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ABSTRACT

Retrieval-augmented generation (RAG) equips large language models (LLMs)
with external evidence, yet even minor retrieval noise or adversarial edits can over-
ride parametric knowledge and trigger hallucinations. Prior work mainly denoises
contexts; far fewer methods explicitly balance internal memory with retrieved text.
We present IDEAL-RAG, a three-stage, instruction-driven framework that (i) elic-
its latent knowledge, (ii) forms independent standpoints from internal memory
and retrieved passages, and (iii) cross-checks them to produce a traceable ratio-
nale—without modifying retrievers or requiring additional labels. Across standard
open-domain QA settings, IDEAL-RAG matches strong baselines on clean re-
trieval and, under adversarial counterfactual contexts, improves exact-match by up
to +22.8% while roughly halving accuracy loss. Mechanistic analyses explain the
gains: a Counterfactual Sensitivity Score (CSS) shows smaller confidence swings,
and a layer-wise Parametric Knowledge Score (PKS) reveals steadier reliance on
internal memory; ablations further identify parametric-knowledge elicitation as
the primary driver of robustness. These results indicate that deliberate negotia-
tion between what an LLM knows and what it reads yields more dependable RAG
systems.

1 INTRODUCTION

Large language models (LLMs) excel at natural language generation (Brown et al., 2020; Team et al.,
2023; Touvron et al., 2023; Bubeck et al., 2023), yet they often fail on recent events, rare entities,
or domain-specific knowledge, producing hallucinations or refusals (Roberts et al., 2020; Dhingra
et al., 2022; Jiang et al., 2023; Yu et al., 2023; Zhao et al., 2023; Wu et al., 2024). Since continuously
retraining to cover all knowledge domains is infeasible, Retrieval-Augmented Generation (RAG)
(Chen et al., 2017; Gao et al., 2023; Guu et al., 2020; Izacard et al., 2023b; Lewis et al., 2020)
augments LLMs with retrieved documents, ideally grounding answers in verifiable evidence while
still leveraging parametric memory.

However, this assumption proves fragile. Even minimal retrieval noise—irrelevant hits, partial
matches, or adversarial edits (RAG noise)—can flip correct answers into confident hallucinations
(Fang et al., 2024; Yoran et al., 2024; Yu et al., 2024; Li et al., 2023; Cuconasu et al., 2024). Studies
show LLMs tend to over-rely on retrieved passages while underutilizing internal knowledge (Wad-
hwa et al., 2024; Sun et al., 2025). This has motivated a growing body of work on noise-robust RAG.
Proposed defenses include requiring justification before answering (Yu et al., 2024), aggregating an-
swers from subsets (Xiang et al., 2024), or combining reflection with self-consistency voting (Asai
et al., 2023; Schulman et al., 2017; Ouyang et al., 2022). A lightweight variant, InstructRAG (Wei
et al., 2025), achieves strong accuracy by prompting models to generate rationales, yet remains
highly vulnerable to noise (Sun et al., 2025) and therefore serves as a standard baseline.

To evaluate robustness, researchers have introduced benchmarks that inject controlled noise, such as
token-level hallucination corpora (Wu et al., 2024), irrelevant or misleading sentences in QA datasets
(Yoran et al., 2024; Yang et al., 2018; Kwiatkowski et al., 2019), or paragraph-level replacements
and counterfactual edits (Zhang et al., 2024; Fang et al., 2024). These stress tests consistently reveal
brittleness in standard RAG pipelines.
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Meanwhile, relatively little attention has been paid to the role of an LLM’s own parametric mem-
ory. Conditional retrieval heuristics (Xu et al., 2023; Mallen et al., 2023; Jeong et al., 2024) or
fusion-based methods (Wang et al., 2024a) attempt to balance sources but lack mechanisms for
principled conflict resolution. Probing studies (Sun et al., 2025) reveal that mainstream RAG archi-
tectures increasingly suppress the use of parametric memory in order to curb hallucinations, thereby
leaning almost entirely on retrieved evidence. While this strategy reduces uncontrolled reliance on
internal knowledge, it simultaneously magnifies the system’s vulnerability: any noise or adversarial
corruption in the retrieval can dominate the generation process and severely compromise robustness.

This gap motivates our central question: How can we leverage what a model already “knows” to
remain robust when retrieval is incomplete or misleading?

We address this by introducing IDEAL-RAG (Instruction-driven Dual-standpoint Elicitation and
Alignment Linking), a three-stage framework that (i) explicitly elicits the model’s internal knowl-
edge, (ii) derives independent standpoints from both internal and external sources, and (iii) links
them into a unified rationale. As illustrated in Figure 1, IDEAL-RAG balances intrinsic and re-
trieved knowledge, avoiding spurious anchoring on noisy passages. Experiments across multiple
QA benchmarks and counterfactual settings demonstrate that IDEAL-RAG sustains competitive ac-
curacy under clean retrieval while substantially improving robustness against corrupted evidence.

Figure 1: The figure contrasts a standard retrieval-augmented baseline with IDEAL-RAG under a
noisy-retrieval scenario. Whereas the baseline model (upper-right) anchors on misleading context
and produces an incorrect rationale, IDEAL-RAG (lower-right) draws on its internal knowledge,
balances conflicting sources, and delivers a stable, correct answer, demonstrating its robustness to
retrieval noise.

2 METHODOLOGY: IDEAL-RAG

Large language models (LLMs) excel at following instructions, preserving style, and compos-
ing multi-step explanations with minimal supervision. Prior work shows that with carefully cu-
rated exemplars, models can acquire sophisticated behaviors without heavy annotation or rewards
(Brown et al., 2020; Asai et al., 2023; Wei et al., 2025). Building on this, we present IDEAL-RAG
(Instruction-Driven Evidence Alignment and Linking), a three-stage framework that contrasts an
LLM’s parametric knowledge with retrieved passages and then reconciles them.

2.1 MOTIVATION

Existing RAG systems often treat internal knowledge as secondary. However, deciding when to
trust memory versus retrieved text is non-trivial, especially under noisy or adversarial retrieval.
Some methods suppress parametric knowledge and lean almost entirely on external sources, but
real deployments cannot assume perfect retrieval. Our design instead (i) explicitly elicits what the
model already “knows,” (ii) requires independent standpoints from both sources, and (iii) introduces
a linking stage to reconcile conflicts. This separation prevents premature fusion and encourages
transparent reasoning. A high-level overview is shown in Figure 2.
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Figure 2: High-level view of IDEAL-RAG. The pipeline first elicits parametric knowledge (Eint),
then runs two stages in mirrored regimes. On a small answer-seen split, it generates internal/external
standpoints (G) and a linked rationale (L) to build a demo bank. On answer-unseen questions, the
same two stages are executed conditioned on these demos, yielding the final linked rationale and an-
swer. This layout makes internal and retrieved evidence explicit and comparable before integration.

2.2 PROBLEM FORMULATION

We consider an open-domain corpus:

C =
{
(qi, ai,Di)

}N

i=1
, (1)

where qi is a query, ai the gold answer, andDi = R(qi) ⊂ T passages retrieved by a frozen retriever
R from text collection T . The retriever is deliberately fixed to isolate generation-side robustness.
Following prior work (Wei et al., 2025; Asai et al., 2023), we use exact-match accuracy as the
primary evaluation metric. For a test set Ctest, EM is defined as:

Acc =
1

|Ctest|
∑

(q,a)∈Ctest

1
[
a ⊆ R, R = IDEAL-RAG(q,D)

]
, (2)

where a prediction R is counted as correct if any string in the reference answer set a appears in the
final output.

2.3 THREE-STAGE PIPELINE

2.3.1 PARAMETRIC KNOWLEDGE EXTRACTION (EINT)

Given a question q, we elicit the model’s latent knowledge Kint through structured prompting. This
step surfaces internal evidence before consulting retrieved passages.

2.3.2 DUAL-SOURCE STANDPOINT GENERATION (G)

We enforce two independent standpoints: one grounded in Kint and the other in retrieved passages
D.

1. Answer-Seen (Seed Construction). On a small seed set Cseed, we reveal the gold answer a
so the model can produce “ideal” reasoning trajectories. Internal and external standpoints
S⋆int,S⋆ext are stored in exemplar banks Bint,Bext.
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2. Answer-Unseen (Inference). For the remaining data, answers are hidden. Conditioned
on exemplar banks, the model generates Ŝint, Ŝext via in-context learning. Each standpoint
contains evidence, reasoning, and uncertainty notes.

2.3.3 LINKED RATIONALE GENERATION (L)

The final step reconciles (Ŝint, Ŝext) into a conflict-aware rationale.

1. Answer-Seen Linking. Seed examples are used to construct a third exemplar bank Blink,
capturing cross-examination behaviors.

2. Answer-Unseen Linking. At test time, L produces rationales by referencing Blink through
few-shot inference.

3. Optional Instruction Tuning. In the SFT variant, linked rationales serve as training pairs
to fine-tune the backbone model Θ0, yielding Θlink. This variant offers further gains, though
ICL alone performs strongly. The explicit training objective is deferred to Appendix A.

2.3.4 IMPLEMENTATION NOTES

All modules operate on a frozen backbone Θ0 without external verifiers or retriever modifications.
Ground-truth answers are used only in seed construction to populate exemplar banks. A comprehen-
sive overview of the framework is presented in Figure 3. The full algorithmic details are provided
in Appendix A, and the complete prompt templates are included in Appendix C.

Figure 3: Overview of IDEAL-RAG. The system first constructs two standpoints: one derived from
the model’s internal memory, and the other from the retrieved passages. These standpoints serve
as an interface that bridges parametric and non-parametric knowledge. The model then performs
deliberative reasoning over the two to generate a unified rationale and final answer. This reasoning
is implemented either via in-context prompting or through a lightweight fine-tuned prediction head.
The full process comprises two stages: one where the answer is revealed (answer-seen) and one
where it remains hidden (answer-unseen).

3 EXPERIMENTS

3.1 EXPERIMENTS SETTING

Open-Domain QA Benchmarks and Metrics. We test on four widely-used datasets with diverse
reasoning requirements: PopQA(Mallen et al., 2022), Natural Questions (NQ)(Kwiatkowski et al.,
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2019), TriviaQA(Joshi et al., 2017), and 2WikiMultiHopQA(Ho et al., 2020). Following prior work
(Asai et al., 2023; Wang et al., 2024b; Wei et al., 2025), each query is paired with the top-k passages
from a hybrid retriever (BM25(Robertson & Walker, 1994), DPR(Karpukhin et al., 2020), Con-
triever(Izacard et al., 2023a)). This setup ensures comparability while reflecting realistic imperfect
retrieval, where gold passages may be absent. Table 1 reports Recall@k, confirming that substantial
portions of gold evidence remain unretrieved.

Performance is measured by Exact-Match (EM) accuracy (Eq. 2). To assess robustness beyond clean
retrieval, we also consider three complementary metrics. The Accuracy Degradation Ratio (ADR)
quantifies how much EM drops when clean passages are replaced with noisy or counterfactual ones,
where a lower ADR indicates greater robustness. The Counterfactual Sensitivity Score (CSS) re-
flects how strongly the model’s answer confidence fluctuates under adversarial edits, with smaller
values corresponding to steadier reasoning. Finally, the Parametric Knowledge Score (PKS) mea-
sures the extent to which the model draws on its parametric memory (stored in weights) relative
to retrieved evidence; stable PKS across clean and noisy conditions suggests a balanced reliance
on internal and external knowledge. Formal definitions of ADR, CSS, and PKS are deferred to
Appendix A.

Counterfactual Test Sets. Since real-world retrieval is rarely clean, we construct two stress-test
suites by replacing gold answer spans with semantically similar but incorrect entities (Fang et al.,
2024) (e.g., “Barack Obama”→“Michelle Obama”). In the Counter-All setting, every answer-
containing passage is overwritten, while in the Counter-Mix setting, only half of the supporting
passages are corrupted when multiple gold-containing passages exist. The number of applicable
queries for each dataset is reported in Table 1, providing a systematic way to evaluate robustness
under adversarial retrieval.

Table 1: Dataset statistics and retrieval setting (with counter values).

Dataset Train Test Retriever Top-K R@K D̃c m D̃c a

PopQA 12,868 1,399 Contriever 5 68.7 578 961
Natural Questions 79,168 3,610 DPR 5 68.8 1,634 2,482
TriviaQA 78,785 11,313 Contriever 5 73.5 6,548 8,313
2WikiMultiHopQA 167,454 12,576 BM25 10 40.7 3,645 5,122

Baselines. To contextualize IDEAL-RAG’s performance, we compare it against several represen-
tative systems spanning both training-free and trainable paradigms. As a training-free reference,
RALM (Ram et al., 2023) simply concatenates the top-k retrieved passages with the query and re-
lies on the frozen language model to generate an answer. On the trainable side, we include a Vanilla
SFT baseline, where the model is fine-tuned directly on retrieved contexts to maximize answer like-
lihood without any additional reasoning objectives. We also evaluate Self-RAG (Asai et al., 2023),
which is a stronger baseline that integrates retrieval with dynamic reflection: the model decides
when to retrieve, critiques both the passages and its own outputs using special “reflection tokens,”
and leverages these signals to improve factuality and citation accuracy. Finally, we include In-
structRAG (Wei et al., 2025), a lightweight but highly competitive method that teaches models to
generate rationales from retrieved evidence and is widely recognized for its robustness to noise. For
fairness, results marked with ⋆ reflect the stronger of either the authors’ original release or our faith-
ful re-implementation. Note that InstructRAG was originally trained with full-parameter fine-tuning,
whereas all our experiments—including IDEAL-RAG—employ parameter-efficient tuning.

3.2 MAIN RESULTS

Table 2 summarizes EM accuracy across clean and counterfactual settings. On clean corpora,
IDEAL-RAG remains competitive with InstructRAG, trailing by modest margins (e.g., −7.2% on
2WikiMultiHopQA, −1.69% on Natural Questions). These differences align with parametric cov-
erage: when answers are less frequently encoded in the base model (PopQA, 2WikiMultiHopQA),
IDEAL-RAG underperforms; when coverage is richer, the gap narrows. Importantly, IDEAL-RAG
often operates close to the empirical ceiling set by retrieval recall (Table 1), and in some cases even
exceeds R@k by leveraging internal memory—something retrieval-only baselines cannot achieve.
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Table 2: Exact-match accuracy (%) on four QA benchmarks. Columns report clean retrieval results
(Origin) as well as performance under two counterfactual corruption settings—50% passage edits
(D̃c m) and full-passage edits (D̃c a). The upper block shows prompt-only models; the lower block
includes models further fine-tuned with LoRA. vanilla† scores are taken from Wei et al. (2025). Best
numbers per column are bold.

PopQA NQ TriviaQA MultiHopQA

Method Origin D̃c m D̃c a Origin D̃c m D̃c a Origin D̃c m D̃c a Origin D̃c m D̃c a

w/o Training
RALM 61.97 72.66 32.36 56.37 69.34 25.38 71.47 82.48 42.80 43.37 60.81 54.98
InstructRAG 63.97 78.55 40.69 62.52 77.36 25.10 76.95 89.80 53.69 49.27 79.75 59.59
IDEAL-RAG 62.76 81.14 46.51 60.83 77.97 51.97 76.82 91.95 78.73 47.60 76.76 60.82

w/ Training
vanilla† 61.00 – – 56.60 – – 73.90 – – 43.8 – –
Self-RAG* 52.47 65.57 25.70 40.17 48.04 10.39 64.39 73.09 45.06 23.40 37.96 27.24
InstructRAG* 65.90 89.45 49.32 65.68 80.29 32.67 78.70 90.79 57.80 57.19 87.02 66.26
IDEAL-RAG 64.05 84.08 47.76 63.71 80.97 55.48 77.19 92.21 78.58 50.01 80.85 64.31

When noise is introduced, IDEAL-RAG demonstrates clear robustness. Under D̃c m, it matches or
slightly surpasses the strongest baselines. With full corruption (D̃c a), IDEAL-RAG achieves large
gains—up to +22.8% on Natural Questions and +26.9% in training-free settings—with consistent
improvements on PopQA, TriviaQA, and 2WikiMultiHopQA. A caveat emerges in benchmarks with
limited internal coverage: trained InstructRAG can occasionally surpass IDEAL-RAG under full
corruption, as reliance on memory becomes a liability when little relevant information is stored.
Detailed answer-containment analysis in § B.2 supports this observation.

Overall, these results confirm that explicitly surfacing and reconciling internal knowledge preserves
competitive clean accuracy while yielding substantial resilience to retrieval noise.

3.3 ACCURACY DEGRADATION RATIO (ADR)

Table 3 shows that IDEAL-RAG consistently achieves the lowest ADR across all datasets and cor-
ruption settings. On Natural Questions with D̃c a, InstructRAG suffers a 70.61% accuracy drop,
while IDEAL-RAG limits the decline to 35.22%—nearly halving degradation. Similar improve-
ments are observed on PopQA, TriviaQA, and 2WikiMultiHopQA. These results demonstrate that
IDEAL-RAG not only narrows accuracy gaps in noisy settings but also retains a larger portion of its
clean-data competence, underscoring its practical reliability.

3.4 INTERNAL-MECHANISM ANALYSIS

3.4.1 COUNTERFACTUAL SENSITIVITY SCORE (CSS)

When adversarial passages are introduced, IDEAL-RAG maintains notably steadier answer proba-
bilities compared to InstructRAG. On Natural Questions and TriviaQA, its predictions remain tightly
concentrated, whereas InstructRAG displays wide, heavy-tailed distributions with frequent confi-
dence swings. For instance, under the fully adversarial D̃c a setting, IDEAL-RAG’s average CSS
is just 0.830, while InstructRAG spikes to 3.657. These results (visualized in Figure 4) reveal that
IDEAL-RAG’s explicit knowledge surfacing prevents abrupt shifts in belief, aligning with the ADR
findings from § 3.3.

3.4.2 PARAMETRIC KNOWLEDGE SCORE (PKS)

A second perspective comes from examining how much each transformer block injects parametric
knowledge when retrieval is corrupted. Both models show increased PKS under noise, but IDEAL-
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Table 3: ADR (↓) measures accuracy drop from clean to corrupted retrieval. We compare methods
on four QA benchmarks under partial (D̃c m) and full (D̃c a) passage corruption. IDEAL-RAG con-
sistently shows the lowest degradation, both with and without fine-tuning.

PopQA NQ TriviaQA MultiHopQA

Method D̃c m D̃c a D̃c m D̃c a D̃c m D̃c a D̃c m D̃c a

w/o Training
RALM 20.46 63.33 18.83 67.83 13.11 53.16 4.49 21.47
InstructRAG 16.84 54.95 15.05 70.61 8.26 43.60 6.26 22.71
IDEAL-RAG 13.95 47.35 10.60 35.22 4.49 15.74 4.44 15.15

w/ Training
Self-RAG* 21.86 65.89 27.59 81.72 15.58 45.08 12.25 27.90
InstructRAG* 11.53 50.68 14.64 63.15 7.34 39.77 4.03 21.84
IDEAL-RAG 11.64 46.76 9.56 33.64 4.64 16.27 4.50 15.67

(a) ∆CSS on NQ under D̃c m (b) ∆CSS on TriviaQA under D̃c m.

(c) ∆CSS on NQ under D̃c a (d) ∆CSS on TriviaQA under D̃c a.

Figure 4: Violin plots compare changes in answer-token log-probabilities between the clean set and
(a, b) the mixed-counterfactual set (D̃c m) or (c, d) the fully counterfactual set (D̃c a) on Natural
Questions and TriviaQA. IDEAL-RAG (blue) shows narrower, lower-centered violins, indicating
stable confidence, while InstructRAG (orange) displays wider, higher-centered violins, reflecting
stronger reliance on corrupted evidence.
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RAG’s shifts are consistently smaller, reflecting its early extraction of internal knowledge rather than
reactive reliance on the FFN pathway (Figure 5). This leads to a more stable residual stream and
reduces hallucination risk.

(a) Layer-wise ∆PKS on NQ under D̃c m (b) Layer-wise ∆PKS on TriviaQA under D̃c m.

(c) Layer-wise ∆PKS on NQ under D̃c a (d) Layer-wise ∆PKS on TriviaQA under D̃c a.

Figure 5: For each transformer block we plot the rise in PKS after replacing the clean passages
with counterfactual ones. Orange bars are IDEAL-RAG, blue bars InstructRAG. (a, b) show the
50 % corruption mix (D̃c m) on Natural Questions and TriviaQA; (c, d) show the full-corruption
setting (D̃c a). IDEAL-RAG requires only modest additional parametric input at deeper layers and
maintains stable behavior, whereas InstructRAG exhibits larger spikes, indicating a late, reactive
fallback to internal memory when retrieval is unreliable.

More detailed outcome-conditioned analyses, which compare correct versus incorrect predictions
and contrast IDEAL-RAG with InstructRAG, are deferred to Appendix B.1. In summary, IDEAL-
RAG’s mechanism of proactively structuring parametric evidence leads to both more stable CSS and
more interpretable PKS dynamics. This mechanistic consistency explains the aggregate accuracy
gains reported in Table 2, confirming that structured dual-standpoint reasoning not only improves
performance but also produces more predictable internal behavior.

4 ANALYSIS

4.1 ABLATION STUDY

To isolate the contributions of each module in IDEAL-RAG, we evaluate two reduced variants.
The first removes both parametric extraction and standpoint generation, essentially collapsing the
pipeline into InstructRAG’s one-shot recipe (w/o Eint and G). The second retains explicit extraction
of internal knowledge but skips separate standpoint generation, feeding the question, passages, and
elicited memory directly into the fusion step (w/o G). The detailed prompt settings for these ablations
are provided in Appendix C.

Results on Natural Questions and TriviaQA (Table 4) highlight two findings. First, parametric
extraction is decisive: without explicit extraction and standpoints, robustness collapses under full
counterfactual noise, with EM drops of -21.2% on Natural Questions and -25.7% on TriviaQA,
even though performance on clean and partially noisy sets remains relatively stable. This confirms
that proactive elicitation of parametric memory is the core driver of resilience. Second, standpoint
generation matters but is complementary: removing this stage results in only modest EM declines
(2–3%) across settings. While not as critical as extraction, standpoints help resolve residual conflicts
and improve justification quality, acting as a stabilizer.

8
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Table 4: Columns report performance on the original retrieval context and on the two counterfactual
test suites—D̃c m and D̃c a. Rows progressively omit key IDEAL-RAG stages: (i) both parametric-
knowledge extraction and standpoints, (ii) standpoints only, and (iii) the full model.

NQ TriviaQA

Method Origin D̃c m D̃c a Origin D̃c m D̃c a

w/o Eint&G 61.77 79.74(↑1.77%) 30.74(↓21.23%) 76.05 90.13(↓2.08%) 52.85(↓25.73%)

w/o G 60.86 76.99(↓0.98%) 48.71(↓3.26%) 76.07 92.20(↓0.01%) 76.68(↓1.90%)

w/ all 60.83 77.97 51.97 77.19 92.21 78.58

4.2 TRAINING DATA ANALYSIS

We fine-tune both IDEAL-RAG and InstructRAG on 5,000 counterfactual training instances from
Natural Questions (Table 5). Adding noise improves InstructRAG’s robustness but reduces its clean
accuracy. In contrast, IDEAL-RAG improves on both clean and noisy sets, still outperforming
InstructRAG under corruption. This suggests IDEAL-RAG’s gains stem from its architecture rather
than data-specific effects.

Table 5: Natural-Questions results under three training regimes. Each block reports accuracy on the
clean set (Original, which meets the counterfactual construction criteria) as well as on two counter-
factual test sets ( D̃c m, D̃c a). The corresponding Answer Degradation Rate (ADR) is also included.

Method Originc m D̃c m ADR(D̃c m) Originc a D̃c a ADR(D̃c a)

Training w/ normal data
InstructRAG* 94.06 80.29 14.64 88.68 32.68 63.15
IDEAL-RAG 89.53 80.97 9.56 83.6 55.48 33.64

Training w/ counter mix data
InstructRAG 90.7 81.33 10.33 83.16 30.7 63.08
IDEAL-RAG 89.84 81.88 8.86 83.56 54.47 34.81

Training w/ counter all data

InstructRAG 90.7 83.11 8.37 83.48 37.27 55.35
IDEAL-RAG 90.02 82.86 7.95 83.96 55.56 33.83

5 CONCLUSION

This work revisits retrieval-augmented generation from the perspective of the LLM’s own paramet-
ric memory. We introduced IDEAL-RAG, a three-stage framework that elicits internal knowledge,
develops independent standpoints from internal and external sources, and links them into a unified
rationale. Experiments across four QA benchmarks show that IDEAL-RAG maintains competitive
clean performance while substantially reducing degradation under counterfactual noise. Mechanistic
analyses further confirm its stability, with CSS revealing reduced confidence swings and PKS indi-
cating steadier reliance on parametric memory, while ablations highlight parametric extraction as the
decisive driver of robustness. These findings demonstrate that deliberate negotiation between what
an LLM knows and what it reads offers a principled path toward more dependable RAG systems and
opens avenues for extending this negotiation framework to longer contexts, adaptive retrieval, and
multi-step reasoning beyond QA.
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A IMPLEMENTATION DETAILS

A.1 FULL ALGORITHM

The complete pseudocode for IDEAL-RAG is provided in Algorithm 1.

Algorithm 1 IDEAL-RAG
Require: QA corpus C = {(qi, ai,Di)} (including train and test); frozen backbone Θ0

Ensure: Fusion weights Θfuse; at test time R̂fuse
Standpoint Generation (k≪|C|):

1: for all (q, a,D) ∈ Cseed do
2: K⋆

int ← Eint(q; Θ0) ▷ Extracted Parametric Knowledge
3: S⋆int ← G(q, a,K⋆

int; Θ0) ▷ answer-seen
4: S⋆ext ← G(q, a,D; Θ0)
5: add S⋆int to internal exemplar bank Bint
6: add S⋆ext to external exemplar bank Bext

7: for all (q, a,D) ∈ C \ Cseed do ▷ Standpoint Generator (both test and train)
8: Kint ← Eint(q; Θ0) ▷ answer-unseen
9: Ŝint ← G

(
q,Kint; Θ0, ICE = Bint

)
10: Ŝext ← G

(
q,D; Θ0, ICE = Bext

)
Linked Rationale Generation:

1: for all (q, a,D) ∈ Cseed do
2: R⋆

link ← L
(
q, a,D,K⋆

int,S⋆int,S⋆ext; Θ0

)
▷ answer-seen

3: addR⋆
link to integrated exemplar bank Blink

4: for all (q, a,D) ∈ C \ Cseed do ▷ Linking-based Integrator
5: if MODE==IN-CONTEXT LEARNING then
6: R̂link ← L

(
(q,D,Kint, Ŝint, Ŝext) ∈ Ctest; Θ0, ICE = Blink

)
▷ answer-unseen

7: else if MODE==FINE-TUNING then
8: R⋆

train-link ← L
(
(q, a,D,Kint, Ŝint, Ŝext) ∈ Ctrain; Θ0

)
▷ answer-seen

9: Θlink ← Update
(
R⋆

link-train|((q,D, Ŝint, Ŝext) ∈ Ctrain; Θ0)
)

10: R̂link ← L
(
(q,D,Kint, Ŝint, Ŝext) ∈ Ctest; Θlink

)
▷ answer-unseen

11: return R̂link

A.2 TRAINING, INFERENCE, AND RETRIEVER DETAILS

All models are built on LLAMA-3-8B-Instruct. Fine-tuning uses LoRA(Hu et al., 2021) (rank
8, α 16, dropout 0.05) with two epochs, cosine-decayed AdamW(Loshchilov & Hutter, 2017) at
2.5 × 10−5, warm-up 3 %, and a global batch of one million tokens accumulated on two A100-
80 GB GPUs (DeepSpeed ZeRO-2[(Rajbhandari et al., 2020)], bf16). We retain just ten thousand
randomly chosen training questions per set because the loss plateaus quickly. Inference is done
with vLLM(Kwon et al., 2023) in greedy mode; following the InstructRAG recipe, we include two
exemplars per prompt when ICL is required.

For retrieval, we adopted the Wikipedia snapshot released by Karpukhin et al. (2020), segmented
into fixed-length passages (≤100 tokens). Different datasets were paired with retrievers optimized
for their domain: Contriever-MS MARCO (Izacard et al., 2023a) for PopQA and TriviaQA, DPR
(Karpukhin et al., 2020) for NQ, GTR (Ni et al., 2021) for ASQA, and BM25 (Robertson & Walker,
1994) via Pyserini (Lin et al., 2021) for 2WikiMultiHopQA. The retrieval depth was set to 5 passages
per query, except for multi-hop tasks where 10 passages were used. Official checkpoints were
employed for all dense retrievers, ensuring consistency with prior work (Asai et al., 2023; Ram
et al., 2023).
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A.3 EVALUATION METRICS

Accuracy Degradation Ratio (ADR). While EM measures overall performance, it does not capture
robustness under noisy retrieval. We therefore introduce ADR, which quantifies the fraction of
accuracy lost when clean passages are replaced by counterfactual variants cf ∈ D̃c a, D̃c m:

ADRx =
EMclean − EMcf

EMclean
× 100% ↓ . (3)

A lower ADR indicates that the model retains a greater portion of its clean-data competence when
retrieval is corrupted.

Counterfactual Sensitivity Score (CSS). Beyond surface-level accuracy, we also probe whether the
model’s decision process is destabilized by adversarial edits. CSS measures the aggregate change in
answer-token log-probabilities between clean and counterfactual contexts:

∆CSS =
∑
t∈Ans

∣∣∣log pclean(t)− log pcf(t)
∣∣∣ ↓ . (4)

Large CSS values mean the model’s confidence swings sharply once retrieval is corrupted, whereas
smaller values correspond to steadier reasoning.

Parametric Knowledge Score (PKS). Following Sun et al. (2025), we probe how much each trans-
former block relies on its parametric memory. Each block integrates two flows: (i) the residual
stream, carrying context from the prompt (including retrieval), and (ii) the feed-forward network
(FFN), injecting stored knowledge from the model’s parameters. PKS quantifies how strongly the
FFN reshapes token-level logits. For layer ℓ and answer token t:

PKSℓ,t = JSD
(
softmax

(
WU LN(hmid

ℓ,t )
)
, softmax

(
WU LN(hout

ℓ,t)
))
, (5)

where hmid is the hidden state before the FFN, and hout is after adding the FFN output back to the
residual path.

1. A small PKS means the FFN leaves logits nearly unchanged, passing through contextual
evidence.

2. A large PKS means the FFN significantly overwrites logits, signaling reliance on paramet-
ric memory.

For robustness analysis, we compute the per-layer shift between clean and noisy contexts:

∆PKSℓ =
1

|Ans|
∑
t∈Ans

(
PKScf

ℓ,t − PKSclean
ℓ,t

)
, (6)

A positive ∆PKSℓ indicates that, under retrieval corruption, layer ℓ compensates by injecting more
stored knowledge, while values close to zero signal steady reliance. Plotting the curve {∆PKSℓ}Lℓ=1
provides a fine-grained, layer-wise view of how noise shifts the balance between external evidence
and internal memory.

All significance tests are conducted with a paired two-tailed t-test at p < 0.05.

A.4 CODE AND DATA RELEASE

For reproducibility, we provide an archive that contains all code, prompt templates, and pro-
cessed datasets used in this work. The compressed package is available at the following anony-
mous Google Drive link: https://drive.google.com/drive/folders/11sjxmYLN_
vlXxmIGMGnvjtdn39tJhvir?usp=sharing

This archive allows reviewers to fully reproduce our experiments under the same settings described
in the paper.
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B ADDITIONAL ANALYSES

B.1 OUTCOME-CONDITIONED PKS ANALYSIS

To complement the aggregate view in Figure 5, we analyze how ∆PKS differs between correct and
incorrect predictions.

IDEAL-RAG. As shown in Figure 6, incorrect answers are strongly associated with large ∆PKS
spikes, while correct predictions cluster around much smaller shifts. This suggests that abrupt am-
plification of the knowledge-FFN pathway is a reliable indicator of error, whereas stable PKS cor-
responds to dependable reasoning.

InstructRAG. In contrast, Figure 7 reveals little separation between correct and incorrect predic-
tions. Both groups exhibit overlapping and volatile ∆PKS profiles, especially in deeper layers, with
sharp spikes that appear inconsistently. This pattern reflects an uncalibrated fallback to memory:
without explicit extraction or reconciliation, the model intermittently amplifies parametric pathways,
sometimes helping, sometimes hurting.

(a) Layer-wise ∆PKS on NQ under D̃c m (b) Layer-wise ∆PKS on TriviaQA under D̃c m.

(c) Layer-wise ∆PKS on NQ under D̃c a (d) Layer-wise ∆PKS on TriviaQA under D̃c a.

Figure 6: (green = answers correct, red = answers wrong) further shows that within IDEAL-RAG
itself, questions it fails on are accompanied by a sharper late-layer ∆PKS surge—especially in the
final two blocks—whereas successful cases keep the rise modest. Hence a sudden, large jump in
parametric logits is a reliable warning signal for impending hallucination under both the 50%-mix
and full-corruption settings on Natural Questions and TriviaQA. (Layout and subplot lettering follow
Fig 5 for visual consistency.)

Interpretation. These results reinforce the aggregate findings. IDEAL-RAG, by proactively sur-
facing parametric knowledge, stabilizes the residual stream and makes ∆PKS a meaningful error
signal. InstructRAG, by contrast, reacts unpredictably, aligning with Sun et al. (2025)’s observation
that uncontrolled late FFN dominance is strongly tied to hallucinations.

B.2 ANSWER-CONTAINMENT ANALYSIS

To examine when parametric knowledge is most useful, we partition the clean test questions into
three categories: those where the gold answer appears only in the model’s parametric memory
(inter only, Din), those where it is found only in the retrieved passages (exter only, Dex), and those
where both sources contain the answer (both contained,Dboth). As shown in Table 6, IDEAL-RAG
consistently outperforms InstructRAG in the inter only and both contained settings, while showing
a slight deficit in the exter only case where reliance on retrieval is unavoidable. This demonstrates
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(a) Layer-wise ∆PKS on NQ under D̃c m (b) Layer-wise ∆PKS on TriviaQA under D̃c m.

(c) Layer-wise ∆PKS on NQ under D̃c a (d) Layer-wise ∆PKS on TriviaQA under D̃c a.

Figure 7: (green = answers correct, red = answers wrong) shows little separation between outcomes:
both correct and wrong cases exhibit erratic, late-layer spikes with wide overlap and no stable trend,
under both the 50%-mix and full-corruption settings on Natural Questions and TriviaQA. This pat-
tern suggests ∆PKS is a weak diagnostic for this one-shot regime—reflecting reactive, unstable use
of parametric memory rather than a structured fallback. (Layout and subplot lettering match Fig. 5.)

that IDEAL-RAG excels precisely in the scenarios it was designed for—leveraging internal knowl-
edge when external evidence is incomplete or misleading.

Table 6: For each datasets we report exact-match accuracy when the gold answer appears only in the
model’s parametric memory (Din), only in the retrieved passages (Dex), or in both sources (Dboth).

PopQA NQ TriviaQA MultiHopQA

Method Din Dex Dboth Din Dex Dboth Din Dex Dboth Din Dex Dboth

w/o Training
InstructRAG 36.36 86.76 94.54 35.42 76.25 91.80 59.28 89.27 96.69 78.44 53.57 90.21
IDEAL-RAG 54.55 82.34 95.45 71.88 70.07 93.03 81.01 78.66 97.21 86.11 36.88 91.06

w/ Training
InstructRAG* 40.91 89.64 94.77 39.58 82.83 92.75 64.03 90.40 97.37 81.36 68.36 93.92
IDEAL-RAG 63.64 86.69 96.82 71.88 70.07 93.03 83.23 78.19 97.83 90.29 44.41 94.01

B.3 ATTENTION-DISTRIBUTION PROBE

To probe the model’s decision focus, we aggregate token-level self-attention across all decoder layers
and heads, then sum the weights per retrieved passage pj :

AttnScore(pj) =
∑
ℓ,h

∑
t∈pj

softmax
(
Aℓ,h

)
t
, (7)

where Aℓ,h is the raw attention matrix at layer ℓ, head h.
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Figure 8 compares attention patterns under D̃c m. InstructRAG often fixates on a few passages,
ignoring some that contain the gold answer—explaining its fragility under counterfactual edits.
IDEAL-RAG distributes attention more evenly and assigns weight to both true-answer and cor-
rupted passages, enabling explicit comparison. This aligns with the design of the Linked Rationale
module and further corroborates IDEAL-RAG’s resilience to retrieval noise.

(a) IDEAL-RAG (b) InstructRAG

Figure 8: Passage-level attention heat-maps on a counter-mix example. IDEAL-RAG spreads atten-
tion across all passages and highlights both the gold-answer and counterfactual segments, whereas
InstructRAG concentrates on a single irrelevant passage.

C PROMPT SETTING

Prompt mapping to pipeline steps. For clarity, we summarize how each component of the IDEAL-
RAG pipeline corresponds to specific prompt templates. During Parametric Knowledge Extraction
(Eint), the model elicits internal knowledge via the template in Figure 9. In Dual-Source Standpoint
Generation (G), answer-seen standpoints are constructed using Figure 10 and 11, while answer-
unseen standpoints rely on Figure 12 and 13. Finally, in Linked Rationale Generation (L), answer-
seen linking is guided by Figure 14, few-shot inference at test time uses Figure 15.

Input:
Generate a document that provides accurate and relevant background knowledge related to the given
question. The document should be informative and structured as if it were an excerpt from a knowl-
edge source, without explicitly answering the question. Avoid unnecessary commentary, explana-
tions, or direct responses. If relevant information is unavailable, state ’I don’t know’ without adding
further speculation or context.

Question: {question}
Document: {Kint}

Figure 9: Prompts to extract internal knowledge from a frozen model

Prompt settings for ablation conditions. In the ablation experiments, we used simplified prompt
configurations to isolate the effect of individual modules. For the variant w/o Eint and G, we replicate
the InstructRAG-style one-shot baseline: a single template (Figure 16) directly asks the model to
read the retrieved passages, optionally reflect on background knowledge, and then justify its answer,
without performing explicit parametric-knowledge extraction or generating dual standpoints. By
contrast, for the variant w/o G, we retain explicit parametric elicitation but remove the standpoint-
generation stage, feeding the question, retrieved passages, and extracted memory directly into the
fusion template (Figure 17). Apart from these structural changes, all other settings such as instruc-
tion style, exemplar count, and decoding strategy are identical to the full IDEAL-RAG pipeline,
ensuring that observed differences arise solely from the missing mechanisms.
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Input:
Read the following documents relevant to the given question: {question}
{retrieved documents}
Please answer the following question using external documents only, without relying on internal
or prior knowledge: {question} and explain how the proposed answer(s):{answers} can be sup-
ported.

You are provided with a set of external documents. Base your explanation on the information found
in these documents. If the documents do not reasonably support the proposed answer(s), you may
instead present a more plausible answer that is supported by the documents, and explain why it fits
better.
Do not refer to internal knowledge or prior facts beyond what the documents state or imply.

Your output should:
• Identify relevant factual claims from the external documents,
• Explain how those claims lead to the proposed answer, or support a better one, in a logically

sound and document-grounded way.
Note that the question may be compositional and require intermediate analysis to deduce the final
answer. Make sure your response is grounded and provides clear reasoning details followed by a
concise conclusion.

Output: {S⋆ext}

Figure 10: Prompts to generate external standpoint in answer-seen scenario.

Input:
Read the following documents relevant to the given question: {question}
{extracted internal knowledge}
Please answer the following question using internal knowledge only, without referring to any exter-
nal documents: {question} and explain how the proposed answer(s):{answers} can be supported.

You are provided with a set of internal knowledge statements. Base your explanation primarily on
these statements. If the internal knowledge does not reasonably support the proposed answer(s),
you may instead present a more plausible answer that is supported by the internal knowledge, and
explain why it fits better.

Your output should:
• Identify the factual claims from internal knowledge (provided or known),
• Explain how those claims lead to the proposed answer, or support a better one, in a logically

sound and verifiable way.
Note that the question may be compositional and require intermediate analysis to deduce the final
answer. Make sure your response is grounded and provides clear reasoning details, followed by a
concise conclusion.

Output: {S⋆int}

Figure 11: Prompts to generate internal standpoint in answer-seen scenario.
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Input:
Your primary task is to answer the given question by analyzing the provided external documents.
You must evaluate their relevance, accuracy, and completeness in relation to the question. If the doc-
uments clearly support a specific answer, explain how they lead you to that answer. If the documents
are incomplete, ambiguous, or conflicting, make your best judgment based only on what is found in
the documents. Do not use internal or prior knowledge.
Below are some examples of how to give the rationale:
{Bext}
Now it is your turn to analyze the following documents and answer the given question.
{retrieved documents}
Based on the provided information, answer the question: {question}

Output: {Ŝext}

Figure 12: Prompts to generate external standpoint in answer-unseen ICL task.

Input:
Your primary task is to answer the given question by analyzing the internal knowledge provided.
You must examine this information to determine whether it contains enough evidence to support a
clear answer. If it does, explain how the internal knowledge leads to your answer. If it does not,
use your broader internal knowledge to offer the most plausible answer you can, but do not use any
external sources or documents.
Below are some examples of how to give the rationale:
{Bint}
Now it is your turn to analyze the following internal knowledge and answer the given question.
{extracted internal knowledge}
Based on your internal knowledge and the provided information, answer the question: {question}

Output: {Ŝint}

Figure 13: Prompts to generate internal standpoint in answer-unseen ICL task.
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Input:
Read the following documents relevant to the given question: {question}
{retrieved documents}
{extracted internal knowledge}
You are given the following:
Question: {question} Correct answer(s): {answers}
Two independent arguments attempt to justify what they believe to be the correct answer.
External Standpoint: {Bext}
Internal Standpoint: {Bint}
Your task is to analyze both arguments and determine how internal and external information can
contribute to reasoning toward the correct answer. Rather than choosing a side, your goal is to
organize the relevant reasoning from both sources, identify which parts align with the correct answer,
and explain how the conclusion can be supported.

In your explanation:
• Identify the key claims made in each argument.
• Compare them against the correct answer.
• Accept claims that logically support the correct answer.
• Reject claims that are inconsistent, unsupported, or contradict the correct answer and ex-

plain why.
• Integrate useful information from both sides to construct a coherent, step-by-step explana-

tion that leads to the correct answer.

Base your explanation only on the arguments and the known correct answer.
Note that the question may be compositional and require intermediate analysis to deduce the final
answer. Make sure your response is grounded and provides clear reasoning details followed by a
concise conclusion.

Output: {R⋆
link}

Figure 14: Prompts to generate linked rationale in answer-seen scenario.
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Input:
Your primary task is to answer the given question by analyzing two competing arguments, each
supported by a different type of information: one by external documents, the other by internal
knowledge. Each argument includes its own reasoning and its supporting source content.
You must carefully evaluate how well each argument uses its respective source to justify its answer.
If one side clearly provides stronger evidence and more valid reasoning, explain why you find it
more convincing. If both arguments are incomplete, ambiguous, or equally strong, make your best
judgment based only on the information provided. Do not rely on outside or prior knowledge.
Below are some examples of how to give the rationale:
{B⋆

link}
Now it is your turn to analyze the following materials and answer the given question.
{retrieved documents}
{extracted internal knowledge}
Two independent arguments attempt to justify what they believe to be the correct answer.
External Standpoint: { Ŝext }
Internal Standpoint: { Ŝint }

Based on the provided arguments and their supporting information, answer the question:
{question}

Output: {R̂link}

Figure 15: Prompts to generate linked rationale in answer-unseen ICL task.

Input:
Your primary task is to answer the given question by first reflecting on what internal knowledge you
have that might be relevant, and then critically analyzing the provided documents.
You must evaluate the relevance, accuracy, and sufficiency of both internal and external information
in relation to the question.
Below are some examples of how to give the rationale:

{B⋆
inst}

Now it is your turn to analyze the following documents and answer the given question.
{retrieved documents}
Based on both your internal knowledge and the provided information, answer the question:
Question: {question}

Output:

Figure 16: Prompts that refine the InstructRAG setup to generate rationales in the answer-unseen
ICL task. The exemplar bank B⋆

inst contains rationales generated under the InstructRAG method in
the answer-seen setting.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Input:
Your primary task is to answer the given question by analyzing both the provided external documents
and internal knowledge. You must evaluate how well each source contributes to answering the
question, and whether they support one or more of the proposed answer labels.
Below are some examples of how to give the rationale:
{B⋆

one-step}
Now it is your turn to analyze the following materials and answer the given question.
{retrieved documents}
Answer a given question using the information from both externally retrieved documents and your
own memorized documents.
Question: {question}

Output:

Figure 17: Prompts for generating linked rationales without explicit standpoints (G) in the answer-
unseen ICL setting.

D USE OF LARGE LANGUAGE MODELS (LLMS)

In line with the ICLR 2026 submission policy, we disclose the use of large language models (LLMs)
during manuscript preparation. Specifically, we used ChatGPT (OpenAI) as a general-purpose writ-
ing assistant to refine grammar, improve readability, and polish phrasing. ChatGPT was not involved
in research ideation, experiment design, data analysis, or the generation of scientific claims. All sci-
entific content, results, and conclusions are solely the responsibility of the authors.
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