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Abstract

Classical theory in reinforcement learning (RL) predominantly focuses on the single task
setting, where an agent learns to solve a task through trial-and-error experience, given access
to data only from that task. However, many recent empirical works have demonstrated
the significant practical benefits of leveraging a joint representation trained across multiple,
related tasks. In this work we theoretically analyze such a setting, formalizing the concept
of task relatedness as a shared state-action representation that admits linear dynamics in
all the tasks. We introduce the Shared-MatrixRL algorithm for the setting of Multitask
MatrixRL Yang & Wang (2020). In the presence of P episodic tasks of dimension d sharing a
joint r ! d low-dimensional representation, we show the regret on the the P tasks can be
improved from OpPHd

?

NHq to OppHd
?

rP ` HP
?

rdq

?

NHq over N episodes of horizon
H. These gains coincide with those observed in other linear models in contextual bandits
and RL Yang et al. (2020); Hu et al. (2021). In contrast with previous work that have
studied multi task RL in other function approximation models, we show that in the presence
of bilinear optimization oracle and finite state action spaces there exists a computationally
e�cient algorithm for multitask MatrixRL via a reduction to quadratic programming. We
also develop a simple technique to shave o� a

?

H factor from the regret upper bounds of
some episodic linear problems.

1 Introduction

Reinforcement learning (RL) is about learning via doing – learning to solve a sequential decision-making
task where the only information about the task is obtained via trial-and-error. Accordingly, the underlying
assumptions made in RL are typically minimal. Beyond what can be learned from trial-and-error experience,
the learner’s structural prior on the underlying task is commonly restricted to a small set of Markov
assumptions (Puterman, 1990): namely, that the task is of a sequential nature, with the task reward and
state transition dynamics at each step determined by an (unknown) Markov process.

The simplicity of this setting, which forms the basis of a rich and diverse literature (Bertsekas, 2019; Sutton,
1992), stands in contrast to the complexity of many real-world settings, where one has access to data from
multiple, related tasks. In these situations, experience from one task can often be leveraged to accelerate
learning in another. For example, when humans are confronted with learning a new video game, we naturally
draw on previous experience and knowledge from playing other games, even if the dynamics and rewards
across the games are not the same.

In line with this intuition, there exist a number of empirical works which demonstrate how experience can
be gathered from multiple tasks to accelerate RL over learning these tasks in isolation. For example in
robotics (Yu et al., 2020; Kalashnikov et al., 2021), such approaches are key to avoiding an expensive blow-up
in the sample complexity of required, real-world interactions. A popular paradigm to jointly use experience
from multiple tasks is by way of learning a shared low-dimensional representation. Namely, the observations
of each task are individually embedded into a common low-dimensional space, and learning occurs jointly in
this space. (Teh et al., 2017; D’Eramo et al., 2019).
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Despite these empirical successes, theoretical explorations to understand the benefits of such joint training

in RL have been limited. While in the supervised learning literature, the benefit of multi-task training is
well-studied (e.g., Baxter, 1995; 2000; Ben-David & Schuller, 2003; Du et al., 2020; Tripuraneni et al., 2020;
2021), obtaining a similar understanding in the setting of RL is more challenging. For one, a su�ciently
flexible yet useful notion of “task relatedness” is di�cult to formulate in RL, which involves both rewards
and transition dynamics. Secondly, an algorithm using such a relatedness measure must carefully balance
exploration and exploitation, while appropriately handling inevitable inaccuracies in the learned representation
and how these can compound over the horizon.

Given these existing shortcomings in the literature, in this work we aim to theoretically analyze the benefit
of learning joint representations for multi-task RL. We begin by formalizing the underlying similarity –
i.e., task relatedness – between multiple tasks. Leveraging recent results on linearly factored or low-rank

MDPs (Agarwal et al., 2020; Yang & Wang, 2020; Nachum & Yang, 2021), we assume that there exists a state-
action representation such that all tasks admit linear transition dynamics with respect to this representation.
In this setting, any one task may exhibit distinctly di�erent dynamics from the remaining tasks while still
maintaining a common and learnable structure. Under such a shared representation, we quantify the benefit
– in terms of regret – given by using a su�ciently accurate approximate representation, and we pair this
result with an online algorithm for simultaneously learning and using such a representation. Our results
provide a clear understanding of the trade-o�s associated with leveraging a jointly learned representation in
the setting of RL as a function of the dimension of the shared representation, the number of tasks, and the
dimension of the raw state observations (see our main results in Section 4). We show that in the presence of
bilinear optimization oracle there exists a computationally e�cient algorithm for multitask MatrixRL via a
reduction to quadratic programming (see Section 5). This is in contrast with previous work that have studied
multi task RL in other function approximation models such as Hu et al. (2021). We develop a general regret
analysis technique to shave o� a

?

H factor from the the regret upper bounds of episodic linear problems and
apply it both to the original MatrixRL rates (see Section 3) as well as Shared-MatrixRL (see Section 4).

2 Related Work

As mentioned above, multi-task learning is well-studied in the supervised learning literature. The predominant
mechanism for performing multi-task learning in these previous works is analogous to our own, namely,
parameterizing a classifier as a composition of two functions, one of which is common to all tasks and another
which is unique to each class (Baxter, 1995; Maurer, 2006; Du et al., 2020; Tripuraneni et al., 2020; 2021).
As in our own work, these previous works generally rely on an assumption that an optimal hypothesis with
the desired compositional form exists, although some work has explored alternative assumptions (Ben-David
& Schuller, 2003).

More closely related to our own setting is the work of D’Eramo et al. (2019), which theoretically analyze
approximate dynamic programming in the context of multi-task learning. In this setting, an approximate
value function is learned, with a common representation used to parameterize this value function. However,
it is important to note that approximate dynamic programming is distinct from RL, as it ignores the di�cult
exploration problem associated with learning from one’s own collected data. In contrast, our analysis is
specifically tailored to an online learning scenario: where one of the main challenges is deriving multi-task
learning bounds which carefully balance exploration and exploitation jointly across all tasks.

Works that do consider the online learning setting include Yang et al. (2020) and Hu et al. (2021). The
first of these considers a linear bandit setting and is not immediately applicable to RL; moreover, this work
imposes additional structural conditions on the linear features of the bandit problem which e�ectively require
the action features to su�ciently cover all possible directions. The second work by Hu et al. (2021) is closer
to ours and considers the linear RL setting. Our ‘sharedness’ assumptions and results are a generalization of
those studied in Hu et al. (2021). Because Hu et al. (2021) studies a value-based approach, the assumption is
that all the underlying linear parameter weights of the task’s Q-functions lie in (or near) the same subspace.
Because we are studying a model based approach we move beyond this sharedness structure to instead study
the setting where the task model matrices share a common factorization. This is the reason our bounds
have a dependence on d1 as well as on d and r. Our regret guarantees are similar to those in Hu et al.
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(2021), despite taking a di�erent approach with distinct derivations. We don’t see this as a limitation but
rather as an indication to the wider research community that there is a potential opportunity to develop
a unifying analysis of RL methods in the presence of shared representation learning that could subsume
both value-based and model-based methods. We believe this to be an interesting and exciting avenue for
future research. Moreover, we show (see Section 5) that as long as we have access to an oracle for joint
least squares matrix factorization, the optimization problem required to find the policy to execute at time t
can be solved e�ciently. This is in stark contrast with other approaches where even solving the necessary
joint optimization problem over the task family to find the policy to execute at any given time can be an
intractable problem. Recently, other works Cheng et al. (2022); Agarwal et al. (2022); Lu et al. (2022) have
explored more general versions of our shared task assumptions where the learner may have access only to a
family of representation functions and is tasked with learning a viable representation while interacting with
multiple tasks at once. They show that shared representation learning is advantageous when compared to
learning a single representation per task. These are very close in spirit to the study we present here and
should be thought of as a successor works to ours.

In this work we consider a model for task relatedness inspired by Tripuraneni et al. (2021), where we assume
the underlying model of the MDP dynamics have a shared low rank representation. Other models of the
relationship between related tasks are possible. Most notably Müller & Pacchiano (2022) and Moskovitz et al.
(2022): in Müller & Pacchiano (2022) the authors consider the question of learning an appropriate ‘bias’
vector for regularizing the MatrixRL algorithm. This allows them to show that in case the variance of the
models in the family is small, performance (in this case measured in the form of regret) in a test task can be
substantially better. The authors of Moskovitz et al. (2022) tackle a similar issue. In their work they show
that under the assumption that the optimal policies are similar across tasks in the family, it is possible to
learn a useful default policy such that a policy gradient algorithm that regularizes towards it can learn an
optimal policy for a target task much more e�ciently than an algorithm regularizing towards the uniform
policy. We leave the task of generalizing our work to the setting of a set or distribution train tasks for the
purpose of solving a test task for future work.

3 Preliminaries

Formally, we consider the setting of episodic reinforcement learning proposed in (Yang & Wang, 2020) where
an an agent explores an MDP pS, A,P, r, Hq with state space S, action space A and known reward function
r : S ˆ A Ñ r0, 1s whose transition dynamics are given by the feature embedding,

Pps̃|s, aq “ „ps, aq
JM‹Âps̃q

The learner receives a noiseless reward rps, aq which for simplicity we assume is known. All interactions
between a policy and the MDP is of length H. For any policy fi, state s, action a and h P rHs we define
V fi

h
psq, Qfi

h
ps, aq as the value and Q functions of policy fi. Our objective is to design algorithms with small

regret, defined as

RpNHq “

Nÿ

n“1
V fi‹

1 psn,1q ´ V fin
1 psn,1q,

Where fi‹ corresponds to the optimal policy, fin is the algorithm’s policy during time-step n and sn,1 are the
initial states during the nth episode.

The algorithm in Yang & Wang (2020) works by building an estimator ÄMn of the matrix M‹ at time n using
the data collected so far. We use the notation t “ pn, hq (i.e. episode n § N and stage h § H), to denote the
state-action-state triplets pst, at, s̃tq where s̃t “ st`1. For simplicity we denote the associated features by:

„t “ „pst, atq P Rd, Ât “ Âps̃tq P Rd
1
and M‹ P Rdˆd

1
.

Denote � P R|S|ˆd
1 as the matrix whose rows equal Âpsq for all s P S and let KÂ “

∞
s̃

Âps̃qÂps̃q
J. For any

matrix B we use Br:, is to refer to B’s i´th column. We use the notation } ¨ }F to denote the Frobenius
norm of a matrix and } ¨ }2, } ¨ }8 the l2 and l8 norms of a vector. We will make the following assumptions
regarding the norms of M‹ and the feature maps „ and Â.
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Assumption 3.1 (Boundedness). The feature maps „ and Â satisfy }„ps, aq}2 § L„, }Âpsq}2 § LÂ and

}M‹r:, is}2 § S for all s, a P S ˆ A and i P rd1
s and some known values L„, LÂ and S. And therefore

}M‹}F §

?

d1S

We also consider the following two assumptions on feature regularity, both present in Yang & Wang (2020).
Assumption 3.2. [Feature Regularity] For all v P R|S|

, }�Jv}8 § CÂ}v}8, and }�K´1
Â

}2,8 § C 1
Â

, where

}Y}2,8 “ maxi

b∞
j

Y2
i,j

is the 2, 8 norm (infinity norm over the l2 norm of Y’s columns).

We will also prove sharper results under a more refined feature regularity assumption,
Assumption 3.3. [Stronger Feature Regularity] For all v P R|S|

, }�Jv}2 § CÂ}v}8, and }�K´1
Â

}2,8 § C 1
Â

,

where }Y}2,8 “ maxi

b∞
j

Y2
i,j

is the 2, 8 norm (infinity norm over the l2 norm of Y’s columns).

As it is explained in Yang & Wang (2020), this assumption can be satisfied when � is a set of sparse features
or if � is a set of highly concentrated features.

The matrix estimator ÄMn considered by Yang & Wang (2020) equals:

ÄMn “ r�ns
´1 ÿ

n1†n,h§H

„n1,hÂJ
n1,hK´1

Â
.

Where
�n “ ⁄I `

ÿ

n1†n,h§H

„n1,h„J
n1,h

and �n,h “ �n `
∞

h1†h
„n,h1„J

n,h1 . It is easy to see that ÄMn is the solution to the ridge regression problem:

ÄMn “ arg min
M

ÿ

n1†n,h§H

}ÂJ
n1,hK´1

Â
´ „J

n1,hM}
2
2 ` ⁄}M}

2
F

. (1)

It can be shown that with high probability and for all t simultaneously all ÄMn lie in a vicinity of M‹.
Lemma 3.4. For all ” P p0, 1q with probability at least 1 ´ ” for all n P N simultaneously,

M‹ P tM P Rdˆd
1

: }p�nq
1{2

pM ´ ÄMnq}2,1 § d1a—nu :“ U1,2
n

.

M‹ P tM P Rdˆd
1

: }p�nq
1{2

pM ´ ÄMnq}F §

a
d1—nu :“ UF

n
.

Where }B}2,1 denotes the l1 norm of the l2 norm of the columns of B while }B}F corresponds to the Frobenius

norm,
?

—n “ R

c
d log

´
d1`d1nHL

2
„

{⁄

”

¯
`

?

⁄S and R “ }K´1
Â

}LÂ ` SL„.

The proof of Lemma 3.4 can be found in Appendix A. We can make use of Lemma 3.4 to show a regret
guarantee for the MatrixRL algorithm from Yang & Wang (2020) (see Algorithm 1). Let’s revisit the optimistic
value function construction of the MatrixRL algorithm,

@ps, aq P S ˆ A : Qn,H`1ps, aq “ 0 and @h P rHs :
Qn,hps, aq “ rps, aq ` max

MPU1,2
n

„ps, aq
JM�JVn,h`1 (2)

where
Vn,hpsq “ �r0,Hs

”
max

a

Qn,hps, aq

ı
@s, a, n, h.

�r0,Hs denotes the coordinate-wise clipping/projection operator onto the r0, Hs interval.

Let’s define the “good" event of probability at least 1 ´ ” where Lemma 3.4 holds as E . We’ll be making
heavy use of the following ‘determinant lemma’,
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Algorithm 1 MatrixRL.
1: Input: An episodic MDP environment M “ pS, A, P, s0, r, Hq, features „ : S ˆA Ñ Rd and Â : S Ñ Rd

1 ,
probability parameter ” P p0, 1q.

2: Initialize: �1 – I P Rdˆd, M1 – 0 P Rdˆd
1 .

3: for episode n “ 1, ¨ ¨ ¨ , N :
4: Solve for ÄMn.
5: Let tQn,hu be given by Equation 2 using U1,2

n
and —n as in Lemma 3.4.

6: For stage h “ 1, ¨ ¨ ¨ , H:
7: Let the current state be sn,h .
8: Play action an,h “ arg max

aPA Qn,hpsn,h, aq .
9: Record the next state sn,h`1.

10: �n`1 – �n `
∞

h§H
„n,h„J

n,h
.

11: Compute ÄMn`1 using (1).

Lemma 3.5 (Determinant Lemma). (Lemma C.3 from (Pacchiano et al., 2020)) For any sequence of

vectors x1, . . . , xM P Rd
such that ÎxqÎ2 § L for all q P rN s. Given a ⁄ • 0 define D1 :“ ⁄I and for

¸ P t2, . . . , M ` 1u define D¸ :“ ⁄I `
∞

¸´1
q“1 xqxJ

q
. Then for all M P N and b ° 0

log
ˆ

detpDM`1q

detp⁄Iq

˙
§ d log

ˆ
1 `

ML2

⁄d

˙
. (3)

and
Mÿ

q“1
min

!
b, }xq}

2
D´1

q

)
§ p1 ` bqd log

ˆ
1 `

ML2

⁄d

˙
.

Our first result is to derive a sharper regret guarantee for the MatrixRL algorithm than in Yang & Wang
(2020),
Theorem 3.6. The regret satisfies,

RpNHq § 8H

d

NH log
ˆ

6 log NH

”

˙
` 2

gffe2“N NHd log
˜

1 `
NHL2

„

⁄d

¸
`

2L„Hd

c
“N

⁄
log

˜
1 `

NL2
„

⁄d

¸

1. Under Assumption 3.2,

?
“N “ 2CÂHd

1a
—N “ 2CÂHd

1

¨

˝R

gffe
d log

˜
d1 ` d1NHL

2
„

{⁄

”

¸
`

?
⁄S

˛

‚

2. Under the stronger Assumption 3.3,

?
“N “ 2CÂH

a
d1—N “ 2CÂH

?
d1

¨

˝R

gffe
d log

˜
d1 ` d1NHL

2
„

{⁄

”

¸
`

?
⁄S

˛

‚

with probability at least 1 ´ 2”.

The proof of Lemma 3.6 can be found in Appendix A.5. In contrast with the regret guarantees of Yang
& Wang (2020), our bounds have a dependence on H3{2 as opposed to H2. We achieve this by using the
following “lazy" version of the commonly used determinant lemma in the bandits/RL literature.
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Lemma 3.7. Let xn,h P Rd̃
satisfying }xn,h} § L for some d̃ P N and let Dn,h P Rd̃ˆd̃

be a family of positive

semidefinite matrices for n P N and 1 § h § H such that ⁄I ® Dn,h ® Dn1,h1 if pn, hq § pn1, h1
q in the

lexicographic order (i.e. n1
° n or h1

• h when n “ n1
). Define Dn “ Dn´1,H and D1 “ ⁄I. The following

inequalities hold,

Nÿ

n“1

Hÿ

h“1
}xn,h}D´1

n
§

Nÿ

n“1

Hÿ

h“1
2}xn,h}D´1

n,h
`

2HL
?

⁄
log

ˆ
detpDN`1q

detp⁄Iq

˙
. (4)

The proof of Lemma 3.7 can be found in Appendix A.1. As a corollary of Lemma 3.7,
Corollary 3.8. The following inequalities hold,

Nÿ

n“1

Hÿ

h“1
}„n,h}�´1

n
§

Nÿ

n“1

Hÿ

h“1
2}„n,h}�´1

n,h
`

2L„Hd
?

⁄
log

˜
1 `

NHL2
„

⁄d

¸
. (5)

The proof of Corollary 3.8 can be found in Appendix A.2. It allows us to transform a sum of inverse �´1
n

norms to a sum of inverse �´1
n,h

norms. This transformation comes at the cost of a 2 factor and a logarithmic
cost with a dH multiplier. Since it can be shown that

∞
N

n“1
∞

H

h“1 }„n,h}�´1
n,h

“ rOp

?

dNHq where rOp¨q hides

logarithmic factors, we conclude that
∞

N

n“1
∞

H

h“1 }„n,h}�´1
n

“ rOp

?

dNHq. This allows us to save a
?

H
factor in our final regret bound. Lemma 3.7 and Corollary 3.8 can be applied to any episodic linear setting
and can be used to shave o� a

?

H factor form other episodic stationary linear models beyond MatrixRL.

4 Shared Structure Model

In this work we are concerned with understanding conditions under which sequential learning can be made
more sample-e�cient when simultaneously training in the presence of several related tasks. In contrast with
other works that are concerned with the problem of learning from a set of related source tasks before engaging
with a new target task, we are interested in understanding what benefits can be derived simultaneously
from joint representation training across multiple RL problems. We borrow the subspace sharedness model
from Yang et al. (2020) and generalize it from the setting of linear bandits to the previously described
MatrixRL setting. We begin by assuming the learner has access to P tasks encoded by the matrices tMppq

‹ u
P

p“1
with known reward functions trppq

u
P

p“1. We make the assumption the transitions factorize as Mppq
‹ “ B‹Appq

‹
where B‹ P Rdˆr is a projection operator1 and Appq

‹ P Rrˆd
1 . We require all of the matrices Mppq

‹ to satisfy
Assumption 3.1, so }Mppq

‹ }F “ }Appq
‹ }F §

?

d1S.

We are interested in designing an algorithm that bounds the “shared regret", defined as

RP pNHq “

Nÿ

n“1

Pÿ

p“1
V fi

ppq
‹

1 psppq
n,1q ´ V

fi
ppq
n

1 psppq
n,1q,

where sppq
n,1 is the starting state for task p in epsisode n, fippq

n is the policy used by task p during epsiode n, and
fippq

‹ is the optimal policy of task p. Notice that instead of optimizing the usual form of the single task regret,
here we are interested in minimizing the aggregate regret incurred across all tasks. The learner’s objective is
to leverage the shared structure among the tasks to incur a regret RP pNHq smaller then what is obtained by
learning each task in isolation–a shared regret equal to P times the single-task MatrixRL regret upper bound.

In this framework, the transition dynamics across MDPs are coupled because the agent’s feature embedding
of state-action pairs lie in a common low-dimensional subspace. If the learner had knowledge of B‹, they
would be able to use projected features of the form „̃ps, aq “ B‹„ps, aq in their exploration. This would allow
the learner to incur regret scaling only in r, independently of d. Although it is impossible to completely
eliminate the d-dependence without apriori knowledge of B‹, we show that in some cases it is possible to
improve the d-dependence. Our main result can be summarized as follows,

1
Recall that a linear operator P is a projection if P2v “ Pv.
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Theorem 4.1 (Informal). There exists an algorithm for joint learning over a set of related tasks tMppq
‹ “

B‹Appq
‹ upPrP s that achieves a regret of

RP pNHq “ rO
´´

Hd
?

rP ` HP
?

rd
¯ ?

NH
¯

,

with high probability, where rO hides logarithmic factors

Recall that for an isolated task in order to recover an estimator ÄM of M‹ given n ´ 1 trajectories of horizon
H we solve d1 independent ridge regression problems (one per column) as defined by Equation 1.

In the multi-task setting with shared structure, we instead consider the following quadratic objective that
weaves together the estimation of the task-specific tAp

u
P

p“1 parameters with that of the shared B projection
matrix.2

arg min
BPPd,r,

}Ap1q}F §
?

d1S,¨¨¨ ,}ApP q}F §
?

d1S

F pB, Ap1q, ¨ ¨ ¨ , ApP q
q (6)

F pB, Ap1q, ¨ ¨ ¨ , ApP q
q “

ÿ

pPrP s
⁄}Appq

}
2
F

`

ÿ

n1†n,h§H

››››
´

Âppq
n1,h

¯J
K´1

Â
´

´
„ppq

n1,h

¯J ´
BAppq

¯››››
2

2

Where Pd,r corresponds to the set of all d ˆ r projection matrices with r orthonormal columns and the search
space for Appq is the Frobenius ball of radius

?

d1S in the space of matrices Rrˆd
1 .

Notice that by virtue of the orthogonality of B’s columns (i.e. BJB “ Ir ) the regularizer satisfies
}BAppq

}
2
F

“ }Appq
}

2
F

. We use the notation rBn, rAp1q
n , ¨ ¨ ¨ , rApP q

n to refer to the resulting estimators for the
shared projection matrix and the low rank dynamics matrices for each of the tasks p “ 1, ¨ ¨ ¨ , P right before
the nth batch of P trajectories is collected.

We start by proving a series of data dependent bounds on the estimates rB, rAp1q
n , ¨ ¨ ¨ , rApP q

n that will serve as
the analogous shared-structure versions of Lemma 3.4.

Now we show a bound for the data-dependent distance between rBn, rAp1q
n , ¨ ¨ ¨ , rApP q

n and the true parameters
B‹, Ap1q

‹ , ¨ ¨ ¨ , ApP q
‹ .

Lemma 4.2. For any ” P p0, 1q the following bound holds,

ÿ

pPrP s
⁄

››› rAppq
n

›››
2

F

` 1
2

››››
´

�ppq
n

¯1{2 ´
B‹Appq

‹ ´ rBn
rAppq

n

¯››››
2

F

§ —
1
nHp”q `

ÿ

pPrP s
⁄}Appq

‹ }2
F

with probability at least 1 ´ ” for all n P N and where

—1
nH

p”q “ 1 ` L„S `
b2

2R2 `

p12R2
` bq

´
2 log log p2 pnHP qq ` 3 ` log 1

”
` pdr ` rd1P q plogp5Sq ` log nHP ` log 2RL„q

¯

And b “ 2Rd1SLÂ.

The proof of Lemma 4.2 can be found in Appendix B.1. In contrast with the results of Lemma 3.4, the
guarantees of Lemma 4.2 apply to the sum of the errors across all P tasks. As we’ll see in the coming discussion
this is the main source of di�culties in designing a reinforcement learning algorithm that successfully makes
use of this result to construct optimistic value functions. We can use Lemma 4.2 to obtain the following high
probability confidence interval jointly around rBn and t rAppq

n u
P

p“1, which is one of our main results:
2
Our results will also be true when the Â, „ maps are task-dependent. In this case, the only change to our results would

require making KÂ task-dependent.
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Lemma 4.3. For any ” P p0, 1q with probability at least 1 ´ ” for all n P N simultaneously,

!
Mppq

‹ “ B‹Appq
‹

)P

p“1
P

#
tBAppq

u
P

p“1 s.t.

ÿ

p

››››
´

�ppq
n

¯1{2 ´
BAppq

´ rBn
rAppq

n

¯››››
2

F

§ “np”q

+

Ñ

#
tMppq

u
P

p“1 s.t.

ÿ

p

››››
´

�ppq
n

¯1{2 ´
Mppq

´ rBn
rAppq

n

¯››››
2

F

§ “np”q

+

loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon
:“ rUF

n p”q

where “np”q “ 2—1
n

p”q ` 2P
?

d1S⁄ and —1
n

is defined as in Lemma 4.2.

Proof. Lemma 4.2 implies that with probability at least 1 ´ ” for all n P N,
ÿ

pPrP s
⁄

››› rAppq
n

›››
2

F

` 1
2

››››
´

�ppq
n

¯1{2 ´
B‹Appq

‹ ´ rBn
rAppq

n

¯››››
2

F

§ —
1
nHp”q `

ÿ

pPrP s
⁄}Appq

‹ }2
F

Since }Appq
‹ }F §

?

d1S, this implies that

ÿ

pPrP s

››››
´

�ppq
n

¯1{2 ´
B‹Appq

‹ ´ rBn
rAppq

n

¯››››
2

F

§ 2—1
nH

p”q ` 2P
?

d1S⁄.

The result follows.

From here on we use the name E
1 to define the event of Lemma 4.3 where the sum of the square of the

confidence intervals across all tasks is bounded by “np”q. Lemma 4.3 implies PpE
1
q • 1 ´ ”.

Algorithm 2 Shared-MatrixRL.
1: Input: Episodic MDP environments tM

ppq
upPrP s “ pS, A,Pppq, s0, r, Hq, features „ppq : S ˆ A Ñ Rd

and Âppq : S Ñ Rd
1 , probability parameter ” P p0, 1q.

2: Initialize: t�ppq
1 – I P Rdˆd

u
P

p“1, tMppq
1 – 0 P Rdˆd

1
u.

3: For episode n “ 1, ¨ ¨ ¨ , N :
4: Solve Problem 6 and compute rBn, rAp1q

n , ¨ ¨ ¨ , rApP q
n .

5: Let tQppq
n,h

u
P

p“1 be given by Qppq
n,h

ps, aq “ Qppq
n,h

ps, a, tÑMppq
n u

P

p“1q

6: where,
tÑMppq

n
u

P

p“1 “ arg max
tMppquP

p“1P rUF
n p”q

ÿ

p

V ppq
n,1 psppq

n,1, tMppq
u

P

p“1q. (7)

7: Where tsppq
n,1up“1 is the set of first states seen at the start of their episodes by all tasks.

8: For p “ 1, ¨ ¨ ¨ , P :
9: For stage h “ 1, ¨ ¨ ¨ , H :

10: Let the current state be sppq
n,h

.
11: Play action appq

n,h
“ arg max

aPA Qppq
n,h

psppq
n,h

, aq.
12: Record the next state sppq

n,h`1.

13: Update �ppq
n`1 – �ppq

n `
∞

h§H

´
„ppq

n,h

¯ ´
„ppq

n,h

¯J
for all p P rP s.

We now introduce the Shared-MatrixRL algorithm. In contrast with the simple MatrixRL in Algorithm 1,
Shared-MatrixRL makes use of a shared confidence interval for the rBn, t rAppq

n u
P

p“1 matrices. We define the
following optimistic Q´functions for the task family,

@tMppq
upPrP s and @ps, aq P S ˆ A : Qppq

n,H`1ps, a, tMppq
u

P

p“1q “ 0 @p P rP sand @h P rHs :

Qppq
n,h

ps, a, tMppq
upPrP sq “ rppq

psp, apq ` „ppq
psp, apq

JMppq
´

�ppq
¯J

V ppq
n,h`1ptMppq

u
P

p“1q

8
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where V ppq
n,h`1ptMppq

u
P

p“1q is a vector of dimension |S| corresponding to the value functions of task p under
model Mppq. For all s, a, n, h,

V ppq
n,h

ps, tMppq
u

P

p“1q “ �r0,Hs
”
max

a

Qppq
n,h

ps, a, tMppq
u

P

p“1q

ı
.

The definition of the parametric Q functions Qppq
n,h

ps, a, tMppq
u

P

p“1q and value functions V ppq
n,h

ps, tMppq
u

P

p“1q is
required to define the joint optimistic objective for the set of P tasks of Equation 7. We define the optimistic
value functions as,

Qppq
n,h

ps, aq “ Qppq
n,h

ps, a, tÑMppq
n

u
P

p“1q, V ppq
n,h

psq “ V ppq
n,h

ps, tÑMppq
n

u
P

p“1q

The optimization problem of Equation 7 requires to solve for tÑMppq
n u

P

p“1 optimizes the sum of values as ‘seen’
from the initial states tsppq

n,1upPrP s of the P tasks at the beginning of the nth episode. This form of optimism
is required to ensure the constraint tÑMppq

u
P

p“1 Ä rUF

n
p”q is satisfied.

Limitations. Shared-MatrixRL works in a similar way to the single task Matrix RL algorithm; a policy is
executed in each of the component tasks based on a series of optimistic Q values. The data collected by the
learner is then used to update the component models via Equation 6. The chief di�erence in our approach to
the multi task setting lies in the definition of the shared Q functions. This is what allows us to make use of the
shared confidence interval of Lemma 4.3. Unfortunately this means the computation of the ‘optimistic models’
tÑMppq

n u
P

p“1 is intractable since it requires the computation and storage of the Q values Qppq
n,h

ps, a, tMppq
n u

P

p“1q

for all feasible values of tMppq
n upPrP s and then solve for tÑMppq

n u
P

p“1. This situation is not as severe as it seems
since the computation of the optimistic Q functions in the original MatrixRL algorithm (and even in the
OFUL algorithm for linear bandits Abbasi-Yadkori et al. (2011)) is also an intractable problem. Another
potential drawback of Algorithm 2 is its requirement to have knowledge of the initial states tsppq

n,1u
P

p“1. An
astute reader may posit it to be possible to overcome this issue by using Thompson Sampling Agrawal &
Goyal (2013); Abeille & Lazaric (2017). In this case we would sample a set of models tÑMppq

n u
P

p“1 from block
gaussian distribution where each block is centered around each ÄMppq

n . Sampling from this posterior does not
require knowledge of tsppq

n,1u
P

p“1. Unfortunately, this strategy would cause the degradation of the regret upper
bound to a level that is not competitive with the strategy of solving each task independently. We leave the
removal of the assumption on tsppq

n,1u
P

p“1 as future work.

In order to prove the Shared-MatrixRL satisfies a satisfactory sublinear regret guarantee we start by showing
optimism holds for the shared representations parameterized by tÑMppq

n u
P

p“1.
Lemma 4.4 (Optimism). Whenever E

1
holds,

ÿ

pPrP s
V fi

ppq
‹

1 psppq
n,1q §

ÿ

pPrP s
V ppq

n,1 psppq
n,1q.

Proof. Since
V ppq

n,1 psppq
n,1q “ Vn,1

´
sppq

n,1, tÑMppq
n

u
P

p“1

¯

the definition of tÑMppq
n u

P

p“1 implies that,
ÿ

pPrP s
Vn,1psppq

n,1, tÑMppq
n

u
P

p“1q •

ÿ

pPrP s
Vn,1psppq

n,1, tB‹Appq
‹ u

P

p“1q

Since Vn,1psppq
n,1, B‹, tAppq

‹ u
P

p“1q “ V fi
ppq
‹

1 psppq
n,1q, the result follows.

Similarly we can use our confidence interval bounds to prove the following bound on the bellman error.

9
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Lemma 4.5. If Assumption 3.3 holds and E
1

is true then for h P rHs,

ÿ

pPrP s
Qppq

n,h
psppq

n,h
, appq

n,h
q ´

´
rpsppq

n,h
, appq

n,h
q ` Pppq

p¨|sppq
n,h

, appq
n,h

q
JV ppq

n,h`1

¯

§ 2CÂH

d
“np”q

ÿ

pPrP s
}„ppq

n,h
}

2́
�ppq

n

¯´1

The proof of Lemma 4.5 can be found in Appendix B.2. Having established that optimism holds, we can
use a similar set of techniques as in the proof of Theorem 3.6 to show a regret guarantee. First we derive
Corollary 4.6, an equivalent version to Corollary 3.8. This allows us to maintain the

?

H factor improvement
in the multitask setting. This result is a consequence of Lemma 3.7.
Corollary 4.6. The following inequalities hold,

Nÿ

n“1

Hÿ

h“1

d ÿ

pPrP s
}„ppq

n,h
}

2́
�ppq

n

¯´1 §

Nÿ

n“1

Hÿ

h“1
2

d ÿ

pPrP s
}„ppq

n,h
}

2́
�ppq

n,h

¯´1 `
2L„HdP

?

⁄
log

˜
1 `

NHL2
„

⁄d

¸
. (8)

Proof. Define NHP variables xn,h,p P RdP ordered lexicographically and satisfying xn,h “ p„p1q
n,h

, ¨ ¨ ¨ , „pP q
n,h

q

where „ppq
n,h

is located in the p´th d dimensional slot of xn,h for all p P rP s. In this case, Dn,h is a block

diagonal matrix (with d ˆ d diagonal blocks equal to �n,h) such that }xn,h}D´1
n,h

“

c∞
pPrP s }„ppq

n,h
}

2́
�ppq

n,h

¯´1 .

By definition }xn,h}D´1
n

“

c∞
pPrP s }„ppq

n,h
}

2́
�ppq

n

¯´1 . As a consequence of Lemma 3.7,

Nÿ

n“1

Hÿ

h“1

d ÿ

pPrP s
}„ppq

n,h
}

2́
�ppq

n

¯´1 §

Nÿ

n“1

Hÿ

h“1
2
d ÿ

pPrP s
}„ppq

n,h
}

2́
�ppq

n,h

¯´1 `
2L„H

?

⁄
log

ˆ
detpDN`1q

detp⁄IdP q

˙
.

Where we have used the notation Is to denote the s ˆ s dimensional identity matrix. By definition of DN`1
we see that detpDN`1q “

±
P

p“1 detp�ppq
N`1q and therefore,

log
ˆ

detpDN`1q

detp⁄IdP q

˙
“

Pÿ

p“1
log

˜
detp�ppq

N`1q

detp⁄Idq

¸
§ Pd log

˜
1 `

NHL2
„

⁄d

¸
.

Where the last inequality follows from Equation 3 in Lemma 3.5. The result follows.

Similar to Corollary 3.8, the result of Corollary 4.6 allows us to transform inverse norms defined by the
matrices

´
�ppq

n

¯´1
, into inverse norms defined by the matrices

´
�ppq

n,h

¯´1
, at a constant multiplicative cost

plus a logarithmic term with a dHP multiplier.
Theorem 4.7. The regret of Shared-MatrixRL satisfies,

RP pNHq § H

d

NHP log
ˆ

6 log NH

”

˙
` 4CÂH2dP

˜
1 `

L2
„

?

⁄

¸
log

˜
1 `

NHL2
„

⁄d

¸
a

“N p”q`

2CÂH

gffe“N p”qNHPd

˜
1 `

L2
„

?

⁄

¸
log

˜
1 `

NHL2
„

⁄d

¸
.

With probability at least 1 ´ 2”.

The proof can be found in Appendix B. Since “N p”q « dr ` rP (up to logarithmic factors and ignoring
polynomial dependencies on d1) Theorem 4.7 implies,

10
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Corollary 4.8. The regret of Algorithm 2 satisfies,

RP pNHq § rO
´

H
?

NHP ` H
?

dr ` rP
?

NHPd
¯

“ rO
´´

Hd
?

rP ` HP
?

rd
¯ ?

NH
¯

.

With probability at least 1 ´ 2”.

This result improves upon the shared regret of order rOpHdP
?

NHq achieved by using the MatrixRL algorithm
to learn each task independently. Interestingly, learning the tasks’ shared structure only becomes beneficial
when r ! d and r ! P . To explain this phenomenon observe that the degrees of freedom (i.e. the number of
parameters to learn) in Shared-MatrixRL equals dr ` Pr. The degrees of freedom of running P independent
copies of MatrixRL in contrast equals dPd1. For shared representation learning to be more e�cient than
learning each task alone, we require dr ` Prd1

! dPd1. This is why for Shared-MatrixRL learning to be
truly beneficial (and attain a smaller regret upper bound than running P tasks independently) we require
dr ! dPd1 and Prd1

! dPd1. For example when the number of tasks is small and P ! r, learning the shared
matrix B‹ may require more data than learning the dPd1 parameters of estimating the models for all P tasks
independently. Although we have not developed a lower bound for the specific MatrixRL setting, the results
of Yang et al. (2020) provide evidence to posit the regret upper bound for Shared-MatrixRL in Theorem 4.7 is
optimal.

5 Computationally E�cient Shared-MatrixRL

Algorithm 2 has two computationally intensive components. First, solving for rBn, rAp1q
n , ¨ ¨ ¨ , rApP q

n and second,
solving for Equation 7. The first objective may be di�cult to solve because it involves solving a bilinear
quadratic optimization problem. The second one can prove even more challenging first because it requires a
way to ‘store’ the parametric value functions V ppq

n,1 ps, tMppq
u

P

p“1q (these functions may be highly non-linear),
and second because solving for Equation 7 involves optimizing a non-convex objective.

In this section we show that, given access to a computational oracle for Problem 6 and assuming S, A are
finite, there exists a computationally e�cient procedure for solving for the joint optimistic objective of
Equation 7 of Algorithm 2. As it is mentioned in the discussion surrounding Equation 7 of Yang & Wang
(2020), the confidence bonus of Equation 2 can be substituted by

Qn,hps, aq “ rps, aq ` „ps, aq
JÄMn�JVn,h`1 ` 2L�H

a
—n}„ps, aq}�´1

n

This corresponds to explicitly solving for the optimistic model maximizing the Q values at state action pair
ps, aq and in-episode time h. Let · ppq be a set of P confidence radii. In the multi-task setting, let’s consider
enforcing,

ÑMppq
n

P

"››››
´

�ppq
n

¯1{2 ´
Mppq

´ rBn
rAppq

n

¯››››
F

§ · ppq
*

:“ rUF

n
p”, p, · ppq

q

If
∞

P

p“1p· ppq
q
2

§ “np”q, we can allow for the per-state maximization of the optimistic models as in
the single task setting (see Equation 2) and obviate solving for problem 7 in Algorithm 2. If we
call ÑMppq

n ps, aq the model in UF

n
p”, p, · ppq

q achieving the argmax in the definition Qppq
n,h

ps, a, · ppq
q “

rps, aq ` maxMPUF
n p”,p,· ppqq „ps, aq

JM�JV ppq
n,h`1p· ppq

q. This is because restricting the individual confidence
radii for model p to be upper bounded by · ppq for all state action pairs ensures that,

ÿ

pPrP s
Qppq

n,h
psppq

n,h
, appq

n,h
, · ppq

q ´

´
rpsppq

n,h
, appq

n,h
q ` Pppq

p¨|sn,h, an,hq
JV ppq

n,h`1p· ppq
q

¯

§

ÿ

pPrP s

››››
´

„ppq
n,h

¯J ´
ÑMppq

n
´ Mppq

‹
¯››››

2

››››
´

�ppq
¯J

V ppq
n,h`1p· ppq

q

››››
2

§

ÿ

pPrP s
CÂ

›››V ppq
n,h`1p· ppq

q

›››
8

››››
´

„ppq
n,h

¯J ´
ÑMppq

n
´ Mppq

‹
¯››››

2

11
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If t· ppq
u

P

p“1 are defined such that
∞

P

p“1
`
· ppq˘2

§ “np”q the same arguments as in the proof of Lemma 4.5
imply,

ÿ

pPrP s
Qppq

n,h
psppq

n,h
, appq

n,h
, · ppq

q ´

´
rpsppq

n,h
, appq

n,h
q ` Pppq

p¨|sn,h, an,hq
JV ppq

n,h`1p· ppq
q

¯

§ 2CÂH

d
“np”q

ÿ

pPrP s
}„ppq

n,h
}

2́
�ppq

n

¯´1

The Q functions Qppq
n,h

p¨, ¨, · ppq
q satisfy,

Qppq
n,h

ps, a, · ppq
q “ rppq

ps, aq ` „ppq
ps, aq

J rBn
rAppq

n

´
�ppq

¯J
V ppq

n,h`1p· ppq
q`

2L�H· ppq
}„ppq

ps, aq}´
�ppq

n

¯´1

Where
V ppq

n,h`1p· ppq
q “ �r0,Hs

”
max

a

Qppq
n,h

ps, a, · ppq
q

ı
@s, a, n, h.

If S, A are finite sets, then for any fixed set of thresholds t· ppq
u, solving for Qppq

ps, a, · ppq
q can be expressed

as the solution to a linear program in the variables V ppq
n,h`1 and Qppq

n,h
. By adding a quadratic constraint of the

form
∞

pPrP s
`
· ppq˘2

§ “np”q the resulting optimization problem over all tasks p P rP s becomes the convex
Quadratically Constrained Linear Program (QCLP),

max
pPrP s

Pÿ

p“1
V ppq

n,1 psppq
n,1, · ppq

q s.t.
ÿ

pPrP s

´
· ppq

¯2
§ “np”q,

and thus it will take poly
` 1

NH

˘
operations to arrive at an 1

N2H2 approximate solution for this problem. This
is enough to guarantee optimism up to an overall error of order 1

NH
. See the discussion in Chapter 4 of Boyd

et al. (2004) on how to solve QCLP problems e�ciently.

6 Conclusion

In this work we are the first to analyze the problem of joint training across a set of related Markov
Decision Processes. We show that when the training tasks’ transition dynamics can be embedded
in a common low-dimensional subspace of dimension r, a joint training algorithm can obtain regret
rO

´´
Hd

?

rP ` HP
?

rd
¯ ?

NH
¯

as opposed to rOpHdP
?

NHq – the regret of learning each task sepa-
rately ignoring the shared task structure. Our training method solves a quadratic optimization problem
that jointly penalizes the shared and task-dependent model parameters (see Equation 6). We expect the
techniques we have introduced in this work, including the multitask least squares objective of Equation 6 and
the parametric Q functions Qppq

n,h
ps, a, tMppq

upPrP sq, to have applications in other MDP models with function
approximation–such as Linear MDPs Jun et al. (2019); Zhou et al. (2021) amongst others.
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