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ABSTRACT

Large-scale foundation models such as CLIP and DINOv2 provide powerful pre-
trained visual embeddings that enable strong zero-shot transfer and facilitate un-
supervised learning. However, for specific tasks, the visual embeddings extracted
from these foundation models may still lack sufficient classification separabil-
ity, making it challenging to identify a reliable classifier in the embedding space.
To address this, we propose an unsupervised learning approach with spatial em-
bedding and human labeling (SEAL). SEAL first extracts spatial embeddings us-
ing a graph attention network to capture relational cues among image patches.
These spatial embeddings are then fused with foundation model features via mu-
tual distillation, producing spatially aware representations with enhanced separa-
bility. Subsequently, a lightweight linear classifier is trained in this embedding
space to generate cluster assignments that reflect human labeling. Experimental
analysis on 26 benchmark datasets shows that incorporating spatial embeddings
significantly improves triplet accuracy, demonstrating the enhanced separability
of foundation model embeddings. Extensive experiments further show that SEAL
achieves outstanding clustering performance across 26 benchmark datasets and
maintains excellent stability across 7 foundation model backbones. The code will
be released publicly.

1 INTRODUCTION

Supervised Learning Unsupervised Leaming with human labeling Unsupervised Learning with features and labeling
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Figure 1: Comparison of Supervised and Unsupervised Learning Approaches. (a) Supervised learn-
ing trains models on labeled examples with predefined image categories. (b) Unsupervised learning
infers underlying human labeling without labeled examples, relying only on the specified number of
categories. (c) Unsupervised learning simultaneously discovers discriminative features and recovers
human labeling, only given the number of categories.

Deep learning has revolutionized computer vision by enabling models to learn representations with
rich information directly from raw images (LeCun et al.l [2015). In supervised learning (illustrated
on the left of Figure[T), labeled datasets provide the critical training signal (Krizhevsky et al., 2012;
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similar triplet accuracy before and after distillation. each backbone.

Figure 2: (a) Triplet accuracy before and after distillation. (b) Clustering performance across back-
bones.

He et al.L[2016; Ren et al., 2015)), and the learned representations serve as the foundation for achiev-
ing excellent performance on core tasks such as image classification, object detection, and semantic
segmentation. In parallel, unsupervised representation learning aims to uncover meaningful infor-
mation from raw images without relying on human annotations. Early representative methods in this
field, such as Deep Embedded Clustering (DEC) (Xie et al.,|2016) and Contrastive Clustering (CC)
(L1 et al., [2021)), have shown that leveraging the intrinsic properties of the data enables models to
learn transferable embeddings that generalize effectively across downstream tasks.

With the accumulation of data across multiple domains, numerous large-scale foundation models
have emerged, including CLIP (Radford et al., 2021), DINOv2 (Oquab et al.,[2023)), SWAG (Singh
et al.;[2022), and CoCa (Yu et al.|[2022)). Their pre-trained visual embeddings have evolved into pow-
erful priors for a wide range of downstream tasks, exhibiting strong zero-shot transfer capabilities
by aligning input data with human-provided prompts. However, reliance on such external super-
vision limits their applicability in fully unsupervised scenarios. To address this limitation, recent
methods such as HUME (Gadetsky & Brbicl|[2023)) and TURTLE (Gadetsky et al., 2024) reinterpret
clustering as the task of discovering human-consistent labelings from pre-trained embeddings. The
core insight behind the methods is that human-defined categories tend to be linearly separable in the
representation space. This property allows for searching through potential labelings and evaluating
them based on the performance of linear classifiers. Using this principle, these methods aim to re-
cover semantically meaningful data partitions without relying on human-provided prompts, thereby
advancing toward fully unsupervised utilization of foundation models.

However, for specific tasks, the pre-trained embeddings, despite containing rich semantic informa-
tion, may still lack sufficient linear separability, making it challenging to identify a reliable linear
classifier in the feature space.

To address this limitation, we propose a method to enhance the linear separability of visual embed-
dings extracted from foundation models. Our approach starts with a Graph Attention Network (GAT)
encoder, which extracts spatial embeddings by capturing relational cues between image patches.
These spatial embeddings are then fused with the visual embeddings of the foundation via mutual
distillation to generate spatially aware embeddings that better retain the structural information of
images. To quantify the improvement of the spatially aware embeddings in separability, we adopt a
triplet accuracy, which evaluates the relative closeness of samples from the same class versus those
from different classes, thereby reflecting the linear separability of features (see Appendix [D]for de-
tails). As illustrated in Figure integrating spatial structure into foundation model embeddings
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yields significantly higher triplet accuracy, showing that the linear separability of features is effec-
tively enhanced. We then discover actual clustering assignments for the data based on the spatially
aware embeddings.

Building on the above, we introduce an unsupervised learning method with spatial embedding and
human labeling (SEAL), which integrates spatial structures to enhance feature separability and re-
cover the underlying human labeling simultaneously. Following the process detailed earlier (i.e.,
spatial embedding extraction via GAT and mutual distillation with visual embeddings from foun-
dation models), inspired by (Gadetsky et al.,[2024), a lightweight linear classifier is trained on this
spatially aware embedding space to output cluster assignments. We evaluated the performance of
SEAL on 26 benchmark datasets and 7 foundation model backbones (including CLIP ResNets, CLIP
Vision Transformers, and DINOv2). As illustrated in Figure SEAL outperforms the TURTLE
baseline. In particular, it achieves more stable performance across diverse foundation model back-
bones. Detailed results for each dataset are provided in Appendix [C In addition, although spatial
embedding consumes extra time, the clearer class structure improves the efficiency of recovering
human labeling, and the efficiency of SEAL is still at a comparable level. These results confirm that
explicitly modeling spatial structures provides dual benefits: it enhances the linear separability of
features (as validated by triplet accuracy) and improves the effectiveness and stability of clustering,
thereby advancing the state-of-the-art in unsupervised learning.

The main contributions are as follows:

* We propose a spatially aware approach that generates spatial features and undergoes mutual
distillation with embeddings from foundation models, thereby capturing spatial structure
relationships and enhancing separability. The improvement in separability is quantitatively
demonstrated across 26 datasets and 7 backbones using triplet accuracy.

* We propose an unsupervised learning method with spatial embeddings and human labeling
(SEAL), which recovers human labeling based on spatially aware embeddings. Extensive
experiments demonstrate that SEAL achieves outstanding clustering performance on 26
benchmark datasets and exhibits excellent stability across 7 foundation model backbones.

2 RELATED WORK

2.1 REPRESENTATION LEARNING FOR IMAGE CLUSTERING

Classical methods such as K-means or spectral clustering (Krishna & Murty, |1999; Ng et al., [2001)
rely on low-level embeddings and often fail when applied to large-scale datasets with complex se-
mantics.

With the advent of deep learning, image clustering performance has significantly improved by lever-
aging neural networks. These methods rely on internal supervision signals to guide the learning
of clustering-friendly representations. They typically assume that samples from the same cate-
gory are naturally closer in the embedding space and optimize the representations accordingly.
Early works like Deep Embedded Clustering (DEC) (Xie et al.l 2016) refine cluster assignments
by minimizing the KL divergence between current predictions and a sharpened target distribution.
Prediction-consistency based approaches such as Invariant Information Clustering (IIC) (Ji et al.,
2019), SCAN (Van Gansbeke et al., 2020), and Contrastive Clustering (CC) (L1 et al.l |2021) lever-
age agreement under strong data augmentations to facilitate unsupervised clustering. Alternatively,
iterative pseudo-labeling methods, including DeepCluster (Caron et al.|[2018)) and SPICE (Niu et al.,
2022)), repeatedly assign cluster labels to supervise representation learning. Graph-based extensions
like GATCluster (Niu et al.l 2020) introduce graph attention mechanisms to model neighborhood
dependencies and improve clustering quality.

2.2 UNSUPERVISED LEARNING WITH FOUNDATION MODELS

While deep clustering methods learn task-specific embeddings, recent works leverage large-scale
pretrained models to provide rich visual representations, with CLIP and CoCa capturing high-level
semantic concepts through image—language alignment, and DINOv2 and SWAG excelling at pre-
serving visual details. While these models demonstrate strong zero-shot transfer, their reliance on
external supervision limits applicability in fully unsupervised settings.
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To address this, recent works such as HUME (Gadetsky & Brbic| 2023)) and TURTLE (Gadetsky
et al., 2024) reframe clustering as the task of discovering human labeling directly from pretrained
embeddings. HUME introduced the idea of searching for labelings that are linearly separable across
multiple representation spaces, using self-supervised features for the task encoder and a large pre-
trained model as a regularizer. However, it still required task-specific self-supervised pretraining
on the target dataset. TURTLE advances this paradigm by entirely removing the need for dataset-
specific representation learning, instead leveraging fixed embeddings from one or two foundation
models to define the task encoder and evaluate generalization error. By maximizing the margin of
linear classifiers across these spaces, TURTLE effectively identifies labelings that closely align with
human labeling, often matching or surpassing zero-shot transfer methods’ performance without any
human labeling.

These developments highlight a broader shift in unsupervised learning: moving from learning em-
beddings from scratch to leveraging pretrained foundation models to recover semantically meaning-
ful data partitions. This trend improves scalability and efficiency, and narrows the gap between fully
unsupervised and supervised learning. Nevertheless, the lack of sufficient class separability remains
a persistent challenge in unsupervised learning.

3 THE PROPOSED METHOD

3.1 PROBLEM STATEMENT AND OBJECTIVE

In this paper, we consider the following unsupervised learning problem: given an unlabeled training
dataset D = {z,,})_, with a known number of categories K, the goal is to learn a model f : D —
{1,..., K} that assigns a pseudo-label y; = f(x;) to each sample x;, such that samples belonging
to the same class exhibit homogeneity.

We address this problem through spatial embedding and human labeling. Each image x is repre-
sented by a pre-trained visual embedding ¢(z) € R?. Our approach has two main objectives: (i)
to enhance the linear separability of the visual embeddings, and (ii) to infer a human-consistent la-
beling distribution 75(x) € AX~L, which assigns semantically meaningful category probabilities
to each sample, where A%~ denotes the (K — 1)-dimensional probability simplex. Formally, we
leverage additional spatial embeddings g(z) € RY. By integrating these spatial embeddings with the
visual embeddings ¢(z), we aim to produce spatially aware embeddings ¢ () that improve linear
separability and make clustering categories more distinguishable in the feature space. Subsequently,
we learn a mapping ¢ () € R such that a linear classifier f(¢(z)) = w ¢(z) assigns samples to
the K clusters according to the inferred distribution 74 (). An overview of the proposed framework
is illustrated in Figure[3]

Guided by the above solution, we propose a learnable distillation function R that integrates ¢(x) and
g() to obtain spatially-aware embeddings ¢(z) = R(¢(x), g()). A classifier f(z) = w' ¢(z) is
then trained on this embedding space. The overall optimization problem is formulated as:

Hgn [:(9) = g;)ﬁce (f(x),TO(I)) - Bﬁent(TG(I))? (1)
d(z) = R(d(x),9(x)),
R = arg min Laistin (p(2), g(2); R')
fl@) =w'¢(x),

w = argmin Lee (W' p(x), To(x); W)

spatially aware embedding
2

human labeling

where /3 is a weighting factor for the entropy loss of the latent label distribution, and £7?, denotes
the entropy loss of 7y (z). The spatial embedding g () is obtained as described in Section& and the
learning of R is detailed in Section [3.3] The human labeling f(x) on spatially aware embeddings is
introduced in Section The entire framework is trained by jointly optimizing 8, R, and w.
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Figure 3: Overview of the proposed SEAL framework.

3.2 SPATIAL EMBEDDING EXTRACTION

Capturing spatial structure is crucial for distinguishing task-specific categories. Inspired by the
structural representation idea in (Qian et al., [2015)), we model spatial dependencies among image
patches using GAT (Velickovic et al.| [2017). Since raw image dataset D cannot be directly input
to GAT, We first feed D into a pretrained ResNet-50 (Radford et al., |2021) to extract high-level
convolutional features, which are then used as inputs for the GAT, including node embeddings X =
[z1,...,7N5]" € RVX and edge information £ = {(,5) | i # j, 4,5 € {1,...,N}}.

Then, X and F are input to the GAT, which updates each node by attending to its neighbors:
exp (LeakyReLU (aT Wz, | ij]))
> oken(i) €XP (LeakyReLU (aT Wz, || Wa:kD) ’

where W is a learnable weight matrix, A/(7) denotes the neighbors of node i, a is a learnable vector,
and || denotes vector concatenation.

T = Y jen) ViiWej, iy = 3)

After refining the node embeddings, we apply global average pooling to X' = [z,...,2/y]" €
RN in order to generate the spatial embedding:

L&
g(z) = N Z:c; € R% “)
i=1

In the following section, we fuse the spatial embedding ¢g(z) derived above with the visual embed-
ding ¢(x) to obtain spatially aware embeddings.

3.3 MUTUAL DISTILLATION

Knowledge distillation (KD) (Hinton et al., 2015) has been shown to enhance embedding consis-
tency through cross-model alignment (Radford et al.| [2021)). Motivated by this, we introduce a mu-
tual distillation framework to obtain spatially aware embeddings by jointly leveraging both visual
and spatial modalities.

Given an input image x, we first extract visual features ¢(z) using the foundation model and obtain
spatial features g(x) as described in the previous section. The logits for the visual and spatial
modalities are then computed via their respective clustering heads:

logit 1= hy(¢(z)), logitS = hs(g(x)), (5)
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where h; and hg denote MLP projection heads for visual and spatial modalities, respectively. The
spatially aware embeddings are subsequently obtained by integrating the two modalities through a
learnable distillation function (corresponding to the spatially aware embedding component in Eq.2)):

é(x) = R(d(2),9(x)), R=arg min Laisein (6(2), 9(2); R'). (6)

The optimization objective L4;s¢;;; combines three terms, which are distillation loss, consistency
loss, and entropy loss. The mutual distillation loss aligns the cluster distributions between visual
and spatial modalities:

Laiss = Ls—1+ Li-s, (N
N . . .
1 6s1m(log1lJi JogitS;) /T
Lsor = _N ; IOg Ej\f:1 esim(logit,]i,logit,Sj)/T’ ®)
N " . .
1 eblm(loglt,si Jogit1,) /T
Lros = N Zlog N _sim(logit S, logit1,)/T ’ ©)
i=1 Zj:l €

where 7' is a temperature parameter. The consistency loss enforces agreement between modalities:

N
1 . .
Leon = ¥ ’2_1 log (loglt,IiT7 loglt,Si) : (10)

The entropy loss prevents degenerate solutions:
1o 1w
Lo =~ D 3¢ 2_logit?) log(logit}’;),  m € {¢(x),g(x)}. (11)
i=1 " j=1

The overall training objective is defined as:

£distill = ACdist + Lcon - A Z L‘gﬁt- (12)

where the entropy regularization weight is fixed to A = 5.

After the mutual distillation, we obtain the spatially aware embeddings from the distilled image
clustering head. These embeddings preserve the spatial structural relationships of the images. In the
next subsection, we leverage the spatially aware embedding space to discover the underlying human
labeling, thereby generating the cluster assignment.

3.4 HUMAN LABELING

After obtaining the spatially aware embeddings g?)(:c) via mutual distillation, we freeze them and
adopt the bi-level optimization protocol of TURTLE (Gadetsky et al., 2024) to train a final linear
classifier.

Specifically, given the pseudo-label distribution 79(z) € AKX~ produced by the task encoder at the

t-th outer iteration, the linear classifier is updated in the inner loop on the current mini-batch B(*)
via 10 steps of SGD:

w = argmin Le, (W' d(x), mo(x);w'), flz) =wPTd(z) € RE. (13)

In the outer loop, the task encoder parameters # are updated by minimizing L., with an additional
entropy regularization term:

mein L) = Z Leoe(f(x),70(2)) — BLent(To(2)), (14)
x€D
where the entropy regularization weight is fixed to 5 = 10.
Following TURTLE, the linear classifier can operate on spatially-aware embeddings generated from

either one or two backbones, which we denote as 1-space and 2-space, respectively. For the 2-space
case, the per-space 7y () are first computed and then averaged to obtain the final label assignments.



Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and evaluation metric. The experimental analysis is conducted on 26 benchmark datasets
spanning object recognition, scene understanding, fine-grained classification, and remote sensing.
The detailed description of each dataset is provided in Appendix Train and test splits follow
the original dataset configurations. To evaluate the performance, we adopted Accuracy (ACC) (Xie
et al.,|2016), Normalized Mutual Information (NMI) (Estévez et al.,|2009) and Adjusted Rand Index
(ARI) (Steinleyl |2004). All experiments are repeated ten times with different random seeds, and the
average indices values are reported.

Baselines. We employ a range of state-of-the-art clustering methods as reference, including K-
Means (Krishna & Murty, [1999), DEC (Xie et al.,[2016), DAC (Chang et al.,2017), DSEC (Chang
et al., [2018), DCCM (Wu et al., [2019), MICE (Tsai et al., [2020), GATCluster (Niu et al., [2020),
PLCA (Huang et al., 2020), IDFD (Tao et al., 2021}, CC (Li et al., 2021}, C3 (Sadeghi et al.,|[2022),
TCL (L1 et al., [2022), CONCUR (Deshmukh et al.,[2022), SPICE (Niu et al., 2022), TAC (L1 et al.,
2023)), DPAC (Yan et al.|[2024)), and TURTLE (Gadetsky et al., 2024)).

Foundation Representations. We employ CLIP (Radford et al.,[2021) representations across dif-
ferent architectures and model sizes, including three ResNets (ResNet50, ResNet101, ResNet50x4),
three Vision Transformers (VIT-B/32, VIT-B/16, and VIT-L/14), and DINOv2 VIT-G/14 (Oquab
et al., [2023). For clarity, we refer to SEAL using a representation space generated from a single
backbone as 1-Space, and SEAL combining two representation spaces as 2-Space. The specific
backbones employed in each experiment are indicated in the corresponding sections. Additional
details on the models and the procedure for preparing representations are provided in Appendix[A.2]

Implementation Details. We implement Mutual Distillation with two MLP-based cluster heads.
For the features of one modality, we select the top-50 nearest neighbors from the other modality’s
features to calculate loss. The cluster heads are trained with Adam (Ir = 0.001,y = (0.9, 0.99)) for
20 epochs (batch size 512) and temperature ¢ = 1.0. Input embeddings have backbone-dependent
dimensions, and the final spatially aware embeddings retain the same dimensionality as the input.
We implement linear classifier using a bi-level optimization scheme. The outer loop runs for T' =
6000 iterations with Adam (outer_Ir = 0.001, v = (0.9,0.999)) and batch size 10,000, updating the
task encoder. The inner loop performs M = 10 steps per outer iteration with Adam (inner_Ir =
0.001,~v = (0.9,0.999)), updating the weight parameters w of the linear classifier.

4.2 EXPERIMENTAL RESULTS
4.2.1 COMPARATIVE ANALYSIS RESULTS

For clarity, in this comparison, TURTLE (1-space) and SEAL (1-space) both use features extracted
from the DINOv2 backbone, whereas TURTLE (2-space) and SEAL (2-space) leverage dual-space
features from CLIP VIT-L/14 and DINOv2 backbones.

The results on 4 widely used benchmark datasets are reported in Table [T} SEAL achieves state-of-
the-art performance on ImageNet-10, ImageNet-Dogs, and STL-10, with nearly perfect clustering
results on ImageNet-10 and STL-10 datasets. On CIFAR-10, SEAL performs competitively and
remains close to TURTLE (Gadetsky et al.| 2024)), leading to the best overall average ACC perfor-
mance across all methods. In this comparison, the performance of SEAL (1-space) is superior to
that of TURTLE (1-space). More comparison experiments between SEAL, K-Means, and TURTLE
can be found in Appendices[E|and[F] These results illustrate the effectiveness of SEAL.

4.2.2 TIME ANALYSIS

We evaluate the efficiency of our method versus TURTLE on four datasets. Figure ] shows total
runtimes for increasing spatial structure and recovering human labeling using three backbones: CLIP
VIT-L/14, DINOv2, and CLIP VIT-L/14 + DINOv2. Although increasing spatial structure adds
some overhead, it clarifies class structure and accelerates human labeling recovery, making SEAL’s
overall efficiency comparable to TURTLE; in some cases, the speedup even offsets the extra time.
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Table 1: Clustering performance of different approaches evaluated by ACC%, NMI%, and ARI%.

T3]

indicates unavailable results. Bold numbers indicate the best performance across all methods.

Underlined numbers indicate the best performance when comparing between TURTLE (1-space) vs
SEAL (1-space) and TURTLE (2-space) vs SEAL (2-space), respectively.

Method ImageNet-10 ImageNet-Dogs STL-10 CIFAR-10 Ave,
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI
K-Means (Krishna & Murty!|1999) 241 119 57 105 55 20 192 125 61 229 87 49 192

DEC (Xie et al.[[2016)

DAC (Chang et al.|[2017)
DSEC (Chang et al.[[2018)
DCCM (Wu et al.[|[2019)
MiCE (Tsai et al.}[2020)
GATCluster (N1u et al.|[2020)
PICA (Huang et al.[[2020)
IDFD (Tao et al.|[2021)

CC (Lietal.[2021)

C3 (Sadeghi et al.|[2022)
TCL (L1 et al.[[2022)
ConCUR (Deshmukh et al.|2022)
SPICE (Niu et al.{[2022)
TAC (L1 et al.[|2023)

DPAC (Yan et al.|[2024)

381 282 203 195 122 79 359 276 186 30.1 250 16.1 309
527 394 302 275 219 11.1 470 36.6 257 522 40.0 30.1 449
674 583 522 264 236 124 482 403 286 478 438 340 475
710 608 555 383 321 182 482 376 262 623 496 408 549

- - - 439 423 286 752 635 575 835 737 698 675
762 609 572 333 322 200 583 446 363 610 475 402 572
87.0 802 76.1 352 352 201 713 61.1 531 696 591 512 658
954 898 90.1 59.1 546 413 756 643 575 815 711 663 779
893 859 822 429 445 274 850 764 726 790 705 637 741
942 905 86.1 434 448 280 - - - 83.8 748 70.7 738
895 875 837 644 623 516 868 799 757 887 819 780 824
958 90.7 909 69.5 630 531 749 636 566 846 762 715 812
969 927 933 675 627 526 929 860 865 91.8 850 836 873
99.4 985 988 844 774 720 983 957 963 922 837 836 93.6
97.0 925 935 726 667 598 934 863 86.1 934 870 86.6 89.1

TURTLE(1-space)(Gadetsky et al.|[2024)

SEAL(1-space)

89.1 885 830 870 848 787 562 580 413 908 884 838 80.8
99.7 99.1 993 978 951 954 87.1 86.6 787 98.6 96.1 96.8 95.8

TURTLE(2-space)(Gadetsky et al.|[2024)

SEAL/(2-space)

99.8 993 995 915 839 855 998 994 995 995 983 988 976
9.9 996 997 979 953 955 99.9 998 999 987 965 972 99.1

80 — —
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Figure 4: Time consumption of SEAL and TURTLE across 4 datasets under 3 backbones.

4.3 EFFECTIVENESS OF SPATIALLY AWARE EMBEDDINGS

To evaluate the contribu-
tion of spatially aware em-
beddings to representation
learning, we conduct an ab-
lation study using K-Means
clustering. Specifically,
we compare two settings:
(1) directly concatenating
the original CLIP VIT-L/14
and DINOv2 embeddings
(baseline), and (2) first ap-
plying the mutual distilla-
tion to both embeddings
before concatenation. We
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Figure 5: K-Means accuracy improvement (%) from concatenating
embeddings of VIT-L/14 and DINOvV? after applying a spatially-aware
transformation to each, compared to directly concatenating their orig-
inal embeddings, across 26 benchmark datasets.

employ the standard K-Means algorithm, with the number of clusters set equal to the ground-truth
class count for each dataset. To reduce randomness, K-Means is repeated 30 times with different
centroid initializations, using a fixed random seed to ensure reproducibility. Figure [5] presents the
accuracy improvements across 26 benchmark datasets. As shown, spatially aware embeddings sub-
stantially improve clustering performance on most datasets. Detailed results for each dataset are
provided in Table[7)in Appendix [F}



Under review as a conference paper at ICLR 2026

4.3.1 EFFECT OF MUTUAL DISTILLATION

We first evaluate the effect of Mutual Distil-

lation (MD) on 1-space representation. Fig- Average Gain
ure [6] reports the average ACC of SEAL (with 15
MD) compared to the baseline TURTLE (with-
out MD) across 7 representations, averaged
over 26 datasets. As shown in Figure [0
SEAL consistently outperforms TURTLE in all
representations. The improvement is particu-
larly pronounced for convolutional backbones:
CLIP ResNet50, CLIP ResNet101, and CLIP
ResNet50*4 achieve gains of +16.8%, +17.7%,
and +12.9%, respectively. Transformer-based
representations (CLIP VIT-B/32, CLIP VIT- &L o @o*"&q,ﬂ Q.\@x@ 0\(\0@ q.\‘&
B/16, CLIP VIT-L/14) exhibit more moderate o C\.@v@"“ \\Q‘ee%“e ¥ o® oW

gains of +6.0%, +4.6%, and +0.01%, while DI- ©

NOV2 shows a +3.8% improvement. These re- Figure 6: Effect of Mutual Distillation on 1-space
sults demonstrate that Mutual Distillation en- representations across 26 data datasets. SEAL
hances embedding representations. Detailed leverages Mutual Distillation, while TURTLE
results for each dataset are provided in Ap- serves as the counterpart without it.

pendix[B.1] which are consistent with the trends

in Figure |[6] Furthermore, we evaluated the average ACC performance of 2-space representations,
which are provided in the Appendix [B.2] The results show the enhancement of the embedding by
distillation.

TURTLE SEAL

Avg ACC (%)

4.3.2 PARAMETER ANALYSIS

We conduct a parameter analysis of
SEAL under CLIP VIT-L/14 on two rep-
resentative  datasets  (ImageNet-10  and
CIFAR-10). We vary the entropy weight
({4.0,4.5,5.0,5.5,6.0,6.5}) and the consis-
tency weight ({0, 0.5, 1.0, 1.5,2.0,2.5}), while
keeping all other hyperparameters fixed. As
shown in Figure [/| ACC remains stable in a
wide range of parameter values. Moderate (a) Entropy weight (b) Consistency weight
entropy regularization, combined with a con-

sistency weight of around 1.0, generally yields Figure 7: 3D bar plots of clustering accuracy un-
good performance, demonstrating that SEAL  der different entropy and consistency weights.

is robust to hyperparameter variations and does

not require fine-tuning.

CIFAR10 CIFAR10
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&
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5 CONCLUSION

In this work, we addressed the challenge of limited linear separability in foundation model embed-
dings for unsupervised learning. We proposed SEAL, a framework that enhances feature separability
by extracting spatial embeddings with a Graph Attention Network and integrating them with foun-
dation model features through mutual distillation. Within this spatially aware embedding space, a
linear classifier is trained to generate cluster assignments that better align with human labeling. The
spatially aware embeddings improve both the structural fidelity and discriminability of representa-
tions, as evidenced by significantly higher triplet accuracy on 26 benchmark datasets. Extensive
experiments on 26 datasets and 7 backbones further demonstrate that SEAL consistently achieves
superior clustering performance and exhibits remarkable stability compared to strong baselines such
as TURTLE. Although SEAL introduces additional computation, it improves recovering labeling ef-
ficiency by revealing clearer class structures. These results highlight the importance of incorporating
spatial structures into foundation model embeddings to advance unsupervised visual representation
learning. In future work, we plan to extend SEAL to multi-modal and large-scale streaming settings,
further improving efficiency and adaptability in real-world applications.
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APPENDIX

This appendix provides additional details for the ICLR 2026 submission, titled “Unsupervised learn-
ing with spatial embedding and human labeling”. The appendix is organized as follows:

* [A]Experimental details

— [A]Datasets
- [A2] Foundation representations

« [B]Effect of mutual distillation

— [B.I|Results of 2-space Backbones on 26 datasets
- [B:2|Results of 1-space Backbone on 26 datasets

* [C| Clustering stability across 7 Backbones on 26 datasets
* [D] Separability improvement of spatial embedding

° erformance comparison between -vieans 1-space, -Space, an -
Perf parison b K-Means 1-space, TURTLE 1-sp d SEAL 1
space

* [{ Performance comparison between K-Means 2-space, TURTLE 2-space, and SEAL 2-
space

A EXPERIMENTAL DETAILS

A.1 DATASETS

We evaluate our framework on 26 benchmark datasets, covering a wide range of vision tasks. These
include general object classification datasets CIFAR-10 (DeVries & Taylor,[2017), CIFAR-100 (De-
Vries & Taylor, [2017), STL-10 (Coates et al., 2011), TinyImageNet (Le & Yang, [2015)), ImageNet-
10 (Chang et al., 2017), and Caltech101 (Fei-Fei et al., 2004); fine-grained object classification
datasets Food101 (Bossard et al., [2014), Flowers (Nilsback & Zisserman, 2008), Flowers(Test)
(Nilsback & Zisserman, 2008), FGVC Aircraft (Maji et al., 2013), ImageNet-Dogs (Chang et al.,
2017), and OxfordPets (Parkhi et al., [2012); grayscale image datasets USPS (Sankaranarayanan
et al.,|2018)), and Fashion-MNIST (Xiao et al., 2017); the texture dataset DTD (Cimpoi et al.,[2014);
the facial emotion recognition dataset FER2013 (Goodfellow et al.,|2013)); the satellite image clas-
sification datasets EuroSAT (Helber et al., [2019) and RESISC45 (Cheng et al., |2017); the German
Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp et al.} 2012)); the KITTI Distance dataset
(Geiger et al.|, [2012)); the metastatic tissue classification dataset PatchCamelyon (PCam) (Veeling
et al.,|2018)); the CLEVR counting dataset (Johnson et al., |2017); the video dataset UCF101 (Soomro
et al., 2012)); the multimodal HatefulMemes dataset (Kiela et al.| [2020); the country classification
dataset Country211 (Radford et al.,2021)); and the Rendered SST2 dataset (Radford et al., 2021)).

For CLEVR, we randomly sample 2,000 train and 500 test images. For UCF101, we take the middle
frame of each video clip as the input. Details of each dataset are summarized in Table 2] Finally,
it is worth noting that SEAL can also be applied to tasks in various modalities beyond vision, and
even to cross-modal scenarios, provided that pre-trained representations are available.
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Table 2: Summary statistics of the 26 datasets, including number of classes, train size, and test size.

Dataset Num Classes  Train Size  Test Size
CLEVR (Johnson et al.,[2017) 8 2,000 500
Flowers (Nilsback & Zisserman), |2008)) 102 2,040 6,149
Flowers(Test) (Nilsback & Zisserman, [2008) 102 6,149 2,040
Caltech101 (Fei-Fei et al.[|2004]) 102 3,060 6,084
OxfordPets (Parkhi et al.,|2012) 37 3,680 3,669
DTD (Cimpoi et al.,|2014) 47 3,760 1,880
STL-10 (Coates et al.|[2011) 10 5,000 8,000
KITTI Distance (Geiger et al.,[2012) 4 5,985 1,496
USPS (Sankaranarayanan et al.,2018) 10 7,291 2,007
ImageNet-10 (Chang et al.|[2017) 10 10,500 2,630
ImageNet-Dogs (Chang et al.||2017) 15 15,600 3,900
EuroSAT (Helber et al.,|2019) 10 10,000 5,000
GTSRB (Stallkamp et al.[|2012) 43 26,640 12,630
FER2013 (Goodfellow et al.,|2013) 7 28,709 7,178
CIFAR-10 (DeVries & Taylor,|2017) 10 50,000 10,000
CIFAR-100 (DeVries & Taylor, 2017) 100 50,000 10,000
TinyImageNet (Le & Yang| 2015) 200 100,000 10,000
Fashion-MNIST (Xiao et al.[|2017) 10 60,000 10,000
Food101 (Bossard et al., [2014) 101 75,750 25,250
FGVC Aircraft (Maji et al.,[2013) 100 6,667 3,333
PatchCamelyon (Veeling et al.||2018)) 2 294,912 32,768
UCF101 (Soomro et al.,|2012) 101 9,537 3,783
Country211 (Radford et al.||2021) 211 42,200 21,100
HatefulMemes (Kiela et al.| [2020) 2 8,500 500
The Rendered SST2 (Radford et al., 2021) 2 7,792 1,821
Resisc45 (Cheng et al.| [2017) 45 25,200 6,300

A.2 FOUNDATION REPRESENTATIONS

SEAL is compatible with many pre-trained representations. This paper presents a comprehensive
evaluation of SEAL on a wide range of representation spaces that vary in pre-training datasets,
model architectures, and training objectives. Specifically, for 1-space, we consider CLIP ResNets
(ResNet50, ResNet101, ResNet50x4), CLIP Vision Transformers (VIT-B/32, VIT-B/16, VIT-L/14)
pre-trained on WeblmageText-400M (Radford et al., [2021), as well as DINOv2 VIT-G/14 pre-
trained on LVD-142M (Oquab et al.| [2023). SEAL combines two representation spaces to form a
2-space. The specific backbones used in each experiment are indicated in the corresponding sections.
For all models, representations are precomputed using standard image preprocessing pipelines. De-
tails of the pre-trained representations are provided in Table 3]

Table 3: Foundation representations, including architecture, number of parameters, and textual su-
pervision status.

Model Architecture Parameters Trained on Textual

RN50 100M
RN101 120M

CLIP(Radford et al .} [2021) RN50x4 180M WeblmageText-400M v
VIT-B/32 150M
VIT-B/16 150M
VIT-L/14 430M

DINOV2 (Oquab et al.}2023) VIT-G/14 1.1B LVD-142M X
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B EFFECT OF MUTUAL DISTILLATION

B.1 RESULTS OF 2-SPACE BACKBONES ON THE 26 DATASETS

To explore the benefits of mutual distillation in a 2-space setting, we evaluate SEAL on two repre-
sentative 2-space backbone combinations: CLIP VIT-B/32 + CLIP VIT-B/16 and CLIP VIT-L/14 +
DINOvV2. Figure [8| presents the performance of SEAL (with Mutual Distillation) compared to the
baseline TURTLE (without Mutual Distillation) in 26 datasets using radar charts.

For CLIP VIT-B/32 + CLIP VIT-B/16, SEAL consistently outperforms the baseline TURTLE model
on most datasets. Notable improvements include datasets such as OxfordPets (+43.4%), ImageNet-
Dogs (+41.41%), and EuroSAT (+10.84%), indicating that Mutual Distillation effectively improves
the structural fidelity of embeddings. The radar chart illustrates that the combined representation
provides more robust performance across datasets.

Similarly, for CLIP VIT-L/14 + DINOv2, SEAL demonstrates clear performance gains over TUR-
TLE, with pronounced improvements on datasets such as GTSRB (+7.9%) and USPS(+14.3%).
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Figure 8: Effect of Mutual Distillation on 2-space backbones. The radar charts show the accuracy
(%) of the TURTLE baseline (represents without Mutual Distillation) and SEAL (represents with
Mutual Distillation) across 26 datasets.

B.2 RESULTS OF 1-SPACE BACKBONE ON 26 DATASETS

To evaluate the effect of SEAL on 1-space backbone, we conducted experiments on the 26 datasets.
For each dataset, We measured the clustering accuracy (ACC) of SEAL (with Mutual Distillation)
and the TURTLE (without Mutual Distillation) baseline across seven representative backbones,
which are denoted as 1-7 in the Figure [0} (1) CLIP ResNet50, (2) CLIP ResNet101, (3) CLIP
ResNet50x4, (4) CLIP ViT-B/32, (5) CLIP ViT-B/16, (6) DINOv2, and (7) CLIP ViT-L/14.

Figure [9] shows a two-panel visualization for each dataset. The upper panel displays the ACC gain
(SEAL minus TURTLE) for each backbone, highlighting the improvement introduced by SEAL.
Points above the zero line correspond to improvements by SEAL, whereas points below indicate a
decrease in performance. The lower panel directly compares the ACC of TURTLE and SEAL on
per backbone. Across most of the datasets, SEAL outperforms TURTLE, achieving the largest gains
on ResNet-based backbones and moderate but noticeable improvements on Transformer backbones.
These results demonstrate that SEAL effectively enhances 1-space visual representations, yielding
consistent and interpretable gains in clustering performance.
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Figure 9: Effect of Mutual Distillation on 1-space backbone for each data dataset. SEAL leverages
Mutual Distillation, while TURTLE serves as the counterpart without it.
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C CLUSTERING STABILITY ACROSS 7 BACKBONES ON 26 DATASETS

Figure [I0] presents a comprehensive view of the stability of clustering in the 26 datasets considered
in our experiments. For each dataset, we evaluated the clustering accuracy distribution across 7
different backbones, comparing the performance of TURTLE and SEAL.

Overall, SEAL consistently demonstrates higher stability than TURTLE in most datasets. On
datasets with simpler class structures, such as CIFAR-10, STL-10, and GTSRB, both methods
achieve relatively high and stable clustering accuracy, but SEAL exhibits slightly narrower variance,
indicating more reliable performance across backbones.

For more complex datasets, including ImageNet-10, OxfordPets, TinyImageNet, and Flowers, the
advantage of SEAL becomes more pronounced. TURTLE’s clustering results show larger variabil-
ity between different backbones, whereas SEAL maintains higher median accuracy with reduced
spread, highlighting its robustness to the choice of representation.

Remote sensing datasets such as EuroSAT and Resisc45, as well as specialized datasets like Aircraft
and Pcam, also benefit from SEAL’s Mutual Distillation, showing a more concentrated distribution
of clustering accuracy. This indicates that SEAL can better capture fine-grained structural cues,
leading to consistent clustering performance.

Finally, for more challenging datasets, such as UCF101, SEAL not only improves the median clus-
tering accuracy but also significantly reduces the variance across backbones, demonstrating its abil-
ity to generalize well across diverse visual domains.
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Figure 10: Detailed clustering stability plots for all 26 datasets. Each subplot shows the distribution
of clustering accuracy across 7 backbones for Turtle and SEAL.
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D SEPARABILITY IMPROVEMENT OF SPATIAL EMBEDDING

We evaluate the separability of representations by triplet accuracy. Triplet accuracy is computed
based on the standard triplet definition: for a given anchor image, a positive image (same class) and
a negative image (different class) are sampled. A triplet is considered correct if the distance between
the anchor and positive embeddings is smaller than the distance between the anchor and negative
embeddings. Formally, consider a triplet (z;, ;, x)), where x; and x; belong to the same class, and
x; and z, belong to different classes. Let the corresponding embeddings be f(z;), f(z;), f(zk).
The triplet is regarded as correct if

dlSt(f(Iz)7 f(xj)) < dlSt(f(IJ, f(xk))a

where dist(+, ) denotes a distance function between two embeddings. In this experiment, we utilize
cosine distance.

Table [ reports the comparison of triplet verification accuracy on 10,000 randomly sampled images
across 26 datasets before (Original, the Visual Embedding) and after (Enhanced, the Spatially Aware
Embedding) applying mutual distillation. The results are evaluated on multiple backbone networks,
including CLIP ResNets (ResNet50, ResNet101, ResNet50*4), CLIP Vision Transformers (VIT-
B/32, VIT-B/16, VIT-L/14), and DINOv2.

Overall, spatially aware embedding improves triplet accuracy across almost all datasets and back-
bone architectures. Notable gains are observed in fine-grained datasets with high intra-class varia-
tion, such as OxfordPets and ImageNet-Dogs, demonstrating the effectiveness of incorporating spa-
tial structure information into the foundation model embedding. On average, the triplet accuracy
increases by approximately 5-6% across different backbones, with DINOv2 achieving the highest
post-distillation performance.

Since higher triplet accuracy indicates that semantically similar images are closer in the embedding
space while dissimilar images are farther apart, the improvement in triplet accuracy directly con-
tributes to more separable feature clusters. Therefore, spatially aware embedding not only improves
the linear separability of foundation model embeddings, making different-class data easier to dis-
tinguish, but also benefits downstream clustering performance, enabling more accurate and stable
grouping of images.

E PERFORMANCE COMPARISON BETWEEN K-MEANS 1-SPACE, TURTLE
1-SPACE, AND SEAL 1-SPACE

Table [5] presents a comprehensive comparison of clustering ACC across the 26 datasets using three
clustering approaches: K-Means 1-space, TURTLE 1-space, and SEAL 1-space. For each method,
we evaluate multiple pre-trained backbones, including CLIP ResNets (50, 101, 50x4), CLIP VITs
(B/32, B/16, L/14) and DINOV?2.

In K-Means 1-space, the image features extracted from each backbone are directly clustered using
standard K-Means without additional processing. TURTLE 1-space improves on this by discovering
the underlying human labeling within the feature space. SEAL 1-space further enhances perfor-
mance by jointly discovering discriminative features and the underlying human labeling, effectively
leveraging both spatial structure and semantic cues.

Overall, SEAL 1-space consistently achieves higher average accuracy compared to TURTLE 1-
space and K-Means 1-space. The improvement is particularly notable on datasets with fine-grained
categories, such as OxfordPets, ImageNet-Dogs, and Flowers, where SEAL 1-space maintains ro-
bust performance across different backbones.

These results indicate that SEAL captures richer information, producing more discriminative rep-
resentations in a 1-space setting. This demonstrates the effectiveness of incorporating spatial and
semantic cues for robust clustering across diverse datasets and backbones.
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|  ClipResNetso

ClipResNet101

ClipResNet50*4

ClipVITB/32

ClipVITB/16

DINOv2

ClipVITL/14

‘ Origin ~ Enhance | Origin  Enhance | Origin  Enhance | Origin  Enhance | Origin  Enhance | Origin  Enhance | Origin  Enhance

GTSRB 7562 8399 | 77.14 8580 | 7671 8643 | 7464 8243 | 77.94 8838 | 69.13 8291 | 8479 9290
ImageNet-10 | 97.13  99.95 | 9730  99.93 | 9723  99.94 | 97.35  99.92 | 9736  99.95 | 9646  99.92 | 9686  99.95
OxfordPets | 87.93 9891 | 9LI1  99.10 | 9120 9940 | 8837 9935 | 65.14 8421 | 8323 9565 | 9329  99.65
ImageNet-Dogs | 69.74 9594 | 7542 9728 | 7650  97.62 | 7126  97.01 | 7398 9730 | 9775 9942 | 7808  99.05
DTD 8048 8936 | 8122  90.01 | 8242 9040 | 81.04  89.65 | 8197 9027 | 8633  91.06 | 8125  91.20
CIFAR-10 81.00 9287 | 8532 9577 | 84.67 9566 | 87.97 9760 | 87.93 9845 | 8954 9956 | 86.12  98.93
STL-10 9426 9942 | 9484 9970 | 9506  99.80 | 9462  99.80 | 9428 9974 | 8348  97.84 | 92.14  99.32
Food101 89.11 9265 | 90.65 9385 | 91.50 9443 | 8970 9393 | 9267 9555 | 9695 9718 | 9415  97.50
CIFAR-100 | 80.07  90.64 | 84.83 9261 | 83.67 9247 | 8682 9543 | 8644 9603 | 9601 9866 | 8474 9731
TinylmageNet | 84.00 8825 | 8694  90.15 | 8627 8975 | 90.68  93.15 | 9047 9359 | 9720 9581 | 89.77 9455
Flowers 9466 9721 | 9559 9652 | 98.04 9735 | 9681 9691 | 9740 9775 | 99.85  99.95 | 9819  99.46
Flowers(test) | 94.67  97.66 | 9605 9810 | 9694 9846 | 9628 9832 | 97.32 9881 | 99.89  99.85 | 9855  99.50
Aircraft 7978 7767 | 8230 7645 | 8458 7827 | 83.05 7659 | 8668 7927 | 8748 8640 | 8925  83.04
Caltech101 9549 9846 | 9686  99.22 | 9722 9899 | 97.09  99.15 | 97.25 9931 | 9899  99.61 | 9748  99.71
Fre2013 5627 5959 | 57.80 5891 | 57.93 5979 | 5796  59.18 | 5805 5939 | 61.16 6142 | 57.56 6145
Pcam 5786 5419 | 5829 5376 | 5505 5331 | 56.03 5294 | 5453 5328 | 5541 6216 | 5664  53.90
EuroSAT 80.51 9415 | 8118 9627 | 8289 9603 | 81.64 9456 | 8426  97.79 | 8409 9801 | 87.86  98.77
Resisc45 91.18 9663 | 93.02 9749 | 9289 9724 | 9355 9801 | 9520 9830 | 9238 9735 | 9545  98.62
Kitti 5960  60.12 | 5810 5581 | 59.13  60.05 | 5848  60.13 | 5875 5896 | 59.85 5920 | 5896  56.91
Country 6423 6103 | 6473  60.17 | 6639  60.61 | 63.64 5984 | 6558 6152 | 6255  59.53 | 67.83 6240
UCF101 9270 9652 | 9463  96.69 | 9424 9751 | 9457 9733 | 9588 9749 | 9822 9840 | 97.55  99.02
SST 5087 4945 | 5163 5149 | 5209 5122 | 5073 5157 | 51.04 5137 | 5073 5054 | 5235 5159
Hatefulmemes | 51.89  49.81 | 51.07 5088 | 50.80 5147 | 4961  49.75 | 5054 5166 | 50.14 5059 | 5095  50.99
Clevr 60.10  60.10 | 62.00 5890 | 5875 6075 | 5990 6135 | 5870  60.55 | 5545 5480 | 59.20 5895
USPS 8501 9623 | 81.17 9680 | 8249 9654 | 8730 9783 | 8797  97.52 | 8323 9565 | 8870  97.81
Fashion 8112 9072 | 8410  91.80 | 8220  91.88 | 8482 9248 | 8264 9158 | 8748 9394 | 81.66 9164
AVG. 7828 8352 | 7974 8398 | 79.88 8477 | 7977 8439 | 7961 8454 | 8165 8559 | 8151 8539

Table 4: Triplet
(Enhance) mutual distillation.
gin/Enhance pair for the same architecture.

accuracy (%) on

10,000 randomly-sampled images before (Origin) and after

Underlined numbers indicate the higher value within each Ori-

ClipVIT-B/32

ClipVIT-B/16

ClipVIT-L/14

ClipResNet50

ClipResNet101

ClipResNet50%4

DINOV2

‘K-Meane TURTLE SEAL |K-Means TURTLE SEAL |K-Means TURTLE SEAL |K-Means TURTLE SEAL |K-Means TURTLE SEAL |K-Means TURTLE SEAL |K-Means TURTLE SEAL

GTSRB 33.64 3450 3856 | 35.54 37.59 3649 | 49.06 49.07 4533 | 26.66 2273 3052 28.69 1895 34.62| 26.10 2637 3477 2071 2222 3185
ImageNet-10 98.69 99.36 99.22 99.58  99.82 | 99.63 99.80  99.86 | 96.97 9843  99.77 | 98.46 99.02  99.74| 98.93 99.53  99.74 | 91.84 96.86  99.80
OxfordPets 52.61 63.83 30.38 36.63 4946 | 69.97 88.02 9130 | 47.77 3454 90.65| 57.77 4242 9264 | 60.57 5875 93.10| 82.23 89.21  94.48
TmageNet-Dogs | 39.80 49.58 9297 | 4257 49.58  91.94| 6299 7443 9744 | 3325 3797  90.51| 4647 43.39 47.12 5138 91.96| 87.52 9486 97.81
DTD 46.38 5270 57.13| 47.77 55.13  56.68 | 50.88 56.52 6021 39.65 42,10  49.87 | 41.86 39.36 45.88 5258 5721 4155 5399 5551
CIFAR-10 76.11 86.55 94.63| 78.31 94.04 9581 | 83.54 97.58 9176 | 55.27 60.90 8590 | 69.52 72.12 65.36 68.70 9042 | 7492 90.32 9851
STL-10 97.62 98.36  98.88 | 94.84 99.12 99.26 | 95.74 99.86 91.72 | 88.94 95.66  98.16 | 96.70 97.58 97.02 9772 98.72| 53.12 59.22 86.32
Food101 56.13 60.86 6441 | 70.64 7359 7242 79.80 87.82  80.52| 6691 2993 5797 | 7045 28.16 7097 4298 6588 70.65 7543 76.12
CIFAR-100 42.39 4644 5785 | 4782 5131 6346 | 53.64 6227 7218 | 25.04 15.13 4346 | 3499 18.25 30.36 18.56 48.74| 68.47 80.90 81.16
TinylmageNet | 40.85 44.15 4956 | 4337 45.65 57.49 64.66 6747 | 2522 11.17 3654 | 34.40 13.97 3472 16.11  41.42| 72.19 8091  76.17
Flowers 7064 8922 78.09| 8127 9426 88.63 9912 9343 | 67.50  48.14 7843 | 6931 4152 80.00  69.66 S8LI3| 9618 9485 99.66
Flowers(test) 70.64 6253  63.13| 81.27 64.60  66.73 | 88.63 7725 6747 | 67.50 50.07  60.56 | 69.31 49.33 80.00 65.21 64.09 | 96.18 71.98  78.86
Aircraft 22.80 2440 1759 2722 2958 2271 33.57 3793 2808 | 2025 17.22 19.00 | 23.02 19.30 2431 2422 20.02 18.87 20.58  20.50
Caltech101 7229 86.11 86.93| 76.99 88.73  89.51| 8451 94.87 9222 62.06 68.63 80.82 | 69.22 67.42 73.24 83.56 88.04| 85.82 88.89  92.81
Fer2013 26.95 3138 3096 | 27.82 2899 3122 3148 3293 3291 | 2642 3028 2881 | 26.79 29.12 . 27.65 28.58  30.07 | 3298 32.81  33.56
Pcam 62.05 5197 5027 | 62.24 5122 5183 | 61.32 5273 5373 | 6430 66.68 56.84 | 64.28 6793 5653 | 62.01 6236 5419 5943 60.50 52.83
EuroSAT 64.14 68.55 79.28| 73.98 79.59 74.99 86.60 9629 | 56.83 4989 7227 5231 5431 89.54 | 53.39 5293 88.89| 6236 90.61  95.89
Resisc45 68.19 7456 80.07 | 73.36 76.05 3. 73.87 83.14 8827 5429 3672 76.12 | 62.56 3927 77.45| 66.54 5244 7843 | 62.65 71.98 7630
Kitti 48.09 39.13 4279 | 48.89 3943 4070 | 48.35 4545 3425 4725 44.11 4167 | 4832 3955 39.55| 47.95 41.82 4182 49.16 4279 3943
Country 951 938 739 | 1057 1098 806 | 1299 1374 8.60 | 864 722 754 | 937 703 745 | 987 839 772 | 923 934 8.19
UCF101 61.34 66.66 7179 | 63.53 7215 73.44| 7094 7775 8038 | 51.87 53.09 6471 | 59.64 4789 6859 | 61.85 6454 7172| 71.33 7726 18.10
SST 5221 54.03 5277 5132 5173 5349 5142 5175 54.18  51.50 | 53.80 5362 52.17| 5525 5393 5395 5116 5121 51.04
Hatefulmemes | 60.15 55.38 59.74 5542 6272 61.71  50.60 | 60.85 59.48 5062 | 60.59 6020 52.93| 60.86 60.05 54.19 | 55.60 5200 5072
Clevr 2495 25.10 2460 2463 | 2350 26.50 23.35| 24.05 2190 2290 26.05 2450  21.90| 25.30 2425 2455 1870 20.80  20.80
USPS 60.76 59.00 7113 7649 | 79.66 77.16 8144 | 61.42 5200 77.04| 5128 39.57 69.87| 51.83 4725 76.30| 56.38 61.97 8142
Fashion 64.16 68.43 6631 7269 | 53.19 6793  69.56 | 58.78 48.10  75.09 | 63.83 5227  75.77| 56.05 5029  72.00| 65.37 7871 79.72
AVG. 54.75 57.78 59.71  63.11| 62.79 68.01 6742 48.64 4447 5951 5271 4500 61.50| 53.43 51.08 6256 | 59.93 64.61  67.60
Table 5: Clustering accuracy comparison across 7 backbones ( ClipResNet50, ClipResNetl101,

ClipResNet50*4, ClipVIT-B/32, ClipVIT-B/16, ClipVIT-L/14, DINOV2). For each backbone, re-
sults are reported under K-Means 1-space, TURTLE 1-space, and SEAL 1-space. The Underlined

value indicates the best-performing method within that backbone.
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F PERFORMANCE COMPARISON BETWEEN K-MEANS 2-SPACE, TURTLE
2-SPACE, AND SEAL 2- SPACE

Table[6]presents a detailed comparison of clustering accuracy across 26 diverse vision datasets using
three 2-space clustering approaches: K-Means 2-space, TURTLE 2-space, and SEAL 2-space. Each
method is evaluated with different backbone combinations, including CLIP VIT-L/14 + DINOv2
and CLIP VIT-B/32 + CLIP VIT-B/16.

Overall, SEAL 2-space achieves the highest average accuracy compared to TURTLE 2-space and K-
Means 2-space. The performance gains are particularly notable on datasets with complex structures
categories, such as EuroSAT, CIFAR-10, OxfordPets, and ImageNet-Dogs, where SEAL 2-space
maintains robust performance across different combinations.

In addition, we report the clustering performance of K-means on the 26 datasets in two settings,
which are (1) directly concatenating the CLIP VIT-L/14 and DINOv2 embeddings and (2) applying
the mutual distillation to both embeddings before concatenation. The results are listed in Table
From Table[7] it can be seen that spatially aware embeddings significantly improve performance on
most of the datasets, which illustrates the effectiveness of mutual distillation.

These results demonstrate that jointly leveraging two embedding spaces and spatial structure cues
enables SEAL to produce more discriminative and semantically meaningful representations, lead-
ing to superior clustering performance compared to standard K-Means and TURTLE in a 2-space
setting.
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‘ VIT-B/32 / VIT-B/16 VIT-L/14 / DINOv2

K-Means TURTLE SEAL|K-Means TURTLE SEAL

GTSRB 36.25 39.33  39.09| 22.81 35.73 43.61
ImageNet-10 | 99.18 99.62 99.82| 92.67 99.79 99.87
OxfordPets 52.69 54.81 98.18| 83.10 93.54 95.87
ImageNet-Dogs| 42.30 50.62 92.03| 86.37 93.03 97.87
DTD 49.04 55.85 57.61| 48.88 5745 59.44
CIFAR-10 79.14 95.01 96.07| 85.00 9947 98.69
STL-10 98.34 99.22 99.26| 51.54 99.74  99.94
Food101 66.94  71.08 66.63| 72.08 83.31 80.63
CIFAR-100 48.60 54.08 61.59| 69.72  88.38 81.28
TinyImageNet | 44.65 49.55 5227| 7470  86.02 76.70
Flowers 82.35 96.27 80.15| 98.68 99.80 99.85
Flowers(test) | 74.58  63.95 67.43| 93.71  67.12 77.00
Aircraft 26.73 28.09 21.06| 18.75 31.66 23.98
Caltech101 75.33 89.77 89.87| 85.46 93.86 95.88
Fre2013 27.74 32.87 33.76| 33.10 35.76 32.89
Pcam 67.20  50.03 53.00| 58.76 51.67 60.33
EuroSAT 71.85 83.37 94.21| 62.72 94.20 96.60
Resisc45 49.06 79.38 83.04| 67.38 85.90 88.27
Kitti 9.95 39.31 40.47| 49.16  37.94 35.69
Country 65.32 1021  7.84 | 9.28 10.25 8.36
UCF101 5494  70.67 74.57| 72.47 81.81 81.38

SST 60.62 53.04 51.55| 51.17 51.66 51.23
Hatefulmemes | 24.95  59.25 54.13| 55.67 53.59 50.89
Clevr 8247 2345 25.65| 2005 22.10 22.10
USPS 65.67 7242 82.03| 57.66 77.11 91.43
Fashion 62.71  68.81 73.40| 6538  78.33 77.09
AVG. 5841  61.16 65.18] 61.01  69.59 70.26

Table 6: Clustering accuracy comparison across different backbone combination settings and meth-
ods. The Underlined value indicates the best-performing method within that combination setting.
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K-Means Clustering on

Directly Concatenating Spatially Aware Embedding with

Dataset VIT-L/14 and DINOv2 VIT-L/14 and DINOv2
GTSRB 22.81 41.14
ImageNet-10 92.67 99.79
OxfordPets 83.10 90.41
ImageNet-Dogs 86.37 97.66
DTD 48.88 60.00
CIFAR-10 85.00 98.66
STL-10 51.54 99.56
Food101 72.08 75.51
CIFAR-100 69.72 72.57
TinyImageNet 74.70 70.54
Flowers 98.68 94.90
Flowers(test) 93.71 91.38
Aircraft 18.75 21.84
Caltech101 85.46 88.27
Fre2013 33.10 33.85
Pcam 58.76 60.21
EuroSAT 62.72 96.26
Resisc45 67.38 79.03
Kitti 49.16 46.68
Country 9.28 8.18
UCF101 72.47 78.83
SST 51.17 51.18
Hatefulmemes 55.67 50.73
Clevr 20.05 20.35
USPS 57.66 82.79
Fashion 65.38 71.48
AVG. 61.01 68.53

Table 7: K-Means accuracy from concatenating embeddings of VIT-L/14 and DINOv2 after apply-
ing a spatially-aware transformation to each, compared to directly concatenating original embed-
dings of VIT-L/14 and DINOv2, on 26 benchmark datasets.
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