2 = (A2,X2) to G′
2 = (A′

2,X
′
2) as

A′
2 = MA2M

T , X ′
2 = MX2. (4)

After transformation, G′
2 is aligned well with G1 via a node-level one-to-one mapping. In this way,

we can generate a new graph G′ = (A′,X ′) via mixing up graphs G1 and G′
2. To be specific, G′ is

generated via linear interpolation on both node features and topological structures. Formally, this
process can be described as

X ′ = λX1 + (1− λ)MX2,

A′ = λA1 + (1− λ)MA2M
T ,

y′ = λy1 + (1− λ)y2,

(5)

where y1 and y2 are the one-hot class labels of graph G1 and G2, respectively. The mixup ratio
λ = max(λ′, 1 − λ′), where λ′ ∈ [0, 1] is sampled from a Beta(α, α) distribution with a hyper-
parameter α. Note that the generated new graph G′ = (A′,X ′) is a fully connected edge-weighted
graph. In other words, A′ ∈ [0, 1]n1×n1 is a real matrix, where each entry A′

i,j denotes the weight
of the edge between nodes i and j in G′. Together with the label y′, the generated new graph G′ is
used as the augmented training data.

3.2 COMPUTING THE ASSIGNMENT MATRIX

Since we need to perform soft alignments for all input graph pairs, an accurate assignment matrix
with efficient computation is in need. Thereby, we propose to compute the node-level assignment
matrix based on a graph matching network (Li et al., 2019), which is used to compare graph-level
similarities. Specifically, a pair of graphs G1 and G2 is taken as input to extract a pair of node
representations H1 and H2 by message passing within and between graphs. Formally, the message
passing process of node representations H(l)

1 in G1 at l-th layer can be formulated as

H
(l)
1 = UPDATE(H(l−1)

1 ,MSG1(H
(l−1)
1 ,A1),MSG2(H

(l−1)
1 ,H

(l−1)
2 )), (6)

where MSG1(·) is a message propagation function of vanilla GNNs in Eq. (1).
MSG2(H

(l−1)
1 ,H

(l−1)
2 ) = [µ

(l−1)
1 , · · · , µ(l−1)

n1 ]T computes cross-graph messages from G2 to
G1, where each row µi denotes the message from G2 to the node i in G1. Let h(l−1)

1,i and h
(l−1)
2,j

denote the representation of node i in G1 and node j in G2 at layer l − 1, respectively. The
cross-graph message µ

(l−1)
i is computed by an attention-based module as

w
(l−1)
ji =

exp(sim(h
(l−1)
1,i ,h

(l−1)
2,j ))∑n2

k=1 exp(sim(h
(l−1)
1,i ,h

(l−1)
2,k ))

, µ
(l−1)
i =

n2∑
j=1

w
(l−1)
ji (h

(l−1)
2,j − h

(l−1)
1,i ), (7)
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Figure 1: An overview of S-Mixup. Given a pair of graphs G1 and G2, the color of each node rep-
resents the node-level correspondence between two graphs. The assignment matrix M is obtained
by a soft alignment. Based on the assignment matrix, the graph G′

2 is transformed from G2 to be
aligned with G1. Finally, we obtain the mixed graph G′ by mixing G1 and G′

2. The darkness level of
each edge represents its weight.

where sim(·) denotes the similarity between two node representations, such as Euclidean distance
or cosine similarity. The final node representations H1 = H

(L)
1 and H2 = H

(L)
2 are obtained

after applying L layers of such message passing operations. Given the node representations H1

and H2, we take the likelihood of soft alignment to be proportional to the similarity between node
representations. Formally, the soft assignment matrix M is computed as

M = softmax(sim(H1,H2)), (8)
where softmax function is a column-wise operation, and sim(·) computes a similarity score for node
pairs between G1 and G2.

The network is trained by a triplet loss following Li et al. (2019). Specifically, we treat graphs
with the same class label as positive pairs and graphs with different class labels as negative pairs.
Intuitively, the learned representations of graphs from the same class should be more similar than
those from different classes. To be more specific, at each training step, we first sample a tuple of
graphs (G1,G2,G3) from the training dataset. G1 and G2 are sampled from the same class, while G3

is sampled from another class. We use the graph matching network to extract node representations
(H1,H2) from the graph pair (G1,G2) as in Eq. (6). Afterwards, the graph representations hG1

and hG2 are separately computed from H1 and H2 as in Eq. (2). Similarly, we compute the graph
representations (h′

G1
,hG3) of graph pair (G1,G3). The graph matching network is optimized by

minimizing the triplet loss as
Ltriplet = E(G1,G2,G3)max(0, sim(h′

G1
,hG3

)− sim(hG1
,hG2

) + γ), (9)

where sim(·) computes a similarity score between two graph representations. Minimizing such
triplet loss encourages the similarity between G1 and G3 to be smaller than the similarity between
G1 and G2 by at least a margin γ. The graph matching network is first trained on the training
data. During the process of mixing graphs, the trained graph matching network is used to compute
soft assignment matrices. See Figure 1 for an overview of our proposed S-Mixup method. The
implementation details are summarized in Appendix B. There are other well-studied graph alignment
methods (Heimann et al., 2018; Zhang & Tong, 2016; Xu et al., 2019; Gold & Rangarajan, 1996) to
align the nodes across two graphs. Nevertheless, not all of them are appropriate for our framework
due to computational complexity. See more discussion about graph alignment methods in Appendix
D.1.

3.3 COMPLEXITY ANALYSIS

Given a pair of graphs G1 with n1 nodes and G2 with n2 nodes, S-Mixup computes the soft as-
signment matrix M ∈ Rn1×n2 , thus having a space complexity of O(n1n2). Besides, during the
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Table 1: Comparison between ours and other graph mixup methods
Preserving Mixing node PerservingMethods Instance-level motif feature space Input-level graph size

G-mixup (Han et al., 2022) ✓ ✓
Graph Transplant (Park et al., 2022) ✓ ✓ ✓ ✓
SubMix (Yoo et al., 2022) ✓ ✓ ✓
ifMixup (Guo & Mao, 2021) ✓ ✓ ✓
Manifold Mixup (Wang et al., 2021b) ✓ ✓ ✓
S-Mixup ✓ ✓ ✓ ✓ ✓

computation of the soft assignment matrix M , the graph matching network uses a cross-graph mes-
sage passing scheme, which needs to compute attention weights (see Equation (7)) for every pair of
nodes across two graphs. Thus, S-Mixup has a computational cost of O(n1n2). This time cost is
affordable for small graphs but may lead to large computational and memory costs on large graphs.
The better performance of S-Mixup comes from the higher computational cost.

4 RELATED WORK

Most commonly used graph data augmentation methods (Velickovic et al., 2019; Rong et al., 2019;
Feng et al., 2020; You et al., 2020; Zhu et al., 2020) are based on uniformly random modifications of
graph elements, such as dropping edges, dropping nodes, or sampling subgraphs. In addition to ran-
dom modifications, recent studies (You et al., 2021; Sun et al., 2021; Luo et al., 2022) use a learnable
neural network model to automate the selection of augmentation. Another line of research (Suresh
et al., 2021; Zhao et al., 2021; Chen et al., 2020; Jin et al., 2020) for improving random modifica-
tions is to enhance task-relevant information in augmented graphs with learnable data augmentation
methods. However, the above methods are based on a single graph when performing augmentation,
so they don’t exchange information between different instances. To address the limitation, a few
studies propose interpolation-based Mixup methods for graph augmentation. Wang et al. (2021b)
follows manifold Mixup (Verma et al., 2019) to interpolate the latent representations of pairs of
graphs. Since the graph representations are obtained at the last layer of GNN models, this solution
may be not optimal. In contrast to the previous method, ifMixup (Guo & Mao, 2021) interpolates
the input graph data instead of latent space. It uses an arbitrary node order to align two graphs and
linearly interpolates adjacency matrices and feature matrices to generate new graph data. ifMixup
doesn’t consider the node-level correspondence between graphs, leading to generating noisy graph
data as discussed in Section 5.1. Moreover, the size of the generated graphs equals the larger one
of the input pair, resulting in a distribution shift in graph sizes. Unlike ifMixup, Graph Transplant
(Park et al., 2022) proposes to generate new graph data by connecting subgraphs from different in-
put graphs. Graph Transplant uses node saliency information to select meaningful subgraphs from
input graphs and determine labels of generated graphs. Similarly, SubMix (Yoo et al., 2022) mixes
random subgraphs of different input graphs. Nonetheless, random sampling doesn’t preserve motifs
in the graphs, thus generated graph data may be noisy. Both Graph Transplant (Park et al., 2022) and
SubMix (Yoo et al., 2022) only consider graph topology, so the node features of generated graphs
are kept the same. Instead of directly mixing instances, G-mixup (Han et al., 2022) proposes a class-
level graph mixup method that interpolates the graph generators of different classes. Specifically, it
uses graphons to model graph topology structure and then generates synthetic graphs through sam-
pling the mixed graphons of different classes. Note that G-mixup relies on a strong assumption that
graphs from the same class can be generated by the same graph generator (i.e., graphon).

However, none of these methods explicitly consider the node-level correspondence between graphs,
which is important to generate high-quality graphs as discussed in Section 5.1. In contrast, our
approach uses soft graph alignment to compute the node-level correspondence and mixes graphs
based on the alignment, thereby avoiding the generation of noisy data. We compare our method
with existing graph mixup methods in Table 1.

5 DISCUSSION

5.1 NODE-LEVEL CORRESPONDENCE MATTERS IN GRAPH MIXUP

We use the MOTIF (Wu et al., 2022) 1 dataset as an example to show the importance of node order.
Each graph in the MOTIF dataset is composed of one base (tree, ladder, wheel) and one motif (cycle,

1MOTIF dataset is a synthetic dataset that is proposed for the out-of-distribution problem. In this work, we
avoid introducing the distribution shift when constructing the dataset.
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(a) Original graph data. (b) Random Mixup (c) S-Mixup

Figure 2: An example from the MOTIF dataset showing that using random order to mix graphs
creates noisy data. Red nodes represent the motif, while blue nodes represent the base. The color
of the edge indicates its weight. In (a), we show a pair of graphs sampled from the Motif dataset.
In both graphs, red nodes represent a cycle motif. In (b), we show the mixed graph using a random
node order. In this graph, red nodes no longer form a cycle motif. In (c), we show the mixed graph
by our method. In this graph, red nodes still form a cycle motif.

house, crane). The task of the MOTIF dataset is to classify graphs by the motif contained in the
graph. In Figure 2, we visualize a case of mixing two graphs in the same class. We randomly align
two graphs and linearly interpolate their node feature matrices and adjacency matrices to generate
a new graph. As shown in Figure 2b, the generated graph doesn’t preserve the motif in the input
graphs. In other words, red nodes that form a cycle motif in the original graphs no longer form a
cycle motif in the generated graph. Training with such noisy data greatly decreases the accuracy of
a GIN (Xu et al., 2018) model from 91.47% to 52.88%. The significant performance drop clearly
demonstrates the importance of node-level correspondence between graphs when mixing graphs.

5.2 GRAPH TRANSFORMATION ANALYSIS

There is a limitation of our method caused by transforming graphs to have the same number of nodes
and the same node order. We first introduce graph edit distance (GED) to characterize the similarity
of two graphs. Given a pair of graphs (G1,G2), the graph edit distance GED(G1,G2) is defined as
the minimum cost of an edit path between two graphs. An edit path between graphs G1 and G2 is a
sequence of edit operations that transforms G1 to G2. For graph edit operations, we consider six edit
operations, including node insertion, node deletion, node substitution, edge insertion, edge deletion,
and edge substitution. The cost of all graph edit operations are given as follows:

• The cost of node insertion and node deletion is defined as the square of the l2 norm of node
feature of the inserted node and deleted node, respectively.

• Node substitution is to change the feature of a node and its cost is defined as ||x − x′||22, where
x and x′ are the node features before and after node substitution, respectively.

• The cost of edge insertion and edge deletion is the weight of the inserted edge and deleted edge,
respectively.

• Edge substitution is to change the weight of an edge and its cost is defined as |e − e′|, where e
and e′ are the weights of the edge before and after edge substitution, respectively.

• The cost of an edit path is defined as the sum of the costs of its operations.

Definition 1 (Graph Edit Distance (GED)). For graph pair (G1,G2), the graph edit dis-
tance GED(G1,G2) is defined as the minimum cost of an edit path between two graphs, i.e.,
GED(G1,G2) = min(op1,··· ,opk)∈P(G1,G2)

∑k
i=1 c(opi), where P(G1,G2) denotes the set of edit paths

from G1 to G2, c(op) denotes the cost edit operation op.

Subsequently, we define normalized GED as ϵ = GED(G′,G2)

GED(G′,G1)+GED(G′,G2)
∈ [0, 1] to characterize

the similarity between the generated graph G′ and the original pair (G1,G2). Note that, for a perfect
mixed result, the normalized GED should be equal to the mixup ratio λ. To study the difference
between normalized GED and mixup ratio, we propose the following theorem.
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Table 2: Comparisons between our method and baselines on six datasets from the TUDatasets bench-
mark with the GIN and GCN model. The average testing accuracy of 10 runs is reported. The best
results are shown in bold.

Dataset IMDB-B PROTEINS NCI1 REDDIT-B IMDB-M REDDIT-M5
#graphs 1000 1113 4110 2000 1500 4999
#classes 2 2 2 2 3 5

#avg nodes 19.77 39.06 29.87 429.63 13.00 508.52
#avg edges 96.53 72.82 32.30 497.75 65.94 594.87
Vanilla 72.80 ± 4.08 71.43 ± 2.60 72.38 ± 1.45 84.85 ± 2.42 49.47 ± 2.60 49.99 ± 1.37
DropEdge 73.20 ± 5.62 71.61 ± 4.28 68.32 ± 1.60 85.15 ± 2.81 49.00 ± 2.94 51.19 ± 1.74
DropNode 73.80 ± 5.71 72.69 ± 3.55 70.73 ± 2.02 83.65 ± 3.63 50.00 ± 4.85 47.71 ± 1.75
Subgraph 70.90 ± 5.07 67.93 ± 3.24 65.05 ± 4.36 68.41 ± 2.57 49.80 ± 3.43 47.31 ± 5.23
M-Mixup 72.00 ± 5.66 71.16 ± 2.87 71.58 ± 1.79 87.05 ± 2.47 49.73 ± 2.67 51.49 ± 2.00
SubMix 72.30 ± 4.75 72.42 ± 2.43 71.65 ± 1.58 85.15 ± 2.37 49.73 ± 2.88 52.87 ± 2.19
G-Mixup 73.20 ± 5.60 70.18 ± 2.44 70.75 ± 1.72 86.85 ± 2.30 50.33 ± 3.67 51.77 ± 1.42

GCN

S-Mixup 74.40 ± 5.44 73.05 ± 2.81 75.47 ± 1.49 89.30 ± 2.69 50.73 ± 3.66 53.29 ± 1.97
Vanilla 71.30 ± 4.36 68.28 ± 2.47 79.08 ± 2.12 89.15 ± 2.47 48.80 ± 2.54 53.17 ± 2.26
DropEdge 70.50 ± 3.80 68.01 ± 3.22 76.47 ± 2.34 87.45 ± 3.91 48.73 ± 4.08 54.11 ± 1.94
DropNode 72.00 ± 6.97 69.64 ± 2.98 74.60 ± 2.12 88.60 ± 2.52 45.67 ± 2.59 53.97 ± 2.11
Subgraph 70.40 ± 4.98 66.67 ± 3.10 60.17 ± 2.33 76.80 ± 3.87 43.74 ± 5.74 50.09 ± 4.94
M-Mixup 72.00 ± 5.14 68.65 ± 3.76 79.85 ± 1.88 87.70 ± 2.50 48.67 ± 5.32 52.85 ± 1.03
SubMix 71.70 ± 6.20 69.54 ± 3.15 79.78 ± 1.09 90.45 ± 1.93 49.80 ± 4.01 54.27 ± 2.92
G-Mixup 72.40 ± 5.64 64.69 ± 3.60 78.20 ± 1.58 90.20 ± 2.84 49.93 ± 2.82 54.33 ± 1.99

GIN

S-Mixup 73.40 ± 6.26 69.37 ± 2.86 80.02 ± 2.45 90.55 ± 2.11 50.13 ± 4.34 55.19 ± 1.99

Theorem 1. Given a pair of input graphs G1 and G2, the mixup ratio is λ and the mixed graph
is G′. Let G′

2 be the graph transformed based on soft alignments as discussed in Section 3.1. The
difference between normalized GED ϵ and mixup ratio λ is upper bounded by

|ϵ− λ| ≤ (1− λ)GED(G2,G′
2)

GED(G1,G′
2) +GED(G2,G′

2)
(10)

Detailed proof of this theorem is given in Appendix A. Note that the difference between normalized
GED ϵ and mixup ratio λ equals to zero when input graphs are already aligned (i.e., G2 = G′

2).
Theorem 1 indicates that such difference is caused by transforming G2 to G′

2. Furthermore, the
difference is small when λ is close to 1. Thereby, in this work, we make the range of λ to be [0.5, 1]
to reduce the difference via taking the maximum value of λ′ and 1− λ′. A promising solution is to
use an adaptive λ range for different graph pairs, and we leave it for future work. See a case study
in Appendix F.

6 EXPERIMENTS

In this section, we evaluate the effectiveness of our method on six real-world datasets from the TU-
Datasets benchmark 2 (Morris et al., 2020), including one bioinformatics dataset PROTEINS, one
molecule dataset NCI1, and four social network datasets IMDB-BINARY, IMDB-MULTI, REDDIT-
BINARY, and REDDIT-MULTI-5K. We first show that in various graph classification tasks, our
method substantially improves the performance of different GNN backbones as well as generaliza-
tion in Section 6.1. Further, we show our method improves the robustness of GNNs against label
corruption in Section 6.2. In addition, we conduct extensive ablation studies to evaluate the effec-
tiveness of our design in Section 6.3 and perform a case study in F.

Baselines. We compare our methods with the following baseline methods, including (1) DropEdge
(Rong et al., 2019), which uniformly removes a certain ratio of edges from the input graphs; (2)
DropNode (Feng et al., 2020; You et al., 2020), which uniformly drops a certain portion of nodes
from the input graphs; (3) Subgraph (You et al., 2020), which extract subgraphs from the input
graphs via a random walk sampler; (4) M-Mixup 3(Verma et al., 2019; Wang et al., 2021b), which
linearly interpolates the graph-level representations; (5) SubMix (Yoo et al., 2022), which mixes
random subgraphs of input graph pairs; (6) G-Mixup (Han et al., 2022), which is a class-level graph
mixup method by interpolating graphons of different classes. For a fair comparison, we use the same
architecture of GNNs (e.g., number of layers) and the same training hyperparameters (e.g., learning
rate) for all methods. The optimal hyperparameters of all methods are obtained by grid search.

2https://chrsmrrs.github.io/datasets/docs/datasets/
3Although Wang et al. (2021b) proposes mixup methods for both graph and node classification tasks, we

only consider the one for graph classification tasks in this paper.
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Figure 3: The Learning curves of GCN model on IMDB-BINARY, NCI1, and IMDB-MULTI
datasets. The curves are depicted on the averaged test loss over 10 runs.

Table 3: Robustness to label corruption with different ratios.

Dataset Methods 20% 40% 60%
Vanilla 69.50 ± 7.83 62.70 ± 7.93 45.80 ± 6.63

M-mixup 70.60 ± 3.69 64.90 ± 6.20 47.60 ± 6.79
SubMix 71.00 ± 5.23 62.80 ± 5.74 48.40 ± 6.83
G-mixup 69.90 ± 5.01 63.20 ± 6.01 48.70 ± 5.28

IMDB-B

S-Mixup 70.20 ± 5.69 65.10 ± 5.58 48.90 ± 4.61
Vanilla 48.00 ± 3.37 44.87 ± 2.91 36.20 ± 3.78

M-mixup 48.40 ± 2.83 44.07 ± 2.18 38.60 ± 3.97
SubMix 47.80 ± 5.16 44.20 ± 6.75 36.80 ± 5.44
G-mixup 48.53 ± 3.08 44.67 ± 2.42 39.27 ± 5.12IMDB-M

S-Mixup 49.40 ± 3.06 46.27 ± 3.86 39.27 ± 4.57

Setup. We first train the graph matching network until it converges. Then, we evaluate the per-
formance of our method and other baselines by the testing accuracies of a classification model
over six datasets. For the classification model, we use two GNN models; namely, GCN (Kipf &
Welling, 2016) and GIN (Xu et al., 2018). We split the dataset into train/validation/test data by
80%/10%/10%. The averaged testing accuracy over 10 runs is reported for comparison. See more
experimental details in Appendix C.

6.1 S-MIXUP IMPROVES THE PERFORMANCE AND GENERALIZATION

Table 2 summarizes the performance of our proposed S-Mixup compared to baselines on all six
datasets. From the results, our method can improve the performance of different GNN models
on various datasets. For example, compared to the GCN model without data augmentation, our
method achieves an improvement of 4.45%, 3.3% and 3.09% on the REDDIT-BINARY, REDDIT-
MULTI-5K, and NCI1 datasets, respectively. It is worth noting that our method achieves the best
performance among the graph mixup methods. Since M-Mixup only interpolates the graph rep-
resentations at the last layer of GNN models, its improvement is limited. Meanwhile, G-Mixup
generates the same node features for all augmented graphs, thus leading to performance degradation
on PROTEINS and NCI1 datasets which have node features.

We further use learning curves to study the effects of mixup methods on GNN models. Figure 3
shows the test loss at each training epoch of our method compared to other graph mixup methods
on IMDB-BINARY, NCI1, and IMDB-MULTI datasets. From the results, we have the following
observations:

• For the IMDB-BINARY and IMDB-MULTI datasets, the test loss of GCNs without data augmen-
tation increases after certain training epochs. While all graph mixup methods reduce the increase
in test loss at later iterations, our method has the best results in helping the GCN model to con-
verge to a lower test loss. This demonstrates that our method can effectively regularize GNN
models to prevent over-fitting.

• For the NCI1 dataset, our method achieves an obvious improvement over the other methods. Such
observation indicates that our method generates better synthetic graph data than other methods,
thereby obtaining a much lower test loss.
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Table 4: Results of the ablation study on mixup strategies and λ range.

IMDB-B PROTEINS REDDIT-B IMDB-M
Vanilla 72.80 ± 4.08 71.43 ± 2.60 84.85 ± 2.42 49.47 ± 2.60
S-Mixup w/o different classes 73.07 ± 5.78 72.23 ± 3.56 87.60 ± 1.74 50.27 ± 2.86
S-Mixup with λ ∈ [0, 1] 73.00 ± 5.87 72.15 ± 3.86 88.70 ± 2.18 49.07 ± 4.06
S-Mixup 74.40 ± 5.44 73.05 ± 2.81 89.30 ± 2.69 50.73 ± 3.66

Table 5: Results of the ablation study on normalization.
IMDB-B PROTEINS NCI1 REDDIT-B IMDB-M REDDIT-M5

Sinkhorn 73.20 ± 6.13 72.80 ± 3.72 74.89 ± 1.34 90.50 ± 1.80 50.40 ± 2.83 53.13 ± 2.33GCN Softmax 74.40 ± 5.44 73.05 ± 2.81 75.47 ± 1.49 89.30 ± 2.69 50.73 ± 3.66 53.29 ± 1.97
Sinkhorn 73.10 ± 6.62 69.09 ± 2.84 79.95 ± 2.15 91.25 ± 1.70 50.23 ± 4.70 55.09 ± 1.54GIN Softmax 73.40 ± 6.26 69.37 ± 2.86 80.02 ± 2.45 90.55 ± 2.11 50.13 ± 4.34 55.19 ± 1.99

6.2 S-MIXUP IMPROVES THE ROBUSTNESS

In this subsection, we evaluate the robustness of our method and other graph mixup methods against
noisy labels. We generate the noisy training data by randomly corrupting the labels of the IMDB-
BINARY and IMDB-MULTI datasets. Specifically, we create three training datasets, where 20%,
40%, and 60% of the labels are flipped to a different class, respectively. All the test labels are kept
the same for evaluation. We adopt GCN as the classification backbone in this experiment. Results
in Table 3 show that our method can achieve the best performance in most cases, indicating that our
method can improve the robustness of GNNs against corrupted labels.

6.3 ANALYSIS

Mixup strategy. In this subsection, we investigate the performance of different mixup strategies.
Specifically, we use ”S-Mixup w/o different classes” to denote a design choice that only mixes
graphs from the same class. In this experiment, we adopt GCN as the classification model on
IMDB-BINARY, PROTEINS, REDDIT-BINARY, and IMDB-MULTI datasets. Results in Table 4
demonstrate that ”S-Mixup w/o different classes” creates more training graph data, leading to the
improvement in the performance of GNN models. In addition, mixing graphs from different classes
can further improve the performance of GNN models. Such observation shows that mixing all the
classes is a better design choice for the mixup strategies.

Mixup ratio λ. As we mentioned in Section 5.2, the λ range has an effect on the quality of the
generated graphs, so we investigate the performance of different λ ranges in this subsection. Specif-
ically, we compare the performance of λ ∈ [0, 1] and the default setting (i.e., λ ∈ [0.5, 1]). In this
experiment, we adopt GCN as the classification model on IMDB-BINARY, PROTEINS, REDDIT-
BINARY, and IMDB-MULTI datasets. Table 4 shows that our method achieves better performance
with larger λ value, which is consistent with our analysis in Section 5.2.

Softmax normalization. While most graph matching algorithms use sinkhorn normalization to
fulfills the requirements of doubly-stochastic alignment, we relax this constraint by only apply-
ing column-wise softmax normalization on the soft assignment matrix M in Equation (8). In this
subsection, we investigate the effect of different normalization functions on our framework. Specif-
ically, we replace softmax normalization in Equation (8) with sinkhorn normalization. Results in
Table 5 show that sinkhorn normalization has a similar performance to softmax normalization. Since
sinkhorn normalization has a higher computational cost than softmax normalization, we choose to
use softmax normalization in our framework for efficiency.

7 CONCLUSION

In this work, we propose S-Mixup, a novel mixup method for graph classification by soft graph
alignments. S-Mixup computes a soft assignment matrix to model the node-level correspondence
between graphs. Based on the soft assignment matrix, we transform one graph to align with the other
graph and then interpolate adjacency matrices and node feature matrices to generate augmented
training graph data. Experimental results demonstrate that our method can improve the performance
and generalization of GNNs, as well as the robustness of GNNs against noisy labels. In the future,
we would like to apply S-Mixup to other tasks on graphs, such as the node classification problem.
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A PROOF OF THEOREM 1

Proof. Since G′ has the same number of nodes and the same node order as G1, we have

GED(G′,G1) = ϕ(A′ −A1) + ||X ′ −X1||2F
= (1− λ)ϕ(A′

2 −A1) + (1− λ)||X ′
2 −X1||2F

= (1− λ)GED(G1,G′
2)

(11)

where ϕ(A) calculates the sum of the absolute value of all elements in the matrix A. Similarly, we
have

GED(G′,G′
2) = λGED(G1,G′

2) (12)

From the triangle inequality, we have

GED(G′,G2) ≤ GED(G′,G′
2) + GED(G2,G′

2) (13)

Then the difference between normalized GED and mixup ratio is

|ϵ− λ| = GED(G′,G2)

GED(G′,G1) + GED(G′,G2)
− λ

(a)

≤ GED(G′,G′
2) + GED(G2,G′

2)

GED(G′,G1) + GED(G′,G′
2) + GED(G2,G′

2)
− λ

(b)
=

GED(G′,G′
2) + GED(G2,G′

2)

(1− λ)GED(G1,G′
2) + GED(G′,G′

2) + GED(G2,G′
2)

− λ

(c)
=

λGED(G1,G′
2) + GED(G2,G′

2)

(1− λ)GED(G1,G′
2) + λGED(G1,G′

2) + GED(G2,G′
2)

− λ

=
λGED(G1,G′

2) + GED(G2,G′
2)

GED(G1,G′
2) + GED(G2,G′

2)
− λ

=
(1− λ)GED(G2,G′

2)

GED(G1,G′
2) + GED(G2,G′

2)

(14)

where inequality (a) holds due to equation (11), inequality (b) holds due to equation (12), and (c)
holds due to equation (13).

B IMPLEMENTATION DETAILS

In this section, we provide the implementation details for our method. We first present the pseudo
codes for training the graph matching network in Algorithm 1. After training the graph matching
network, we use it to perform Mixup on graphs. The pseudo codes for mixing up graphs are sum-
marized in Algorithm 2. The mixed graphs are used as the augmented training data. To reduce I/O
cost, we follow Zhang et al. (2017) to mix graphs from the same batch by random shuffling. For the
mixup ratio, we select the hyperparameter α from {0.1, 0.2, 0.5, 1, 2, 5, 10}. For the sim function,
we consider two different metrics, including cosine similarity and Euclidean distance. The optimal
hyperparameters are obtained by grid search.

Algorithm 1 Training algorithm

Input: a training set S, graph matching network GMNET
while not converged do

Sample a tuple of graphs (G1,G2,G3) from S, where G1 and G2 are sampled from the same
class and G3 is sampled from another class.

Obtain a pair of graph representations (hG1 ,hG2) from the graph pair (G1,G2) using GMNET
Obtain a pair of graph representations (hG′

1
,hG3) from the graph pair (G1,G3) using GMNET

Compute Ltriplet as Eq. (9)
Update GMNET by applying stochastic gradient descent to minimize Ltriplet

end while
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Algorithm 2 Mixup algorithm

Input: well-trained graph matching network GMNET, a pair of graphs (G1,G2)
Generate a pair of node representations (H1,H2) from graph pair (G1,G2) using GMNET
Compute the soft assignment matrix as Eq. (8)
Generate the synthetic graph G′ and corresponding label y′as Eq. (5)
return G′ and y′

Datasets Initial learning rate # Training epochs Batch size
IMDB-B 0.001 300 256

PROTEINS 0.001 300 256
NCI1 0.01 500 256

REDDIT-B 0.01 500 16
IMDB-M 0.001 300 256

REDDIT-M5 0.01 500 16

Table 6: Hyperparameters for training classification model

C EXPERIMENTAL DETAILS

C.1 EXPERIMENTAL SETTING

For a fair comparison, we use the same architecture of GNN backbones and the same training hyper-
parameters for all methods. For the classification model, we use two GNN models; namely, GCN
and GIN. The details of GNNs are listed as follows,

• GCN(Kipf & Welling, 2016). The number of GCN layers is four, and we use a global mean
pooling as the readout function. We set the hidden size as 32. The activation function is ReLU.

• GIN(Xu et al., 2018). We use a global mean pooling as the readout function. The number of
GIN layers is four, and all MLPs have two layers. We set the hidden size as 32. The activation
function is ReLU.

We use the Adam optimizer (Kingma & Ba, 2015) to train all models. See Table 6 for the hyperpa-
rameters of training the classification model. We split the dataset into train/validation/test data by
80%/10%/10%. The best model is selected on the validation set.

For the graph matching network used in S-Mixup, we set the hidden size as 256 and the readout
layer as global sum pooling. For all six datasets, the graph matching network is trained for 500
epochs with a learning rate of 0.001. For the number of layers and batch size, see Table 7.

Datasets # layers Batch size
IMDB-B 6 256

PROTEINS 5 256
NCI1 5 256

REDDIT-B 4 8
IMDB-M 5 256

REDDIT-M5 4 8

Table 7: Hyperparameters for the graph matching network

D MORE DISCUSSIONS

D.1 GRAPH MATCHING METHODS

There are many well-studied graph match methods, which aim to find the node-level correspondence
between the graph pairs. Traditional graph matching problem is often formulated as a quadratic as-
signment problem (QAP). For example, Gold & Rangarajan (1996) relaxes the constraints and pro-
poses the graduate assignment algorithm to solve the QAP. Leordeanu & Hebert (2005) uses spectral
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Table 8: The sensitivity of S-Mixup to mixup hyperparameter α.

α 0.1 0.2 0.5 1 2 5 vanilla
REDDIT-B 89.10± 2.09 89.15 ± 2.10 89.30 ± 2.69 84.70 ± 6.17 81.40 ± 8.01 77.25 ± 5.39 84.85 ± 2.42
IMDB-M 50.47 ± 3.38 50.73 ± 3.66 49.67 ± 2.89 50.53±2.77 50.29 ± 3.91 49.20 ± 3.34 49.47 ± 2.60

relaxation to approximate the QAP. The Spectral Matching first relaxes the integer constraints and
uses a greedy method to satisfy them later. Furthermore, they propose an iterative matching method
IPFP (Leordeanu et al., 2009) to optimize quadratic score in the discrete domain with climbing and
convergence properties. Unlike these methods, Cho et al. (2010) proposes a novel random walk
algorithm to solve the matching problem. However, it usually takes a long time for these traditional
algorithms (Wang et al., 2017; Dokeroglu & Cosar, 2016) to compute the alignment, thereby we
don’t use traditional graph matching algorithms in our framework for efficiency.

Another line of research uses learning-based networks to compute the alignments between graphs.
For example, Li et al. (2019) proposes to extract node embeddings by a new cross-graph attention-
based matching mechanism. Xu et al. (2019) learns the alignment and node embeddings of graphs
simultaneously with a Gromov-Wasserstein learning framework. Unlike these methods that obtain
the final alignment by computing the pairwise similarity between node embeddings, Fey et al. (2020)
proposes to add a second stage to iteratively update the initial alignments. Wang et al. (2021a) pro-
pose to learn the association graph, so the matching problem is translated into a constrained node
classification task. While many learning-based graph matching methods use ground truth correspon-
dences to supervise the training of the networks, in our problem, there is a lack of such ground truth
correspondences. Only a few studies address the problem by using self-supervised learning. For
example, Liu et al. (2022) proposes a contrastive learning framework for the visual graph matching
problem. In our work, we follow Li et al. (2019) to use the triplet loss in Equation 9 to train the
graph matching network by incorporating the prior knowledge that the learned representations of
graphs from the same class should be more similar than those from different classes.

D.2 GRAPH EDIT DISTANCE

Sanfeliu & Fu (1983) first introduces the graph edit distance (GED) to measure the similarity be-
tween graph pairs. As we introduced in Section 5.2, GED is defined as the minimum cost of an
edit path which is a sequence of elementary graph transformation operations. Computing the GED
is known as an NP-hard problem (Bunke, 1997) and many methods have been proposed to reduce
the computational cost of GED. For example, Riesen & Bunke (2009) approximates the GED com-
putation by means of bipartite graph matching. Several studies (Bougleux et al., 2017; Neuhaus &
Bunke, 2007) show that GED is closely related to QAP and can be computed efficiently by graph
matching solvers. Besides, there are some learning-based methods (Peng et al., 2021) to improve
GED computation. We believe they can be adopted in our framework to compute an adaptive λ
range for different graph pairs, addressing the limitation of S-Mixup as discussed in Section 5.2.

D.3 MIXUP FOR SELF-SUPERVISED LEARNING

While we study mixup methods for graph classification problems in this paper, a few studies have
investigated mixup in self-supervised learning on graphs. For example, Verma et al. (2021) proposes
Mixup-noise to generate positive and negative samples for contrastive learning. Zhang et al. (2022)
proposes to generate negative samples for contrastive learning by mixing multiple samples with
adaptive weights.

E SENSITIVITY ANALYSIS TO MIXUP HYPERPARAMETER

In this section, we conduct a hyperparameter study to analyze the sensitivity of S-Mixup to mixup
hyperparameter α. We sample λ′ from beta distribution parameterized by different α. Specifically,
we tune hyperparameter α among {0.1,0.2,0.5,1,2,5}. We adopt GCN as the classification back-
bone in this experiment. Results in Table 8 show that α ∈ [0.1, 0.5] consistently leads to better
performance than vanilla, while using too large α may lead to underfitting. After we tune the hyper-
parameter α, S-Mixup significantly improves GNNs’ performance.
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F WHAT IS S-MIXUP DOING? A CASE STUDY

In this subsection, we study the outcomes of S-Mixup via a case study on the MOTIF dataset. Firstly,
we investigate the case of mixing graphs from the same class. We select a random pair of graphs
from the same class in the MOTIF dataset and visualize the outcomes of our method in Figure 2.
The original graphs and the generated graph are shown in Figure 2a and Figure 2c, respectively. The
results show that our method can preserve the motif in the mixed result. In other words, the red
nodes still form a cycle motif in the generated graph.
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Figure 4: Relationship between normal-
ized GED and mixup ratio λ

To study the case of mixing graphs from different classes,
we characterize the similarity between generated graphs
and original graph pairs using the normalized GED ϵ in-
troduced in Section 5.2. In this case study, we select a ran-
dom pair of graphs from different classes in the MOTIF
dataset and visualize the relationship between the mixup
ratio λ and the normalized GED in Figure 4. We observe
that the normalized GED is closer to the mixup ratio λ
when λ is larger. Such observation is consistent with The-
orem 1 in Section 5.2.
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