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Abstract
Self-supervised speech representation learning (speech SSL) has demonstrated the
benefit of scale in learning rich representations for Automatic Speech Recognition
(ASR) with limited paired data, such as wav2vec 2.0. We investigate the existence
of sparse subnetworks in pre-trained speech SSL models that achieve even better
low-resource ASR results. However, directly applying widely adopted pruning
methods such as the Lottery Ticket Hypothesis (LTH) is suboptimal in the compu-
tational cost needed. Moreover, we show that the discovered subnetworks yield
minimal performance gain compared to the original dense network.
We present Prune-Adjust-Re-Prune (PARP), which discovers and finetunes subnet-
works for much better performance, while only requiring a single downstream ASR
finetuning run. PARP is inspired by our surprising observation that subnetworks
pruned for pre-training tasks need merely a slight adjustment to achieve a sizeable
performance boost in downstream ASR tasks. Extensive experiments on low-
resource ASR verify (1) sparse subnetworks exist in mono-lingual/multi-lingual
pre-trained speech SSL, and (2) the computational advantage and performance gain
of PARP over baseline pruning methods.
In particular, on the 10min Librispeech split without LM decoding, PARP discovers
subnetworks from wav2vec 2.0 with an absolute 10.9%/12.6% WER decrease
compared to the full model. We further demonstrate the effectiveness of PARP via:
cross-lingual pruning without any phone recognition degradation, the discovery
of a multi-lingual subnetwork for 10 spoken languages in 1 finetuning run, and its
applicability to pre-trained BERT/XLNet for natural language tasks1.

1 Introduction
For many low-resource spoken languages in the world, collecting large-scale transcribed corpora
is very costly and sometimes infeasible. Inspired by efforts such as the IARPA BABEL program,
Automatic Speech Recognition (ASR) trained without sufficient transcribed speech data has been
a critical yet challenging research agenda in speech processing [31, 33, 42, 32, 21]. Recently, Self-
Supervised Speech Representation Learning (speech SSL) has emerged as a promising pathway
toward solving low-resource ASR [84, 25, 110, 6, 29, 127, 55, 27]. Speech SSL involves pre-training a
speech representation module on large-scale unlabelled data with a self-supervised learning objective,
followed by finetuning on a small amount of supervised transcriptions. Many recent studies have
demonstrated the empirical successes of speech SSL on low-resource English and multi-lingual ASR,
matching systems trained on fully-supervised settings [6, 29, 127, 4, 126]. Prior research attempts,
however, focus on pre-training objectives [84, 25, 110, 72, 57, 74, 71, 73, 55, 22, 27, 17, 129], scaling
up speech representation modules [5, 6, 53], pre-training data selections [108, 54, 107, 111, 78], or
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applications of pre-trained speech representations [26, 62, 94, 28, 63, 29, 76, 120, 64, 117, 112, 44,
4, 86, 59, 66, 2, 56, 102, 15, 30, 20]. In this work, we aim to develop an orthogonal approach that is
complementary to these existing speech SSL studies, that achieves 1) lower architectural complexity
and 2) higher performance (lower WER) under the same low-resource ASR settings.

Neural network pruning [65, 51, 49, 69], as well as the more recently proposed Lottery Ticket
Hypothesis (LTH) [39], provide a potential solution that accomplishes both objectives. According
to LTH, there exists sparse subnetworks that can achieve the same or even better accuracy than
the original dense network. Such phenomena have been successfully observed in various domains:
Natural Language Processing (NLP) [123, 19, 88, 80], Computer Vision (CV) [18, 45], and many
others. All finding sparse subnetworks with comparable or better performance than the dense network.
Given the lack of similar studies on pruning self-supervised ASR, we intend to fill this gap by finding
sparse subnetworks within a pre-trained speech SSL that can achieve superior performance to the
full pre-trained model on downstream ASR tasks.

Figure 1: Number of ASR
finetuning iterations needed
(y-axis) versus target sparsi-
ties (x-axis) for each down-
stream task/language. Cross-
referencing Figure 3 indi-
cates that IMP requires lin-
early more compute to match
the performance (either sparsi-
ty/WER) of PARP.

However, directly applying widely-adopted pruning methods, such
as One-Shot Magnitude Pruning (OMP) and Iterative Magnitude Prun-
ing (IMP) [49, 39], to pre-trained speech SSL suffers from two
challenges. First, adopting these methods in the conventional prun-
ing framework is extremely time-consuming for SOTA speech SSL
models. OMP and IMP involve more than one round of finetuning on
downstream tasks (c.f. Figure 1), and finetuning for ASR is time-
consuming and computationally demanding2. The second challenge
is that we do not observe any performance improvement of the sub-
networks over the original dense network with OMP or IMP. Figure 3
shows the WER under low-resource scenarios of the subnetworks
identified by OMP (purple line) and IMP (blue dashed line) at different
sparsity levels. None of the sparsity levels achieves a visible drop
in WER compared to the zero sparsity case, corresponding to the
original dense network. These two challenges have prompted us to
ask – do there exist sparse subnetworks within pre-trained speech
SSL with improved performance on low-resource ASR? How can
we discover them efficiently in a single downstream finetuning run?

We propose a magnitude-based unstructured pruning method [41, 11], termed Prune-Adjust-Re-Prune
(PARP), for discovering sparse subnetworks within pre-trained speech SSL. PARP consists of the
following two steps:

1. Directly prune the SSL pre-trained model at target sparsity, and obtain an initial subnetwork
and an initial pruning mask.

2. Finetune the initial subnetwork on target downstream task/language. During finetuning, zero
out the pruned weights specified by the pruning mask, but allow the weights be updated by
gradient descent during backpropogation. After a few number of model updates, re-prune
the updated subnetwork at target sparsity again.

Step 1 provides an initial subnetwork that is agnostic to the downstream task, and Step 2 makes
learnable adjustments by reviving pruned out weights. A formal and generalized description and
its extension are introduced in Section 3. Different from pruning methods in [49, 39], PARP allows
pruned-out weights to be revived during finetuning. Although such a high-level idea was introduced
in [48], we provide an alternative insight: despite its flexibility, Step 2 only makes minimal adjust-
ment to the initial subnetwork, and obtaining a good initial subnetwork in Step 1 is the key. We
empirically show in Section 3 that any task-agnostic subnetwork surprisingly provides a good basis for
Step 2, suggesting that the initial subnetwork can be cheaply obtained either from a readily available
task/language or directly pruning the pre-trained SSL model itself. In addition, this observation
allows us to perform cross-lingual pruning (mask transfer) experiments, where the initial subnetwork
is obtained via a different language other than the target language.

Our Contributions. We conduct extensive PARP and baseline (OMP and IMP) pruning experiments
on low-resource ASR with mono-lingual (pre-trained wav2vec 2.0 [6]) and cross-lingual (pre-trained
XLSR-53 [29]) transfer. PARP finds significantly superior speech SSL subnetworks for low-resource

2Standard wav2vec 2.0 finetuning setup [6] on any Librispeech/Libri-light splits requires at least 50⇠100
V100 hours, which is more than 50 times the computation cost for finetuning a pre-trained BERT on GLUE [106].
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ASR, while only requiring a single pass of downstream ASR finetuning. Due to its simplicity, PARP
adds minimal computation overhead to existing SSL downstream finetuning.

• We show that sparse subnetworks exist in pre-trained speech SSL when finetuned for
low-resource ASR. In addition, PARP achieves superior results to OMP and IMP across
all sparsities, amount of finetuning supervision, pre-trained model scale, and downstream
spoken languages. Specifically, on Librispeech 10min without LM decoding, PARP discovers
subnetworks from wav2vec 2.0 with an absolute 10.9%/12.6% WER decrease compared to
the full model, without modifying the finetuning hyper-parameters or objective (Section 4.1).

• Ablation studies on demonstrating the importance of PARP’s initial subnetwork (Section 4.2).
• PARP minimizes phone recognition error increases in cross-lingual mask transfer, where a

subnetwork pruned for ASR in one spoken language is adapted for ASR in another language
(Section 4.3). PARP can also be applied to efficient multi-lingual subnetwork discovery for
10 spoken languages (Section 4.4).

• Last but not least, we demonstrate PARP’s effectiveness on pre-trained BERT/XLNet, miti-
gating the cross-task performance degradation reported in BERT-Ticket [19] (Section 4.5).

Significance. Findings of this work not only complement and advance current and future speech SSL
for low-resource ASR, but also provide new insights for the rich body of pruning work.

2 Preliminaries
2.1 Problem Formulation
Consider the low-resource ASR problem, where there is only a small transcribed training set (x, y) 2
Dl. Here x represents input audio, and y represents output transcription. Subscript l 2 {1, 2, · · · }
represents the downstream spoken language identity. Because of the small dataset size, empirical risk
minimization generally does not yield good results. Speech SSL instead assumes there is a much
larger unannotated dataset x 2 D0. SSL pre-trains a neural network f(x; ✓), where ✓ 2 Rd represents
the network parameters and d represents the number of parameters, on some self-supervised objective,
and obtains the pre-trained weights ✓0. f(x; ✓0) is then finetuned on downstream ASR tasks specified
by a downstream loss Ll(✓), such as CTC, and evaluated on target dataset Dl.

Our goal is to discover a subnetwork that minimizes downstream ASR WER on Dl. Formally, denote
m 2 {0, 1}d, as a binary pruning mask for the pre-trained weights ✓0, and ✓l as the finetuned weights
on Dl. The ideal pruning method should learn (m, ✓l), such that the subnetwork f(x;m� ✓l) (where
� is element-wise product) achieves minimal finetuning Ll(✓) loss on Dl.

2.2 Pruning Targets and Settings
We adopted pre-trained speech SSL wav2vec2 and xlsr for the pre-trained initialization ✓0.

wav2vec 2.0 We took wav2vec 2.0 base (wav2vec2-base) and large (wav2vec2-large) pre-trained
on Librispeech 960 hours [6]. During finetuning, a task specific linear layer is added on top of
wav2vec2 and jointly finetuned with CTC loss. More details can be found in Appendix 8.

XLSR-53 (xlsr) shares the same architecture, pre-training and finetuning objectives as
wav2vec2-large. xlsr is pre-trained on 53 languages sampled from CommonVoice, BABEL,
and Multilingual LibriSpeech, totaling for 56k hours of multi-lingual speech data.

We consider three settings where wav2vec2 and xlsr are used as the basis for low-resource ASR:

LSR: Low-Resource English ASR. Mono-lingual pre-training and finetuning – an English pre-
trained speech SSL such as wav2vec2 is finetuned for low-resource English ASR.

H2L: High-to-Low Resource Transfer for Multi-lingual ASR. Mono-lingual pre-training and
multi-lingual finetuning – a speech SSL pre-trained on a high-resource language such as English is
finetuned for low-resource multi-lingual ASR.

CSR: Cross-lingual Transfer for Multi-lingual ASR. Multi-lingual pre-training and finetuning – a
cross-lingual pretrained speech SSL such as xlsr is finetuned for low-resource multi-lingual ASR.

2.3 Subnetwork Discovery in Pre-trained SSL
One obvious solution to the aforementioned problem in Section 2.1 is to directly apply pruning with
rewinding to ✓0, which has been successfully applied to pre-trained BERT [19] and SimCLR [18].
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All pruning methods, including our proposed PARP, are based on Unstructured Magnitude Pruning
(UMP) [39, 41], where weights of the lowest magnitudes are pruned out regardless of the network
structure to meet the target sparsity level. We introduce four pruning baselines below, and we also
provide results with Random Pruning (RP) [39, 41, 19], where weights in ✓0 are randomly eliminated.

Task-Aware Subnetwork Discovery is pruning with target dataset Dl seen in advance, including
One-Shot Magnitude Pruning (OMP) and Iterative Magnitude Pruning (IMP). OMP is summarized as:

1. Finetune pretrained weights ✓0 on target dataset Dl to get the finetuned weights ✓l.
2. Apply UMP on ✓l and retrieve pruning mask m.

IMP breaks down the above subnetwork discovery phase into multiple iterations – in our case multiple
downstream ASR finetunings. Each iteration itself is an OMP with a fraction of the target sparsity
pruned. We follow the IMP implementation described in BERT-Ticket [19], where each iteration
prunes out 10% of the remaining weights. The main bottleneck for OMP and IMP is the computational
cost, since multiple rounds of finetunings are required for subnetwork discovery.

Task-Agnostic Subnetwork Discovery refers to pruning without having seen Dl nor l in advance.
One instance is applying UMP directly on ✓0 without any downstream finetuning to retrieve m, referred
to as Magnitude Pruning at Pre-trained Initailizations (MPI). Another case is pruning weights finetuned
for a different language t, i.e. applying UMP on ✓t for the target language l; in our study, we refer to
this as cross-lingual mask transfer. While these approaches do not require target task finetuning, the
discovered subnetworks generally have worse performance than those from OMP or IMP.

The above methods are only for subnetwork discovery via applying pruning mask m on ✓0. The
discovered subnetwork f(x;m� ✓0) needs another downstream finetuning to recover the pruning
loss3, i.e. finetune f(x;m� ✓0) on Dl.

3 Method
In this section, we highlight our proposed pruning method, PARP (Section 3.1), its underlying intuition
(Section 3.2), and an extension termed PARP-P (Section 3.3).

3.1 Algorithm
We formally describe PARP with the notations from Section 2. A visual overview of PARP is Figure 8.

Algorithm 1 Prune-Adjust-Re-Prune (PARP) to target sparsity s

1: Assume there are N model updates in target task/language l’s downstream finetuning.
2: Take a pre-trained SSL f(x; ✓0) model. Apply task-agnostic subnetwork discovery, such as MPI4, at target

sparsity s to obtain initial subnetwork f(x;m0 � ✓0). Set m = m0 and variable n1 = 0 .
3: repeat
4: Zero-out masked-out weights in ✓n1 given by m. Lift up m such that whole ✓n1 is updatable.
5: Train f(x; ✓n1) for n model updates and obtain f(x; ✓n2).
6: Apply UMP on f(x; ✓n2) and adjust m accordingly. The adjusted subnetwork is f(x;m � ✓n2). Set

variable n1 = n2.
7: until total model updates reach N .
8: Return finetuned subnetwork f(x;m� ✓N ).

Empirically, we found the choice of n has little impact. In contrast to OMP/IMP/MPI, PARP allows the
pruned-out weights to take gradient descent updates. A side benefit of PARP is it jointly discovers and
finetunes subnetwork in a single pass, instead of two or more in OMP and IMP.

3.2 Obtaining and Adjusting the Initial Subnetwork
PARP achieves superior or comparable pruning results as task-aware subnetwork discovery, while
inducing similar computational cost as task-agnostic subnetwork discovery. How does it get the best
of both worlds? The key is the discovered subnetworks from task-aware and task-agnostic prunings
have high, non-trivial overlaps in LSR, H2L, and CSR. We first define Intersection over Union (IOU)
for quantifying subnetworks’ (represented by their pruning masks ma and mb) similarity:

IOU(ma,mb) , |(ma = 1) \ (mb = 1)|
|(ma = 1) [ (mb = 1)| (1)

3This step is referred to as subnetwork finetuning/re-training in the pruning literature [75, 93, 11].
4By default, MPI is used for obtaining the initial subnetwork for PARP and PARP-P unless specified otherwise.
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Take H2L and CSR for instance, Figure 2 visualizes language pairs’ OMP pruning mask IOUs on
wav2vec2 and xlsr. Observe the high overlaps across all pairs, but also the high IOUs with the MPI
masks (second to last row). We generalize these observations to the following:

Observation 1 For any sparsity, any amount of finetuning supervision, any pre-training

model scale, and any downstream spoken languages, the non-zero ASR pruning masks

obtained from task-agnostic subnetwork discovery has high IOUs with those obtained from

task-aware subnetwork discovery.

Observation 1 suggests that any task-agnostic subnetwork could sufficiently be a good initial subnet-
work in PARP due to the high similarities. In the same instance for H2L and CSR, we could either take
MPI on wav2vec2 and xlsr, or take OMP on a different spoken language as the initial subnetworks.
Similarly in LSR, we take MPI on wav2vec2 as the initial subnetwork. The underlying message is –
the initial subnetwork can be obtained cheaply, without target task finetuning.

Now, because of the high similarity, the initial subnetwork (represented by its pruning mask m0)
needed merely a slight adjustment for the target downstream task. While there are techniques such as
dynamic mask adjustment [48], important weights pruning [79], and deep rewiring [10], we provide
an even simpler alternative suited for our setting. Instead of permanently removing the masked-out
weights from the computation graph, PARP merely zeroes them out. Weights that are important
for the downstream task (the “important weights”) should emerge with gradient updates; those that
are relatively irrelevant should decrease in magnitude, and thus be zero-outed at the end. Doing so
circumvents the need of straight-through estimation or additional sparsity loss, see Table 1 of [97].

3.3 PARP-Progressive (PARP-P)
An extension to PARP is PARP-P, where the second P stands for Progressive. In PARP-P, the initial
subnetwork starts at a lower sparsity, and progressively prune up to the target sparsity s in Step 2. The
intuition is that despite Observation 1, not any subnetwork can be a good initial subnetwork, such as
those obtained from RP, or those obtained at very high sparsities in MPI/OMP/IMP. We show later that
PARP-P is especially effective in higher sparsity regions, e.g. 90% for LSR. Note that PARP-P has
the same computational cost as PARP, and the only difference is the initial starting sparsity in Step 1.

Figure 2: IOUs over all spoken language pairs’ OMP pruning masks on finetuned wav2vec2 and xlsr.
Second to last row is the IOUs between OMP masks and the MPI masks from pre-trained wav2vec2 and
xlsr. Here, we show the IOUs at 50% sparsity, and the rest can be found in Appendix 11. Surprisingly
at any sparsities, there is a high, non-trivial (c.f. RP in the last row), similarity (>90%) between all
spoken language OMP masks, as well as with the MPI masks. Language IDs are in Appendix 9.

4 Experiments and Analysis
4.1 Comparing PARP, OMP, and IMP on LSR, H2L, and CSR
Our experimental setup can be found in Appendix 9. We first investigate the existence of sparse
subnetworks in speech SSL. Figure 3 shows the pruning results on LSR. Observe that subnetworks
discovered by PARP and PARP-P can achieve 60⇠80% sparsities with minimal degradation to the full
models. The gap between PARP and other pruning methods also widens as sparsities increase. For
instance, Table 1 compares PARP and PARP-P with OMP and IMP at 90% sparsity, and PARP-P has a
40% absolute WER reduction. In addition, observe the WER reduction with PARP in the low sparsity
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regions on the 10min split in Figure 3. The same effect is not seen with OMP, IMP, nor MPI. Table 2
compares the subnetworks discovered by PARP with the full wav2vec2 and prior work on LSR under
the same setting5. Surprisingly, the discovered subnetwork attains an absolute 10.9%/12.6% WER
reduction over the full wav2vec2-large. We hypothesize that the performance gains are attributed
to pruning out generic, unnecessary weights while preserving important weights, which facilitates
training convergence. In other words, PARP provides additional regularization effects to downstream
finetuning. We also examined the effectiveness of IMP with different rewinding starting points as
studied in [40, 93], and found rewinding initializations bear minimal effect on downstream ASR. Full
rewinding details are in Appendix 10.

Figure 3: Comparison of different pruning techniques on LSR (wav2vec2 with 10min/1h/10h
Librispeech finetuning splits). PARP (black line) and PARP-P (black dashed line) are especially
effective under ultra-low data regime (e.g. 10min) and high-sparsity (70-100%) regions.

Table 1: WER comparison of pruning LSR:
wav2vec2-base at 90% sparsity with 10h fine-
tuning on Librispeech without LM decoding. At
90% sparsity, OMP/IMP/MPI perform nearly as
bad as RP. sub-finetuning stands for subnetwork
finetuning.

Method # ASR test test
finetunings clean other

RP + sub-finetuning 1 94.5 96.4
MPI + sub-finetuning 1 93.6 96.1
OMP + sub-finetuning 2 92.0 95.3
IMP + sub-finetuning 10 89.6 93.9

PARP (90% ! 90%) 1 83.6 90.7
PARP-P

70% ! 90% 1 51.9 69.1
60% ! 80% ! 90% 2 33.6 53.3

Table 2: WER comparison of PARP for LSR
with previous speech SSL results on Lib-
rispeech 10min. PARP discovers sparse sub-
networks within wav2vec2 with lower WER
while adding minimal computational cost to the
original ASR finetuning.

Method test test
clean other

Continuous BERT [3] + LM 49.5 66.3
Discrete BERT [3] + LM 16.3 25.2
wav2vec2-base reported [6] 46.9 50.9
wav2vec2-large reported [6] 43.5 45.3
wav2vec2-base replicated 49.3 53.2
wav2vec2-large replicated 46.3 48.1

wav2vec2-base w/ 10% PARP 38.0 44.3
wav2vec2-large w/ 10% PARP 33.7 37.2

Next, we examine if the pruning results of LSR transfers to H2L and CSR. Figure 4 is pruning H2L
and CSR with 1h of Dutch (nl) finetuning, and the same conclusion can be extended to other spoken
languages. Comparing Figures 3 and 4, we notice that shapes of their pruning curves are different,
which can be attributed to the effect of character versus phone predictions. Comparing left and center
of Figure 4, we show that PARP and OMP reach 50% sparsity on H2L and 70% sparsity on CSR with
minimal degradations. Furthermore, while PARP is more effective than OMP on H2L for all sparsities,
such advantage is only visible in the higher sparsity regions on CSR. Lastly, Table 3 compares the
subnetworks from H2L and CSR with prior work. Even with as high as 90% sparsities in either
settings, subnetworks from PARP and OMP out-performs prior art.

5We underscore again that LM decoding/self-training are not included to isolate the effect of pruning.
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Figure 4: Comparison of pruning techniques on H2L & CSR with 1h of Dutch (nl) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + nl). (Center) Pruning CSR (xlsr + nl). (Right) Pruning
jointly-finetuned wav2vec2-base and xlsr on nl. Trend is consistent for other 9 spoken languages.

Table 3: Comparing subnetworks discovered by OMP and
PARP from wav2vec2-base and xlsr with prior work on
H2L and CSR. PER is averaged over 10 languages.

Method Pre-training Sparsity avg. PER

Bottleneck [38] Babel-1070h 0% 44.9
CPC [84] LS-100h 0% 50.9
Modified CPC [94] LS-360h 0% 44.5

wav2vec2-base LS-960h 0% 18.7
wav2vec2 + OMP LS-960h 70% 41.3
wav2vec2 + PARP LS-960h 90% 40.1

xlsr reported [29] 56,000h 0% 7.6
xlsr replicated 56,000h 0% 9.9
xlsr + OMP 56,000h 90% 33.9
xlsr + PARP-P 56,000h 90% 22.9

Figure 5: PARP’s final subnetwork
and its initial MPI subnetwork exceeds
99.99% IOU after 20% sparsity (black
line).

4.2 How Important is the Initial Subnetwork (Step 1) in PARP?
Obtaining a good initial subnetwork (Step 1) is critical for PARP, as Adjust & Re-Prune (Step 2) is
operated on top of it. In this section, we isolate the effect of Step 1 from Step 2 and examine the role
of the initial subnetwork in PARP. Figure 6 shows PARP with a random subnetwork from RP, instead
of subnetwork from MPI, as the initial subnetwork. PARP with random initial subnetwork performs
nearly as bad as RP (grey line), signifying the importance of the initial subnetwork.

Secondly, despite Observation 1, MPI in high sparsity regions (e.g. 90% in LSR) is not a good initial
subnetwork, since the majority of the weights are already pruned out (thus is hard to be recovered
from). From Figure 3, PARP performs only on par or even worse than IMP in high sparsity regions. In
contrast, PARP-P starts with a relatively lower sparsity (e.g. 60% or 70% MPI), and progressively
prunes up to the target sparsity. Doing so yields considerable performance gain (up to over 50%
absolute WER reduction). Third, as shown in Figure 5, there is >99.99% IOU between the final
“adjusted” subnetwork from PARP and its initial MPI subnetwork after 20% sparsity, confirming Step
2 indeed only made minimal “adjustment” to the initial subnetwork.

Figure 6: PARP with random (red line) v.s. with MPI (black line) initial subnetworks in LSR.
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Figure 7: (Left) Cross-lingual OMP mask transfer with regular subnetwork finetuning. (Right)
Cross-lingual OMP mask transfer with PARP. Last rows are RP. Values are relative PER gains over
same-language pair transfer (hence the darker the bettter). Both are on H2L with pretrained wav2vec2.
The same observation is observed on CSR with pretrained xlsr in Appendix 12.

4.3 Are Pruning Masks Transferrable across Spoken Languages?
Is it possible to discover subnetworks with the wrong guidance, and how transferrable are such
subnetworks? More concretely, we investigate the transferability of OMP pruning mask discovered
from a source language by finetuning its subnetwork on another target language. Such study should
shed some insights on the underlying influence of spoken language structure on network pruning –
that similar language pairs should be transferrable. From a practical perspective, consider pruning for
an unseen new language in H2L, we could deploy the readily available discovered subnetworks and
thus save the additional finetuning and memory costs.

In this case, the initial subnetwork of PARP is given by applying OMP on another spoken language.
According to Observation 1, PARP’s Step 2 is effectively under-going cross-lingual subnetwork
adaptation for the target language. Figure 7 shows the transferability results on H2L with pre-trained
wav2vec2-base. On the left is a subnetwork at 50% sparsity transfer with regular finetuning that
contains subtle language clusters – for example, when finetuning on ru, source masks from es, fr, it,

ky, nl induces a much higher PER compare to that from sv-SE, tr, tt, zh-TW. On the right of Figure 7,
we show that there is no cross-lingual PER degradation with PARP, supporting our claim above.

4.4 Discovering a Single Subnetwork for 10 Spoken Languages
A major downside of pruning pre-trained SSL models for many downstream tasks is the exponential
computational and memory costs. In H2L and CSR, the same pruning method needs to be repeatedly
re-run for each downstream spoken language at each given sparsity. Therefore, we investigate
the possibility of obtaining a single shared subnetwork for all downstream languages. Instead
of finetuning separately for each language, we construct a joint phoneme dictionary and finetune
wav2vec2 and xlsr on all 10 languages jointly in H2L and CSR. Note that PARP with joint-finetuning
can retrieve a shared subnetwork in a single run. The shared subnetwork can then be decoded for
each language separately. The right side of Figure 4 illustrates the results.

Comparing joint-finetuning and individual-finetuning, in H2L, we found that the shared subnetwork
obtained via OMP has lower PERs between 60⇠80% but slightly higher PERs in other sparsity regions;
in CSR, the shared subnetwork from OMP has slightly worse PERs at all sparsities. Comparing PARP
to OMP in joint-finetuning, we found that while PARP is effective in the individual-finetuning setting
(left of Figure 4), its shared subnetworks are only slightly better than OMP in both H2L and CSR (right
of Figure 4). The smaller performance gain of PARP over OMP in pruning jointly-finetuned models is
expected, since the important weights for each language are disjoint and joint-finetuning may send
mixed signal to the adjustment step in PARP (see Figure 8 for better illustration).

4.5 Does PARP work on Pre-trained BERT/XLNet?
We also analyzed whether Observation 1 holds for pre-trained BERT/XLNet on 9 GLUE tasks.
Surprisingly, we found that there are also high (>98%) overlaps between the 9 tasks’ IMP pruning
masks. Given this observation, we replicated the cross-task subnetwork transfer experiment (take
subnetwork found by IMP at task A and finetune it for task B) in BERT-Ticket [19] on pre-trained
BERT/XLNet with PARP. Table 4 compares PARP (averaged for each target task) to regular finetuning,
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hinting the applicability of PARP to more pre-trained NLP models and downstream natural language
tasks. Detailed scores and figures are in Appendix 13.

Table 4: Comparison of cross-task transfer on GLUE (subnetwork from source task A is finetuned for
target task B). Numbers are averaged acc. across source tasks for each target task.

Method Averaged transferred subnetworks performance finetuned for
CoLA MRPC QNLI QQP RTE SST-2 STS-B WNLI MNLI

70% sparse subnetworks from pre-trained BERT
Same-task Transfer (top line) 38.89 75.57 88.89 89.95 58.37 89.99 87.34 53.87 82.56

Cross-task Transfer with PARP 28.48 75.98 87.12 90.40 59.69 89.59 86.25 54.62 81.61
Regular Cross-task Transfer [19] 10.12 71.94 86.54 88.50 57.59 88.80 80.27 54.03 80.48

70% sparse subnetworks from pre-trained XLNet
Same-task Transfer (top line) 29.92 76.47 89.62 90.74 59.21 92.2 80.78 42.25 85.16

Cross-task Transfer with PARP 30.09 77.56 87.10 90.66 58.88 91.73 83.80 52.11 83.87
Regular Cross-task Transfer [19] 11.47 74.16 85.21 89.11 55.80 90.19 75.61 42.25 82.65

 

(B) Prune-Adjust-Re-Prune (PARP)
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Figure 8: Conceptual sketch of pruning the few task-specific important weights in pretrained SSL.
(A) Task-aware subnetwork discovery(OMP/IMP) is more effective than task-agnostic pruning (MPI)
since it foresees the important weights in advance, via multiple downstream finetunings. (B) PARP
starts with an initial subnetwork given by MPI. Observation 1 suggests that the subnetwork is only off
by the few important weights, and thus Step 2 revives them by adjusting the initial subnetwork.

4.6 Implications
Observation 1 is consistent with the findings of probing large pre-trained NLP models, that pre-trained
SSL models are over-parametrized and there exist task-oriented weights/neurons. Figure 2 implies
that these important weights only account for a small part of the pre-trained speech SSL. In fact, a
large body of NLP work is dedicated to studying task-oriented weights in pre-trained models. To name
a few, [37, 35, 7, 115] measured, [7, 34, 61] leveraged, [81, 46] visualized, and [105, 36, 13] pruned
out these important weights/neurons via probing and quantifying contextualized representations.
Based on Observation 1, we can project that these NLP results should in general transfer to speech,
see pioneering studies [9, 8, 24, 23]. However, different from them, PARP leverages important weights
for UMP on the whole network structure instead of just the contextualized representations.

We could further hypothesize that a good pruning algorithm avoids pruning out task-specific neurons
in pre-trained SSL [67, 48, 79], see Figure 8. This hypothesis not only offers an explanation on why
PARP is effective in high sparsity regions and cross-lingual mask transfer, it also suggests that an
iterative method such as IMP is superior to OMP because IMP gradually avoids pruning out important
weights in several iterations, at the cost of more compute6. Finally, we make connections to prior
work that showed RP prevail [11, 19, 75, 77, 92] – under a certain threshold and setting, task-specific
neurons are less likely to get “accidentally” pruned and thus accuracy is preserved even with RP.

6From Section 6 of [39]: "iterative pruning is computationally intensive, requiring training a network 15 or
more times consecutively for multiple trials." From Section 1 of [48]: "several iterations of alternate pruning
and retraining are necessary to get a fair compression rate on AlexNet, while each retraining process consists of
millions of iterations, which can be very time consuming."
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5 Related Work
Modern Speech Paradigm and ASR Pruning. As model scale [101, 6, 50, 47, 124, 90, 89, 125,
16, 121, 68] and model pre-training [6, 127, 29, 60, 57, 63, 55, 118, 14, 58, 96, 95, 83, 86, 109] have
become the two essential ingredients for obtaining SOTA performance in ASR and other speech
tasks, applying and developing various forms of memory-efficient algorithms, such as network
pruning, to these large-scale pre-trained models will predictably soon become an indispensable
research endeavor. Early work on ASR pruning can be dated back to pruning decoding search
spaces [1, 91, 100, 52, 116, 128] and HMM state space [103]. Since the seminal work of Yu et
al. [122], ASR pruning has focused primarily on end-to-end network architecture: [98, 114] applied
pruning and quantization to LSTM-based RNN-Transducers, [85] applied knowledge distillation
to Conformer-based RNN-Transducers, [104, 99, 70] designed efficient architecture/mechanisms
for LSTM, Transformer, Conformer-based ASR models, [82] applied pruning to Deep Speech, [12]
introduced SNR-based probabilistic pruning on LSTM-based CTC model, [43] proposed entropy-
regularizer for LSTM-based ASR model, [119, 87] applied SVD on ASR models’ weight matrices.
We emphasize that our work is the first on pruning large self-supervised pre-trained models for
low-resource and multi-lingual ASR. In addition, to our knowledge, none of the prior speech pruning
work demonstrated the pruned models attain superior performance than its original counterpart.

6 Conclusions
We introduce PARP, a simple and intuitive pruning method for self-supervised speech recognition.
We conduct extensive experiments on pruning pre-trained wav2vec 2.0 and XLSR-53 under three
low-resource settings, demonstrating (1) PARP discovers better subnetworks than baseline pruning
methods while requiring a fraction of their computational cost, (2) the discovered subnetworks yields
over 10% WER reduction over the full model, (3) PARP induces minimal cross-lingual subnetwork
adaptation errors, (4) PARP can discover a shared subnetwork for multiple spoken languages in one
pass, and (5) PARP significantly reduces cross-task adaptation errors of pre-trained BERT/XLNet.
Beyond the scope of our study, we aspire PARP as the beginning of many future endeavours on
developing more efficient speech SSL models.

Broader Impact. The broader impact of this research work is making speech technologies more
accessible in two orthogonal dimensions: (i) extending modern-day speech technology to many
under-explored low-resource spoken languages, and (ii) introducing a new and flexible pruning
technique to current and future speech SSL frameworks that reduces the computational costs required
for adapting (finetuning) them to custom settings. We do not see its potential societal harm.

Limitations and Future Work
We make clear of the major limitations of our work, and the full list is in Appendix 19. The basis of
all the pruning methods in the study is unstructured magnitude weight pruning. Although sparsity
is explicitly enforced in the models, we do not suggest that the sparse models are more memory or
energy efficient than the original dense models. We do believe that our methodology and results
should provide meaningful insights and be easily extended upon to more advanced unstructured or
structured pruning methods. We are also curious of the possibility of finetuning or storing modern
speech SSL models on local hardware devices.

Results on cross-lingual mask transfer on pre-trained wav2vec 2.0 in Section 4.3 is limited to ASR.
We do not claim pruning masks to be transferrable across speech tasks (e.g. prune wav2vec2 for
speaker ID and transfer for ASR). We provide a pilot cross-task mask transfer study on 3 speech tasks
(phone recognition, speaker recognition, slot-filling) in SUPERB [120], and results is in Appendix 16.

We claim PARP could improve the downstream ASR performance over the full wav2vec 2.0, yet
we do not claim it as a plug-and-play method into any SOTA ASR pipeline, such as [126], to get a
performance boost. We provide a preliminary experiment on combining PARP and transformer-LM
decoding in Appendix 15. Nonetheless, due to resource limitations and to isolate the effect of pruning,
it remains upon investigations on the complete effects of speech pruning in different setups.
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