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Abstract

The study of genetic and molecular mechanisms underlying tissue morphogenesis
has received a lot of attention in biology. Especially, accurate segmentation of
tissues into individual cells plays an important role for quantitative analyzing the
development of the growing organs. However, instance cell segmentation is still
a challenging task due to the quality of the image and the fine-scale structure.
Any small leakage in the boundary prediction can merge different cells together,
thereby damaging the global structure of the image. In this paper, we propose an
end-to-end topology-aware 3D segmentation method for plant tissues. The strength
of the method is that it takes care of the 3D topology of segmented structures. The
keystone is a training phase and a new topology-aware loss - the CavityLoss - that
are able to help the network to focus on the topological errors to fix them during
the learning phase. The evaluation of our method on both fixed and live plant organ
datasets shows that our method outperforms state-of-the-art methods (and contrary
to state-of-the-art methods, does not require any post-processing stage). The code
of CavityLoss is freely available at https://github.com/onvungocminh/CavityLoss.

1 Introduction

Learning structural biology from bioimages is a hot topic during the last decade [4, 17, 16, 19]. Espe-
cially, segmentation of individual cells is a key step in the study of morphogenesis in a multicellular
organism, i.e. counting the cell number of ovule primordia [15], or analysis the asymmetric division
of lateral root founder cells [1]. However, volumetric segmentation is still a challenging task and may
cause some problems for the downstream analysis of the development of the plants. In the literature,
most of the cell segmentation methods are based on their boundary prediction [15, 19, 20]. Accurate
boundary prediction is extremely important because neighboring cells share mutual information on
the boundary location. Thus, even a small leakage on the boundary can merge adjacent regions and
damage the global structure.

In light of the very successful trend toward deep learning-based image analysis, various methods have
been proposed to leverage the ability of the convolutional neuron networks (CNN) to learn better
image representations, thus improving the performance of the boundary prediction [20, 8, 5]. In
particular, U-Net [13], which consists of an encoder-decoder architecture, is proved to be useful for
biomedical images and has later been further extended to process volumetric data [3]. Although these
methods achieve high accuracy, they do not contain any geometrical constraints. As a consequence,
they usually provide discontinuities and broken connections in the segmentation results. Moreover,
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due to the limitation of the receptive field of the convolutional neural network [21], it can not capture
global information of the image.

To address the problem of boundary prediction, several post-processing methods have been proposed
to support grouping voxels into cells. Particularly, the watershed algorithm [2, 10, 12], which is a well-
known method in the field of mathematical morphology, has been used to produce the segmentation
result from the delineated boundaries. However, the drawback of the watershed algorithm is when the
seed pixels are missing or misclassified. In [18], the author proposed a learned watershed algorithm
in a reinforcement learning [7] style. Nevertheless, this method is greedy in terms of training data
and computing time. Another problem with post-processing methods is that they do not integrate into
the model as an end-to-end framework, which may slow down the segmentation process.

Recently, several topology-aware segmentation methods have been proposed to preserve the global
structure of the image [9, 6, 11]. Commonly, the networks in these methods are trained using a
specific loss - a topological loss - that takes care of the topology of the structures. A topological loss
should satisfy the two following conditions: (1) tolerate with a minor displacement of the boundary;
(2) penalize the topological errors. The idea of topological loss started in [9], then developed in
Topoloss [6], BALoss [11]. However, the detected topological errors from these methods are usually
neither relevant nor accurate. Nevertheless, these methods are mostly designed for 2D images and do
not guarantee to preserve the topology. Especially, a new connectivity-preserving metric clDice [14]
has been proposed leveraging the homotopy equivalent between the prediction and its skeleton.
However, clDice treats equally every pixel on the skeleton, thus does not adequately penalize the
broken connections. Therefore, we need a powerful method which is able to maintain the global
structure for 3D image segmentation.

In order to tackle the aforementioned topology-preserving problem and provide a better solution
to localize the broken connections in object boundaries, we propose a new method based on a 3D
network. To train this network, we propose a new topological loss function called CavityLoss that
pays attention to the structure of the image. Our method identifies topological errors in an efficient and
accurate manner while we attempt to reconstruct the ground truth image from the prediction. Indeed,
we leverage the efficiency of mathematical morphology in the general and watershed algorithm [2], in
particular, to correctly detect the leakages on the 3D boundary locations. Penalizing these topological
errors encourages the network to learn the connectivity of neighboring voxels on the boundary and
also boosts up the value of the broken locations while training the network. The contributions of our
method are following:

• We propose a topology-aware method for 3D segmentation of plant tissues using a CNN.

• To train this network, we propose a new topological loss (CavityLoss) to penalize the broken
connections and encourage the network to improve the segmentation performance.

• To penalize the broken connections, we propose a new method inspired by mathematical
morphology to efficiently localize topological errors in the boundary of the prediction.

2 Proposed Method

2.1 Overview

State-of-the-art methods still generate discontinuities and broken connections in the 3D segmentations
due to the fact that these methods do not take into account the underlying topology of the image. In this
paper, we present here a simple-yet-effective method, which integrates the geometrical information of
the structures using the mathematical morphology method into the convolutional neural network. We
aim to preserve the topology and voxel connectivity on the cell boundary. In particular, our method
focuses on detecting and penalizing the topological errors in the boundary of regions.

Given an input image I and a ground truth image gt, our goal is to train the network to produce the
predicted map u that has the same topology as the ground truth gt. In other words, the predicted
map u has the same Betti numbers1 as the ground truth. Especially in this article, for the task of 3D
segmentation of plant tissues into individual cells, we focus on the number of cavities (β2) in the

1Betti numbers: β0 represents the number of distinct connected components, β1 represents the number of
holes, and β2 represents the number of cavities (only in 3D)

2



Raw volume Sample volume 3D-UNet Prediction Topological errors

Ground truth

Pixelwise-Loss CavityLoss

Figure 1: An overview of our proposed method. The boundary prediction which is the output of the
network still generates a lot of broken connections (red zones). The topological errors are detected
and our CavityLoss is computed to enforce the network correcting the leakage.

image. However, the main challenge here is that the Betti number is a discrete value, which can not
be differentiable for backpropagating through the network. Therefore, we need an alternative way to
design a differentiable loss function which is able to preserve the topology information. Instead of
computing directly the number of cavities, we detect the topological errors which cause the leakage on
the boundary prediction. And then we propose a novel topological loss which targets to fix topological
errors of the model. The overall framework is illustrated in Fig. 1. In practice, in this article, we use
a 3D U-Net [3] as a network to train our topological loss because its architecture efficiently adapts
for a 3D segmentation. Moreover, using 3D U-Net is also adequate for us to demonstrate that the
CavityLoss outperforms state-of-the-art methods. Note that, theoretically our loss can be used with
any other networks able to segment 3D images.

2.2 Detection of the topological errors

In this section, we propose our method to detect the topological errors. The accuracy of the detection
of the topological errors is essential for the training process to improve the performance of the
segmentation, especially for the 3D bioimage structure. We use 26-connectivity (shortly C26) to
represent the connectivity between neighboring voxels in 3D image. Each voxel has 26 voxels
surrounding it. So that, 26-connected voxels are neighbors to every voxel that touches one of their
faces, edges, or corners. The identification of the topological errors is depicted in Fig. 2. Note that,
for better visualization, we present the process on the 2D slice of the volume, but the whole algorithm
works on the 3D volume. Our method starts with thresholding the prediction image u at 0.5. We
call uB the thresholded image. Different from other state-of-the-art methods [6, 11] which localize
the topological errors on the continuous likelihood image, our method computes the leakages on the
binary image. The main reason for that is to remove noise from the likelihood image. Then, the task
now is to train the network so that the binary image uB can be topology equivalent to the ground
truth gt.

We also dilate the ground truth gt to take into account the tolerance of minor displacements in
boundary location. Indeed, minor differences in the boundary have little effect on the shape of the
regions. The dilated ground truth ĝt is then multiplied with the thresholded binary uB to get uM
to remove the false positives in the prediction. It is because we only focus on the leakages in the
boundary region. We then subtract the ground truth gt to prediction uM to get the different zone
uDif where the two maps gt and uM disagree. We only choose the parts of the uDif zone that are
positive. Note that we should not compute the loss function directly on the voxel-level disagreement
because this naive metric is over-sensitive to the boundary locations. However, we also realize that the
topological errors have to belong to the different zone uDif and can not be elsewhere. By detecting
these topological errors, we are able to preserve the topology of the structure.
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Figure 2: Illustration of the CavityLoss LCL computation. LCL is first implemented on the binary
boundary prediction, then is multiplied with the ground truth to remove the false positives. The
topological errors are detected in the difference zone (between the ground truth and prediction) by
using the distance transform watershed algorithm [12].

To correctly extract the topological errors, we apply a segmentation method based on the watershed
algorithm [12]. However, to implement the watershed algorithm, we need to initiate the set of markers.
Instead of finding local maxima of the distance map from the prediction image, we simply compute
the set of connected components S from ucc, the sum of the map uM and the difference zone uDif to
get uk. The labels S in uk also corresponds to different basin regions of the watershed algorithm [12].
We use this label image as a initiated set of markers for the watershed algorithm. We then apply the
watershed algorithm but the propagation is restricted only to the white areas of uk (which correspond
to the area of uDif ) and we exclude the black areas as the errors can only occur in uDif . The detected
watershed lines (zones) are the topological error. We can then deduce T , the image of the topological
errors. In the image, we can see that all the white area of uDif are linked with more than one label in
uk.

To efficiently implement the distance transform watershed process [12], we use Dijkstra’s algorithm
to spread the distance values from the markers to other voxels in the image (voxels in the difference
zone uDif ). We use C26 to define the voxel connectivity in the 3D image. We first initialize the
distance of the set of markers to zero. We also use a priority queue to store distance values of the
voxels in the propagation process. After each iteration, we update the priority queue based on their
distance costs, and update the labels of the voxels. Different label waves meet at the boundary of
the regions. The process stops when every voxel in the image has been visited. The propagation is
also fast as it is performed in the restriction uDif . Finally, we are able to extract the leakages on the
boundary.

2.3 Topological loss

Let’s call T the mask of the topological errors in the prediction image. The topological loss function
LCL of the network is defined as follows:

LCL(u, gt) = LBCE(u � T, gt � T ) (1)

where � is the element-wise product and LBCE is the binary cross entropy loss function.

4



The final loss of our method, LTotal , is given by:

LTotal(u, gt) = Lvoxel(u, gt) + α× LCL(u, gt), (2)

where

Lvoxel = LBCE (u, gt) + LDice(u, gt), (3)

Lvoxel is the voxel-wise loss function used to regulate the global information of the segmentation,
and LCL penalizes the topological errors on the prediction image and encourages the network to
recover the broken connection. The hyper-parameter α ≥ 0 is used to balance the two losses. Note
that the mask T is spare and not fixed. Indeed, the likelihood map is updated after every iteration
leading to the re-computation of the set of topological errors T . Then, the new LCL is computed. The
training process continues until convergence.

3 Experiments

In this section, we test the efficiency of our proposed method and carry out an investigation on the
impact of the hyper-parameter α on the performance of our method.

3.1 Datasets

The experiments are conducted on both fixed and live publicly available microscope datasets. These
two datasets along with the ground truth were provided using different types of microscopes and
differ in image quality.

• Arabidopsis thaliana ovules [15] is a fixed dataset that contains 31 volumetric stacks with
a voxel size of 0.075 x 0.075 x 0.235 µm to capture all the developmental stages by using
confocal laser scanning microscopy. The dataset is split into 22 training stacks, 2 validating
stacks, and a test set of 7 stacks.

• The second dataset contains 3 time-lapse videos of the development of Arabidopsis thaliana
lateral root primordia (LRP) [1] using a light sheet fluorescence microscope (LSFM) with
a voxel size of 0.1625 x 0.1625 x 0.250 µm. The sizes of the movies are respectively 2048 x
1050 x 486, 1940 x 1396 x 403, and 2048 x 1195 x 566 voxels. For this dataset, 28 stacks
are used in total, where 22 stacks are used for training, 2 for validating, and 4 for testing.

To improve the performance of image segmentation in the training process, we also performed an
on-the-fly data augmentation following the implementation in [3], including rotation, scaling, gray
value augmentation, and a smooth dense deformation field on both data and ground truth labels.

3.2 Evaluation Metrics

Boundary detection and segmentation metrics are used to evaluate the performance of our proposed
method. The evaluation metrics are presented below:

• IoU evaluates the overlap between the segmentation boundary u and the ground truth gt:
IoU = |u ∩ gt|/|u ∪ gt|.

• Precision and recall describe respectively the purity and completeness of the positive
predictions relative to the ground truth: Precision = TP/(TP+FP) and Recall = TP/(TP+
FN), where TP, FP, FN are respectively the true positive, false positive, and false negative.

• F-score is the harmonic mean of precision and recall: F = 2× P ×R/(P +R).
• Adapted Rand error (ARand) is the fraction of image voxel pairs on which the two

segmentations disagree: ARand = 1 −
∑

ij p2
ij

(
∑

k s2k+
∑

k t2k)
, where pij is the joint probability

distribution that a randomly chosen voxel belong to region i in the segmentation image and
region j in the ground truth,

∑
ij pij = 1, si =

∑
j pij , and tj =

∑
i pij .

Greater IoU, precision, recall, and F-score scores indicate better performance. However thinner or
thicker detection does not match entirely the ground truth leading to a penalty in IoU, precision, recall,

5



0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

Pr
ec

isi
on

UNet3D
cldice
CavityLoss, 10
CavityLoss, 20
CavityLoss, 50
CavityLoss, 100

(a) LRP

0.4 0.6 0.8 1.0
Recall

0.4

0.6

0.8

Pr
ec

isi
on

UNet3D
cldice
CavityLoss, 10
CavityLoss, 20
CavityLoss, 50
CavityLoss, 100

(b) Ovule

Figure 3: Precision-recall curves for different CNN variants on the ovule (a) and lateral root primordia
(LRP) (b) datasets.

and F-score even if the topological structure of the segmentation is preserved. Moreover, a missing
voxel which has the same penalty can even change the topology of structures. That is the reason why
we use the ARand score to capture the respect of cavity segmentation. A smaller ARand corresponds
to a method with better segmentation results. Even if we want to get good results according to IoU,
precision, recall, and F-score, our goal is to improve ARand score. Such orders are accompanied by
an upward (↑) or downward arrow (↓) in upcoming quantitative result tables.

3.3 Training Details

We pre-train the network using the linear combination of BCE and Dice and the learning rate is
originally set to 2.10−4. Then we set the learning rate to 2.10−5 to fine-tune our CavityLoss function.
The α value is chosen empirically depending on the dataset. As such, we experimented with different
values to choose the best α for the network. Except in Sec. 3.4 the prediction is thresholded with a
threshold set to 0.5. The proposed method was implemented using the Pytorch framework. All the
experiments are performed on an Nvidia Quadro RTX 8000 GPU with 48GB of VRAM.

3.4 Boundary evaluation

We conducted a comparison of the boundary detection between our proposed method with different
values of the hyper-parameter α and state-of-art methods including 3D U-Net [3] and clDice [14]
from the voxel-wise point of view. To do that, we evaluate the precision/recall curves at different
threshold levels of the predicted boundary probability maps. The best performances on the LRP and
Ovule datasets are illustrated in Fig. 3. At a glance, our proposed method outperforms the 3D U-Net
on both datasets across different values of α. Compared to the clDice method, our method achieves
better performance on the LRP dataset and comparable results on the Ovule dataset. In conclusion,
our proposed method, which is intently designed to improve the topology for image segmentation,
also ameliorates the performance of boundary detection. It is worth noting that when α increases,
the boundary detection performance slightly decreases. It is because the CavityLoss focuses on the
topology which can generate some noises on the segmentation image.

3.5 Segmentation evaluation

This section focuses only on the evaluation of the segmentation of tissues into cells between our
method and state-of-the-art methods. To evaluate fairly when analyzing the strength of every method,
we do not use any post-processing procedure (except thresholding the prediction at 0.5). We then use
the Adapted Rand error (ARand) for the overall segmentation quality between different segmentation
methods. The quantitative results are summarized in Tab. 1. Our first observation is that our proposed
method achieves extremely high results for maintaining the topology of the image segmentation
compared to 3D U-Net and clDice. For example, with the value of α equal to 50, our method
improves -0.3199 in ARand (in LRP dataset) and -0.093 in ARand (in Ovule dataset) compared to 3D
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Table 1: Quantitative results for different methods on Ovule and lateral root primordia (LRP) datasets.
The best score in each metric is in bold.

Datasets Methods IoU↑ Precision↑ Recall↑ Fscore↑ ARand↓
LRP UNet3D [3] 0.5611 0.7000 0.7338 0.7155 0.5078

clDice [14] 0.5626 0.7175 0.7175 0.7164 0.5118
CavityLoss, α = 10 0.5724 0.7097 0.7427 0.7250 0.4347
CavityLoss, α = 20 0.5713 0.7035 0.7476 0.7241 0.3268
CavityLoss, α = 50 0.5656 0.6827 0.7623 0.7195 0.1879
CavityLoss, α = 100 0.5565 0.6550 0.7685 0.7160 0.1224

Ovule UNet3D [3] 0.7039 0.7587 0.9102 0.8235 0.3928
clDice [14] 0.7152 0.7704 0.9106 0.8308 0.4191
CavityLoss, α = 10 0.7178 0.7763 0.9068 0.8327 0.3340
CavityLoss, α = 20 0.7127 0.7656 0.9139 0.8293 0.3154
CavityLoss, α = 50 0.7057 0.7618 0.9078 0.8244 0.2998
CavityLoss, α = 100 0.6985 0.7445 0.9204 0.8192 0.3152

(a) Raw (b) GT (c) U-Net (d) clDice (e) Ours

Figure 4: Qualitative results between state-of-the-art and our proposed method. (a,b) The original
images and their ground truths, (c-e) segmentation results of U-Net, clDice, and CavityLoss with α
equals to 50. The topological errors are highlighted in the red rectangles.

U-Net method. The second observation is that the clDice method improves the boundary detection
compared to 3D U-Net for voxel-wise evaluations such as IoU, Precision, and F-score , but can not
fix the cavity problem on the 3D segmentation. Lastly, we observe the impact of the hyper-parameter
α on the segmentation results. The segmentation scores ARand decrease (which is better) when we
increase the value of α, but it also decreases slightly the voxel-wise evaluation. This can be explained
by the fact that our method focuses only on the topology of the image, in particular, the cavities in
the predicted segmentation. When the value of α is too big, our CavityLoss dominates the BCE-Dice
Loss, thereby generating some false positive noises on the segmentation results.

Fig. 4 illustrates the qualitative results of our proposed method with α equal to 50 compared to
other state-of-the-art methods. Our method which combines the voxel-wise BCE-Dice and the
CavityLoss is able to fix the broken connection problem highlighted by the red rectangles. These
broken connections are because of the quality of the image ( blur and noises) and also the fine-scale
structure and thin connections. Our method leverages the efficiency of mathematical morphology
to provide topological information, thereby accurately detecting the leakages on the boundary, thus
regulating the network behavior. As a result, our method produces more accurate image segmentation
and maintains the consistency of the boundary of the cell on both fixed and live datasets. Fig. 5 shows
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(a) 3D reconstruction of the ovule primordia. The middle images show the front and inside
views of the individual label of the ovule primordia.

(b) 3D reconstruction of the lateral root

Figure 5: 3D reconstruction images of the cell of plant tissues using our proposed method on ovule
development and lateral root datasets. An example of 3D individual label of the ovule primordia.

the ovule development using confocal laser scanning microscopy and the lateral root in Arabidopsis
thaliana. The 3D images are reconstructed from the segmentation of our method. Our method
correctly segments the plant tissues into cells, which is important for the downstream analysis.

4 Conclusion

In this paper, we propose a simple-yet-effective topology-aware method for the correct segmentation
of 3D plant tissues into cells. Our method relies on networks and especially we propose a way to
train the network to detect topological issues during the learning phase, in order to focus on these
errors and help the network to fix them. To do so, we introduce the CavityLoss which leverages the
efficiency of the mathematical morphology to extract the topological information for regulating the
training process of the network. By using the well-known watershed algorithm, we are able to detect
the broken connections in the boundary prediction and recover the closeness image segmentation.
For the experiments, we used the 3D U-Net but our CavityLoss can be used with any other network
able to segment 3D images.

Experimenting results on the 3D ovule and lateral root datasets show that our method outperforms
the state-of-the-art methods for preserving the topology of the image and also maintaining the voxel
connectivities on the boundary of cells. In the future, we will extend our method to different plant
and animal organs. Furthermore, we would design a Topology-Layer in the network to directly learn
the structural representation.
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