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Abstract—We consider the regression problem based on Gaussian processes. We assume that
the prior distribution on the vector of parameters in the corresponding model of the covariance
function is non-informative. Under this assumption, we prove the Bernstein–von Mises theorem
that states that the posterior distribution on the parameters vector is close to the corresponding
normal distribution. We show results of numerical experiments that indicate that our results
apply in practically important cases.
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1. INTRODUCTION

Gaussian processes are widely used to solve the regression reconstruction problem [1–3]. It is
assumed that the observed sample of function values at fixed points of the design space is an
implementation of a Gaussian process whose distribution is completely defined by a predefined
expectation and covariance functions. It is also assumed that the covariance function between sample
values depends only on the points of observation. In this case the function’s value at a new point is
usually predicted with posterior (with respect to the known sample of function values) expectation
of the process, which is in fact a weighted sum of known values of the function, and the weights
in this sum are defined by mutual covariances of function values at the new point and at sample
points [1].

One usually assumes that the covariance function of a Gaussian process belongs to a certain
parametric family [1] whose parameters are characterized by the prior distribution [4–6]. Accordingly,
the posterior distribution of parameters (with respect to the known sample of process values) will
be proportional to the product of data likelihood, which also depends on the parameters of the
covariance function, and a given prior distribution parameters.

According to the well-known Bernstein–von Mises theorem (BvM), the posterior distribution
is asymptotically normal whose mean is close to the maximal likelihood estimate (MLE) and the
covariance matrix is close to the MLE covariance matrix. Therefore, this theorem is often consid-
ered as a Bayesian counterpart of the Fischer theorem on the MLE’s asymptotic normality. The
BvM theorem provides theoretical ground for various Bayesian procedures, e.g., for using Bayesian
inference to find the MLE estimate and its covariance matrix, construct elliptical confidence sets
based on the first two moments of the posterior distribution, and so on.

The classical version of the BvM theorem is formulated for the case when the parametric assump-
tion regarding the data model holds and sample size tends to infinity. This is exactly the setting in
which properties of the posterior distribution of the covariance function’s vector of parameters are
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still studied to this day (see, e.g., [7–9]). However, in practical cases it is often necessary to consider
situations where sample size is limited, and the original parametric assumption on the Gaussian
process covariance function may be violated (in practice it is impossible to establish the true nature
of the function whose model is being constructed).

In [10, 11], the authors develop methods that help prove the BvM theorem under sufficiently
general assumptions in the case of a limited sample and possible violation of the original parametric
assumption regarding the model. In this work, we adapt these methods for the considered model
of Gaussian processes and apply them to study the properties of the posterior distribution of the
covariance function’s vector of parameters. Namely, we prove the BvM theorem on the closeness
of the posterior distribution of the covariance function’s vector of parameters to the corresponding
normal distribution in the case of a non-informative prior distribution for the vector of parameters.
In particular, we show that the mean value of the posterior distribution of the vector of parameters
is close to the maximal likelihood estimate (MLE), and its covariance matrix is close to the MLE
covariance matrix.

The paper is organized as follows. In Section 2 we describe the regression reconstruction procedure
based on Gaussian processes. In Section 3 we show our theoretical results. Section 4 presents the
numerical experiments we have conducted, and the Appendix contains proofs for our theoretical
results.

2. REGRESSION BASED ON GAUSSIAN PROCESSES

We solve the following problem. Consider a sample of values of an unknown function D =
(X,y) = {xi, y(xi) = yi}ni=1, x ∈ X ⊆ Rd. We need to construct, given the sample D of size n, an
approximation ŷ(x) of the function y(x).

We will assume that the function y(x) is an implementation of a Gaussian process. Without
loss of generality we let the mean of this Gaussian process to equal zero. In this case the joint
distribution of the vector of values y has the form y ∝ N (0,K), where K is some positive definite
covariance matrix which, in general, depends on the sample D.

Suppose that the covariance between arbitrary values of the Gaussian process is given by a certain
covariance function cov(y(x), y(x′)) = k(x,x′). Then the covariance matrix of sample values D has
the form K = {k(xi,xj)}ni,j=1.

For a Gaussian random process, the posterior distribution on the value of its implementation y(x)
at a new point x ∈ Rd will be normal for a fixed covariance function

p(y(x)|D) = N (µ(x),σ2(x)).

Expressions for the expectation µ(x) and variance σ2(x) of the posterior distribution p(y(x)|D) can
be written explicitly as

µ(x) = k⊤(x)K−1y,

σ2(x) = k(x,x)− k⊤(x)K−1k(x).

Here k(x) = (k(x,x1), . . . , k(x,xn))⊤ is the column vector of the covariance between the value y(x)
of the random process at point x and values y(x1), . . . , y(xn) of the random process in sample points
x1, . . . ,xn. The posterior mean µ(x) is used as a prediction ŷ(x) of the process value y(x), and the
posterior variance σ2(x) can serve as an estimate for the prediction’s uncertainty.

In practice, to model a covariance function one usually uses some parametric family of covariance
functions kθ(x,x′), θ ∈ Θ ⊆ Rp, where Θ is a compact set. In this case, to construct regression
based on Gaussian processes it suffices to estimate the vector of parameters θ for the covariance
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function kθ(x,x′). Naturally, there is no reason to assume that the parametric assumption on the
covariance function of a Gaussian process holds, i.e., in general k(x,x′) ̸∈ {kθ(x,x′), θ ∈ Θ ⊆ Rp}.

The joint distribution of the vector of known values y will be normal. Then the logarithm of the
data (quasi-) likelihood has the form

L(θ) = −1

2

[
n log 2π + ln |Kθ|+ y⊤K−1

θ y
]
, (1)

where Kθ = {kθ(xi,xj)}ni,j=1.

As an estimate on the vector of parameters θ one often uses the maximal (quasi-) likelihood
estimate

θ̃ = argmax
θ∈Θ

L(θ).

Suppose that we are also given a certain prior distribution Π(dθ) on the vector of parameters θ.
Then the posterior distribution for a given sample D will describe the conditional distribution of
the random vector ϑ. This is usually written as

ϑ
∣∣D ∝ exp

{
L(θ)

}
Π(dθ). (2)

The purpose of this work is to study the properties of the posterior distribution ϑ
∣∣D. Note that

the posterior distribution’s maximum can be used as a characteristic value (estimate) of the vector
of parameters θ.

3. PROPERTIES OF THE POSTERIOR DISTRIBUTION ON THE VECTOR
OF PARAMETERS OF THE COVARIANCE FUNCTION

In what follows, we will concentrate on probabilistic properties of the posterior distribution on
the vector of parameters θ for the case of a non-informative prior distribution Π(dθ).

3.1. Assumptions on the Covariance Function

We introduce the following notation for the central point θ∗:

θ∗ def
= argmax

θ∈Θ
EL(θ).

To describe the properties of the resulting posterior distribution, we have to impose a number
of constraints on the set X ∈ X, covariance function kθ(x,x′), and the corresponding covariance
matrices Kθ and K.

Let
D2

0 = −∇2EL(θ∗), V 2
0 = Var {∇L(θ∗)} .

Here D2
0 plays the role of the Fischer information matrix. Next we list the assumptions used in this

work:
—covariance function kθ(x,x′) is three times continuously differentiable with respect to θ ∈ Θ

for x,x′ ∈ X;
—minimal eigenvalues of matrices K and Kθ are larger than some λ0 > 0, and their maximal

eigenvalues do not exceed some λ0 < ∞;
—
∥∥∥∂Kθ

∂θi

∥∥∥
2
< λ1 < ∞ for all θ ∈ Θ, i = 1, p;

—
∥∥∥ ∂2Kθ
∂θi∂θj

∥∥∥
2
< λ2 < ∞ for all θ ∈ Θ, i, j = 1, p;
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—
∥∥∥ ∂3Kθ
∂θi∂θj∂θk

∥∥∥
2
< λ3 < ∞ for all θ ∈ Θ, i, j, k = 1, p;

—the minimal eigenvalues of matrices 1
nD

2
0 and 1

nV
2
0 are larger than some d0 > 0 and v0 > 0

respectively ;
—there exists a vector θ∗ = argmaxθ∈Θ EL(θ);
—there exists r0 > 0 such that for ∀ r = r0 and θ /∈ Θ0(r) = {θ : ∥V0(θ− θ∗)∥ ! r} it holds that

EL(θ)− EL(θ∗) = log
( |Kθ∗ |
|Kθ|

)
+ tr

(
(K−1

θ∗ −K−1
θ )K

)
̸= 0.

Note that in this work we do not make the parametric assumption, i.e., it may happen that k(x,x′) ̸∈
{kθ(x,x′),θ ∈ Θ ⊆ Rp}.

3.2. Quadratic Exponential Covariance Function

Let us consider a sample parametric class of covariance functions, namely a quadratic exponential
covariance function [1]

kθ(x,x
′) = exp

(

−1

2

n∑

i=1

θi(xi − x′i)
2

)

+ σ2δ(x− x′), (3)

where δ(·) denotes the Kroneker function. The first term in (3) specifies the covariance between
values of the Gaussian process’ realizations at the points of the space, while the second term defines
the variance level of the normally distributed noise in the data.

For a quadratic exponential covariance function conditions listed in Section 3.1 are assured by
the choice of a sufficiently good design X and the value of the noise level σ2 " σ2

0 > 0 that plays
the role of a regularization parameter in the corresponding covariance matrix Kθ.

In case we use this class of covariance functions we have to estimate the vector of parameters
θ = {θ1, . . . , θp} ∈ Θ =

∏p
i=1[θmin,i, θmax,i] (here d = p). Note that different parameterizations of

the vector of parameters θ, that have been often used [12, 13], let one improve approximation of
the posterior distribution with the corresponding normal distribution.

3.3. Properties of the Posterior Distribution for the Vector of Parameters θ

We denote by C a universal absolute constant that in different formulas can take different values.
We also fix a sufficiently large constant x = xn, that grows as n increases.

We denote by Ωn a random event with dominating probability such that

IP
(
Ωn
) " 1− Ce−xn .

We define the values

ϑ̄
def
= E

(
ϑ
∣∣D
)
, S2 def

= Cov(ϑ)
def
= E

{(
ϑ− ϑ̄

) (
ϑ− ϑ̄

)⊤ ∣∣D
}

that play the role of posterior mean and posterior covariance of the random vector matrix ϑ.
The following generalization of the BvM theorem holds.
Theorem. Suppose that assumptions from Section 3.1 hold. Then there exist a value τ and a

random event Ωn with dominating probability such that the following inequalities hold on Ωn:
∥∥∥D0

(
ϑ̄− θ̃

)∥∥∥
2
! Cτ(p+ x), (4)

∥∥IIp −D0S
2D0

∥∥
∞ ! Cτ(p+ x), (5)

and the value τ(p + x) is small and decreases as n increases.
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Besides, for an arbitrary λ ∈ Rp with ∥λ∥2 ! (p+ x) it holds that
∣∣∣log E

[
exp

{
λ⊤S−1 (ϑ− ϑ̄

)} ∣∣D
]
− ∥λ∥2/2

∣∣∣ ! Cτ(p+ x). (6)

Expressions (4) and (5) show that the mean value ϑ̄ and the covariance matrix S2 of the posterior
distribution are close to the MLE θ̃ and the D−2

0 matrix respectively, while Eq. (6) describes how
close the posterior distribution is to the corresponding normal distribution.

4. COMPUTATIONAL EXPERIMENT

4.1. Data Generation

For simplicity we will assume that the true covariance function k(x,x′) belongs to a family
of quadratic exponential covariance functions kθ(x,x′) (3). We will assume that noise variance is
known and equals σ2 = 0.01, while the prior distribution on the vector of parameters is uniform on
a given hypercube Θ =

∏p
i=1[θmin,i, θmax,i]. This non-informative prior distribution does not distort

the form of the original likelihood in the neighborhood of a point θ∗ ∈ Θ.
Consider a value of the vector of parameters θ∗ and a point from the set X that belongs to the hy-

percube X = [0, 1]d. Then the joint distribution on the vector of values y will be a multidimensional
normal distribution with zero expectation and covariance matrix Kθ∗ = {kθ∗(xi,xj)}ni,j=1.

In this model, a single sample for an arbitrary θ ∈ Θ is generated as follows:
—suppose that covariance function kθ(x,x′) and its parameters θ are fixed;
—generate a set of points X = {xi}ni=1 of fixed size n, e.g., with the uniform distribution on a

hypercube X = [0, 1]d;
—generate a normally distributed vector y with zero expectation and covariance matrix Kθ =

{kθ(xi,xj)}ni,j=1 at points of X;
—the vector y will be a realization of the Gaussian process with fixed covariance function

kθ(x,x′).

4.2. The Form of the Posterior Distribution on the Data

It has been shown in [12] that there exist a covariance function and location of points in the
design space such that a sample from the posterior distribution generated with the corresponding
Gaussian process often has maximum at zero or infinity. Besides, [12] shows analytic examples in
which the data likelihood function has a local maximum which is not global.

Figure 1 shows how the posterior distribution density depends on the value of the parameter θ.
It shows two cases:

—posterior density with a single maximum located not in zero (standard case);
—posterior density has a local maximum located at zero or infinity. Note that in this case the

corresponding covariance matrix violates its nondegeneracy condition.
It is clear that in the first case the posterior density is sufficiently close to normal.
Figure 2 shows an example of the posterior distribution of the vector of parameters θ obtained

in a similar way for the two-dimensional case.

4.3. Checking the Statements of the Theorem

Let us study how significant are the tails of the resulting posterior distribution. For simplicity
we consider the case d = 1. We will be estimating the probability ϑ to fall outside the region

Θϑ̄,2S = {θ : |θ − ϑ̄| ! 2S},
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Fig. 1. Possible forms of posterior density for the distribution on the vector of parameters θ in the one-
dimensional case. On the left, the usual form of posterior density. On the right, the case when the global
maximum of posterior density arises at zero. In the first case, we used a sample of size n = 500; in the second
case, the sample size n was 50.
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Fig. 2. Posterior distribution density for the vector of parameters θ in the two-dimensional case. The training
sample size is n = 300.

where ϑ̄ is the expectation, and S is the standard deviation of the posterior distribution.
The dependency between the probability of posterior distribution tails on the sample size is shown

on Fig. 3. It is clear that as the sample size grows, the probability converges to a sufficiently small
value. Confidence intervals have been estimated with bootstrapping over two hundred randomly
generated samples.

For two distributions P and Q with densities p(θ) and q(θ) respectively such that their expec-
tations µ and variances σ2 coincide, we define the bounded Hellinger distance with the following
formula:

H2(P,Q) =
1

2

∫

Θµ,2σ

(√
p(θ)−

√
q(θ)

)2

dθ.
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Fig. 3. Dependency of the probability to fall into the tails of the posterior distribution (solid bold line) of the
sample size. Bold points denote the 95% confidence interval.

Fig. 4. Dependency of the bounded Hellinger distance (solid bold line) of the sample size. Bold points denote
the 95% confidence interval.

Let us check how close posterior distribution parameters θ are to the corresponding normal
distribution in the neighborhood of the maximum point θ̃ of the posterior distribution. To do so,
we compute the bounded Hellinger distance between these distributions.

Figure 4 shows that as the sample size n grows the bounded Hellinger distance between the
posterior distribution and the corresponding normal distribution decreases. Confidence intervals
have been estimated with bootstrapping over two hundred randomly generated samples.

Thus, indeed, as the sample size n grows both the probability of falling into posterior distribution
tails and the posterior distribution converge to the corresponding normal distribution.
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5. CONCLUSIONS

In this work, we have obtained a description of probabilistic properties of the posterior distribu-
tion on the vector of model parameters for the covariance function in a regression problem based on
Gaussian processes. We have proven the Bernstein–von Mises theorem, namely, we have shown that
the posterior distribution on the vector of parameters in case of a non-informative prior distribution
is close to the corresponding normal distribution. Computational experiments show that our results
are applicable in many practically important cases.
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APPENDIX

Let us give a sketch of the proof for the theorem. We remind that ζ(θ) = L(θ) − EL(θ) and
L(θ,θ∗) = L(θ)− L(θ∗). We list expressions for several values needed below:

• log-likelihood as a function of the vector of parameters θ

L(θ) = −1

2

[
n log 2π + ln |Kθ|+ y⊤K−1

θ y
]
;

• log-likelihood expectation

EL(θ) = −1

2

[
n log 2π + ln |Kθ|+ tr

(
K−1

θ K
)]

;

• log-likelihood derivative

▽iL(θ) = −1

2

[
tr
(
K−1

θ

∂Kθ

∂θi

)
− y⊤(K−1

θ )⊤
∂Kθ

∂θi
K−1

θ y
]
;

• log-likelihood expectation derivative

▽iEL(θ) = −1

2

[
tr
(
K−1

θ

∂Kθ

∂θi

)
− tr

(
(K−1

θ )⊤
∂Kθ

∂θi
K−1

θ K
)]

;

• Let Ui = Ui(θ∗) = (K−1
θ )⊤

∂Kθ

∂θi
K−1

θ

∣∣∣∣∣
θ=θ∗

. The matrix V 2
0 =Var {∇L(θ∗)} has the form

V 2
0 =

{
1

2
tr(UiKUjK)

}p

i,j=1
;

• elements of matrix D2
0 = −∇2EL(θ∗) = {di,j}pi,j=1 have the form

di,j =
1

2
tr

[

UiKθUjK + UjKθUiK − UiKθUjKθ + (K−1
θ )⊤

∂2Kθ

∂θi∂θj
K−1

θ (Kθ −K)

]∣∣∣∣∣
θ=θ∗

.

Let us show that under the assumptions introduced in Section 3.1 the following statements hold.

AUTOMATION AND REMOTE CONTROL Vol. 74 No. 10 2013

DRAFT



PROPERTIES OF THE POSTERIOR DISTRIBUTION 1653

Statement 1 (ED0). There exist constants g > 0, ν0 " 1 such that for all |λ| ! g it holds that

sup
γ∈Rp

log E exp
{
λ
γ⊤∇ζ(θ∗)

∥V0γ∥

}
! ν20λ

2/2. (A.1)

We denote

Z =
1

∥V0γ∥

p∑

i=1

γiUi.

Then the expectation in the left-hand side of inequality (A.1) exists if matrix K−1−λZ is positive
definite or, which is the same, matrix I−λKZ is positive definite (here and in what follows I denotes
the unit matrix of size n×n). Due to our assumptions, the norm ∥KZ∥ is bounded for arbitrary X
and θ∗, therefore, there exists g such that for every |λ| ! g matrix I − λKZ " 0.

Thus, for |λ| ! g inequality (A.1) can be rewritten as

sup
γ∈Rp

[
−λ

2
tr(ZK)− 1

2
log |I − λZK|

]
! ν20λ

2

2
.

Since matrix I −λZK is positive definite, expression under the sup sign in the left-hand side of the
inequality can be decomposed into a Taylor series. As a result we get that to prove inequality (A.1)
it suffices to prove that there exist ν20 and g such that for every |λ| ! g it holds that

∣∣∣∣∣
1

2
tr

( ∞∑

i=2

1

i
(λZK)i

)∣∣∣∣∣ ! ν20λ
2/2. (A.2)

Since due to the assumptions above the value tr [(ZK)] can be bounded from above by a certain
constant c, inequality (A.2) holds for some g and ν20 .

Thus, we can choose parameter g so that for every |λ| ! g the following conditions hold:
(a) matrix I − λZK is positive definite;
(b) the power series (A.2) whose coefficients depend on θ∗ is bounded by ν20λ

2
/
2.

For g chosen as above statement ED0 holds.
Let r20 " C(p+ x).
Statement 2 (ED1). For every r ! r0 there exists a constant ω(r) ! 1/2 such that for all

θ ∈ Θ0(r) it holds that

sup
γ∈Rp

log E exp
{
λ
γ⊤{∇ζ(θ)−∇ζ(θ∗)}

ω(r)∥V0γ∥

}
! ν20λ

2/2, |λ| ! g. (A.3)

Here the constant g is the same as in (ED0).
We define Z(θ) as

Z(θ) =
1

ω(r)∥V0γ∥

p∑

i=1

γi(Ui(θ
∗)− Ui(θ)),

where Ui(θ) =
(
K−1

θ

)⊤ ∂Kθ
∂θi

K−1
θ . The proof is similar to the proof of statement (ED0), but now we

will have to additionally look for g such that for every |λ| ! g the following conditions hold:
(a) matrix I − λZ(θ)K is positive definite for all θ ∈ Θ0(r);
(b) the power series of the form (A.2) whose coefficients depend on θ ∈ Θ0(r) is bounded by

ν20λ
2
/
2 for all θ ∈ Θ0(r).

The constant g as above exists due to the assumptions we have introduced on the covariance function.
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Statement 3 (L0). For every r ! r0 there exists a constant δ(r) ! 1/2 such that on the set Θ0(r)
it holds that ∣∣∣∣

−2EL(θ,θ∗)

∥D0(θ − θ∗)∥2 − 1

∣∣∣∣ ! δ(r). (A.4)

Proof of this statement uses the fact that function EL(θ,θ∗) is twice continuously differentiable
in the neighborhood of θ∗, and its gradient ∇EL(θ∗) is zero. This means that the decomposition
up to the second order EL(θ,θ∗) contains only the quadratic term, so the neighborhood’s radius
can be chosen such that inequality (A.4) holds.

Statement 4 (I). There exists a constant a > 0 such that

a2D2
0 " V 2

0 . (A.5)

Due to the properties of matrices D2
0 and V 2

0 and assumptions we have made about the covariance
function inequality (A.5) will hold.

Statement 5 (Er). For an arbitrary r there exists g(r) > 0 such that for all λ ! g(r) it holds
that

sup
θ∈Θ0(r)

sup
γ∈Rp

log E exp
{
λ
γ⊤∇ζ(θ)

∥V0γ∥

}
! ν20λ

2/2. (A.6)

Since covariance matrices and their derivatives with respect to θ are bounded, similar to the
proof of inequality (ED0) we can show that (A.6) holds.

Statement 6 (L r). There exists b such that for every r " r0

inf
θ: ∥V0(θ−θ∗)∥=r

∣∣EL(θ,θ∗)
∣∣ " br2. (A.7)

Function f(θ) = |EL(θ,θ∗)|
∥V0(θ−θ∗)∥2 is continuous, and f(θ) ̸= 0 for θ ∈ Θc

0(r0) = Θ \Θ0(r0) due to
assumptions introduced in Section 3.1. Since Θc

0(r0) is a compact set, there exists b > 0 such that
f(θ) " b for θ ∈ Θc

0(r0), which implies (A.7).
Thus, if conditions from Section 3.1 statements (ED0), (ED1), (L0), (I), (Er), and (L r) will

also hold. The theorem is further proven with considerations shown in [11].
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