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ABSTRACT

Videos of humans performing tasks are a promising data source for robotic manip-
ulation because they are easy to collect in a wide range of scenarios and thus have
the potential to significantly expand the generalization capabilities of vision-based
robotic manipulators. Prior approaches to learning from human video demonstra-
tions typically use third-person or egocentric data, but a central challenge that
must be overcome there is the domain shift caused by the difference in appear-
ance between human and robot morphologies. In this work, we largely reduce this
domain gap by collecting hand-centric human video data (i.e., videos captured
by a human demonstrator wearing a camera on their arm). To further close the
gap, we simply crop out a portion of every visual observation such that the hand
is no longer visible. We propose a framework for broadening the generalization
of deep robotic imitation learning policies by incorporating unlabeled data in this
format—without needing to employ any domain adaptation method, as the human
embodiment is not visible in the frame. On a suite of six real robot manipula-
tion tasks, our method substantially improves the generalization performance of
manipulation policies acting on hand-centric image observations. Moreover, our
method enables robots to generalize to both new environment configurations and
new tasks that are unseen in the expert robot imitation data.
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Figure 1: We incorporate diverse hand-centric human video demonstrations to train a behavioral cloning policy
that can generalize to new environments and new tasks outside the distribution of expert robot imitation data.
Images are cropped to close the domain gap between the human and robot observations. Action labels for
human video demonstrations are inferred by an inverse dynamics model that is trained only on robot play data.

1 INTRODUCTION

Videos of humans completing tasks can be a beneficial data source in the context of robotic manip-
ulation. First, they eliminate the need to relocate large robotic hardware to varied settings. Second,
they lessen the amount of inevitable wear-and-tear that robotic systems accumulate over time. Third,
they allow robot learning practitioners to avoid data collection methods such as kinesthetic teaching
or robotic teleoperation, which can be physically demanding or involve special tools that require
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skill and training to use, such as virtual reality headsets (Zhang et al., 2018) and joystick controllers
(Jonnavittula & Losey, 2022). The key consequence of these advantages is the relative ease of
amassing a broad set of diverse human video demonstrations that can be leveraged to improve the
generalization capabilities of vision-based robotic manipulation policies. This potential is particu-
larly enticing because vision-based policies are typically brittle against real-world variation, such as
changes in the background, lighting, and object appearances (Julian et al., 2020). However, a cen-
tral challenge in learning from human video demonstrations is the difference in appearance between
human and robot arms and bodies, which creates a distribution shift that must be accounted for.

Prior works in learning from human video demonstrations have aimed to mitigate this domain gap
by taking explicit domain adaptation approaches such as human-to-robot image translation (Liu
et al., 2018; Smith et al., 2019; Li et al., 2021; Xiong et al., 2021); learning domain-invariant visual
representations or reward functions (Yu et al., 2018; Yang et al., 2019; Schmeckpeper et al., 2020;
Zhou et al., 2021; Zakka et al., 2022); and leveraging keypoint representations of human and robot
states (Das et al., 2020; Xiong et al., 2021). While these works have made progress in training
robotic policies from human demonstrations, limitations and difficulties arising from the human-
robot domain gap still remain. For example, certain explicit domain adaptation approaches suffer
conspicuous visual artifacts when translating human images to robot images (Smith et al., 2019).

One common thread in the aforementioned works is that they operate from a third-person camera
perspective, where stark differences in human and robot morphologies cause a prominent distribu-
tion shift. In this work, we significantly reduce the domain gap between human and robot data by
leveraging hand-centric videos (i.e., clips captured by a wrist-mounted camera), taking the arm and
body out of the picture. In the human domain, this involves a demonstrator wearing a camera on
their forearm and completing a task with their hand—a process that is quicker and less taxing than
kinesthetic teaching and robotic teleoperation. To further close the gap, we crop out a fixed portion
of every image observation such that the hand or end-effector is no longer visible, leaving just the
environment and objects in view. As a result, we eliminate the need to employ any domain adap-
tation method and are able to perform end-to-end learning of vision-based manipulation policies
directly from human video data, where the actions are inferred by an inverse dynamics model.

The main contribution of this work is the study of a simple, novel method for incorporating di-
verse hand-centric human video demonstrations that allows a practitioner to improve upon policies
trained solely on narrow expert robot demonstrations, while bypassing explicit domain adaptation
approaches entirely. Across several real-world robotic manipulation tasks, such as reaching, grasp-
ing, pick-and-place, cube stacking, and plate clearing, we observe that our method leads to signifi-
cant improvements in generalization performance. Our policies generalize to both new environments
and new tasks that are outside the distribution of expert robot imitation data. We release the datasets
we collect to train the inverse models and imitation learning policies on our project website.

2 RELATED WORK

Imitation learning is a powerful paradigm for training an agent to complete a task by learning a
mapping between observations and actions. Traditional approaches to robotic imitation assume
access to expert demonstrations collected from the robot’s observation and action spaces (Hayes
& Demiris, 1994; Atkeson & Schaal, 1997; Argall et al., 2009; Osa et al., 2018). Since collecting
expert trajectories with a real robot can be expensive, physically demanding, or require special
teleoperation equipment and training (Zhang et al., 2018; Mandlekar et al., 2020), we study the
setting of training robotic agents to complete tasks by watching videos of a human demonstrator.
One central challenge in this setting is the distribution shift caused by apparent visual differences
between human and robot arms and bodies.

Past works have addressed this distribution shift in various ways. Some have employed explicit
domain adaptation techniques such as human-to-robot context translation (Liu et al., 2018; Sharma
et al., 2019) and pixel-level image translation (Smith et al., 2019; Li et al., 2021; Xiong et al., 2021),
commonly using generative models like CycleGAN which can learn mappings between domains
given unpaired data (Zhu et al., 2017). Other works have explicitly specified the correspondences
between human and robot embodiments and behaviors by, e.g., employing pose and object detection
techniques inspired by computer vision research (Yang et al., 2015; Nguyen et al., 2018; Ramirez-
Amaro et al., 2017; Kumar et al., 2022) and learning keypoint-based state representations of human
and robot observations (Das et al., 2020; Xiong et al., 2021). Some have taken a more implicit
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approach and sought to learn domain-invariant visual representations or reward functions that are
useful for learning to solve downstream tasks (Sermanet et al., 2016; 2018; Yu et al., 2018; Yang
et al., 2019; Mees et al., 2020; Schmeckpeper et al., 2020; Chen et al., 2021; Zhou et al., 2021;
Nair et al., 2022; Zakka et al., 2022). Yet another class of works used robotic end-effectors more
closely resembling the human hand (e.g., Allegro Hand) to train dexterous manipulation policies via
hand pose estimation and kinematic retargeting (Handa et al., 2020; Qin et al., 2021; Arunachalam
et al., 2022; Sivakumar et al., 2022; Qin et al., 2022). In contrast to most of these works, we avoid
the need to apply any explicit domain adaptation or human-robot correspondence tracking method
by utilizing hand-centric visual data in which the human or robot embodiment is not visible in the
demonstrations. We also train policies that can generalize to new settings and tasks without having
to learn intermediate representations or reward functions. Further, we use a parallel-jaw robotic
end-effector despite it being visually and kinematically dissimilar to the human hand.

One key advantage of our approach in using hand-centric human video demonstrations is the ease
of collecting data in a wide range of scenarios, making it easier and quicker to gather visually
and behaviorally diverse demonstrations. Related prior works that also pursued this objective are
Young et al. (2020) and Song et al. (2020), which amassed diverse data using “reacher-grabber”
tools. To minimize domain shift, these tools were attached to the ends of robot arms or engineered
to closely resemble real parallel-jaw end-effectors. In contrast, we collect demonstrations with the
human hand, which is faster and more flexible than a reacher-grabber tool, and test our policies di-
rectly on a robot with a structurally dissimilar gripper. Further, our lightweight hand-centric camera
configuration for human demonstrations is simple to assemble and has nearly zero cost (aside from
purchasing the camera itself), while the reacher-grabber tool proposed by Song et al. (2020) requires
more sophisticated assembly and costs approximately $600 USD.

3 PRELIMINARIES

Observation and action spaces. The observation spaces of the robot and human, Or and Oh

respectively, consist of hand-centric RGB image observations or ∈ Or, oh ∈ Oh. The robot’s
action space Ar has four dimensions, consisting of 3-DoF end-effector position control and 1-DoF
gripper control. We assume that the human’s action space Ah is the same as the robot’s: Ah = Ar.

Problem definition. Our objective is to train an imitation learning policy using a dataset that com-
bines broad hand-centric human video data with narrow robot demonstrations. By incorporating
broad human video data, our goal is for the policy to generalize better than one that is trained solely
on the robot dataset. While broad data can improve generalization along a number of axes, we
specifically aim to improve performance in terms of environment generalization and task general-
ization. We define environment generalization as the ability to execute a learned manipulation
task in a new environment outside the distribution of expert robot imitation data. We define task
generalization as the ability to execute a new, typically long-horizon task when the expert robot
demonstrations only perform an easier, shorter-horizon task.

To achieve each type of generalization, we train a policy on narrow expert robot demonstrations from
one environment and task and more diverse human demonstrations that cover a broader distribution
of environments or tasks. For instance, consider the task of grasping a cube in the environment
generalization setting. Here, the robot demonstrations might perform cube grasping in only one
environment, while the human demonstrations perform it in various environments. The goal would
be to have the robot generalize to the environments covered by the human demonstrations. Now
consider the task of cube pick-and-place in the task generalization setting. Here, the robot demon-
strations might perform cube grasping, while the human demonstrations perform pick-and-place,
which is a more difficult and longer-horizon task than grasping. The goal would be to have the robot
learn to successfully execute pick-and-place even though the task was never demonstrated in the
expert robot demonstrations.

4 LEARNING FROM HAND-CENTRIC HUMAN VIDEO DEMONSTRATIONS

We address the problem of improving the generalization of robotic manipulation policies by leverag-
ing unlabeled human video demonstrations captured from a hand-centric camera perspective. In this
section, we discuss each module of our overall framework (Figure 1). We first collect hand-centric
human demonstrations of a task with a simple low-cost setup (Section 4.1). We then label the hu-
man video demonstrations with actions using an inverse dynamics model trained on robot “play”
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data (Section 4.2). Afterwards, we utilize the human demonstrations to train generalizable imitation
learning policies (Section 4.3).

4.1 HAND-CENTRIC VIDEO DATA COLLECTION

Data collection setup. Prior approaches to visual imitation from human demonstrations typically
use videos collected from the third-person or egocentric camera perspective, which exhibit a sub-
stantial distribution shift caused by visual differences between human and robot morphologies. We
instead propose to use the hand-centric camera perspective to mitigate this domain gap. As shown in
Figure 2, we secure an RGB camera to a human demonstrator’s forearm via two rubber bands, and
the demonstrator is immediately ready to collect demonstration videos for completing a task. While
more secure ways of fastening the camera exist, we find that this simple configuration is sufficient
for our purposes and only takes a few seconds to prepare. For the robot domain, the same camera is
mounted onto a Franka Emika Panda robot arm via an L-bracket assemblage (see Figure 2). We use
a virtual reality controller (Oculus Quest) to teleoperate the robot while collecting play data for the
inverse dynamics model (Section 4.2) and expert demonstrations for the imitation learning policy
(Section 4.3). Sample images captured by the hand-centric cameras are shown in Figure 3.

Figure 2: Human and robot hand-centric camera configura-
tions. Fastening a USB camera on a human arm only involves
two rubber bands. Mounting a camera on a Franka Emika
Panda robot arm involves L-brackets, washers, and screws.

human robot

Figure 3: Sample image observations
captured by the hand-centric human
and robot cameras. We crop the top
36% of every image1in both domains.

Cropping out the hand and end-effector. To further close the domain gap between the human
and robot domains, we propose masking a fixed region of all image observations oh, or captured
by the hand-centric human and robot cameras to hide the agent’s embodiment. Specifically, we
capture images of size 100× 100 and zero out the top 36 rows of pixels with a script, removing the
human hand and robotic end-effector from the images entirely; we denote the resulting human and
robot observations as ōh, ōr, respectively. This transformation is shown in the middle two columns
of Figure 3. We train the inverse dynamics models and imitation learning policies (discussed in
subsequent sections) solely on images that are cropped in this manner so that we can directly utilize
diverse human demonstration data, while avoiding the need to perform explicit domain adaptation.

At first glance, it may seem impossible to learn with ōh, ōr given that the hand or end-effector is
not visible. However, we observe that inverse models trained on data in this format can reasonably
infer environment dynamics nonetheless due to the presence of certain visual cues. For example, the
grasping and lifting of an object can be inferred even when the gripper is not visible due to visual
signals such as the object “locking” into place as it is secured in the hand, the object beginning
to levitate, shadows forming underneath the object, and neighboring objects shrinking in size in the
hand-centric camera’s field of view. Similarly, imitation learning policies can also succeed at various
tasks without seeing the hand or end-effector in the frame after slightly modifying the policies’
inputs (see Section 4.3 for details). Nonetheless, cropping the image does place some limitations on
the tasks that can be performed, which we discuss further in Section 6.

4.2 ACTION LABELING OF HUMAN VIDEO DEMONSTRATIONS VIA INVERSE DYNAMICS

Suppose that we have collected a visually diverse set of hand-centric expert human video demon-
strations for completing a given manipulation task, Dh

exp = {ōht }1...M , where M is the total number

1Note that due to the image cropping, the human demonstrator is not required to shape their hand such that it
is visually similar to a parallel-jaw robotic gripper. For instance, their fingers can be splayed out when reaching
and grasping objects, as shown in the upper-left image of Figure 3, as long as the human actions correspond to
actions that are physically possible on the robot.
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of timesteps. Since human video demonstrations only contain sequences of images and lack the ac-
tions taken by the human demonstrator to move between states, we cannot train an imitation learning
policy on this dataset until we generate action labels for the demonstrations. The inverse dynamics
model serves this precise purpose: Given image observations ōht and ōht+1 at timesteps t and t + 1,
the inverse model predicts the action at giving rise to the change in observations (Nair et al., 2017;
Sharma et al., 2019; Wang et al., 2019; Schmeckpeper et al., 2020; Li et al., 2021). See Appendix
A.1.1 for details on the inverse model architecture.

Robot play data. An inverse model can be trained in a variety of ways. Importantly, it needs to
be trained on data with sufficient diversity such that it can make accurate predictions on diverse
human demonstration data. In this paper, we choose to train the inverse model using visually and
behaviorally diverse task-agnostic robot “play” data that is collected in a similar manner as Lynch
et al. (2020). To gather play data, a human teleoperator controlling a Franka Emika Panda robot arm
executes a diverse repertoire of behaviors in an environment, exploring the observation and action
spaces while interacting with objects in the scene. For example, in an environment containing two
cubes, the teleoperator may wave the robotic end-effector around, reach towards a cube, grasp and
lift up a cube, release and drop the cube, stack one cube on top of the other, and so on. The con-
tinuous sequences of observations captured by the hand-centric camera and the actions commanded
by the teleoperator are logged and stored into a replay buffer Dr

play for inverse model training. See
Appendix A.3.1 and the project website for examples of play datasets.

The key advantage of using play data is that it is easy to collect meaningful interaction data in large
quantities (Lynch et al., 2020) due to the following:

• There is no need to perform frequent resets of the manipulator and objects to some initial state
(which is often necessary when collecting expert demonstrations).

• There is no notion of maximum episode length or time limit (allowing a teleoperator to execute
a variety of behaviors in a single contiguous stretch of time, pausing only when desired).

• The human teleoperator’s knowledge of object affordances leads to interesting interactions with
objects (as opposed to a script that executes purely random actions, which leads to slower ex-
ploration of the interaction space unless the data collection process is manually biased towards
more meaningful interactions, as in Nair et al. (2017)).

• The play behaviors do not have to solve any particular task (which makes it easier to collect play
data than expert task-aware demonstrations).

As a result, we can quickly collect a play dataset for a given environment, or set of environments,
that is sufficient for training the inverse dynamics model. In addition, a single play dataset could in
principle be used to acquire an inverse model that is reused for many different downstream tasks,
effectively amortizing the cost of collecting it.

Inverse dynamics model training. After collecting robot play data in a given environment, we now
have labeled observation-action-next-observation transitions (ōrt , a

r
t , ō

r
t+1) ∈ Dr

play. The inverse
model, parameterized by θ, takes as input (ōrt , ō

r
t+1) and outputs a prediction ârt = fθ(ō

r
t , ō

r
t+1).

We optimize the parameters θ to minimize the L1 difference between ârt and art for K transitions
sampled from the play dataset, using stochastic gradient descent:

L(ârt , art ; θ)1...K =

K∑
t=1

||ârt − art ||1.

Labeling human video demonstrations. Once we have trained an inverse model, we run it on all
pairs of observations in the expert human demonstration dataset, (ōht , ō

h
t+1) ∈ Dh

exp, to automatically
generate action labels for the demonstrations. We then have a labeled set of human observation-
action pairs, which we denote as D̂h

exp = {(ōht , âht )}1...M , where M is the total number of such
pairs. We use this dataset to train an imitation learning policy, as described in the next section.

4.3 IMITATION LEARNING WITH HUMAN AND ROBOT DEMONSTRATION VIDEOS

Behavioral cloning. Given a dataset of human video demonstrations with inferred action labels
D̂h

exp = {(ōht , âht )1...M}, we train a robotic manipulation policy via behavioral cloning, a supervised
learning approach to robotic imitation that learns a mapping between observations encountered by
an expert demonstrator and their corresponding actions (Bain & Sammut, 1995). In this case, we
treat actions âht inferred by the inverse model as “ground truth” labels for the demonstrator’s actions.
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The behavioral cloning policy πϕ takes as input an RGB image observation ōht and outputs an action
ãht to best match âht . We minimize the negative log-likelihood of the predictions to find the optimal
policy parameters ϕ∗, using stochastic gradient descent to train the model:

ϕ∗ = arg minϕ −
M∑
t=1

log πϕ(ã
h
t |ōt).

Conditioning behavioral cloning policy on grasp state. We modify the behavioral cloning pol-
icy to be conditioned on an additional binary variable sht representing the grasp state at time t
(open/closed). This variable provides proprioceptive information about the manipulator that was
removed from the image observations by the image cropping scheme discussed in Section 4.1; with-
out knowing the grasp state, the policy may not be able to discern whether it has already grasped an
object and could fail to exit a loop where it continuously attempts to grasp rather than proceeding to
complete the task. We automatically estimate sht by setting it as the prior timestep’s grasping action,
which is inferred by the inverse model when labeling human video demonstrations with actions.
We then concatenate sht to the latent image embedding and feed the result into the policy network
(see Appendix A.1.2 for model architecture details). The resulting policy is πϕ(ã

h
t |ōht , sht ), and we

optimize ϕ as described before.

Generalizing beyond narrow robot demonstrations. As discussed in Section 3, we collect and
train a behavioral cloning policy on a narrow set of expert robot demonstrations and a broader set
of human demonstrations with the goal of generalizing to the environments or tasks covered by the
human data. The final objective, given N robot samples and M human samples, is to find

ϕ∗ = arg minϕ −
N∑
t=1

log πϕ(ã
r
t |ōrt , srt )−

M∑
t=1

log πϕ(ã
h
t |ōht , sht ).

5 EXPERIMENTS

We execute a set of experiments to study whether our framework for incorporating broad hand-
centric human video demonstrations can be used to improve the generalization capabilities of a
behavioral cloning policy. We focus specifically on environment generalization and task generaliza-
tion, as defined in Section 3. First, to assess environment generalization, we test whether training
a behavioral cloning policy on an additional dataset of visually diverse human video demonstra-
tions enables it to generalize to new environments more effectively than training on narrow robot
data alone. Second, to assess task generalization, we study whether leveraging additional human
demonstrations of complex behaviors enables a behavioral cloning policy to generalize to a new,
long-horizon task outside the distribution of expert robot demonstrations. Third, we ablate key
components of our framework, such as cropping the agent’s embodiment out of the image observa-
tions and conditioning the behavioral cloning policy on grasp state, to study their contributions to
the final performance.

5.1 EXPERIMENTAL SETUP

As it is difficult to generate realistic human data in simulation, we perform all experiments in the
real world. As described in Section 4.1, a human demonstrator collects hand-centric human video
demonstrations, and a teleoperator controls a Franka Emika Panda robot arm to collect all robot play
data and expert robot video demonstrations. All observations oh ∈ Oh, or ∈ Or are RGB images of
shape (3, H,W ), where H = W = 100. Pixel values of raw images range between [0, 255], but we
normalize them to lie between [−0.5, 0.5]. As discussed in Section 3, we assume the same action
space for both the human and robot: 3-DoF position control and 1-DoF gripper control. Each of
the three position control actions is a continuous value ranging between [−1, 1], while the gripper
action is a binary value (−1: close, 1: open).

5.2 ENVIRONMENT GENERALIZATION EXPERIMENTS

Recall that environment generalization (Section 3) is the ability to complete a learned manipulation
task in a new environment lying outside the distribution of expert robot imitation data.

Tasks. When assessing environment generalization, the tasks we test on include reaching a red cube
in the presence of different distractor objects, grasping a red cube placed on various environment
backgrounds, and clearing different target objects off of a plate. See Figure 4 for a visualization of
these tasks and Appendix A.2 for details about each task.
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Figure 4: Tasks used for environment generalization experiments. Expert robot demonstrations are collected
only in the environment configurations highlighted in pink, while expert human demonstrations are collected
in the configurations highlighted in blue.

Table 1: Aggregate environment generalization and task generalization results. Behavioral cloning policies are
trained on only expert robot demonstrations (“robot”), expert robot demonstrations and robot play data (“robot
+ play”), or expert robot and human demonstrations (“robot + human”). The policies are evaluated against
environment configurations and tasks not seen in the expert robot demonstrations. Overall, incorporating the
human data leads to significantly higher environment and task generalization performance than the other two
methods. The average success rates and their 95% confidence intervals are computed by aggregating the results
across all tasks and environment configurations in Table 3, and all tasks in Table 4.

environment generalization task generalization

success rate (%) 95% CI success rate (%) 95% CI

robot 2.50 [0.00, 6.02] 0.00 [0.00, 0.00]
robot + play 21.67 [17.61, 25.73] 6.67 [3.40, 9.93]
robot + human (ours) 61.67 [49.40,73.93] 63.33 [51.56,75.11]

Datasets. For each task, we collect narrow expert robot demonstrations and visually diverse ex-
pert human demonstrations. For example, for the cube grasping task, the robot demonstrations are
collected from one environment, while the human demonstrations are collected from multiple en-
vironments with different backgrounds. We also collect a robot play dataset for an inverse model
that is shared with a task generalization experiment involving similar objects. See Appendix A.3 for
details on all expert demonstration datasets and robot play datasets.

Methods to compare. As our objective is to study whether incorporating additional diverse human
demonstrations achieves increased environment generalization, we compare a behavioral cloning
policy trained on both human and robot demonstrations against a baseline policy trained only on
robot demonstrations. In addition, to assess whether any improvements in generalization are simply
correlated to the increase in dataset size, we also compare against a behavioral cloning policy trained
on both expert robot demonstrations and robot play data, as the play datasets are larger than the hu-
man demonstration datasets. All policies are trained from scratch, with data points being uniformly
sampled from each combined dataset.

Results. Results for the environment generalization experiments are shown in the left half of Table
1. We observe that we can directly incorporate diverse human video demonstrations into policy
training to achieve a significant increase in generalization. The policy is able to generalize to new
environment configurations outside the distribution of expert robot demonstrations (see fine-grained
results in Table 3). To our knowledge, this marks the first time that a real robot policy has been
successfully trained end-to-end on hand-centric human demonstrations. On the other hand, in many
cases, the policy trained only on a limited set of robot demonstrations fails completely, as shown in
Figure 6(c), since the novel out-of-distribution stimuli confuse the policy. In addition, we see that
a policy also trained on the full play dataset, which is larger than the set of human demonstrations,
does not perform as well as one trained on the human demonstrations, verifying that the increase in
generalization performance is not simply a function of training dataset size. Videos of the learned
policies are available on our project website.

5.3 TASK GENERALIZATION EXPERIMENTS

Recall that task generalization (Section 3) is the ability to complete a new, typically long-horizon
task outside the distribution of expert robot demonstrations, which may only perform a simpler,
short-horizon task.

Tasks. To assess task generalization, the longer-horizon tasks we test on include stacking a red cube
on top of a blue cube, picking-and-placing a red cube onto a green plate, and clearing a green sponge
from a plate. See Figure 5 for a visualization of these tasks.
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cube stacking cube pick-and-place plate clearing

Figure 5: Tasks used in task generalization experiments. Expert robot demonstrations perform an easier,
shorter-horizon task, such as grasping (highlighted in pink); expert human demonstrations either perform the
full long-horizon task or portions of the task that are missing in the robot demonstrations (highlighted in blue).

(a)

(b)

(c)

Figure 6: Sample behavioral cloning policy rollouts on the cube grasping environment generalization task.
Here, the policies are trained on (a) both robot and human demonstrations, (b) both robot and human demon-
strations but without conditioning the policy on grasp state, or (c) only robot demonstrations. Green indicates
success; red indicates failure. In (b), the robot does not realize that it has already grasped the cube and repeat-
edly reattempts to do so, ultimately failing to lift the object. In (c), the robot fails to even reach the cube, as the
novel visual stimuli confuse the policy.

Datasets. As in Section 5.2, we collect expert robot demonstrations, human demonstrations, and
shared robot play data. The robot demonstrations perform a simple task (e.g., cube grasping), and
the human demonstrations perform one of the more difficult, longer-horizon tasks above (e.g., cube
stacking). Appendix A.3 gives the full details on all datasets used in the experiments.

Methods to compare. We evaluate the task generalization of the same three behavioral cloning
policies discussed in Section 5.2.

Results. As shown in the right half of Table 1, training the behavioral cloning policy on the hand-
centric human video demonstrations substantially improves the policy’s task generalization perfor-
mance compared to using robot data alone. Intuitively, a policy trained on robot demonstrations that
never perform the desired long-horizon task is incapable of performing the task at test time. On the
other hand, a policy that is also trained on robot play data can occasionally execute the desired task
since the play dataset contains a collection of behaviors, some of which can be useful for solving
the task. However, as the play dataset is task-agnostic, the behavioral cloning policy often struggles
to learn one fluid sequence of actions for solving a specific long-horizon task.

5.4 ABLATION EXPERIMENTS

In the next few experiments, we ablate some key components of our framework to observe the
effects that they have on the final generalization performance. We test the resulting policies on one
representative task from the environment generalization setting (cube grasping) and another from
the task generalization setting (plate clearing).
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Table 2: Ablation experiments results. We observe that removing either the image cropping or grasp state
conditioning generally leads to greatly reduced success rates, validating their important contributions to the
final generalization performance. Success rates are aggregated from the finer-grained results in Table 5.

success rate (%) 95% CI

original method 54.29 [39.56,69.01]
no image crop 24.29 [6.21, 42.36]
no grasp state 28.57 [9.72, 47.42]

Training on uncropped images. In the previous experiments, we used the image cropping scheme
discussed in Section 4.1 for all observations. Now we remove this cropping transformation entirely
to assess whether it is an important component of our framework for leveraging hand-centric human
demonstrations to improve generalization. Given uncropped robot play data where the end-effector
is now visible, we train an inverse model to predict the dynamics and use the model to infer action
labels for uncroppped human demonstrations, regardless of the domain shift caused by apparent
visual differences between human hand and robotic gripper. We train a behavioral cloning policy on
uncropped versions of the expert robot and human demonstrations used in our previous experiments,
and we compare this policy against the policy trained according to our original framework.

Behavioral cloning without conditioning on grasp state. In a separate ablation, we modify the
behavioral cloning policy such that it is no longer conditioned on the binary (open/close) grasp state.
We reuse the expert robot and human demonstrations from the previous experiments and simply train
a new behavioral cloning policy without the grasp state conditioning. We compare this policy against
our original conditioned behavioral cloning policy.

Results. A summary of the ablation results are shown in Table 2 (detailed results are shown in
Table 5). We generally observe reduced generalization from removing the image cropping scheme
and the grasp state conditioning. Qualitatively, the policy often fails to even reach the target object
in several cases when using uncropped images; we attribute this to the distribution shift between
human and robot observations, leading to inaccurate action predictions from the inverse model.
When not conditioning on grasp state, a common failure mode we observe in the cube grasping task
is the repeated attempts to grasp the cube rather than lifting it, as the robot does not know that it
has already secured the object. An illustration of this behavior is shown in Figure 6(b). Overall,
these results indicate that both components of our approach are important to successfully leverage
hand-centric human video demonstrations.

6 CONCLUSION

This work presents a novel yet simple framework for leveraging diverse hand-centric human video
demonstrations and displays its potential to expand the generalization capabilities of vision-based
manipulators. We utilize the hand-centric camera perspective and an image cropping scheme to
largely close the domain gap between human and robot data and bypass explicit domain adaptation
entirely. Our experiments show that our framework enables an imitation learning policy to generalize
to new environments and new tasks that lie outside the distribution of expert robot demonstrations.

Limitations and future work. In our framework, we assume that the human hand and robotic end-
effector share the same action space, constraining human demonstrations to only perform actions
that are possible on a real robot. For example, we expect the approach to perform poorly if the human
performs dexterous in-hand manipulation. Our proposal to crop images such that the embodiment is
not visible introduces some limitations as well. For example, if a target object is small enough that
it does not appear in the uncropped portion of the image, it may be difficult for the inverse model to
infer actions that manipulate the object due to a dearth of sufficient visual cues. Relatedly, actions
that do not have any visual effect on objects in the scene (e.g., grasping nothing while the gripper is
in mid-air) may be impossible to infer by the inverse model. However, this should not be an issue
for most downstream use-cases, as the only actions that have significance when learning a policy
are those that have some effect on the agent’s environment. Lastly, our method involves collecting a
robot play dataset via teleoperation to train the inverse model. While this process is inexpensive, as
discussed in Section 4.2, in the future we hope to automate play data collection nonetheless, e.g., by
training a behavioral cloning policy on a small play dataset and sampling actions during inference
to encourage exploration, as done in Dinyari et al. (2020).
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REPRODUCIBILITY STATEMENT

We discuss in detail our model architectures (Appendix A.1), robotic manipulation tasks (Appendix
A.2), and play datasets and expert robot and human demonstration datasets (Appendix A.3) to pro-
mote the reproducibility of our work. We also plan to release the play datasets and expert robot
and human demonstration datasets we collected on our project website upon publication. Code that
interfaces with the real robot is specific to our hardware and network setup; therefore, we plan to
release parts of our code that would be compatible with other platforms, also on our project website.
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A APPENDIX

A.1 MODEL ARCHITECTURES

In this section, we discuss model architecture details. We implement and train all models using
PyTorch (Paszke et al., 2019).

A.1.1 INVERSE DYNAMICS MODEL ARCHITECTURE

The inverse dynamics model is a convolutional neural network with 4 convolutional layers followed
by 2 feedforward layers. Each convolutional and feedforward layer is followed by a batch normal-
ization layer and ReLU activation layer. For every convolutional layer, the number of convolutional
filters is 128, kernel size is 3, stride is 1 (except for the first layer, whose stride is 2), and padding
is 0. The latent embedding size of the second feedforward layer is 200. We use early fusion, i.e.,
two consecutive image observations are concatenated channel-wise and then fed into the first con-
volutional layer. The full network outputs a 4-DoF action prediction that takes the agent from one
observation to the next timestep’s observation.

We train every inverse model with random shifts data augmentation. For every pair of 100 × 100
image observations, we pad each side by 4 pixels and randomly crop a 100× 100 region out of the
result. The same augmentation is applied to both images in a given pair so as to not perturb the
original dynamics captured in the images. We only apply this augmentation with 80% probability,
as we found that the resulting model is as accurate as one trained with 100% probability, yet it trains
faster because it does not need to compute the augmentation 20 percent of the time.

A.1.2 BEHAVIORAL CLONING POLICY NETWORK ARCHITECTURE

The behavioral cloning policy network consists of an image encoder with mostly the same archi-
tecture as the inverse model, except that the number of convolutional filters per layer is 32, and the
hidden size of the second feedforward layer is 50. Unlike the inverse model, the policy network
acts on one image at a time rather than a pair. After the image encoder portion, the policy network
consists of an additional two feedforward layers (with a latent dimensionality of 64) representing the
policy head. Further, the policy is conditioned on a 1-dimensional grasp state variable as described
in Section 4.3; this variable is concatenated with the 50-dimensional latent embedding output by
the second feedforward layer of the image encoder, and the resulting 51-dimensional embedding is
passed on to the policy head, which outputs a 4-DoF action prediction that best imitates an expert
demonstrator’s action given some input observation.

As with the inverse model, we apply random shifts data augmentation while training the behavioral
cloning policy.

A.2 TASKS

In this section, we discuss the tasks introduced in Section 5 in more detail. The environment gener-
alization tasks include the following:

• reaching: The goal is to reach the end-effector towards the red cube. The environment contains
just the red cube, the red cube and a blue cube distractor, the red cube and a green sponge
distractor, or all three objects. Initial positions of the objects are randomized.

• cube grasping: The goal is to grasp the cube and lift it off the ground. The environment only
contains on object: the cube. The background can be one of seven: a plain white background,
rainbow floral texture, green floral texture, blue floral texture, orange plate, green plate, or blue
plate. The initial position of the cube is randomized.

• plate clearing: The goal is to grasp a target object resting on a plate, lift it up, transfer it to a
location off to the right of the plate, and release it. The target object is either a green sponge,
yellow sponge, blue towel, or pink towel. The initial position of the target object is randomized.

We now describe the task generalization tasks:

• cube stacking: The goal is to grasp the red cube, lift it up, and stack it on top of the blue cube.
Initial positions of the cubes are fixed relative to each other, but vary relative to the background,
which is a blue floral texture. Expert robot demonstrations perform cube grasping, while human
demonstrations perform full cube stacking or portions of the task that follow the grasping part.
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• cube pick-and-place: The goal is to grasp the red cube, lift it up, move it over to the green plate,
and release it onto the plate. The initial positions of the cube and plate are fixed relative to each
other, but vary relative to the background. Expert robot demonstrations perform cube grasping,
while human demonstrations perform full cube pick-and-place or portions of the task that follow
the grasping part.

• plate clearing: The goal is the same as described above for the plate clearing environment
generalization task. However, here we only manipulate one target object: the green sponge.
The initial position of the sponge is randomized. Expert robot demonstrations perform sponge
grasping, while human demonstrations perform full plate clearing or portions of the task that
follow the grasping part.

Please see our project website for further details and visualizations of data collected in these tasks
and environments.

A.3 DATASETS

A.3.1 ROBOT PLAY DATASETS

We collect three robot play datasets and train three corresponding inverse models. Each inverse
model is shared across one environment generalization experiment and one task generalization ex-
periment. We discuss the details of each play dataset below:

• reaching and cube stacking dataset: We collect 20, 000 timesteps of play data at 5 Hz (approx-
imately 67 minutes) in an environment with a blue floral background and 3 objects: a red cube, a
blue cube, and a green sponge. The play data behaviors include waving the end-effector around,
reaching towards each object, grasping and lifting up each object, releasing and dropping an ob-
ject, stacking an object on top of another, and so on. This play dataset is shared for the reaching
environment generalization and cube stacking task generalization tasks.

• cube grasping and cube pick-and-place dataset: We collect 51, 400 steps of play data at 5
Hz (approximately 171 minutes) in multiple environments containing a red cube, each having
a different background that the red cube rests on: a plain white background, rainbow floral
texture, green floral texture, blue floral texture, orange plate, green plate, or blue plate. The play
data behaviors include waving the end-effector around, reaching towards the cube, grasping and
lifting up the cube, releasing and dropping the cube, and so on. This play dataset is shared for
the cube grasping environment generalization and cube pick-and-place task generalization tasks.

• plate clearing environment generalization and task generalization dataset: We collect
20, 000 steps of play data at 5 Hz (approximately 67 minutes) in multiple environment con-
figurations, each containing a different target object: green sponge, yellow sponge, blue towel,
and pink towel. The play data behaviors include waving the end-effector around, reaching to-
wards the objects, grasping and lifting up the objects, releasing and dropping the objects, and
so on. This play dataset is shared for both plate clearing environment generalization and task
generalization experiments.

Please see our project website for visualizations of these play datasets. We also release the corre-
sponding dataset files on the website.

A.3.2 EXPERT DEMONSTRATION DATASETS

In each environment generalization or task generalization experiment, we collect a set of expert
robot demonstrations and a set of expert human demonstrations. Below we discuss details of the
datasets collected for each experiment. Please refer to Figure 4 and Figure 5 for a visualization of
the distribution of environments or tasks that the robot and human datasets are each collected from.
All demonstrations are collected at 5 Hz, as is done while collecting the play datasets.

• reaching (environment generalization): We collect 60 robot demonstrations with no distractor
objects and 100 human demonstrations with both the blue cube and green sponge as distractors.

• cube grasping (environment generalization): We collect 100 robot demonstrations only in
an environment with a plain white background and 20 human demonstrations from each of the
following environments: rainbow floral texture, green floral texture, blue floral texture, orange
plate, green plate, and blue plate.

• plate clearing (environment generalization): We collect 30 robot demonstrations with just the
green sponge as a target object and 20 human demonstrations with each of the following target
objects: yellow sponge, blue towel, and pink towel.
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• cube stacking (task generalization): We collect 25 robot demonstrations and 130 human
demonstrations. The robot demonstrations perform red cube grasping; the human demonstra-
tions perform the cube stacking (stack red cube onto blue cube) or portions of the task that
follow the grasping part. For this task, a majority of the human demonstrations do the latter and
are thus able to be collected very quickly.

• cube pick-and-place (task generalization): We collect 20 robot demonstrations and 70 human
demonstrations. The robot demonstrations perform cube grasping; the human demonstrations
perform cube pick-and-place (place cube onto plate) or portions of the task that follow the grasp-
ing part.

• plate clearing (task generalization): We collect 40 robot demonstrations and 25 human demon-
strations. The robot demonstrations perform sponge grasping; the human demonstrations per-
form plate clearing (remove sponge off of plate) or portions of the task that follow the grasping
part.

Please see our project website for visualizations of these expert demonstration datasets. We also
release the corresponding dataset files on the website.

A.4 DETAILED EXPERIMENTAL RESULTS

Below are the full experimental results that were aggregated to produce Table 1 and Table 2 in
Section 5. All success rates are evaluated over 10 trials, with initial object positions randomized or
fixed according to the configurations described in Appendix A.2. Please see our project website for
videos of the trained policies.

Table 3: Full environment generalization results. We compare three behavioral cloning policies, each trained
on a different set of hand-centric video data: only expert robot demonstrations (“robot”), expert robot demon-
strations and robot play data (“robot + play”), or expert robot and human demonstrations (“robot + human”).
For each task, the expert robot demonstrations are collected only in the italicized environment configuration
in the second column; play data and expert human demonstrations are collected in the configurations below
the dotted lines. Thus, the non-italicized environment configurations are out-of-distribution with respect to the
expert robot demonstrations. Overall, leveraging the hand-centric human demonstration data leads to signif-
icantly higher environment generalization performance than using the robot demonstration data alone. Each
success rate is computed over 10 test rollouts of the behavioral cloning policy.

success rate (%)
task environment configuration robot robot + play robot + human

reaching

no distractors (only red cube) 90 90 90
+ blue cube distractor 20 20 90
+ green sponge distractor 10 20 90
+ blue cube, green sponge distractors 0 20 80

cube grasping
white background 90 90 90
rainbow floral background 0 30 80
green floral background 0 20 60
blue floral background 0 30 60
cube on orange plate 0 20 40
cube on green plate 0 10 20
cube on blue plate 0 20 50

plate clearing

green sponge on plate 60 70 70
yellow sponge on plate 0 30 40
blue towel on plate 0 10 70
pink towel on plate 0 30 60

15

https://sites.google.com/view/hand-centric-human-videos
https://sites.google.com/view/hand-centric-human-videos


Under review as a conference paper at ICLR 2023

Table 4: Full task generalization results. We compare three behavioral cloning policies, each trained on a dif-
ferent set of hand-centric video data: only expert robot demonstrations (“robot”), expert robot demonstrations
and robot play data (“robot + play”), or expert robot and human demonstrations (“robot + human”). For each
experiment, the expert robot demonstrations are collected only for the italicized task in the second column;
expert human demonstrations are collected for the longer-horizon tasks below the dotted lines. Overall, lever-
aging the hand-centric human demonstration data allows the policies to generalize to tasks that are unseen in
the expert robot demonstrations. Each success rate is computed over 10 test rollouts of the behavioral cloning
policy.

success rate (%)
experiment task robot robot + play robot + human

1
cube grasping 90 90 90
cube stacking 0 10 40

2
cube grasping 90 100 90
cube pick-and-place 0 0 80

3
sponge grasping 100 100 100
clearing sponge from plate 0 10 70

Table 5: Full ablation experiments results. The policy trained on uncropped images fails drastically on the last
three environment configurations as it never reaches the cube. The policy that is not conditioned on grasp state
often encounters a failure mode in which it repeatedly reattempts to grasp an object even though it has already
grasped it. Such a failure mode occurs because the robot cannot see the end-effector. Each success rate is
computed over 10 test rollouts of the behavioral cloning policy.

environment generalization
success rate (%)

task environment configuration original no image cropping no grasp state

cube grasping
white background 90 40 90
rainbow floral background 80 60 50
green floral background 60 40 40
blue floral background 60 40 20
cube on orange plate 40 0 0
cube on green plate 20 0 10
cube on blue plate 50 0 10

task generalization
success rate (%)

experiment task original no image cropping no grasp state

1
sponge grasping 100 90 90
clearing sponge from plate 70 30 70
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