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ABSTRACT

This paper investigates two fundamental problems that arise when implementing
intrinsic motivation for reinforcement learning: 1) how to design a proper intrin-
sic objective in Reward-Free Pre-Training (RFPT) tasks, and 2) how to reduce
the bias introduced by the intrinsic objective in Exploration with Intrinsic Motiva-
tion (EIM) tasks. Existing intrinsic motivation methods suffer from static skills,
limited state coverage, sample inefficiency in RFPT, and suboptimality in EIM.
To tackle these problems, we propose Constrained Intrinsic Motivation (CIM) for
RFPT and EIM, separately. CIM for RFPT maximizes a novel lower bound of
the conditional state entropy with a new alignment constraint on the skill and state
representations for efficient dynamic skill discovery and state coverage maximiza-
tion. CIM for EIM leverages constrained policy optimization to adaptively adjust
the temperature parameter of the intrinsic reward for bias reduction. In multi-
ple MuJoCo robotics environments and tasks, we empirically show that CIM for
RFPT achieves greatly improved performance and sample efficiency over state-of-
the-art intrinsic motivation methods. Additionally, we showcase the effectiveness
of CIM for EIM in redeeming intrinsic rewards when extrinsic rewards are ex-
posed from the beginning.

1 INTRODUCTION

In the realm of Reinforcement Learning (RL), Intrinsic Motivation (IM) assumes a vital role in the
design of exploration strategies (Barto, 2013). IM operates by formulating the agent’s familiarity
with the environment as the intrinsic objective and employing the intrinsic bonus as a measure
of uncertainty for curiosity-driven exploration. It allows agents to efficiently visit novel regions by
assigning higher bonuses to unfamiliar states in a principled way (Liu & Abbeel, 2021b; Zhang et al.,
2021). Practical IM methods can be classified into knowledge-based, data-based, and competence-
based (Laskin et al., 2021).

Knowledge-based IM methods approximate the novelty of a state, analogous to the principled UCB
bonus, by maximizing deviation from explored regions (named as policy coverage) ρ−1

π (Zhang
et al., 2021). Common approximation approaches include the pseudo-count of state visit fre-
quency (Bellemare et al., 2016; Fu et al., 2017), prediction errors of specific neural networks such
as ICM (Pathak et al., 2017) or RND (Burda et al., 2018), and variances of outputs within an en-
semble of neural networks (Pathak et al., 2019; Lee et al., 2021; Bai et al., 2021). However, existing
knowledge-based IM methods may encounter issues such as detachment, derailment (Ecoffet et al.,
2021), and catastrophic forgetting (Zhang et al., 2021). Moreover, knowledge-based IM methods
are inefficient in Reward-Free Pre-Training (RFPT) task due to their lack of awareness of latent skill
variables (Laskin et al., 2021).

Data-based IM methods, on the other hand, directly incentivize the agent to achieve high state cov-
erage by maximizing the state entropy H(s) (Hazan et al., 2019; Mutti et al., 2021; Liu & Abbeel,
2021a;b; Seo et al., 2021). However, these methods also do not condition latent skill variables in
RFPT tasks, limiting the applicability of the pre-trained policy for downstream tasks. Additionally,
exploration with knowledge- or data-based IM methods introduces non-negligible biases that can
lead to suboptimal policies in Exploration with IM (EIM) tasks. Specifically, intrinsic objectives
can lead to superfluous exploration even when the task rewards are already accessible. This distrac-
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tion, induced by intrinsic objectives, can deteriorate the performance of the agent. Consequently, it
can impede the wider application of knowldege- and data-based IM methods.

Competence-based IM methods primarily maximize Mutual Information (MI) I(s; z) between the
state s (or the trajectory τ ) and the latent skill variable z. A policy conditioned on latent skill vari-
ables can change the state of the environment in a consistent and meaningful way, e.g., walking,
jumping, flipping, pushing., and thus can be efficiently finetuned to solve downstream tasks. How-
ever, these methods have shown poor performance in the Unsupervised Reinforcement Learning
Benchmark (URLB) (Laskin et al., 2021). Intuitively, directly maximizing MI does not guarantee
extensive state coverage or the discovery of dynamic skills, as evidenced by recent unsupervised
skill discovery researches (Laskin et al., 2021; Park et al., 2021; 2023). Due to the invariance of MI
to scaling and invertible transformation of the input variables, maximizing only MI will easily con-
verge to simple and static skills. To address this limitation, former works like DIAYN (Eysenbach
et al., 2018) and DADS (Sharma et al., 2019) utilize an inductive bias known as the x − y prior to
make the agent focus only on x − y related primitives. Park et al. (2021) proposed LSD based on
Lipschitz-constrained state representation learning to avoid the usage of the x − y prior. However,
LSD suffers from severe sample inefficiency even when using the off-policy RL method.

To overcome the limitations mentioned above, in this paper, we propose Constrained Intrinsic Mo-
tivation (CIM) which 1) constructs a proper constrained intrinsic objective via a lower bound of the
state entropy to allow the agent to be aware of the latent skill variable while maximizing the state en-
tropy, and 2) adaptively balancing the intrinsic and extrinsic objectives according to the performance
of the agent when the task rewards are exposed in the beginning.

In summary, we make the following main contributions:

• We propose Constrained Intrinsic Motivation (CIM) to overcome the limitations of data-
/knowledge- and competence-based intrinsic motivation by combining the best of both
worlds. CIM outperforms state-of-the-art intrinsic motivation methods, improving per-
formance and sample efficiency in multiple MuJoCo robotics environments.

• CIM for RFPT introduces a lower bound for the state entropy that conditions the state
entropy on the latent skill variable without compromising the power of maximum state en-
tropy exploration. CIM for RFPT also introduces a novel alignment loss to make dynamic
skills interpretable. Compared with LSD (Park et al., 2021) (one state-of-the-art skill dis-
covery method), our CIM reduces the number of required samples from 400M to 20M in
the environment Ant and facilitates the running time from ∼15 hours to ∼10 mins (90x
faster) with our implementation in the same device. Besides skill diversity and state cover-
age, our CIM achieves the highest fine-tuning score in the Walker domain of URLB (Laskin
et al., 2021).

• CIM for EIM derives an adaptive schedule for the temperature weight of intrinsic rewards
leveraging the constrained policy optimization method. We empirically demonstrate that
the adaptive schedule can effectively diminish the bias introduced by intrinsic bonuses in
various MuJoCo tasks.

2 PRELIMINARIES

Markov Decision Processes. The discounted Markov Decision Process (MDP) is defined as M =
(S,A, P,R, γ, µ), where S and A stand for the state space and the action space separately, P :
S × A → ∆(S) is the transition function mapping the state s and the action a to the distribution
P (s′|s, a) in the space of probability distribution ∆(S) over S, R : S × A × S → R is the reward
function, γ ∈ [0, 1) is the discount factor, and µ ∈ ∆(S) is the initial state distribution. We focus
on the episodic setting where the environment is reset once the agent reaches a final state sf , a
terminated state within the goal subsets G or a truncated state sT . At the beginning of each episode,
the agent samples a random initial state s0 ∼ µ; at each time t = 0, 1, 2, ..., T − 1, it takes an action
at ∈ A computed by a stochastic policy π : S → ∆(A) or a deterministic one π : S → A according
to the current state st and steps into the next state st+1 ∼ P (·|st, at) with an instant reward signal
rt = R(st, at, st+1) obtained.
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Intrinsically Motivated RL. Intrinsically Motivated RL (IMRL) aims to maximize the following
general objective

Lk(π) = (1− λk)Je(dπ) + λkJi(dπ), (1)
where dπ(s) := (1− γ)

∑∞
t=0 γ

tP (st = s|µ, π) is the state distribution induced by the policy π, K
is the collection of all induced distributions, Je(dπ) := Es∼dπ

[re] is the extrinsic objective defined
as the expectation of the extrinsic reward re := Re(s, a, s

′) over the induced state distribution
dπ , Ji : K → R is the intrinsic objective defined as a differentiable function of the induced state
distribution dπ with L−Lipschitz gradients, and λk is a coefficient to balance the two objectives.
We summarize the choices of the intrinsic objective Ji in current IMRL algorithms in Table 1.
The projection network ϕ : S → Z utilized in competence-based intrinsic motivation methods is
independent of the choice of the state encoder network f : S → H used in state representation
learning. For instance, for state-based RL tasks, s represents the raw state vector, h := f(s) ∈ Rm

represents the state representation vector, and ϕ(s) ∈ Rn stands for the state projection vector. Note
that for competence-based IM methods APS (Liu & Abbeel, 2021a), CIC (Laskin et al., 2022), and
MOSS (Zhao et al., 2022), we use H(ϕ(s)) for the state entropy and H(ϕ(s)|z) for the conditional
state entropy since they are typically estimated in the state projection space Z instead of the original
state space.

Reward-Free Pre-Training and Exploration with IM RFPT (a.k.a. unsupervised reinforcement
learning) and EIM are two main branches of IMRL. The objective of RFPT is to pre-train an agent
without any task reward re available, which can be regarded as IMRL with λk ≡ 1, that is,

LRFPT
k (π) = Ji(dπ). (2)

In RFPT, the agent aims to learn either a policy π(a|s) that maximizes a knowledge- or data-based
intrinsic objective or a latent-conditioned policy π(a|s, z) that maximizes a competence-based in-
trinsic objective. Evaluation metrics for RFPT can be state coverage, skill diversity, and fine-tuning
performance in downstream tasks. In contrast, EIM refers to training an agent with task rewards
available from the beginning, which can be seen as IMRL with λk < 1 for all k, that is,

LEIM
k (π) = Je(dπ) + τkJi(dπ), (3)

where τk := λk/(1− λk) is the temparature parameter. The evaluation metric for Exploration with
IM is the extrinsic objective Je(dπ). Hence, in EIM tasks, the agent commonly uses knowledge- or
data-based IM instead of competence-based IM for exploration.

3 CONSTRAINED INTRINSIC MOTIVATION

In this section, we design CIM for RFPT and EIM tasks separately. First, we propose a constrained
intrinsic motivation JCIM

i for RFPT to maximize the conditional state entropy with an alignment
constraint between the state representation ϕ(s) and the latent skill variable z. This encourages the
agent to learn dynamic skills. We derive the corresponding intrinsic reward rCIM

i based on the Frank-
Wolfe algorithm. Second, we propose constraining IM via the extrinsic objective in EIM and derive
an automatic temperature schedule τCIM

k in Equation (3) based on the Lagrangian duality theory.

3.1 CONSTRAINED INTRINSIC MOTIVATION FOR REWARD-FREE PRE-TRAINING

In this section, we develop CIM for RFPT. To design the intrinsic objective, we first review current
coverage- and MI-based methods and analyze their limitations.

Limitation of Coverage-Based IM. We denote knowledge- and data-based IM methods as
coverage-based methods since they either maximize deviation from policy coverage or directly max-
imize state coverage. Though current coverage-based IM methods like RND (Burda et al., 2018) and
APT (Liu & Abbeel, 2021b) perform well in terms of state coverage in certain types of environments,
these methods lack awareness of latent skill variables and suffer from limited fine-tuning efficiency.

Limitation of MI-Based IM. MI-based IM methods distill the agent’s exploration experience into
useful skills. There are two types of decomposition for MI I(s; z), that is, I(s; z) = H(z)−H(z|s) =
H(s) − H(s|z). Methods like DIAYN (Eysenbach et al., 2018) and VISR (Hansen et al., 2019)
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Table 1: A summarization of intrinsic motivation algorithms, including: 1) knowledge-based intrin-
sic motivation methods: ICM (Pathak et al., 2017), RND (Burda et al., 2018), Disagreement (Pathak
et al., 2019), MADE (Zhang et al., 2021), and AGAC (Flet-Berliac et al., 2021); 2) data-based intrin-
sic motivation methods: MaxEnt (Hazan et al., 2019), APT (Liu & Abbeel, 2021b), and RE3 (Seo
et al., 2021); 3) competence-based intrinsic motivation methods: VIC (Gregor et al., 2016), DI-
AYN (Eysenbach et al., 2018), VISR (Hansen et al., 2019), DADS (Sharma et al., 2019), APS (Liu
& Abbeel, 2021a), CIC (Laskin et al., 2022), MOSS (Zhao et al., 2022), BeCL (Yang et al., 2023),
LSD (Park et al., 2021), CSD (Park et al., 2023), and CIM. sT represents the last state in one tra-
jectory, where T denotes the final time step in one episode. s′ ∼ P (s′|s, a) is the subsequent state
transitioned from the current state s when action a is taken, and z is the latent skill. In the In-
trinsic Objective column, dπ stands for the induced state distribution, ρ the policy cover, DKL the
KL-divergence, H the entropy, f : S → H the state encoder network, ϕ : S → Z the projection
network. In the Intrinsic Reward column, d̂ the estimated state distribution, ρ̂ the estimated policy
cover, q the discriminator, Sc the cosine similarity.

Algorithm Intrinsic Objective Intrinsic Reward

ICM Es[ρ
−1
π (s)] ρ̂−1

π (s)
RND Es[ρ

−1
π (s)] ρ̂−1

π (s)
Dis. Es[ρ

−1
π (s)] ρ̂−1

π (s)

MADE Es[(ρ
−1
π (s)d−1

π (s))1/2] (ρ̂−1
π (s)d̂−1

π (s))1/2

AGAC Es[DKL(π(s)|πa(s))] DKL(π(s)|πa(s))

MaxEnt H(s) − log d̂π(s)

APT H(s) − log d̂π(f(s))

RE3 H(s) − log d̂π(f(s))

VIC H(z)−H(z|sT ) log q(z|sT )
DIAYN H(z)−H(z|s) +H(a|s, z) log q(z|s)
VISR H(z)−H(z|s) Sc(ϕ(s), z)
DADS H(s′|s)−H(s′|s, z) − log q̂(s′|s) + log q(s′|s, z)
APS H(ϕ(s))−H(ϕ(s)|z) − log d̂π(ϕ(s)) + Sc(ϕ(s), z)

CIC H(ϕ(s)), s.t. ϕ ∈ argminLCIC(ϕ(s), z) − log d̂π(ϕ(s))

MOSS Em∼B(1− 2m)H(ϕ(s)|m) −(1− 2m) log d̂π(ϕ(s))
BeCL I(s; s+), s.t. ϕ ∈ argminLBeCL exp(−lBeCL)
LSD Ez,s(ϕ(s

′)− ϕ(s))T z (ϕ(s′)− ϕ(s))T z
CSD Ez,s(ϕ(s

′)− ϕ(s))T z, s.t. ϕ ∈ argminLCSD (ϕ(s′)− ϕ(s))T z

CIM (ours) H(ϕ(s)|z), s.t. ϕ ∈ argminLCIM − log d̂π(ϕ(s)
T z|z)

employ the first type of decomposition. However, they tend to learn static skills like posing or
doing yoga, as H(z) is fixed and H(z|s) can be minimized with slight differences in states. To
alleviate this drawback, DADS (Sharma et al., 2019) introduces the x− y prior in the skill dynamic
module q(s′|s, z) by inputting only the agent’s position. Nonetheless, this approach may neglect
other types of skills. On the other hand, LSD (Park et al., 2021) proposes to learn dynamic skills
without the x−y prior by maximizing Ez∼pEs∼dπ (ϕ(s

′)−ϕ(s))T z to encourage the state differences
where ϕ is 1−Lipschitz. However, it suffers from severe sample inefficiency due to the Lipschitz
constraint and a lack of explicit maximization of H(s). To address the drawback of the first type
of decomposition, APS (Liu & Abbeel, 2021a) turns to the second one, that is, H(s) − H(s|z),
where H(s|z) is estimated by modeling q(z|s) as von-Mises Fisher (vMF) distribution, similar to
VISR (Hansen et al., 2019). However, minimizing H(s|z) impedes the maximization of H(s),
discouraging the agent’s exploration regarding state coverage. This phenomenon is also found in
CIC (Laskin et al., 2022), where choosing H(s) as the intrinsic objective leads to higher fine-tuning
efficiency than H(s) − H(s|z) in URLB (Laskin et al., 2021). Even when explicitly maximizing
H(s), CIC (Laskin et al., 2022) cannot learn dynamic skills compared to LSD (Park et al., 2021).
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3.1.1 DESIGN OF CONSTRAINED INTRINSIC OBJECTIVE

Motivated by the above analysis and inspired by the fact that H(s) = H(s|z) + I(s; z), we propose
maximizing a lower bound of conditional state entropy H(s|z) and a lower bound of MI I(s; z) at
the same time. This approach encourages the agent to maximize state coverage and distill dynamic
skills simultaneously. To alternately maximize the two lower bounds, we choose the conditional
state entropy H(s|z) as the intrinsic objective and utilize an alignment constraint to align the state
representation and the latent skill, that is,

JCIM
i = Hπ(ϕ(s)|z)= Ez,ϕ(s)∼dπ(·|s,z) [− log dπ(·|s,z)], s.t. ϕ(s) ∈ argminLa(ϕ(s), z). (4)

where Hπ(ϕ(s)|z) the conditional state entropy estimated in the state projection space Z which is
depends on the policy network π and the state projection networkϕ, dπ(·|s,z) is the state distribution
induced by the latent-conditioned policy π(·|s, z), La :=

∑
i li is the alignment loss. This formula-

tion provides a novel insight to unify former MI-based methods. Here, we list all former choices for
li in competence-based IM methods,

lMSE
i = ∥ϕ(s′i)− zi∥22 = −ϕ(s′i)

T zi + ∥ϕ(s′i)∥2 + ∥zi∥2,
lvMF
i = −Sc(ϕ(s

′
i), zi),

lLSD
i = −ϕdiff(τi)

T zi + λ(∥ϕdiff(τi)∥ − d(s, s′)),

lCIC
i = −Sc

(
ϕ(τi), ϕz(zi)

)
+ log

∑
τj∈S− ⋃

{τi}
exp

(
Sc
(
ϕ(τj), ϕz(zi)

))
,

lBeCL
i = −Sc

(
ϕ(s+i ), ϕ(si)

)
+ log

∑
sj∈S− ⋃

{s+i }
exp

(
Sc
(
ϕ(sj), ϕ(si)

))
,

(5)

where τ := (s, s′) is the slice of a trajectory and ϕdiff(τ) := ϕ(s′) − ϕ(s) is the state-difference
version of the trajectory representation, and d(s, s′) is the state distance which can be chosen as
∥s′ − s∥ or − log(s′|s). VIC (Gregor et al., 2016) and DIAYN (Eysenbach et al., 2018) utilize lMSE

i
to train the skill discriminator q(z|s). VISR (Hansen et al., 2019) and APS (Liu & Abbeel, 2021a)
use lvMF

i to learn q(s|z) and q(z|s) separately. LSD (Park et al., 2021) and CSD (Park et al., 2023)
adopt lLSD

i as the alignment loss. CIC (Laskin et al., 2022) and MOSS (Zhao et al., 2022) use lCIC
i

to align the trajectory representation and the projected skill. Lastly, BeCL (Yang et al., 2023) uses
lBeCL
i to align multi-view state representations. To encourage large state difference and maximize

MI at the same time, we design a novel alignment loss function as follows

lCIM
i = −ϕdiff(τi)

T zi + log
∑

τj∈S− ⋃
{τi}

exp
(
ϕdiff(τj))

T zi
)
. (6)

This loss function is based on Contrastive Predictive Coding (CPC) by regarding the latent skill z
as the context and adopting the state-difference version of trajectory representation ϕdiff

τ (s, s′) as
the predictive coding. S− is a set of negative samples that contains trajectories sampled via skills
other than zi. It can be easily proven based on CPC that minimizing the CIM loss function lCIM

i

maximizes a lower bound of MI I(s; z), that is, I(s; z) ≥ logN − ∑
lCIM
i , where N is the total

number of samples for estimating the MI.

3.1.2 ESTIMATION OF CONDITIONAL STATE ENTROPY

We now explain how to estimate the conditional state entropy H(s|z) involved in the intrinsic ob-
jective of CIM and then derive the intrinsic bonus of CIM for RFPT tasks.

Recall the definition of the conditional state entropy Hπ(ϕ(s)|z) = Ez∼pz
[Hπ(ϕ(s)|z = z)] =

Ez∼pz

[
Eϕ(s)∼dπ(·|s,z) [− log dπ(·|s,z)]

]
. To estimate the outer expectation, we randomly sample the

latent skill variables z from a prior distribution pz(z). For discrete skills, pz(z) can be a categorical
distribution Cat(K,p) that is parameterized by p over a size-K the sample space, where pi denotes
the probability of the i−th skill. For continuous skills, we can select p(z) as a uniform distribution
Unz (a, b) over the interval [a, b], where nz is the dimension of the skill. To estimate the inner
expectation, we roll out trajectories using the policy π(·|s, z) with z fixed. To estimate the state
density dπ(·|s,z), instead of training a parameterized generative model, we leverage a more practical
non-parametric ξ−nearest neighbor (ξ−NN) estimator, that is,

d̂π(·|s,z)(si) =
1

λ (Bξ(si))

∫
Bξ(si)

dπ(·|s,z)(s)ds (7)
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where λ is the Lebesgue measure on Rd, Bξ is the smallest ball centered on si containing its ξ-th
nearest neighbour sξi .
Proposition 1. Given a deterministic g, H(s|z = z) ≥ H(g(s)|z = z)) with equality iff g is
invertible.

Proposition 2. Given a deterministic g, H(s|z) ≥ H(g(s)|z)) with equality iff g is invertible.

Theorem 3. Given g(ϕ(s)) := max(ϕ(s)T z, 0), Hπ(ϕ(s)|z) ≥ Hπ(g(ϕ(s))|z)) with equality iff
ϕ(s)T z = ∥ϕ(s)∥∥z∥.

To encourage the agent to learn dynamic skills, we further define a projection function g(ϕ(s)) :=
max(ϕ(s)T z, 0) for a fixed skill z. Based on Theorem 3, H(ϕ(s)|z) is a lower bound of JCIM

i and
the bound is tight when the state representation ϕ(s) and the skill z is well aligned (i.e., ϕ(s)T z =
∥ϕ(s)∥∥z∥). The proof of Theorem 3 are provided in Appendix D. The intrinsic reward of CIM for
RFPT is then rCIM

i (s) = log ∥g(ϕ(s))− g(ϕ(s))ξ∥. Here, g(ϕ(s))ξ means the ξ-th nearest neighbor
of g(ϕ(s)). We adopted an average-distance version similar to APT to make training more stable;
that is,

rCIM
i (s) = log

1 +
1

ξ

ξ∑
j=1

∥g(ϕ(s))− g(ϕ(s))j∥

 . (8)

Intuitively, rCIM
i (s) measures how sparse the state s is in the positive half-space spaned by its corre-

sponding latent skill z. This reward function can be justified based on the procedure of the Frank-
Wolfe algorithm when solving Equation (1). Specifically, since Lk is concave in dπ , maximizing Lk

involves solving dπk+1
∈ argmax⟨∇dπ

L(dπk
), dπk

− dπ⟩ iteratively (Hazan et al., 2019). This it-
erative step is equivalent to policy optimization using a reward function proportional to ∇dπ

L(dπk
).

3.2 CONSTRAINED INTRINSIC MOTIVATION FOR EXPLORATION

In this section, we present our CIM for EIM tasks. In EIM tasks, it is effective to use coverage-
based IM methods such as RND and APT to encourage the agent to explore novel states. However,
in these methods, the intrinsic reward ∇H(s) can never converge to zero, which introduces an
unvanishing bias to the learned policy. This, in turn, makes the policy suboptimal and requires
the temperature parameter τk to be adaptively decreased. Currently, IM methods use a constant
temperature parameter or apply a task-specific linear or exponential decay schedule. To avoid the
cost of hyperparameter tuning, we propose an adaptive schedule based on the performance of the
agent. Specifically, we reformulate Equation (3) by regarding the extrinsic objective as a constraint
for the intrinsic objective as follows

max
dπ∈K

Ji(dπ), s.t. Je(dπ) ≥ Rk (9)

where Rk represents the expected reward at the k-th step of policy optimization, which can be
approximated via R̂k = maxj∈{1,2,...,k−1} Je(dπj

). For a comparison between our proposed con-
straint and Extrinsic Optimality Constraint proposed by Chen et al. (2022), please refer to Ap-
pendix G. We then leverage the Lagrangian method to solve Equation (9). The corresponding La-
grangian dual problem is minλ≥0 maxdπ Ji(dπ) + λk(Je(dπ) − R̂k). The Lagrangian multiplier
λ is updated by Stochastic Gradient Descent (SGD), that is, λk = λk−1 − η(Je(dπk

) − R̂k−1).
Observing that Lk(dπ, λk) ∝ Je(dπ) + λ−1

k Ji(dπ), the adaptive temperature τCIM
k is then derived

as
τCIM
k = min{λ−1

k , 1}= min{{λk−1 − η(Je(dπk
)− R̂k−1)}−1, 1}, (10)

where the outer minimization is to ensure numerical stability. It is worth noting that τCIM
k is the

inverse of λk. Thus, as λk grows, τk gradually tends to zero, that is, the bias introduced by the
intrinsic objective Ji in EIM tasks is adaptively reduced.

4 EXPERIMENTS

We design comprehensive experiments to evaluate our competence-based intrinsic method CIM for
RFPT and our adaptive temperature scheduler CIM for EIM.
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Figure 1: Visualization of 2D continuous locomotion skills discovered by various IM methods in
Ant. Each color in competence-based methods represents the direction of the skill latent variable z.
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Figure 2: Visualization of 2D continuous manipulation skills discovered by various IM methods in
FetchSlide. Each color in competence-based methods represents the direction of the skill z.

4.1 EXPERIMENTAL SETUP

4.1.1 EXPERIMENTAL SETUP FOR RFPT

Environments. We evaluate our intrinsic bonus rCIM
i for RFPT tasks on four Gymnasium en-

vironments, including two locomotion environments (Ant and Humanoid) and two manipulation
environments (FetchPush and FetchSlide). For more information on all the environments we used,
please see Appendix A.

Baseline Methods and Implementation Details. We compare CIM for RFPT with fifteen differ-
ent IM methods as listed in Table 1, including 1) five knowledge-based IM methods: ICM (Pathak
et al., 2017), RND (Burda et al., 2018), Disagreement (Pathak et al., 2019), MADE (Zhang et al.,
2021), and AGAC (Flet-Berliac et al., 2021); 2) one data-based IM method called APT (Liu
& Abbeel, 2021b); 3) and nine competence-based methods: DIAYN (Eysenbach et al., 2018),
VISR (Hansen et al., 2019), DADS (Sharma et al., 2019), APS (Liu & Abbeel, 2021a), CIC (Laskin
et al., 2022), MOSS (Zhao et al., 2022), BeCL (Yang et al., 2023), LSD (Park et al., 2021), and
CSD (Park et al., 2023). For implementation details, please refer to Appendix B.

4.1.2 EXPERIMENTAL SETUP FOR EIM

Environments. We evaluate CIM for EIM in two navigation tasks in D4RL (Fu et al., 2020):
PointMaze UMaze-v3 and AntMaze UMaze-v3. Note that CIM for EIM is orthogonal with any
intrinsic bonuses. Unless otherwise mentioned, we adopt APT (Liu & Abbeel, 2021b), the state-of-
the-art data-based IM method, to compute intrinsic bonuses in EIM tasks. The total instant reward
is then r = re + τCIM

k rAPT
i , where re is the extrinsic reward and rAPT

i := log(1 + 1/k
∑k

j=1 ∥ϕ(s)−
ϕ(s)j∥) is the intrinsic bonus.

Baseline Methods and Implementation Details. We compare CIM for EIM with other com-
monly used temperature schedule methods, including the constant schedule τC

k ≡ βC, the linear
decay schedule τL

k = βL(1− k/T ), and the exponential decay schedule τE
k = βE(1− ρE)

k. Please
refer to Appendix B for more implementation details.

4.2 RESULTS IN RFPT TASKS

Visualization of Skills As previous works like LSD (Park et al., 2021) do, we train CIM for RFPT
to learn diverse locomotion continuous skills in the Ant and Humanoid environment and diverse ma-
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Table 2: State Coverage of 2D continuous locomotion or manipulation skills discovered by various
typical IM methods.

Environment RND APT APS CIC LSD CSD CIM (ours)

Ant (29D) 123± 15 33± 3 192± 75 697± 200 50± 24 4± 0 1042± 158
Humanoid (378D) 22± 1 22± 1 107± 33 64± 11 8± 1 4± 0 1135± 360
FetchPush (25D) 137± 22 154± 17 79± 14 150± 34 24± 12 105± 48 141± 15
FetchSlide (25D) 182± 52 185± 49 178± 33 223± 3 31± 33 114± 79 187± 16

Table 3: Ablation on the choice of the alignment loss li.

Environment lMSE
i lvMF

i lLSD
i lCIC

i lBeCL
i lCIM

i (ours)

Ant (29D) 64± 20 371± 85 28± 14 746± 108 726± 70 1042± 158

nipulation skills in FetchPush and FetchSlide. The learned skills are visualized as trajectories of the
agent on the x− y plane in Figure 1 and Figure 2. Our CIM for RFPT outperforms all 15 baselines
in terms of skill diversity and state coverage. The skills learned via CIM are interpretable because
of our alignment loss; the direction of the trajectory on the x−y plane changes consistently with the
change in the direction of the skill. Specifically, CIM excels at learning dynamic skills that move
far from the initial location in almost all possible directions, while most baseline methods fail to
discover such diverse and dynamic primitives. Their trajectories are non-directional or less dynamic
than CIM, especially in two locomotion tasks. Competence-based approaches like DIAYN (Eysen-
bach et al., 2018), VISR (Hansen et al., 2019), and DADS (Sharma et al., 2019) directly maximize
MI objectives but learn to take static postures instead of dynamic skills; such a phenomenon is also
reported in LSD (Park et al., 2021) and CIC (Laskin et al., 2022). Although APS (Liu & Abbeel,
2021a) and CIC can learn dynamic skills by directly maximizing the state entropy, CIM discovers
skills that reach farther and are more interpretable via maximizing the lower bound of the state en-
tropy. As for the two variants of CIC, MOSS (Zhao et al., 2022) and BeCL (Yang et al., 2023),
they perform even worse than CIC in all tasks, reflecting their limitation in skill discovery. Lastly,
LSD (Park et al., 2021) and CSD (Park et al., 2023) cannot learn dynamic skills within limited envi-
ronment steps in Ant and Humanoid due to their low sample efficiency. Though they perform better
in manipulation tasks than locomotion tasks, their learned skills are rambling compared with our
CIM.

State Coverage To make a quantitative comparison between various IM methods, we measure
their state coverage. The state coverage in Ant and Humanoid is determined by calculating the num-
ber of 2.5 × 2.5 m2 bins occupied on the x-y plane, based on 1000 randomly sampled trajectories.
This was then averaged over five runs. For FetchPush and FetchSlide, we use smaller bins. As
shown in Table 2, CIM significantly outperforms all the baseline methods in two torque-as-input
locomotion tasks and is comparable in two position-as-input manipulation tasks. Although the state
coverage of CIM is slightly lower than APT (Liu & Abbeel, 2021b) and CIC (Laskin et al., 2022) in
FetchPush and FetchSlide, the skills learned via CIM are more interpretable, as shown in Figure 2.

Fine-Tuning Efficiency in URLB We also evaluate CIM for RFPT in URLB (Laskin et al., 2021),
a benchmark environment for RFPT in terms of fine-tuning efficiency. The results are presented in
Table 4. The score (the last line of the table) is standardized by the performance of the expert DDPG,
the same as in URLB and CIC (Laskin et al., 2022). CIM performs better in Run and Walk tasks
and achieves the highest average score. The dynamic skills learned through CIM for RFPT can be
adapted quickly to diverse fine-tuning tasks, including flipping and standing. Our experiments also
show that the skill dimension nz = 3 is better for CIM to discover flipping skills than nz = 2. The
fixed skill selection mechanism for CIM is the same as CIC.

Ablation Study According to the results in Table 3, loss functions that follow the NCE style, such
as lCIC

i , lBeCL
i , and lCIM

i , perform better than other styles like MSE and vMF. Besides, lCIM
i is the most

effective. As shown in Figure 3a, our CIM can also be utilized to discover discrete dynamic skills,
though it is mainly designed for continuous skills. What more, our CIM for RFPT is also robust to
the number of skill dimensions. The detailed results are provided in Appendix F.
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Table 4: Fine-tuning average episode rewards± standard deviations of eight methods in Walker
domain of URLB. We denote knowledge-, data-, and competence-based methods in red, green, and
blue, respectively. We bold the best result in each row. We report the normalized average score in
the last row.

Task DDPG RND Proto APS CIC MOSS BeCL CIM (ours)

Flip 536± 66 470± 47 523± 89 407± 104 709± 172 425± 77 628± 46 664± 80
Run 274± 22 403± 105 347± 102 128± 38 492± 81 244± 13 467± 81 585± 27

Stand 931± 18 907± 16 861± 79 698± 215 939± 28 862± 100 951± 3 941± 21
Walk 777± 89 844± 99 828± 70 577± 133 905± 22 684± 40 781± 221 921± 30
Score 0.69± 0.23 0.72± 0.20 0.70± 0.20 0.49± 0.25 0.85± 0.18 0.60± 0.22 0.78± 0.19 0.86± 0.11
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Figure 3: (a) Discrete CIM with nz = 8 in Ant. The visualization in Humanoid is similar. (b)
The learning curves of different temperature schedule methods. (c) Trajectory visualization of the
meta-controller. The color of each sub-trajectory reflects the direction of the option.

4.3 RESULTS IN EIM TASKS

In PointMaze, we directly train a policy to control the Point without learning low skills since the
dynamics is simple. In AntMaze, we train a meta-controller on top of the latent-conditioned policy
pre-trained via our CIM for RFPT method. The meta-controller observes the target goal concate-
nated to the state observation [s; sg] and outputs the skill latent variable z at each timestep. Figure 3b
shows that the Lagrangian-based adaptive schedule τCIM

k outperforms other baseline methods, es-
pecially in PointMaze. Specifically, we can observe a small peak in the early stage of the training
in PointMaze, which means the agent can reach the randomly generated target point with a small
probability. However, as the training processes, the agent is distracted by the intrinsic bonuses when
using the constant schedule τC

k or the linearly decayed schedule τL
k of the temperature. Note that

τCIM
k is close to τE

k in AntUMaze, leading to similar performance curves. Moreover, other latent-
conditioned policies are of poor quality, and we fail to train a mete-controller on top of these policies.
We visualize the trajectories of the Ant in the x− y plane as shown in Figure 3c, where the skills in
a single trajectory gradually change to make the Ant turn a corner. We also conduct experiments to
demonstrate the performance of CIM for EIM across four sparse-reward locomotion tasks. Please
refer to Appendix F for details.

5 CONCLUSION

In this paper, we proposed Constrained Intrinsic Motivation (CIM) for RL. We designed a novel
competence-based method for RFPT tasks to discover diverse and dynamic skills. This approach
consisted of two key components: maximizing a lower bound of the conditional state entropy H(s|z)
and maximizing a lower bound of MI I(s; z). Additionally, We designed an adaptive temperature
schedule τCIM

k for EIM tasks based on constrained policy optimization. Our experiments demon-
strated that our CIM for RFPT outperformed all baselines in multiple MuJoCo environments re-
garding diversity, state coverage, sample efficiency, and fine-tuning efficiency. Furthermore, the
latent-conditioned policy learned via CIM for RFPT was successfully applied to complex EIM tasks
via training a meta-controller on top of it. We also empirically verified the effectiveness of our
schedule τCIM

k in multiple EIM tasks.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4: (a)-(d) Ant, Humanoid, FetchPush and FetchSlide for evaluation of dynamic skill dis-
covery; (e) Walker (Stand, Walk, Flip, Run) in URLB for evaluation of fine-tuning efficiency; and
(f)&(g) PointMaze UMaze and AntMaze UMaze in D4RL for evaluation of CIM for EIM.

Algorithm 1: CIM for RFPT
Initialize the latent-conditioned policy π and the state representation function ϕ
while not exceed total timesteps do

while not exceed steps per collect do
Sample skill z from p(z)
Collect samples {(s, a, s′)} with π(a|s, z)

end
Compute reward rCIM with Equation (8)
Update ϕ using SGD to minimize the CIM alignment loss in Equation (6)
Update π using an on-policy method like PPO or an off-policy method like DDPG

end

A ENVIRONMENTS

To test the effectiveness of our CIM in high-dimensional tasks, we adopt Humanoid in Gymnasium
MuJoCo environments. This environment has a 378D state space and a 17D action space, making it
one of the most challenging environments available. We choose manipulation tasks to verify that our
CIM can be utilized in environments other than locomotion tasks. Moreover, we evaluate the fine-
tuning efficiency of the pre-trained skills in the URLB Walker domain, which has a 24D state space
and a 6D action space. This domain includes four downstream tasks, i.e., Walker-Flip, Walker-Stand,
Walker-Walk, and Walker-Run. Figure 4 shows all environments used in our experiments. The Ant
and Humanoid environments are part of the MuJoCo environments in Gymnasium. FetchPush and
FetchSlide are two tasks in the Fetch environment of the Gymnasium-Robotics, a collection of RL
robotic environments. These four environments are used in previous skill discovery papers such as
DIAYN, DADS, LSD, and CSD. In the URLB Walker domain, there are four downstream tasks:
WalkerStand, WalkerFlip, WalkerWalk and WalkerRun. These tasks are designed to evaluate the
fine-tuning efficiency of pre-trained latent-conditioned policies. To achieve a high average score,
the unsupervised agent must discover diverse locomotion skills. In the PointMaze UMaze environ-
ment, the Point (green) must navigate through the U-Maze from the initial region to a randomly
generated target position (red). The target position is generated within a limited region, leading
to a sparse reward. AntMaze UMaze is more challenging than PointMaze UMaze. The map of
AntMaze UMaze is 36× larger than PointMaze UMaze.

B IMPLEMENTATION DETAILS

To maximize JCIM
i defined in Equation (4) and satisfy the alignment constraint at the same time,

we alternatively train the policy π via the on-policy RL algorithm Proximal Policy Optimization
(PPO) and learn the state representation encoder ϕ via SGD. We implement all baselines in four
Gymnasium environments using the same on-policy RL algorithm to ensure a fair comparison. All
methods are trained with the same sampling budget of 40M environment steps (one-tenth of the
original LSD) in Ant, 400M in Humanoid, and 4M in two Fetch tasks. In URLB, we implement
our CIM based on their codes and follow the benchmark’s standard training procedure to ensure
a fair comparison, that is, pretraining the agent for 2M steps with only intrinsic rewards and then
fine-tuning the pre-trained agent for 0.1M with only extrinsic rewards. Note that URLB adopts the
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Table 5: Default key parameters of CIM for RFPT

Parameter Name Default value

total timesteps 4e7
steps per collect 512×64
number of minibatches 4
number of training envs 64
num of particles 10
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Figure 5: Enlarged Visualization of 2D continuous locomotion skills discovered by various IM
methods in Ant. Each color in competence-based methods represents the direction of the skill latent
variable z.

off-policy RL algorithm DDPG as the policy optimization method. All experiments are carried out
across five random seeds in four Gymnasium environments and eight in URLB.

Algorithm 1 shows the training procedure of CIM for RFPT tasks. The state representation function
ϕ and the latent-conditioned policy π are updated alternately after steps per collect samples
are sampled with randomly generated skill vectors. We fix the skill vector within a single episode as
previous works do.
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Table 6: Ablation on the number of dimensions of latent skill variables.

Environment 2 3 10 64

Ant (29D) 1042± 158 875± 240 901± 20 615± 54

Table 5 includes default key parameters of CIM for RFPT. CIM for RFPT and all baselines use
the same parameters for the policy optimization method, i.e., PPO (in Gymnasium) or DDPG (in
URLB), as in previous works.

C ENLARGED VISUALIZATION

Figure 5 shows the enlarged pictures of 2D continuous locomotion skills discovered by various IM
methods in Ant.

D PROOF OF THEOREM 3

We provide the detailed proof for Theorem 3. Before moving on, we give the proof schetches for
Proposition 1 and ƒ2 as follows.

Observing that H(s, g(s))|z =z) = H(s|z =z) + H(g(s)|s, z =z) = H(g(s)|z =z) +
H(s|g(s), z =z), and H(g(s)|s, z =z) = 0 (g is deterministic and z is fixed), we have H(s|z =z)−
H(g(s)|z =z) = H(s|g(s), z =z) ≥ 0. If and only if g is invertible (H(s|g(s), z =z) = 0), we have
H(s|z =z) = H(g(s)|z =z). Thus, Proposition 1 is proven. Further, based on Proposition 1 and the
definition of the conditional entropy H(s|z) = Ez[H(s|z = z)], Proposition 2 is proven.

We now present the proof of Theorem 3.

Proof. It is obvious that g(s) = max(ϕ(s)T , z) is a deterministic function. We then show that
g is invertible when the state representation ϕ(s) and the skill z are well aligned (i.e., ϕ(s)T z =
∥ϕ(s)∥∥z∥). With ϕ(s)T z = ∥ϕ(s)∥∥z∥, we have g = max(ϕ(s)T z, 0) = max(∥ϕ(s)∥∥z∥, 0) =
∥ϕ(s)∥∥z∥, which is an invertible function of ϕ(s) given a sampled z. This is because we can
recover ϕ(s) from g, that is, ϕ(s) = g

∥z∥
z

∥z∥ with g
∥z∥ being the norm of ϕ(s) and z

∥z∥ being the
direction of ϕ(s). Thus, according to Proposition 1 and 2, Theorem 3 is proven.

E VENN DIAGRAM FOR RELATIONSHIPS INVOLVED IN IMRL

Since there are quite some Macros involved in IMRL, We illustrate their relationshipes in Figure 6.
Specifically, IMRL can be divided into two branches, RFPT tasks and EIM tasks. URLB is a fa-
mous benchmark to evaluate the fine-tuning performance of IM methods for RFPT tasks. Note
that there are three types of IM methods in previous works, i.e., knowledge-based, data-based, and
competence-based. Our CIM for RFPT JCIM

i belongs to competence-based IM methods. And our
CIM for EIM is a novel adaptive tempareture scheduler τCIM

i .

F MORE EXPERIMENT RESULTS

F.1 ABLATION ON THE NUMBER OF DIMENSIONS OF LATENT SKILL VARIABLES

We conduct ablation study on the number of dimensions of latent skill variables. Table 6 indicates
that CIM for RFPT is robust to the number of skill dimensions regarding the state coverage in Ant.
Interestingly, even when the number of dimensions of latent skill variables is larger than the the
number of dimensions of the Ant’s state vector, our CIM for RFPT can still learn dynamic skills
to achieve large state coverage. On the other hand, for learning 2D locomotion skills, setting the
number of dimensions of latent skill variables to 2 is enough.
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Figure 6: Venn diagram to explain the relation of IMRL, RFPT, EIM, URLB, CIM.

Table 7: The test-time average episode rewards Je(dπ) under different temperature schedulers.

Temperature Scheduler SHC SA SHS SGW

τC
k 0.27 0.74 0.18 1

τCIM
k 1 0.97 1 1

F.2 MORE EXPERIMENT TO EVALUATE CIM FOR EIM

We chose two representative environments to illustrate the effectiveness of CIM for EIM in the main
body of the paper due to space constraints. Here, we conduct more experiments to demonstrate the
performance of CIM for EIM across four sparse-reward locomotion tasks (designed by Mutti et al.,
2021): SparseHalfCheetah (SHC), SparseAnt (SA), SparseHumanoidStandup (SHS) and SpraseG-
ridWorld (SGW). As shown in Table 7, τCIM

k effectively reduces the bias introduced by intrinsic
rewards, thereby enhancing performance in EIM tasks.

To show how our adaptive temperature scheduler τCIM
k solves the issue of suboptimality, we plot

the curves of τCIM
k during training. From Figure 7, we can see that τCIM

k gradually tends to zero
across all EIM tasks. This means that our adaptive temperature τCIM

k can effectively reduce the bias
introduced by the intrinsic objective Ji(dπ), i.e., the agent gradually focuses on maximizing only
Je(dπ) to exploit the task rewards as τCIM

k is near zero in the final stage of training, instead of being
distracted by the intrinsic objective to do superfluous exploration.

G COMPARISON WITH EXTRINSIC OPTIMALITY CONSTRAINT

Here, we compare our CIM for EIM with Chen et al. (2022)’s work. It should be noted that though
our constraint in Equation (9) is similar to Extrinsic Optimality Constraint, Je(dπ) = maxπ Je(dπ)
proposed by Chen et al. (2022), there are some key differences. Firstly, we only need to train a
single policy π, while they have to train two separate policies, πe+i and πe, alternately. Secondly,
we use an automated curriculum based on the agent’s performance, as measured by Rk, to adjust
the constraint strength. In contrast, their constraint is relatively harsh and difficult to satisfy during
most of the training process.
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Figure 7: Curves of our adaptive temperature scheduler τCIM
k during training.

Table 8: List of Abbreviations of Common Items

Abbreviations of Common Items Full Name

EIM Exploration with Intrinsic Motivation
IM Intrinsic Motivation
IMRL Intrinsically Motivated Reinforcement Learning
MDP Markov Decision Process
MI Mutual Information
RFPT Reward-Free Pre-Training
RL Reinforcement Learning
UCB Upper Confidence Bound
URLB Unsupervised Reinforcement Learning Benchmark

H LIST OF ABBREVIATIONS

We list all abbreviation of common items in Table 8 and all abbreviation of IM methods in Table 9.
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Table 9: List of Abbreviations of IM Methods

Abbreviations of IM Methods Full Name

ICM (Pathak et al., 2017) Intrinsic Curiosity Module
RND (Burda et al., 2018) Random Network Distilling
Dis. (Pathak et al., 2019) Disagreement
MADE (Zhang et al., 2021) MAke DEviation from policy cover
AGAC (Flet-Berliac et al., 2021) Adversarially Guided Actor-Critic

MaxEnt (Hazan et al., 2019) Maximum state Entropy
APT (Liu & Abbeel, 2021b) Active Pre-Training
RE3 (Seo et al., 2021) Random Encoders for Efficient Exploration

VIC (Gregor et al., 2016) Variational Intrinsic Control
DIAYN (Eysenbach et al., 2018) Diversity Is All You Need
VISR (Hansen et al., 2019) Variational Intrinsic Successor Feature
DADS (Sharma et al., 2019) Dynamics-Aware unsupervised Discovery of Skills
APS (Liu & Abbeel, 2021a) Active Pretraining with Successor Features
CIC (Laskin et al., 2022) Contrastive Intrinsic Control
MOSS (Zhao et al., 2022) a Mixture Of SurpriseS
BeCL (Yang et al., 2023) Behavior Contrastive Learning
LSD (Park et al., 2021) Lipschitz-constrained unsupervised Skill Discovery
CSD (Park et al., 2023) Controllability-aware unsupervised Skill Discovery

CIM Constrained Intrinsic Motivation
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