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ABSTRACT

Preference-based reinforcement learning (PbRL) provides a natural way to align
RL agents’ behavior with human desired outcomes, but is often restrained by
costly human feedback. To improve feedback efficiency, most existing PbRL
methods focus on selecting queries to maximally improve the overall quality of the
reward model, but counter-intuitively, we find that this may not necessarily lead
to improved performance. To unravel this mystery, we identify a long-neglected
issue in the query selection schemes of existing PbRL studies: Query-Policy
Misalignment. We show that the seemingly informative queries selected to improve
the overall quality of reward model actually may not align with RL agents’ interests,
thus offering little help on policy learning and eventually resulting in poor feedback
efficiency. We show that this issue can be effectively addressed via policy-aligned
query and a specially designed hybrid experience replay, which together enforce
the bidirectional query-policy alignment. Simple yet elegant, our method can
be easily incorporated into existing approaches by changing only a few lines
of code. We showcase in comprehensive experiments that our method achieves
substantial gains in both human feedback and RL sample efficiency, demonstrating
the importance of addressing query-policy misalignment in PbRL tasks.Code is
available at https://github.com/huxiao09/QPA.

1 INTRODUCTION

Reward plays an imperative role in every reinforcement learning (RL) problem. It specifies the
learning objective and incentivizes agents to acquire correct behaviors. With well-designed rewards,
RL has achieved remarkable success in solving many complex tasks (Mnih et al., 2015; Silver et al.,
2017b; Degrave et al., 2022). However, designing a suitable reward function remains a longstanding
challenge (Abel et al., 2021; Li et al., 2023; Sorg, 2011). Due to human cognitive bias and system
complexity (Hadfield-Menell et al., 2017), it is difficult to accurately convey complex behaviors
through numerical rewards, resulting in unsatisfactory or even hazardous agent behaviors.

Preference-based RL (PbRL), also known as RL from human feedback (RLHF), promises learning re-
ward functions autonomously without the need for tedious hand-engineered reward design (Christiano
et al., 2017; Lee et al., 2021a;b; Park et al., 2022; Liang et al., 2022; Shin et al., 2023; Tien et al., 2023).
Instead of using provided rewards, PbRL queries a (human) overseer to provide preferences between
a pair of agent’s behaviors, and the RL agent seeks to maximize a reward function that is trained to
be consistent with human preferences. This approach provides a more natural way for humans to
communicate their desired outcomes to RL agents, enabling more desirable behaviors (Christiano
et al., 2017). However, labeling a large number of preference queries requires tremendous human
effort, inhibiting its wide application in real-world scenarios (Lee et al., 2021b; Park et al., 2022;
Liang et al., 2022). Thus, in PbRL, the feedback efficiency is of utmost importance.

To enable feedback-efficient PbRL, it is crucial to carefully select which behaviors to query the
overseer’s preference and which ones not to, in order to extract as much information as possible
from each preference labeling process (Christiano et al., 2017; Lee et al., 2021b; Biyik & Sadigh,
2018; Biyik et al., 2020). Motivated by this, existing works focus on querying the most "informative"
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Figure 1: Illustration of query-policy misalignment. Bob’s current focus is on grasping the blocks. However,
the overseer advises him not to cause harm to humans instead of providing guidance on grasping techniques.

behaviors for preferences that are likely to maximally rectify the overall reward model, such as
sampling according to ensemble disagreements, mutual information, or behavior entropy (Lee et al.,
2021b; Shin et al., 2023). However, it is also observed that these carefully designed query schemes
often only marginally outperform the simplest scheme that randomly selects behaviors to query
human preferences (Ibarz et al., 2018; Lee et al., 2021b). This counter-intuitive phenomenon brings
about a puzzling question: Why are these seemingly informative queries actually not effective in
PbRL training?

In this paper, we identify a long-neglected issue in the query schemes of existing approaches that is
responsible for their ineffectiveness: Query-Policy Misalignment. Take Figure 1 as an illustration,
Bob is a robot attempting to pick up some blocks, while Joe is a querier selecting the behaviors that
he considers the most informative for the reward model to query the overseer. However, the chosen
behaviors may not align with Bob’s current interests. So, even after the query, Bob is still clueless
about how to pick up blocks, which means that a valuable query opportunity might be wasted. In
Section 4, we provide concrete experiments and find that such misalignment is prevalent in previous
query schemes. Specifically, we observe that the queried behaviors often fall outside the scope of the
current policy’s visitation distribution, indicating that they are less likely to be encountered by the
current RL agent, and thus are not what the current agent’s interests. Therefore, the queried behaviors
have little impact on the current policy learning and result in poor feedback efficiency.

Interestingly, we find that the query-policy misalignment issue can be easily addressed by policy-
aligned query selection, which can be implemented by making a simple modification to existing
query schemes. This technique ensures that the query scheme only selects the recent behaviors of
RL agents, which in turn enables the overseer to provide timely feedback on relevant behaviors for
policy learning rather than some irrelevant experiences. By making this minimalist modification
to the query schemes of existing methods, we showcase substantial improvements in terms of both
feedback and sample efficiency as compared to the base schemes. Further leveraging the insight from
query-policy misalignment, we introduce a simple technique, called hybrid experience replay, that
simply updates RL agents using experiences uniformly sampled from the entire replay buffer and
some recent experiences. Intuitively, this technique ensures that the RL agent updates more frequently
on the region where human preferences have been recently labeled, thereby further aligning the policy
learning with the recent human preferences.

In summary, the combination of policy-aligned query selection and hybrid experience replay estab-
lishes bidirectional query-policy alignment, making every query accountable for policy learning.
Notably, these techniques can be easily incorporated into existing PbRL approaches (Lee et al., 2021b;
Park et al., 2022) with minimal modifications. We evaluate our proposed method on benchmark
environments in DeepMind Control Suite (DMControl) (Tassa et al., 2018) and MetaWorld (Yu et al.,
2020). Simple yet elegant, experimental results demonstrate significant feedback and sample effi-
ciency gains, highlighting the effectiveness of our proposed method and the importance of addressing
query-policy misalignment in PbRL.

2 RELATED WORK

PbRL provides a natural approach for humans (oracle overseer) to communicate desired behaviors
with RL agents by making relative judgments between a pair of behaviors (Akrour et al., 2011;
Pilarski et al., 2011; Christiano et al., 2017; Stiennon et al., 2020; Wu et al., 2021). However,
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acquiring preferences is typically costly, imposing high demands on feedback efficiency (Lee et al.,
2021b; Park et al., 2022; Liang et al., 2022).

Query selection schemes in PbRL. It is widely acknowledged that the query selection scheme
plays a crucial role in PbRL for improving feedback efficiency (Christiano et al., 2017; Biyik &
Sadigh, 2018; Biyik et al., 2020; Ibarz et al., 2018; Lee et al., 2021b). Motivated by this idea, prior
works commonly assess the information quality of queries using metrics such as entropy (Biyik &
Sadigh, 2018; Ibarz et al., 2018; Lee et al., 2021b), the L2 distance in feature space (Biyik et al.,
2020) or ensemble disagreement of the reward model (Christiano et al., 2017; Ibarz et al., 2018;
Lee et al., 2021b; Park et al., 2022; Liang et al., 2022). Based on these metrics, researchers often
employ complex sampling approaches such as greedy sampling (Biyik & Sadigh, 2018), K-medoids
algorithm (Biyik & Sadigh, 2018; Rdusseeun & Kaufman, 1987), or Poisson disk sampling (Bridson,
2007; Biyik et al., 2020), etc., to sample the most "informative" queries. Despite adding extra
computational costs, it is observed that these complex schemes often benefit little to policy learning,
and sometimes perform similarly to the simplest scheme that directly queries humans with randomly
selected queries (Lee et al., 2021b; Ibarz et al., 2018). In this paper, we identify a common issue
with the existing schemes, query-policy misalignment, which shows that the selected seemingly
"informative" queries may not align well with the current interests of RL agents, providing an
explanation of why existing schemes often lead to less improved feedback efficiency.

Other techniques for improving feedback efficiency. In addition to designing effective query
selection schemes, there are other efforts to improve the feedback efficiency of PbRL from various
perspectives. For instance, some works focus on ensuring that the initial queries are feasible for
humans to provide high-quality preferences by initializing RL agents with imitation learning (Ibarz
et al., 2018) or unsupervised-pretraining (Lee et al., 2021b). Liang et al. (2022) shows that adequate
exploration can improve both sample and feedback efficiency. Recently, Park et al. (2022) applies
pseudo-labeling (Lee et al., 2013) in semi-supervised learning along with temporal cropping data
augmentation to remedy the limited human preferences and achieves SOTA performances. Note that
our proposed method is orthogonal to these techniques and can be used in conjunction with any of
them with minimal code modifications.

Local decision-aware model learning. The key idea of our proposed method is to learn the reward
mode precisely within the distribution of the current policy, rather than inadequately within the entire
global state-action space. Some model-based decision-making methods share a similar idea with
ours, emphasizing the importance of learning a critical local dynamics model instead of a global
one to enhance sample complexity. Specifically, a line of model-based policy search work aims to
learn the local dynamics model on current states or trajectories to expedite convergence (Levine &
Abbeel, 2014; Levine et al., 2015; Fu et al., 2016; Lioutikov et al., 2014; Bagnell & Schneider, 2001;
Atkeson et al., 1997). Some work on value-equivalent models focuses on learning the dynamics
model relevant for value estimation (Grimm et al., 2020; Srinivas et al., 2018; Oh et al., 2017; Silver
et al., 2017a; Tamar et al., 2016). Several model-based RL methods propose to learn the model
centering on the current policy or task (Wang et al., 2023; Lambert et al., 2020; Ma et al., 2023).

3 PRELIMINARY

The RL problem is typically specified as a Markov Decision Process (MDP) (Puterman, 2014), which
is defined by a tuple M := (S,A, r, T, γ). S,A represent the state and action space, r : S ×A → R
is the reward function, T : S ×A → S is the dynamics and γ ∈ (0, 1) is the discount factor. The goal
of RL is to learn a policy π : S → A that maximizes the expected cumulative discounted reward.

Off-policy actor-critic RL. To tackle the high-dimensional state-action space, off-policy actor-critic
RL algorithms typically maintain a parametric Q-function Qθ(s, a) and a parametric policy πϕ(a|s),
which are optimized via alternating between policy evaluation (Eq. (1)) and policy improvement
(Eq. (2)) steps. The policy evaluation step seeks to enforce Qθ(s, a) to be consistent with the
empirical Bellman operator that backs up samples (s, a, s′) stored in replay buffer D, while the policy
improvement step improves πϕ via maximizing the learned Q-value:

Q̂k+1 ← argmin
Q

Es,a,s′∼D

[(
r(s, a) + γEa′∼π̂k(a′|s′)

[
Q̂k (s′, a′)]−Q(s, a)

)2
]

(1)

π̂k+1 ← argmax
π

Es∼D,a∼π(a|s)

[
Q̂k+1(s, a)

]
(2)

Preference-based RL. Different from the standard RL setting, the reward signal is not available
in PbRL. Instead, a (human) overseer provides preferences between pairs of trajectory segments,
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Figure 2: Impacts of query-policy misalignment in PbRL training. (a). 2D navigation task. RL agent should
navigate to the goal. (b). The desired behavior of this task is to move to the goal in a straight line. (c). The
learning curves of different query selection methods. (d). Existing query selection methods often select queries
that lie outside the visitation distribution of the current policy.

and the agent leverages these feedbacks to learn a reward function r̂ψ : S × A → R to be con-
sistent with the provided preferences. A trajectory segment σ is a sequence of states and actions
{sk, ak, · · · , sk+L−1, ak+L−1} ∈ (S ×A)L, which is typically shorter than the whole trajectories.
Given a pair of segments (σ0, σ1), the overseer provides a feedback signal y indicating which segment
the overseer prefer, i.e., y ∈ {0, 1}, where 0 indicates the overseer prefers segment σ0 over σ1, 1
otherwise. Following the Bradley-Terry model (Bradley & Terry, 1952) , we can model a preference
predictor Pψ using the reward function r̂ψ(s, a):

Pψ
[
σ1 ≻ σ0

]
=

exp
∑
t r̂ψ

(
s1t , a

1
t

)∑
i∈{0,1} exp

∑
t r̂ψ

(
sit, a

i
t

) (3)

where σ1 ≻ σ0 denotes the overseer prefers σ1 than σ0. Typically, r̂ψ is optimized by minimizing
the cross-entropy loss of preference predictor Pψ and the true preference label y.

Lreward = − E
(σ0,σ1,y)∼Dσ

[
(1− y) logPψ

[
σ0 ≻ σ1

]
+ y logPψ

[
σ1 ≻ σ0

]]
(4)

where Dσ denotes the preference buffer which stores the history overseer’s preferences {(σ0, σ1, y)}.
Most recent PbRL methods (Lee et al., 2021b; Park et al., 2022; Liang et al., 2022) are built upon
off-policy actor-critic RL algorithms to enhance sample and feedback efficiency. In these methods,
pairs of segments (σ0, σ1) are selected from trajectories in the off-policy RL replay buffer D. These
selected pairs are then sent to the overseer for preference query, yielding feedback (σ0, σ1, y). These
feedback instances are subsequently stored in the separate preference buffer Dσ for reward learning.
The query selection scheme refers to the strategy that decides which pair of segments (σ0, σ1) should
be selected from D for preference query prior to the reward learning. An effective query selection
scheme is of paramount importance to achieve high feedback efficiency in PbRL.

4 QUERY-POLICY MISALIGNMENT
A motivating example. In this section, we conduct an intuitive experiment to demonstrate a
prevalent but long-neglected issue: query-policy misalignment, which accounts for the poor feed-
back efficiency of existing query selection schemes. Specifically, as illustrated in Figure 2(a),
we consider a 2D continuous space with (x, y) coordinates defined on [0, 10]2. For each step,
the RL agent can move ∆x and ∆y ranging from [−1, 1]. We want the agent to navigate
from the start to the goal as quickly as possible. We run PEBBLE (Lee et al., 2021b), a pop-
ular PbRL method, with two widely used query selection schemes in previous studies: uni-
form query selection that randomly selects segments to query preferences and disagreement
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query selection that selects the segments with the largest ensemble disagreement of preference
predictors (Lee et al., 2021b; Christiano et al., 2017; Ibarz et al., 2018; Park et al., 2022).

Figure 3: Query-policy misalignment.
Existing query selection methods often
select queries that lie outside the visita-
tion distribution of the current policy.

We also run PEBBLE with policy-aligned query selection
that selects the recently collected segments from the policy-
environment interactions and will be further investigated in later
content. We track the distribution dπ of current agent’s policy π
throughout the training process and plot the selected segments
of different query selection schemes in Figure 2(d). Please refer
to the Appendix C.1 for detailed experimental setups.

We observe that the selected segments of existing query selec-
tion schemes typically fall outside the scope of the visitation
distribution dπ (marked with green circles). We refer to this
phenomenon as query-policy misalignment, as illustrated in Fig-
ure 3. Such misalignment wastes valuable feedback because the
overseer provides preferences on experiences that are less likely
encountered by, or in other words, irrelevant to the current RL
agent’s learning. Therefore, although these selected segments
may improve the overall quality of the reward model in the full state-action space, they contribute
little to current policy training and potentially cause feedback inefficiency. By contrast, policy-aligned
selection selects fresh segments that are recently visited by the current RL policy, enabling timely
feedback on the current status of the policy and leading to significant performance gain, as shown in
Figure 2(c). Furthermore, while the learned reward of policy-aligned query selection may differ from
the ground truth reward, it provides the most useful information to guide the agent to navigate toward
the right direction and more strictly discourages detours as compared to the vague per-step ground
truth reward. This suggests that the learned reward captures more targeted information in solving the
task while also blocking out less useful information in the ground truth reward, thus enabling more
effective policy learning. For additional evidence substantiating the existence of the query-policy
misalignment issue and its contribution to feedback inefficiency, please refer to the Appendix D.1.

As mentioned earlier, existing PbRL methods struggle with feedback inefficiency caused by query-
policy misalignment. To address this issue, we propose an elegant method: QPA (Query-Policy
Alignment). The key idea of QPA is that rather than learning the reward model across the entire global
state-action space inadequately as existing methods do, it is more effective to focus on learning the
reward model precisely within the distribution of the current policy dπ , utilizing the same amount of
human feedback. On the other hand, the Q-function should also be accurately approximated around
dπ . We present an error bound in Appendix A to intuitively explain why this idea is reasonable.

5 QUERY-POLICY ALIGNMENT FOR PREFERENCE-BASED RL (QPA)

In this section, we introduce an elegant solution: QPA, which can effectively address query-policy
misalignment and is also compatible with existing off-policy PbRL methods with only 20 lines of
code modifications. Please see Algorithm 1 for the outline of our method.

5.1 POLICY-ALIGNED QUERY SELECTION

In contrast to existing query selection schemes, we highlight that the segment query selection should
be aligned with the on-policy distribution. In particular, it is crucial to ensure that the pairs of segments
(σ0, σ1) selected for preference queries stay close to the current policy’s visitation distribution dπ . By
assigning more overseer’s feedback to segments obtained from on-policy trajectories of the current
policy π, we aim to enhance the accuracy of the preference (reward) predictor within the on-policy
distribution dπ . We refer to this query scheme as policy-aligned query selection.

In practice, a natural approach to implement policy-aligned query selection is to utilize the current
policy π to interact with the environment and generate a set of trajectories. Then, pairs of segments
(σ0, σ1) can be selected from these trajectories to obtain overseer’s preference query. While such
“absolute” policy-aligned query selection ensures that all selected segments conform to the on-policy
distribution dπ, it may have a negative impact on the sample efficiency of off-policy RL due to the
additional on-policy rollout. Instead of performing the “absolute” policy-aligned query selection, an
alternative is to select segments that are within or "near" on-policy distribution. As we mentioned
in Section 3, in typical off-policy PbRL, (σ0, σ1) are selected in trajectories sampled from the
RL replay buffer D. A simple yet effective way to perform policy-aligned query selection is to
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Figure 4: Learning curves of QPA and QPA (20% or 50% query explore) on locomotion tasks. In QPA, 100%
of the queries are sampled from the policy-aligned buffer Dpa. In QPA (20% or 50% query explore), we sample
20% or 50% queries from the entire replay buffer D, while the remaining 80% or 50% of queries are sampled
from Dpa. The declining performance of QPA (20% or 50% query explore) suggests that allocating some queries
to the entire replay buffer in an attempt to explore high-reward state regions can compromise feedback efficiency.

choose (σ0, σ1) from the most recent trajectories stored in D. For the sake of clarity, we refer to
the buffer that stores the most recent trajectories as the policy-aligned buffer Dpa. It’s worth noting
that this simple approach strikes a balance between policy-aligned query and sample efficiency
in RL. Furthermore, it is particularly easy to implement and enables a minimalist modification to
existing PbRL methods. Take the well-known and publicly-available B-pref (Lee et al., 2021a)
PbRL implementation framework as an example, all that’s required is to reduce the size of the
first-in-first-out query selection buffer, which can be thought of as a knockoff of Dpa.

The use of policy-aligned query confines the query selection to the policy-aligned buffer Dpa, which
can avoid the uninformative exploration of query selection within the entire replay buffer D. We
show in Figure 4 that the excessive exploration of query selection could hurt feedback efficiency.
Querying segments from entire replay buffer D in an attempt to explore high-reward state regions
can only get the high-reward segments by chance. Allocating more queries to D cannot guarantee
finding high-reward regions, but potentially resulting in wasted human feedback. In contrast, the
queried segments only sampled in Dpa can provide valuable information for learning the rewards
within on-policy distribution, resulting in continual improvement in current policy. Given the limited
feedback typically encountered in real-world scenarios, it is preferable to help current policy to get
more local guidance using policy-aligned query selection. Please refer to Appendix D.4 for more
discussions and experiments about the exploration in PbRL.

5.2 HYBRID EXPERIENCE REPLAY

Following the policy-aligned query selection and reward learning procedure, it’s also important to
ensure that value learning is aligned with the on-policy distribution. Specifically, more attention
should be paid to improving the veracity of Q-function within on-policy distribution dπ, where the
preference (reward) predictor performs well in the preceding step.

To update the Q-function, existing off-policy PbRL algorithms perform the empirical Bellman iteration
Eq.(1) by simply sampling transitions (s, a, s′) uniformly from the replay buffer D. Although the
aforementioned policy-aligned query selection can effectively facilitate the learning of the reward
function within dπ, the Q-function may not be accurately approximated on dπ due to inadequate
empirical Bellman iterations using (s, a, s′) transitions drawn from dπ. Taking inspiration from
combined Q-learning (Zhang & Sutton, 2017) and some prioritized experience replay methods that
consider on-policyness (Liu et al., 2021; Sinha et al., 2022), we devise a hybrid experience replay
mechanism. To elaborate, we still sample transitions (s, a, s′) uniformly, but from two different
sources. Specifically, half of the uniformly sampled transitions are drawn from D, while the other
half are drawn from the policy-aligned buffer Dpa. In other words, the hybrid sample ratio between
Dpa and D in experience replay is set to 0.5. The proposed mechanism can provide assurance that the
Q-function is updated adequately near dπ .

5.3 DATA AUGMENTATION FOR REWARD LEARNING

Besides the above two key designs, we also adopt the temporal data augmentation technique for
reward learning (Park et al., 2022). To further clarify, we randomly subsample several shorter pairs of
snippets (σ̂0, σ̂1) from the queried segments (σ0, σ1, y), and put these (σ̂0, σ̂1, y) into the preference
buffer Dσ for optimizing the cross-entropy loss in Eq.(4). Data augmentation has been widely used
in many deep RL (Kostrikov et al., 2020; Laskin et al., 2020a;b) algorithms, and also has been
seamlessly integrated into previous PbRL algorithms for consistency regularization (Park et al., 2022).
Diverging from the practical implementation in Park et al. (2022), we generate multiple (σ̂0, σ̂1, y)
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instances from a single (σ0, σ1, y), as opposed to generating only one (σ̂0, σ̂1, y) instance from each
(σ0, σ1, y), which effectively expands the preference dataset. An in-depth ablation analysis of the
data augmentation technique is provided in Section 6.3 and Appendix D.5.

6 EXPERIMENT

In this section, we present extensive evaluations on 6 locomotion tasks in DMControl (Tassa et al.,
2018) and 3 robotic manipulation tasks in MetaWorld (Yu et al., 2020).

6.1 IMPLEMENTATION AND EXPERIMENT SETUPS

QPA can be incorporated into any off-policy PbRL algorithms. We implement QPA on top of the
widely-adopted PbRL backbone framework B-Pref (Lee et al., 2021a). We configure the policy-
aligned query selection with a policy-aligned buffer size of N = 10. The hybrid experience replay is
implemented with a sample ratio of ω = 0.5, and we set the data augmentation ratio at τ = 20.

In our experiments, we demonstrate the efficacy of QPA in comparison to PEBBLE (Lee et al., 2021b),
the SOTA method, SURF (Park et al., 2022), and on-policy PbRL method PrePPO (Christiano et al.,
2017). As QPA, PEBBLE, and SURF all employ SAC (Haarnoja et al., 2018) for policy learning, we
utilize SAC with ground truth reward as a reference performance upper bound for these approaches.
For PEBBLE and SURF, we employ the disagreement query selection scheme in their papers that
selects segments with the largest ensemble disagreement of reward models (Lee et al., 2021b; Park
et al., 2022; Ibarz et al., 2018). To be specific, we train an ensemble of three reward networks
r̂ψ with varying random initializations and select (σ0, σ1) based on the variance of the preference
predictor Pψ . While leveraging an ensemble of reward models for query selection may offer improved
robustness and efficacy in complex tasks as observed in (Lee et al., 2021b; Ibarz et al., 2018), the
additional computational cost incurred by multiple reward models can be unacceptable in scenarios
where the reward model is particularly large, e.g., large language models (LLM). Hence in QPA, we
opt to use a single reward model and employ policy-aligned query selection (simply randomly selects
segments from the on-policy buffer Dpa). After all feedback is provided and the reward learning phase
is complete, we switch from the hybrid experience replay to the commonly used uniform experience
replay for policy evaluation in QPA.

In each task, QPA, SURF, PEBBLE and PrePPO utilize the same amount of total preference queries
and feedback frequency for a fair comparison. We use an oracle scripted overseer to provide pref-
erences based on the cumulative ground truth rewards of each segment defined in the benchmarks.
Using the scripted ground truth overseer allows us to evaluate the performance of PbRL algorithms
quantitatively, unbiasedly and quickly, which is a common practice in previous PbRL literature (Chris-
tiano et al., 2017; Lee et al., 2021b;a; Park et al., 2022; Liang et al., 2022). We perform 10 evaluations
on locomotion tasks and 100 evaluations on robotic manipulation tasks across 5 runs every 104

environment steps and report the mean (solid line) and 95% confidence interval (shaded regions) of
the results, unless otherwise specified. Please see Appendix C.2 for more experimental details.

6.2 BENCHMARK TASKS PERFORMANCE

Locomotion tasks in DMControl suite. DMControl (Tassa et al., 2018) provides diverse high-
dimensional locomotion tasks based on MuJoCo physics (Todorov et al., 2012). We choose 6 complex
tasks in DMControl: Walker_walk, Walker_run, Cheetah_run, Quadruped_walk, Quadruped_run,
Humanoid_stand. Figure 5 shows the learning curves of SAC (green), QPA (red), SURF (brown), and
PEBBLE (blue) on these tasks. As illustrated in Figure 5, QPA enjoys significantly better feedback
efficiency and outperforms SURF and PEBBLE by a substantial margin on all the tasks. To be men-
tioned, the SOTA method SURF adopts a pseudo-labeling based semi-supervised learning technique
to enhance feedback efficiency. By contrast, QPA removes these complex designs and achieves
consistently better performance with a minimalist algorithm. To further evaluate feedback efficiency
of QPA, we have included additional experiment results in Appendix D.3, showcasing the perfor-
mance of these methods under varying total amounts of feedback and different feedback frequencies.
Surprisingly, we observe that in some complex tasks (e.g., Quadruped_walk, Quadruped_run), QPA
can even surpass SAC with ground truth reward during the early training stages, despite experiencing
stagnation of performance improvement as feedback provision is halted in the later stages. We
provide additional experiment results in Section 6.4 to further elaborate on this phenomenon.

Robotic manipulation tasks in Meta-world. We conduct experiments on 3 complex manipulation
tasks in Meta-world (Yu et al., 2020): Door-unlock, Drawer-open, Door-open. The learning curves
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are presented in Figure 6. Similar to prior works (Christiano et al., 2017; Lee et al., 2021b;a; Park
et al., 2022; Liang et al., 2022), we employ the ground truth success rate as a metric to quantify
the performance of these methods. Once again, these results provide further evidence that QPA
effectively enhances feedback efficiency across a diverse range of complex tasks.

The dashed black line depicted in Figure 5, 6 and subsequent figures represents the last feedback
collection step. The stopping step for feedback collection is set to align with that of previous
work (Park et al., 2022), facilitating a straightforward cross-referencing for readers. We conduct
additional experiments with different feedback stop steps in Appendix D.3. While increased feedback
enhances the performance of PbRL methods, the limited amount of total feedback enables a more
effective evaluation of the feedback efficiency of these PbRL methods. In MetaWorld environment,
the variance of these PbRL algorithms increases, which has also been observed in other PbRL
literature (Lee et al., 2021b; Park et al., 2022; Liang et al., 2022). For a clear comparison, we provide
Table 5 in Appendix D.3 to summarize the mean and standard deviation of these PbRL methods.

Figure 5: Learning curves on locomotion tasks as measured on the ground truth reward. The dashed black line
represents the last feedback collection step.

Figure 6: Learning curves on robotic manipulation tasks as measured on the ground truth success rate. The
dashed black line represents the last feedback collection step.

6.3 ABLATION STUDY

To evaluate the impact of each component in QPA, we incrementally apply policy-aligned query (PA),
hybrid experience replay (HR), and data augmentation (DA) to the backbone algorithm PEBBLE.
Figure 7 confirms that policy-aligned query has a positive impact on final results. Moreover, the
combination of policy-aligned query and experience replay proves to be indispensable for the success
of our method. While data augmentation does not always guarantee performance improvement, it
tends to enhance performance in most cases. In certain tasks, using only the hybrid experience replay
technique can result in slightly improved performance. This could be attributed to the advantage of
on-policyness (Liu et al., 2021; Sinha et al., 2022) that is facilitated by hybrid experience replay.

QPA also exhibits good hyperparameter robustness and achieves consistent performance improvement
over SURF and PEBBLE across various tasks with different parameter values of the query buffer
size N , data augmentation ratio τ and hybrid experience replay sample ratio ω. We provide detailed
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Figure 7: Contribution of each technique in QPA, i.e., policy-aligned query (PA), hybrid experience replay
(HR), and data augmentation (DA).

ablation results on hyperparameters in Appendix D.5. In all the tasks presented in Figure 5 and Figure
6, we utilize a data augmentation ratio of τ = 20 and a hybrid experience replay sample ratio of
ω = 0.5. For the majority of tasks, we set the size of the policy-aligned buffer as N = 10.

6.4 ADDITIONAL BENEFIT OF THE REWARD LEARNED BY QPA

As observed in Section 6.2, although SAC with ground truth reward is expected to attain higher
performance as compared to PbRL algorithms built upon SAC, it is found that QPA can surpass
it during the early training stages in certain tasks. To further investigate this phenomenon, we
conduct experiments that increase the total amount of feedback and allow the overseer to provide
feedback throughout the training process. As illustrated in Figure 8, QPA often exhibits faster learning
compared to SAC with ground truth reward in this setting, and in Quadruped_run task even achieves
higher scores. This phenomenon may be attributed to the ability to encode the long-term horizon
information of the reward function learned by QPA, which can be more beneficial for the current
policy to learn and successfully solve the task. Such a property is also uncovered in the motivating
example in Section 4. This intriguing and noteworthy phenomenon also highlights the possibility of
PbRL methods with learned rewards outperforming RL methods with per-step ground truth rewards.
We hope that this observation will inspire further investigations into the essence of learned rewards in
PbRL and foster the development of more feedback-efficient PbRL methods in the future.

(a) Quadruped_walk (b) Quadruped_run (c) Humanoid_stand

Figure 8: Learning curves of QPA compared to SAC with ground truth reward given more overseer feedback
throughout the entire training process .

7 CONCLUSION AND DISCUSSION

This paper addresses a long-neglected issue in existing PbRL studies, namely query-policy mis-
alignment, which hinders the existing query selection schemes from effectively improving feedback
efficiency. To tackle this issue, we propose a bidirectional query-policy alignment (QPA) approach
that incorporates policy-aligned query selection and hybrid experience replay. QPA can be imple-
mented with minimal code modifications on existing PbRL algorithms. Simple yet effective, extensive
evaluations on DMControl and MetaWorld benchmarks demonstrate substantial gains of QPA in
terms of feedback and sample efficiency, highlighting the importance of addressing the query-policy
misalignment issue in PbRL research. However, note that the query-policy misalignment issue is
inherently not present in on-policy PbRL methods, as they naturally select on-policy segments to
query preferences. These methods, however, suffer from severe sample inefficiency compared to
off-policy PbRL methods. In contrast, our QPA approach not only enables sample-efficient off-policy
learning, but also achieves high feedback efficiency, presenting a superior solution for the practical
implementation of PbRL in real-world scenarios.
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A PROOFS

In this section, we present an error bound to intuitively explain why the key idea behind the two
techniques in QPA (e.g. policy-aligned query selection and hybrid experience replay ) is reasonable.
Note that we do not aim to provide a tighter bound but rather to offer an insightful theoretical
interpretation to query-policy alignment.

Given the learned reward function r̂ψ, the current stochastic policy π and its state-action visitation
distribution dπ, we denote Qπ

r̂ψ
as the Q-function of π associated with r̂ψ and Q̂π

r̂ψ
as the estimated

Q-function obtained from the policy evaluation step in Eq. (1), which serves as an approximation of
Qπ
r̂ψ

. Qπ
r denotes the Q-function of π with true reward r. Define the distribution-dependent norms

∥f(x)∥µ := Ex∼µ [|f(x)|]. We have the following error bound:

Given the two conditions ∥r̂ψ − r∥dπ ≤ ϵ and ∥Qπ
r̂ψ

− Q̂π
r̂ψ
∥dπ ≤ α, the value approximation error

∥Qπ
r − Q̂π

r̂ψ
∥dπ is upper bounded as:

∥Qπ
r − Q̂π

r̂ψ
∥dπ ≤ ϵ

1− γ
+ α (5)

Proof. By repeatedly applying triangle inequality, we have

∥Qπ
r − Q̂π

r̂ψ
∥dπ = ∥Qπ

r −Qπ
r̂ψ

+Qπ
r̂ψ

− Q̂π
r̂ψ
∥dπ

≤ ∥Qπ
r −Qπ

r̂ψ
∥dπ + ∥Qπ

r̂ψ
− Q̂π

r̂ψ
∥dπ

= E(s,a)∼dπ
∣∣∣Qπ

r (s, a)−Qπ
r̂ψ
(s, a)

∣∣∣+ α

= E(s,a)∼dπ |r(s, a) + γEs′∼T,a′∼πQπ
r (s

′, a′)

− r̂ψ(s, a)− γEs′∼T,a′∼πQπ
r̂ψ
(s′, a′)|+ α

≤ ϵ+ γ∥Qπ
r −Qπ

r̂ψ
∥dπ + α

≤ ϵ+ γϵ+ γ2ϵ+ ...+ γ∞ϵ+ α

=
ϵ

1− γ
+ α

(6)

B ALGORITHM PROCEDURE

We provide the procedure of QPA in Algorithm 1. QPA is compatible with existing off-policy PbRL
methods, with only 20 lines of code modifications on top of the widely-adopted PbRL backbone
framework B-Pref (Lee et al., 2021a).

C EXPERIMENTAL DETAILS

C.1 2D NAVIGATION EXPERIMENT IN SECTION 4

In this section, we present the detailed task descriptions and implementation setups of the motivating
example in Section 4.

Task description. As illustrated in Figure 2 (a), we consider a 2D continuous space with (x, y)
coordinates defined on [−10, 10]2. For each step, the RL agent can move ∆x and ∆y ranging
from [−1, 1]. The objective for the agent is to navigate from the starting point (1, 1) to the goal
location (10, 10) as quickly as possible. The hand-engineered reward function (ground truth reward
in Figure 2 (b)) to provide preferences is defined as the negative distance to the goal, i.e., r(s, a) =

−
√
(x− 10)

2
+ (y − 10)

2.
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Algorithm 1: QPA
Input :Frequency of overseer feedback K, number of queries per feedback session M

Policy-aligned buffer size N , data augmentation ratio τ , hybrid sample ratio ω
Initialize :Initialize replay buffer D, query buffer Dσ , policy-aligned buffer Dpa with size N

1 (Option) Unsupervised pretraining (Lee et al., 2021b)
2 for each iteration do
3 Collect and store new experience D ← D ∪ {(s, a, r, s′)}, Don ← Don ∪ {(s, a, r, s′)}
4 if iteration %K == 0 then

/* policy-aligned query selection (see Section 5.1) */

5 {(σ0, σ1)}Mi=1 ∼ Don

6 Query for preferences {y}Mi=1, and store preference Dσ ← Dσ ∪ {
(
σ0, σ1, y

)
}Mi=1

7 for each gradient step do
8 Sample a minibatch preferences B ←

{
(σ0, σ1, y)

}h
i=1
∼ Dσ

/* Data augmentation for reward learning (see Section 5.3) */

9 Generate augmented preferences B̂ ←
{
(σ̂0, σ̂1, y)

}h×τ
i=1

based on B
10 Optimize Lreward in Eq. (4) w.r.t. r̂ψ using B̂
11 Relabel the rewards (Lee et al., 2021b) in D
12 for each gradient step do

/* Hybrid experience replay (see Section 5.2) */

13 Sample minibatch Dmini ← {(s, a, r, s′)}
n
2
i=1 ∼ D, Don

mini ← {(s, a, r, s′)}
n
2
i=1 ∼ D

on

14 Optimize SAC agent using Dmini ∪ Don
mini

Implementation details. We train PEBBLE (Lee et al., 2021b) using 3 different query selection
schemes: uniform query selection, disagreement query selection, and policy-aligned query selection
(see Section 5.1). In each feedback session, we can obtain one pair of segments to query overseer
preferences. The total amount of feedback is set to 8. Each segment contains 5 transition steps.
For all schemes, we select the 1st queries using uniform query selection according to PEBBLE
implementation. After the 1st query selection, we start selecting queries using different selection
schemes. The 2nd selected pairs of segments of different schemes are tracked in Figure 3, and the 3rd
to 5th selected pairs are tracked in Figure 2 (d).

C.2 DMCONTROL AND META-WORLD EXPERIMENTS

(a) Walker_walk (b) Walker_run (c) Cheetah_run (d) Quadruped_walk (e) Quadruped_run (f) Humanoid_stand

Figure 9: Rendered images of locomotion tasks from DMControl.

C.2.1 TASK DESCRIPTIONS

Locomotion tasks in DMControl suite. DMControl (Tassa et al., 2018) provides diverse high-
dimensional locomotion tasks. For our study, we choose 6 complex tasks Walker_walk, Walker_run,
Cheetah_run, Quadruped_walk, Quadruped_run, Humanoid_stand as depicted in Figure 9. In
Walker_walk and Walk_run, the ground truth reward is a combination of terms encouraging an upright
torso and forward velocity. The observation space is 24 dimensional, and the action space is 6
dimensional. In Cheetah_run, the ground truth reward is linearly proportional to the forward velocity
up to a maximum of 10m/s. The observation space is 17 dimensional, and the action space is 6
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dimensional. In Quadruped_walk and Quadruped_run, the ground truth reward includes the terms
encouraging an upright torso and forward velocity. The observation space is 58 dimensional, and the
action space is 12 dimensional. In Humanoid_stand, the ground truth reward is composed of terms
that encourage an upright torso, a high head height, and minimal control. The observation space is 67
dimensional, and the action space is 21 dimensional.

Robotic manipulation tasks in Meta-world. Meta-world (Yu et al., 2020) provides diverse
high-dimensional robotic manipulation tasks. For all Meta-world tasks, the observation space is
39 dimensional and the action space is 4 dimensional. For our study, we choose 3 complex tasks
Door_unlock, Drawer_open, Door_open as depicted in Figure 9. For Door_unlock, the goal is to
unlock the door by rotating the lock counter-clockwise and the initial door position is randomized.
For Drawer_open, the goal is to open a drawer and the initial drawer position is randomized. For
Door_open, the goal is to open a door with a revolving joint and the initial door position is randomized.
Please refer to (Yu et al., 2020) for detailed descriptions of the ground truth rewards.

(a) Door_unlock (b) Drawer_open (c) Door_open

Figure 10: Rendered images of robotic manipulation tasks from Meta-world.

C.2.2 IMPLEMENTATION DETAILS

Implementation framework. We implement QPA on top of the widely-adopted PbRL backbone
framework B-Pref1 (Lee et al., 2021a). B-Pref provides a standardized implementation of PEBBLE
(Lee et al., 2021b), which can be regarded as the fundamental backbone algorithm for off-policy
actor-critic PbRL algorithms. Therefore, similar to prior works (SURF (Park et al., 2022), RUNE
(Liang et al., 2022), etc), we opt for PEBBLE as our backbone algorithm as well. B-Pref implements
3 distinct buffers: the RL replay buffer D, the query selection buffer D′ and the preference buffer
Dσ. D stores historical trajectories for off-policy RL agent’s training. D′ is a copy of D excluding
the predicted reward. It is specifically utilized for segment query selection. Dσ stores the historical
feedback (σ0, σ1, y) for reward training. Every time the reward model r̂ψ is updated, all of the past
experience stored in D is relabeled accordingly. We implement SURF using their officially released
code2, which is also built upon B-Pref.

Query selection scheme. For PEBBLE and SURF, we employ the ensemble disagreement query
selection scheme in their papers. To be specific, we train an ensemble of three reward networks
r̂ψ with varying random initializations. When selecting segments from D′, we firstly uniformly
sample a large {(σ0, σ1)} batch from D′. Subsequently, we choose (σ0, σ1) from this batch based
on the highest variance of the preference predictor Pψ. For QPA, we simply reduce the size of D′.
This minimal modification ensures that the first-in-first-out buffer D′ exclusively stores the most
recent trajectories, effectively emulating the characteristics of the policy-aligned buffer Dpa. In QPA,
instead of utilizing ensemble disagreement query based on multiple reward models, we use a single
reward model and employ policy-aligned query selection (simply randomly selects segments from the
policy-aligned buffer Dpa). This approach significantly reduces the computational cost compared to
ensemble disagreement query selection, particularly in scenarios where the reward model is notably
large, such as large language models (LLMs). Although leveraging an ensemble of reward models
for query selection may offer improved robustness and efficacy in complex tasks as observed in
(Lee et al., 2021b; Ibarz et al., 2018), we showcase that QPA, employing the simple policy-aligned
query selection, can substantially outperform SURF and PEBBLE with ensemble disagreement query
selection.

1https://github.com/rll-research/BPref
2https://openreview.net/forum?id=TfhfZLQ2EJO
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Data augmentation. In the officially released code of SURF, they implement the temporal data
augmentation, which generates one (σ̂0, σ̂1, y) instance from each (σ0, σ1, y) pair. In contrast to
their implementation, in QPA, we generate multiple (σ̂0, σ̂1, y) instances from a single (σ0, σ1, y)
pair, which effectively expands the preference dataset. Specifically, we sample multiple pairs of
snippets (σ̂0, σ̂1) from the queried segments (σ0, σ1, y). These pairs of snippets (σ̂0, σ̂1) consist of
sequences of observations and actions, but they are shorter than the corresponding segments (σ0, σ1).
In each pair of snippets (σ̂0, σ̂1), σ̂0 has the same length as σ̂1, but they have different initial states.

Hyperparameter setting. QPA, PEBBLE, and SURF all employ SAC (Soft Actor-Critic)
(Haarnoja et al., 2018) for policy learning and share the same hyperparameters of SAC. We provide
the full list of hyperparameters of SAC in Table 1. Both QPA and SURF utilize PEBBLE as the
off-policy PbRL backbone algorithm and share the same hyperparameters of PEBBLE as listed in
Table 2. The additional hyperparameters of SURF based on PEBBLE are set according to their paper
and are listed in Table 3. The additional hyperparameters of QPA are presented in Table 4.

Table 1: Hyperparameters of SAC

Hyperparameter Value Hyperparameter Value

Discount 0.99 Critic target update freq 2
Init temperature 0.1 Critic EMA 0.005
Alpha learning rate 1e-4 Actor learning rate 5e-4 (Walker_walk,
Critic learning rate 5e-4 (Walker_walk, Cheetah_run,

Cheetah_run, Walker_run)
Walker_run) 1e-4 (Other tasks)

1e-4 (Other tasks) Actor hidden dim 1024
Critic hidden dim 1024 Actor hidden layers 2
Critic hidden layers 2 Actor activation function ReLU
Critic activation function ReLU Optimizer Adam
Bacth size 1024

Table 2: Hyperparameters of PEBBLE

Hyperparameter Value

Length of segment 50
Unsupervised pre-training steps 9000
Total feedback 100 (Walker_walk, Cheetah_run, Walker_run)

1000 (Quadruped_walk, Quadruped_walk)
2000 (Door_unlock)
3000 (Drawer_open, Door_open)
10000 (Humanoid_stand)

Frequency of feedback 5000 (Humanoid_stand, Drawer_open, Door_open)
20000 (Walker_walk, Cheetah_run, Walker_run, Door_unlock)
30000 (Quadruped_walk, Quadruped_walk)

# of queries per session 10 (Walker_walk, Cheetah_run, Walker_run)
30 (Drawer_open, Door_open)
50 (Humanoid_stand)
100 (Quadruped_walk, Quadruped_walk, Door_unlock)

Size of query selection buffer 100
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Table 3: Additional hyperparameters of SURF

Hyperparameter Value

Unlabeled batch ratio 4
Threshold 0.999 (Cheetah_run), 0.99 (Other tasks)
Loss weight 1
Min/Max length of cropped segment [45, 55]
Segment length before cropping 60

Table 4: Additional hyperparameters of QPA

Hyperparameter Value

Size of policy-aligned buffer N 30 (Drawer_open, Door_unlock), 60 (Door_open),
10 (Other tasks)

Data augmentation ratio τ 20
Hybrid experience replay sample ratio ω 0.5
Min/Max length of subsampled snippets [35, 45]

D MORE EXPERIMENTAL RESULTS

In this section, we present more experimental results. For each task, we perform 10 evaluations across
5 runs every 104 environment steps and report the mean (solid line) and 95% confidence interval
(shaded regions) of the results, unless otherwise specified.

D.1 QUERY-POLICY MISALIGNMENT AND ITS ROLE IN CAUSING FEEDBACK INEFFICIENCY.

In section 4, we present a motivating example to clarify the query-policy misalignment issue in existing
PbRL methods. In this section, we provide more experimental results in complex environment to
show that:

• the query-policy misalignment issue does exist in typical PbRL methods and does cause the
feedback inefficiency;

• using only policy-aligend query selection to address the query-policy misalignment can
result in a significant performance improvement.

As all the recent off-policy PbRL methods are built upon PEBBLE, we compare the two method:
PEBBLE and PEBBLE + policy-aligned query selection. The policy-aligned query selection is
presented in Section 5.1. To assess the extent to which the queried segments align with the distribution
of the current policy π, we compute the log likelihood of π using the queried segments at each query
time. Figure 11 (a) shows that the segments queried by PEBBLE exhibit a low log likelihood of π,
indicating that these segments fall outside the distribution of the current policy π. Figure 11 (a) and
(b) demonstrate that by only using the policy-aligend query selection to address the query-policy
misalignment leads to a considerable improvement in feedback efficiency. As the technique policy-
aligned query selection can be directly added to PEBBLE without other modifications to address
query-policy misalignment and improve feedback efficiency, the query-policy misalignment issue is
indeed the key factor causing feedback inefficiency.

D.2 ADDITIONAL COMPARISON

In this section, we demonstrate the efficacy of QPA in comparison to another SOTA method MRN (Liu
et al., 2022). All the basic settings remain consistent with the experimental setup outlined in Section
6.1. The additional hyperparameters (such as the bi-level update frequency) of MRN based on
PEBBLE are set according to their paper. Figure 12 shows that in most tasks, QPA consistently
outperforms MRN. It is worth noting that MRN adopts the performance of the Q-function as the
learning target to formulate a bi-level optimization problem, which is orthogonal to our methods.
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(a) Log likelihood of current policy π on the queried segments in 3 locomotion tasks.

(b) Learning curves of episode return in above locomotion tasks.

Figure 11: The blue line represents the typical PbRL method: PEBBLE, upon which most recent PbRL methods
are built. The red line represents PEBBLE + policy-aligned query selection. The experiments are conducted
on Walker_walk, Cheetah_run, Walker_run. (a) We use the queried segments at every query time to compute
the log likelihood of current policy π. The segments queried by PEBBLE exhibit a low log likelihood of π,
indicating that these segments fall outside the distribution of the current policy π, which supports the existence of
query-policy misalignment. When PEBBLE incorporates our proposed technique policy-aligned query selection
in Section 5.1, there is a substantial increase in the log likelihood of π. (b) The performance of PEBBLE +
policy-aligned query selection significantly surpasses that of PEBBLE in the corresponding task.

Policy-alignment query selection can be easily incorporate into MRN to further improve the feedback
efficiency.

Figure 12: Learning curves on locomotion tasks of QPA, PEBBLE, MRN, and MRN + policy-aligned query
selection. The dashed black line represents the last feedback collection step.
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D.3 RESULTS UNDER VARYING TOTAL FEEDBACK AND FEEDBACK FREQUENCIES

To further demonstrate the feedback efficiency of QPA, we compare its performance with that of
SURF and PEBBLE under varying total feedback and different feedback frequencies on certain
locomotion tasks. As illustrated in Figure 13-17, QPA (red) consistently outperforms SURF (brown)
and PEBBLE (blue) across a wide range of total feedback quantities and feedback frequencies. The
dashed black line depicted in these figures represents the last feedback collection step.

Figure 13: Learning curves on Walker_walk under varying total amounts of feedback {60, 100, 150}.

Figure 14: Learning curves on Cheetah_run under varying total amounts of feedback {60, 100, 140, 250}.

Figure 15: Learning curves on Quadruped_run under varying total amounts of feedback {600, 1000, 1700}.

Figure 16: Learning curves on other tasks under different total amounts of feedback.

Figure 17: Learning curves on Walker_walk under varying feedback frequencies.
Additionally, we provide a summary in Table 5 showcasing the average episode return or success rate
of all PbRL methods across all domains, including standard deviation, based on the final 10 or 100
evaluations and 5 seeds.
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Table 5: Average episode return / success rate of all PbRL methods with standard deviation over final 10/100
evaluations and 5 seeds. QPA consistently outperforms other methods across a wide range of tasks and given
feedback amounts.

Task - Total_feedback SAC with ground truth reward PEBBLE SURF QPA

Walker_walk-100 949.21±21.94 388.58±163.00 610.93±170.83 802.65±133.44
Walker_walk-60 949.21±21.94 205.23±103.08 544.06±105.24 672.19±128.97
Walker_walk-150 949.21±21.94 570.68±168.21 829.95±38.05 862.39±127.86
Walker_run-100 832.44±21.91 234.48±147.47 400.4±144.47 467.63±152.58
Cheetah_run-100 812.35±60.47 521.44±162.35 462.44±167.73 652.56±109.09
Cheetah_run-60 812.35±60.47 301.13±144.21 378.76±255.74 528.91±59.16
Cheetah_run-140 812.35±60.47 499.01±203.62 590.98±61.87 647.55±64.62
Quadruped_walk-1000 925.25±20.09 491.04±301.0 457.56±168.97 669.75±301.61
Quadruped_run-1000 660.44±128.7 409.87±113.58 431.03±94.44 495.71±139.24
Quadruped_run-600 660.44±128.7 166.93±148.51 342.07±103.45 403.95±99.82
Humanoid_stand-10000 503.13±85.85 385.26±123.9 332.67±166.18 467.09±32.41
Humanoid_stand-5000 503.13±85.85 28.11±44.11 44.75±77.99 79.39±88.63
Door-unlock-2000 100.0±0.0 74.0±37.65 51.0±38.07 80.2±37.63
Drawer-open-3000 91.6±16.8 58.4±40.96 47.0±43.41 65.0±43.25
Door-open-3000 100.0±0.0 79.6±39.8 50.0±41.91 84.4±14.5

D.4 THE EXPLORATION IN QPA

As detailed in Figure 4 and Section 5.1, the exploration of query selection in PbRL can cause feedback
inefficiency. The experiments in Section 6.2 and Appendix D.3 also demonstrate that, in general,
policy-aligned query selection is more feedback-efficient compared to methods such as uniform query
or disagreement query, which, to some extent, "encourage" the exploration of query selection.

Using the policy-aligned query selection, which confines the queries to the local policy-aligned
buffer Dpa, provides more local guidance for current policy, enhancing feedback efficiency. However,
adopting policy-aligned query selection doesn’t imply a lack of explorative capability in QPA. In fact,
SAC’s intrinsic encouragement of exploration can enhance the policy performance of QPA.

We would like to highlight that the exploration of state-action space in traditional RL algorithms and
the exploration of query selection in PbRL algorithms are two separate and distinct aspects. While the
exploration of query selection potentially causes feedback inefficiency, the exploration ability in RL
algorithms can help improve the sample efficiency. QPA adopts SAC as the backbone RL algorithm.
The MaxEntropy policy of SAC helps QPA explore the unknown regions, while the policy-aligned
query helps QPA exploit the limited human feedback. We conduct supplementary experiments in
Figure 18 that remove the MaxEntropy of SAC. The results show that the intrinsic encouragement of
exploration in SAC plays an important role in policy performance.

Figure 18: Learning curves of QPA and the modified QPA that removes the MaxEntropy of SAC (QPA w/o
MaxEntropy).

D.5 ADDITIONAL ABLATION STUDY

We emphasize that the outstanding performance of QPA, as demonstrated in Section 6, was not
achieved by meticulously selecting QPA’s hyperparameters. On the contrary, as indicated in Table
4, we consistently use a data augmentation ratio of τ = 20, a hybrid experience replay of ω = 0.5
across all tasks and use a policy-aligned buffer size of N = 10 in the majority of tasks. To delve
deeper into the impact of hyperparameters on QPA’s performance, we conduct an extensive ablation
study across a range of tasks.
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Effect of data augmentation ratio τ . The data augmentation ratio, denoted as τ , represents
the number of instances (σ̂0, σ̂1, y) generated from a single pair (σ0, σ1, y). To explore the impact
of the data augmentation ratio on QPA’s performance, we evaluate the performance of QPA under
different data augmentation ratios τ ∈ {0, 10, 20, 100}. Figure 19 illustrates that QPA consistently
demonstrates superior performance across a diverse range of data augmentation ratios. While a larger
data augmentation ratio does not necessarily guarantee improved performance, it is worth noting that
τ = 20 is generally a favorable choice in most cases.

(a) Walker_walk (b) Cheetah_run (c) Walker_run

(d) Quadruped_walk (e) Quadruped_run (f) Humanoid_stand

Figure 19: Learning curves on locomotion tasks under different data augmentation ratios τ ∈ {0, 10, 20, 100}
of QPA.

Effect of policy-aligned buffer size N . The size of the on-policy buffer, denoted as N , signifies
the number of the recent trajectories stored in the first-in-first-out buffer Dpa. A larger N implies that
the policy-aligned buffer Dpa contain additional historical trajectories generated by a past policy π′

that may be significantly different from the current policy π, potentially deviating from the main idea
of policy-aligned query selection. Therefore, it is reasonable for QPA to opt for a smaller value of
N . To further investigate how the on-policy buffer size affects QPA’s performance, we evaluate the
performance of QPA under different on-policy buffer sizes N ∈ {5, 10, 50}. Figure 20 demonstrates
QPA consistently showcases superior performance, particularly when using a smaller value for N .

In Quadruped_run, it is observed that QPA with N = 50 does not exhibit improved performance.
This outcome can be attributed to the fact that the larger value of N compromises the essence of
near "on-policy" within Dpa. This once again highlights the significance of the policy-aligned query
selection principle. A smaller value of N may not always result in a significant improvement in
performance. This could be because the pair of segments selected from a very small policy-aligned
buffer is more likely to be similar to each other, resulting in less informative queries. Overall, it is
generally considered favorable to select N = 10 for achieving better performance.

Effect of hybrid experience replay sample ratio ω. The sample ratio of hybrid experience
replay, denoted as ω, signifies the proportion of transitions sourced from the policy-aligned buffer
Dpa during the policy evaluation (empirical Bellman iteration) step. When ω = 0, all transitions are
sourced from the entire replay buffer D. Conversely, when ω = 1, all transitions are sourced from
the policy-aligned buffer Dpa. We provide an additional ablation study in Figure 21 to investigate
the effect of ω. Only sampling the transitions from the entire replay buffer D (ω = 0.8) for Bellman
iterations diminishes QPA’s performance, which validates that the hybrid experience replay technique
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(a) Walker_walk (b) Cheetah_run (c) Walker_run

(d) Quadruped_walk (e) Quadruped_run (f) Humanoid_stand

Figure 20: Learning curves on locomotion tasks under different sizes of policy-aligned buffer N ∈ {5, 10, 50}
of QPA.

can enhance performance. When a larger proportion of transitions is sampled from the policy-aligned
buffer (ω = 0.8), QPA’s performance remains close to QPA with ω = 0.5 The hybrid experience
replay not only benefits the value learning within on-policy distribution, but also improves sample
efficiency compared to on-policy PbRL algorithms. Overall, ω = 0.5 is generally a favorable choice.

Figure 21: Learning curves on locomotion tasks under different hybrid experience replay sample ratio ω ∈
{0, 0.5, 0.8}.

E HUMAN EXPERIMENTS

In this section, we compare the agent trained with real human preferences (provided by the authors)
to the agent trained with hand-engineered preferences (provided by the hand-engineered reward
function in Appendix C.2.1) on the Cheetah_run task. We report the training results in Figure 22.
Please refer to the supplementary material for the videos of agent training processes.

Avoiding reward exploitation via human preferences. As shown in Figure 22, the agent trained
with real human preferences exhibits more natural behavior, while the agent trained with hand-
engineered preferences often behaves more aggressively and may even roll over. This is because
the hand-engineered reward function is based solely on the linear proportion of forward velocity,
without fully considering the agent’s posture. Consequently, it can be easily exploited by the RL
agent. Take Figure 23 as an example: when comparing the behaviors of "Stand still" and "Recline",
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(a) Agent trained with human preferences

(b) Agent trained with hand-engineered preferences

Figure 22: Human experiments on Cheetah_run task.

(a) Stand still (b) Recline

Figure 23: A pair of segments.

Figure 24: Learning curves of QPA and PEBBLE on Cheetah_run under 100 real human preferences.

humans would typically not prefer the latter, as it clearly contradicts the desired behavior of "running
forward". However, in our experiments, we observe that the hand-engineered overseer would favor
"Recline" over "Stand still", as the hand-engineered preferences only consider the forward velocity
and overlook the fact that the agent is lying down while still maintaining some forward velocity.
This highlights the advantages of RL with real human feedback over standard RL that training with
hand-engineered rewards.

The effectiveness of QPA under real human preference. We also provide the learning curve
of QPA compared to PEBBLE under 100 real human preferences in Figure 24. The preferences
are labeled by two different humans, which might introduce inconsistencies and contradictions
in preferences. Figure 24 shows that using feedback from real humans, our method also notably
improves feedback efficiency compared to PEBBLE.
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Experimental details and user interface. The total feedback, frequency of feedback and number
of queries per session in real human experiments remain consistent with the experimental setup
outlined in Section 6.1 and Table 2. A subtle distinction is that human users have the choice to skip
certain queries when they find it challenging to determine their preferred segment, unlike the scripted
annotator. These skipped queries are not accounted for in the total feedback.

Our implementation of real human PbRL builds upon the widely-adopted PbRL backbone frame-
work B-Pref (Lee et al., 2021a). In the original B-Pref code, scripted preferences based on the
cumulative ground truth rewards of each segment defined in the benchmarks are used after each
query selection. However, to enable real humans to provide preferences and furnish labeling instruc-
tions and a user interface, we’ve mainly modified the get_label function. The modified function
now accepts additional inputs: physics_seg and video_recorder. The physics_seg is obtained from
env.physics._physics_state_items() in DMControl environments (Tassa et al., 2018). video_recorder
is a class for physics rendering. We provide the Python code of modified get_label function as follow.

import numpy as np
import torch

# get human label.
# sa_t: the segment; physics_seg: the physics information of the

segment; env: the environment; video_recorder: the recorder for
physics rendering.

def get_label(self, sa_t_1, sa_t_2, physics_seg1, physics_seg2, env,
video_recorder):

# get human label
human_labels = np.zeros(sa_t_1.shape[0])
for seg_index in range(physics_seg1.shape[0]):

# render the pairs of segments and save the video
video_recorder[0].init(env, enabled=True)
for i in range(physics_seg1[seg_index].shape[0]):

with env.physics.reset_context():
env.physics.set_state(physics_seg1[seg_index][i])

video_recorder[0].record(env)
video_recorder[0].save(’seg1.mp4’)

video_recorder[1].init(env, enabled=True)
for i in range(physics_seg2[seg_index].shape[0]):

with env.physics.reset_context():
env.physics.set_state(physics_seg2[seg_index][i])

video_recorder[1].record(env)
video_recorder[1].save(’seg2.mp4’)

labeling = True
# provide labeling instruction and query human for preferences
while(labeling):

print("\n")
print("---------------------------------------------------")
print("Feedback number:", seg_index)

# preference:
# 0: segment 0 is better
# 1: segment 1 is better
# other number: hard to judge, skip this pair of segment
while True:

# check if it is 0/1/number type preference
try:

rational_label = input("Preference: 0 or 1 or other
number")

rational_label = int(rational_label)
break

except:
print("Wrong label type. Please enter 0/1/other number.

\n")
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print("---------------------------------------------------")

human_labels[seg_index] = rational_label
labeling = False

# remove the hard-to-judge pairs of segments
cancel = np.where(human_labels!=0 and human_labels!=1)[0]
human_labels = np.delete(human_labels, cancel, axis=0)
sa_t_1 = np.delete(sa_t_1, cancel, axis=0)
sa_t_2 = np.delete(sa_t_2, cancel, axis=0)

print("valid query number:", len(human_labels))
return sa_t_1, sa_t_2, human_labels

The user interface is shown in Figure 25. Users have the option to input either 0 or 1 to indicate their
preference, or they can input any other number to skip this labeling.

Figure 25: User interface for providing user preferences.
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