
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

100 INSTANCES IS ALL YOU NEED: PREDICTING LLM
SUCCESS BY TESTING ON A FEW INSTANCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Predicting if LLMs will succeed on individual task instances (i.e., prompts) is es-
sential to ensure their reliability in high-stakes applications. To do so, we can eval-
uate a LLM on a set of instances and train an assessor to predict its performance.
However, this requires evaluating each new LLM on sufficiently many instances.
In this work, we build a generic assessor predicting the performance of any LLM
on an instance by using the LLM’s performance on a small set of reference in-
stances and the features of the considered instance. In practice, we make use of
existing evaluation results to extract the representative instances and train the as-
sessor. Thus, the performance of a new LLM can be predicted by only testing it on
the reference instances, leveraging the information contained in other LLMs’ eval-
uations. We conduct empirical studies on HELM-Lite and KindsOfReasoning, a
new collection of existing reasoning datasets that we introduce, where we evaluate
all instruction-fine-tuned OpenAI models until gpt4-0125-preview. We find
that a few instances (around 100) are enough to achieve predictive power compa-
rable to the LLM-specific assessors trained on the complete set of several thousand
instances. Interestingly, randomly selecting the reference instances performs com-
parably to the advanced selection methods we tested. Finally, we identify a sharp
drop in predictive power of the generic and specific assessors in out-of-distribution
scenarios, suggesting that the inherent predictability of LLMs is low.

1 INTRODUCTION

Large Language Models (LLMs) are being used as components of multiple services and products,
such as agents performing general computer tasks (Kim et al., 2024), performing ML experiments
(Huang et al., 2024), and even operating unmanned aerial vehicles (Javaid et al., 2024). These sys-
tems typically query an LLM on a specific instance (i.e., a specific prompt) of a task and use their
output to determine an action. For some of these uses, it is essential to determine if the output
produced by the LLM on a specific task instance is likely to be correct (or, more generally, “valid”
(Zhou et al., 2023)) before the subsequent steps are executed1. A nascent line of research (Zhou
et al., 2022; Hernández-Orallo et al., 2022; Drapal et al., 2024) is addressing this problem by devel-
oping “assessors”, namely, independent modules that predict the correctness (or a continuous score)
of an AI system on an instance based on features intrinsic to the latter (such as linguistic features or
sentence vector embeddings). Assessors can be specific to an AI system, or “generic”, in which case
they also take as input features of the AI system at hand and are trained to predict the performance
of different LLMs on different instances.

Meanwhile, the rate at which new LLMs are released has drastically increased. Some providers, such
as OpenAI, are iteratively retiring old versions when new ones are released, forcing developers to
update the LLM version used in their applications (see OpenAI (2024a)). An even larger explosion is
occurring in the open-source world, fuelled by inexpensive fine-tuning techniques (Hu et al., 2022).
To build an assessor specific to a new LLM version, users must evaluate it on a sufficiently large set
of task instances, causing the costs to rise quickly when considering many LLM versions. On the
other hand, the system information one might use to build a generic assessor, such as the number

1Notice that this cannot rely on the “ground truth” of the task instance, as that is not available in practical
use cases (otherwise, there would be no need to query the LLM).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Our proposed pipeline for predicting the performance of a new LLM on a new instance
by testing on a few instances: starting from instance-level evaluation results of a set of LLMs, a
reference set of instances is extracted (1). Then, we train a “generic assessor” that predicts the
performance of each LLM-instance pair, based on features intrinsic to the instance (e.g., vector
embeddings) and the performance of the considered LLM on the reference set (2). The performance
of the new LLM on a new instance can be predicted by evaluating the new LLM on the reference set
and applying the trained generic assessor (3).

of parameters or statistics of the training data or architecture, is not standardised across LLMs and
unavailable for proprietary models.

As such, this paper investigates the following question: can we combine information across LLMs
to predict the performance of a new LLM on a new instance by relying only on observational
(or behavioural) features of the LLMs? In practice, we propose to characterise each LLM by
its performance on a small set of reference instances and to build a generic assessor using those as
system features. More precisely, we first select a small set of reference instances from the labelled
dataset on which past LLMs were evaluated. Then, we train the generic assessor on the concate-
nation of instance-specific features and the LLM-specific success vector on the reference instances.
Finally, to estimate the probability of success of a new LLM on a novel instance, it suffices to evalu-
ate the former on the reference instances, concatenate its performance to the features of the instance,
and apply the trained generic assessor. See Fig. 1 for a graphical representation of this procedure.

In our empirical studies, we rely on HELM-Lite (Liang et al.), which provides instance-level results
for 30 LLMs from different providers (at the time we conducted our experiments), and a collection
of previously existing datasets we introduce, named “KindsOfReasoning”, on which we evaluated
the full set of instruction-following models from OpenAI until gpt4-0125-preview. We only
consider tasks with binary correctness score (therefore discarding the datasets in HELM-Lite that
do not satisfy this) and thus build binary assessors.

We train specific assessors using different prompt features and find that OpenAI embeddings (Ope-
nAI, 2024b) lead to better or comparable in-distribution performance than simpler methods such
as Word2vec (Mikolov et al., 2013), FastText (Bojanowski et al., 2017), and n-grams. Subse-
quently, we build generic assessors using various methods to select the reference instances and com-
bine the performance on these with the instance-specific features. When predicting performance on
instances with the same distribution as those used to train the generic assessor, we find the latter to
perform comparably to the specific assessors, which require the LLM to be evaluated on many more
instances. Additionally, we find that a random selection of reference instances performs as well as
the advanced selection methods we tested. However, in out-of-distribution scenarios, the predictive
power of all assessors declines significantly, indicating a lack of general predictability in LLMs.

In essence, the main contributions of our work are the following:

• We propose a framework combining evaluation results across LLMs to predict the perfor-
mance of a new LLM by only evaluating it on a a small set of reference instances.

• We study the performance of various methods for selecting the reference instances and
combining their performance with instance-specific features to build the generic assessor.

• Finally, we introduce KindsOfReasoning: A new compilation of existing datasets testing
various kinds of reasoning and release the raw outputs of a large number of models from
OpenAI.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 INSTANCE-LEVEL PREDICTION OF SUCCESS OF AI SYSTEMS

Zhou et al. (2023) advocates for the importance of instance-level success predictions for AI systems
and coins the term “predictable AI”; in particular, they highlight how ensuring predictability should
be prioritised over increases in average performance for high-stakes use cases. Following this
motivation, Hernández-Orallo et al. (2022) introduces the concept of an assessor model, which
accompanies an ML system and estimates the probability of success of the system on individual
instances. In particular, an assessor can be trained on the evaluation results of the ML system on
test data (i.e., which has not been used for training the ML system). In similar spirit, Drapal et al.
(2024) combines novelty detection and meta-learning to reject instances where a ML system is
likely to fail. Other similar approaches are described in Section 4 of Hendrickx et al. (2024). Zhou
et al. (2022) shows how a smaller LLM can be used to predict the performance of a bigger LLM on
individual instances without passing the latter through the model. They also find it possible to reject
almost half of the failure cases before running much larger LLMs, resulting in a significant saving
of compute. Finally, an application of success prediction is ”routing” between different LLMs, as
explored in Shnitzer et al. (2023) and Hu et al. (2024).

2.2 PREDICTABILITY OF AGGREGATED BENCHMARK SCORES FROM LLM FEATURES

Two works (Ye et al., 2023; Owen, 2024) studied the extent to which an LLM’s aggregate per-
formance on BIG-Bench tasks (Srivastava et al., 2022) can be predicted using information on the
LLM such as number of parameters or the amount of used compute. In contrast, our work does
not rely on these quantities, which are often unavailable, instead characterising LLMs according to
their performance on reference samples. Moreover, while these works focus on predicting aggregate
performance, our work and the ones mentioned in the previous subsection provide instance-level
predictions for new unlabelled instances.

2.3 EXTRACTING LLM-SPECIFIC FEATURES FROM EXISTING EVALUATIONS

Recently, Ruan et al. (2024) built “observational scaling laws” that link performance on complex
downstream tasks to hypothesised latent capabilities, whose values can be inferred by decomposing
the performance of various LLMs on different benchmarks into components linked by a log-linear
relation with compute measures for LLM training. Once this relation is established, the performance
of a new model on downstream tasks can be predicted by knowing its performance on simple
benchmarks and its compute cost. Their work is similar to ours in determining LLM-specific
features by using evaluation results of multiple LLMs and using them to predict the performance
of a new LLM. However, we aim to predict the performance of the new LLM on a novel individual
instance by evaluating on as few instances as possible, while Ruan et al. (2024) instead aims to
avoid the cost of evaluating complex downstream tasks and predict the performance on the latter
from results on simple benchmarks and compute measures, which they assume to be available.
Moreover, our method can be applied to predict the performance on instances for which no ground
truth is available, while the simple benchmarks and the downstream tasks employed in Ruan et al.
(2024) must have a grading mechanism.

2.4 PREDICTING PERFORMANCE BY BENCHMARK SUBSAMPLING

Several works share our motivation of reducing the number of evaluations (and hence the cost)
needed to evaluate a LLM. For instance, a “Lite” version with a reduced number of tasks was intro-
duced alongside the BIG-Bench benchmark (Srivastava et al., 2022); similarly, HELM-Lite (Liang
et al.) is a revised and reduced version of HELM (Liang et al., 2022). However, both of these
perform the reduction at the level of tasks (i.e., datasets) of which the benchmark is constituted.
Instead, Vivek et al. (2024) subsample a dataset by clustering models’ confidence to predict the
overall accuracy on the whole dataset, while MixEval (Ni et al., 2024) extracts a subset of instances
from various benchmarks which is most predictive of the performance on Chatbot Arena2, an online
platform performing pairwise comparison of LLM outputs.

2https://chat.lmsys.org/

3

https://chat.lmsys.org/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Closer to our work is TinyBenchmarks (Polo et al., 2024), which selects informative instances from
HELM-Lite and estimates the performance of a new LLM on the whole benchmark by evaluating
it only on those instances. In particular, TinyBenchmarks uses Item Response Theory (IRT) on the
successes of each LLM to extract a vector of item demands and LLM capabilities. Then, it uses
either the item demands or the raw LLM success on each instance to build a representative subset
of instances by clustering the items and taking the cluster centroids. Similarly to our approach, a
new LLM is then only evaluated on the representative subset; however, in contrast to our work, they
aim to predict the aggregate score on the benchmark, while we predict instance-level performance.
In practice, their IRT method provides instance-level predictions, but these predictions are limited
to instances on which previous LLMs have been evaluated (as this is necessary to obtain the item
demands), which requires access to the ground truth. In contrast, our approach relies on “intrinsic”
(model-agnostic) features of the instances (alongside the performance on the reference samples,
see Fig. 11), thus making it applicable to new instances with unknown ground truth, as the trained
assessor does not require any information beyond the intrinsic features of test instances.

A similar work to Polo et al. (2024) is metabench (Kipnis et al., 2024), which considered 6
different datasets, and performed a two-step procedure (random sampling for each dataset, followed
by item selection based on the Fisher information matrices of IRT item parameters) to extract a
small set of instances, the performance on which accurately predicts aggregate performance on the 6
datasets. As they fit the IRT model only the pre-selected instances, their method is unable to predict
instance-level performance. Finally, despite not tackling predictability directly, Siska et al. (2024)
finds that the vector of successes of different LLMs is correlated across instances belonging to 4
benchmarks, and, for one of those benchmarks, the similarity between the embeddings or a pair of
instances predicts the similarity between the success vectors; this suggests that patterns in success
across LLMs can be found and related to the embeddings.

2.5 EVALUATIONS OF REASONING IN LLMS

Burnell et al. (2023a) found reasoning to be one of three factors in the capabilities of LLMs. Indeed,
reasoning in LLMs has been extensively studied: see Mondorf & Plank (2024) for a survey on LLM
reasoning evaluations and Huang & Chang (2023) for a broader survey also encompassing ways to
improve and elicit reasoning in LLMs.

Recently, several collections of reasoning datasets have been introduced. GLoRE (Teng et al., 2023)
collects 12 logical reasoning datasets with three different types of tasks (multiple choice, natural lan-
guage inference, and binary answers). Similarly, LogiGLUE (Luo et al., 2023) collects 24 datasets
related to inductive, deductive and abductive reasoning, with four different types of tasks (the same
ones as GLoRe and free-form question answering); they only selected datasets that do not require
external domain knowledge, but some of these datasets are poorly formatted. Finally, CALM-Bench
(Dalal et al., 2023) is a collection of 6 diverse tasks requiring both causal reasoning and knowledge.
KindsOfReasoning, the collection we introduce combining previously existing datasets testing vari-
ous kinds of reasoning, partly overlaps with each of the aforementioned collections; however, Kind-
sOfReasoning aims to include a broader range reasoning types (logical, common sense, inductive,
deductive, abductive, counterfactual, causal, analogical, spatial and arithmetic reasoning) over 22
different datasets; see Appendix B for more information on the dataset construction.

3 METHODOLOGY

Let us denote by L = {mj , j = 1, . . . , n}, a set of trained LLMs. Moreover, let D = {(pi, yi), i =
1, . . . , N} be a test dataset used to evaluate the performance of the LLMs, with i denoting instance
index, pi the input to the LLM (i.e., the prompt) and yi the target value (i.e., the expected completion
by the LLM). Further, we will denote by mj(pi) the output mj produces when given pi as input3
and by zj,i a binary value indicating the “correctness” of mj(pi) with respect to yi. The correctness
zj,i can be defined in multiple manners (for instance, exact match or whether yi is a substring of

3As LLMs are stochastic, mj(pi) is in general a random variable, and so is zj,i. In our empirical study, we
sample the LLMs at 0 temperature, but, even so, there is still a residual amount of stochasticity, even though
the reason for this is unclear (OpenAI, 2023).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

mj(pi)); the most suitable manner depends on the considered task, but in general the aim of zj,i is
to capture what a human judge would perceive as a correct answer4.

Below, we first frame the problem of predicting the correctness zj,i and then discuss our framework
to predict the performance of a new LLM by evaluating it on a small subset of instances.

3.1 PREDICTING SUCCESS OF A LLM USING FEATURES INTRINSIC TO THE PROMPT

Let us consider a single LLM, say m1; we aim to train a classifier (termed “assessor”) to predict the
performance z1,i from the prompt pi. To do so, we split the test dataset D into different splits used
to train, validate and evaluate the assessor (Hernández-Orallo et al., 2022), denoted as Dtrain,Dval

and Dtest, such that D = Dtrain ∪ Dval ∪ Dtest and Dtrain ∩ Dval = Dval ∩ Dtest = Dtrain ∩ Dtest = ∅.
In a real-world scenario, Dtest will represent instances for which we did not evaluate the considered
LLM (and for which we may not have access to the ground truth); in contrast, available evaluation
results are split into Dtrain and Dval.

In practice, we can extract some numerical features f(pi) from the textual prompt pi; we use “intrin-
sic” features, i.e. features that are defined independently of the problem at hand (such as the number
of negations or the vector embeddings of the sentence). Formally, we consider a loss function ℓ and
a family of classifiers hφ, where φ denotes the parameters of the classifier (for instance, the weights
in a logistic regression classifier), and aim to minimise∑

pi∈Dtrain

ℓ(hφ(f(pi)), z1,i) (1)

over φ using some optimisation algorithm; we can then select the best hyper-parameters using the
performance on the validation data Dval, thus selecting hφ̂. Now, we can predict the performance of
m1 on pnew ∈ Dtest as hφ̂(f(p

new)) without inputing the prompt pnew into the LLM m1
5.

3.2 PREDICTING SUCCESS BY EVALUATION ON REFERENCE INSTANCES

Now, consider the case in which we have previously evaluated some LLMs on Dtrain and Dval. We
are interested in predicting the performance of a new LLM, say mnew on new instances Dtest. We
want to leverage the information contained in the available evaluation results for previous LLMs to
predict the performance of mnew on Dtest without evaluating it on the full Dtrain (and assuming that
we do not have access to the labels in Dtest, which prevents us from evaluating the other LLMs on
it). Thus, we build a generic assessor, namely a classifier that predicts the success zj,i from the
pair (mj , pi). In practice, we split the LLMs for which full evaluation results are available into a
training and validation split Ltrain and Lval. For each pair (mj , pi) ∈ Ltrain × Dtrain, we concatenate
the prompt-intrinsic features f(pi) with LLM-specific features g(mj) and aim to fit a classifier hφ

that minimises ∑
mj∈Ltrain

∑
pi∈Dtrain

ℓ(hφ(g(mj), f(pi)), zj,i) (2)

over φ. Similarly to what we did before (Section 3.1), we use the performance of Lval on Dval to
perform model selection, leading to a trained classifier hφ̂. Then, the performance of mnew on an
instance pnew ∈ Dtest can be obtained as hφ̂(g(m

new), f(pnew)).

The LLM-specific features g(mj) could include statistics on the training data of mj and archi-
tectural information (for example, number of attention layers and parameters). However, the high
variety of hyperparameters involved in the definition and training of LLMs and the unavailability of
detailed information on proprietary models makes defining broadly informative features hard, if not
impossible. To circumvent this problem, we propose to use the performance of mj on a small set of
reference instances Dref ⊂ Dtrain as g(mj): g(mj) = (zj,i)i∈Dref ; in this way, it is sufficient to eval-
uate the new LLM mnew on Dref to predict their performance on news instances Dtest. See Figure 1
for a graphical description of our method. Next, we discuss various methods to determine Dref.

4Particularly in the case of free-form question answering, it can be tricky to find a formulation that always
matches what a human judge would perceive as a correct answer.

5This assessor is anticipative (Hernández-Orallo et al., 2022), as it does not use the output m1(p
new) when

predicting the performance; this can avoid the cost of querying the LLM if its performance on a specific input
is predicted to be poor.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2.1 SELECTING THE REFERENCE INSTANCES

In order to select the most informative instances (pi, yi) ∈ Dtrain to form Dref , we can use infor-
mation intrinsic to the instances as well as the evaluation results of Ltrain on Dtrain (while keeping
aside Dval and Lval to choose the best selection method; see Section 3.2.2). In general, let us denote
by xi ∈ Rd a feature vector associated to pi and X ∈ Rd×|Dtrain| the matrix whose columns are xi.
Finally, let us define Ztrain = (zj,i)j: mj∈Ltrain,i: pi∈Dtrain . We attempt using the following features:

• prompt features xi = f(pi) (not necessarily the same used to build the assessor in Sec-
tions 3.1 and 3.2).

• The binary success vector on Ltrain, which yields X = Ztrain and for which d = ntrain.
• The item demands obtained by applying the IRT approach in Polo et al. (2024) (discussed

in Section 2), which obtains a set of item demands and LLM capabilities starting from the
success matrix Ztrain. Thus, we set xi to be the obtained item demands, whose size d can
be chosen by the user (we fix this to d = 10 following Polo et al. (2024)).

For all possible choices of X described above, we use two methods to determine the reference
instances: first, we apply KMeans clustering on the columns of X. For each identified cluster, we
select the instance i that is closest to the cluster centroid and add it to Dref. The pre-specified number
of clusters dictates the number of selected instances.

The second method is Factor Analysis (FA), which decomposes X into X = WH + E. Here,
W ∈ Rd×l is the loading matrix, H ∈ Rl×|Dtrain| contains the latent factors for each sample, E
represents Gaussian noise, and l denotes the number of hidden factors. In practice, we first fit
FA with a high number of factors. Then, we set l to the number of eigenvalues of the correlation
matrix XXT that exceed 1, and we re-fit FA using the varimax rotation method (Kaiser, 1958). The
reference instances are then selected by picking, for each factor k = 1, . . . , l, an approximately
equal number of instances with the highest values of |Hk,i|6.

Hence, we can select Dref using one of the three sets of features with any of the two selection
methods, leading to a total of 6 possible methods, two of which (clustering on success/failures and
IRT item parameters) correspond to the selection method used in Polo et al. (2024). We compare
these methods with a random reference subset; moreover, we also draw 20 random reference
subsets, fit an assessor using the performance on the reference instances, and pick the random
subset that leads to the highest performance (“random best of 20”).

3.2.2 CHOOSING THE BEST SETUP ON VALIDATION DATA AND PREDICTING THE
PERFORMANCE OF A NEW LLM

As mentioned above, we have multiple ways to define the reference set as well as multiple choices for
the intrinsic features f . We can also choose multiple families of classifiers hφ and hyperparameters
of the optimisation algorithm to minimise equation 2. As such, we pick the combination of options
which best predicts the performance of the validation LLMs Lval on the validation data Dval. Hence,
once we want to predict the performance of a new LLM mnew on a new instance pnew ∈ Dtest, we
only need to evaluate mnew on Dref and apply the trained generic assessor. In our empirical studies
below, we will test each method on multiple new LLMs, which we group into Ltest.

4 EMPIRICAL STUDIES

4.1 DATASETS

We consider two collections of datasets in our experiments.The first is HELM-Lite (Liang et al.), a
revised and reduced version of the popular HELM (Liang et al., 2022), which includes 10 different
“scenarios” (i.e., datasets), some of which are stratified into sub-scenarios. Of those, we keep the
scenarios and subscenarios for which the performance metric is binary, and further discard those
for which different LLMs were tested with a different number of few-shot examples; the resulting

6For example, if 35 reference instances are needed and l = 10, the top 4 |Hk,i| values are selected for
k = 1, . . . , 5, and the top 3 are chosen for k = 6, . . . , 10.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

subset spans 6 scenarios for a total of 4285 instances. The list of included and discarded scenarios
and sub-scenarios can be found in Appendix A. On this benchmark, the results for 30 LLMs from
different families were available at the time we conducted our experiments (see Table 1).

Further, we introduce KindsOfReasoning, a collection of 22 existing datasets, for a total of 37,529
instances. The datasets were selected to cover a wide range of kinds of reasoning (logical, com-
mon sense, inductive, deductive, abductive, counterfactual, causal, analogical, spatial and arithmetic
reasoning). In particular, we conducted a keyword search in known benchmark repositories (BIG-
Bench, Srivastava et al., 2022 and HELM, Liang et al., 2022) and academic search engines for
benchmarks about reasoning. Of those we found, we excluded those that require a large amount
of commonsense knowledge (such as SocialIQA, Sap et al., 2019), test the dependence of reason-
ing abilities on context (such as NeuBAROCO, Ozeki et al., 2024) or whose license did not allow
derivative works to be distributed (ART, Collier et al., 2022). The final collection contains datasets
with different prompting styles, as true reasoning abilities should be robust to these variations. More
information is given in Appendix B.

On this dataset, we tested all instruction-tuned models released from OpenAI, from
text-ada-0017 to gpt-4-0125-preview, for a total of 14 LLMs (see Table 1). The
instance-level outputs of all models will be released, in the spirit of Burnell et al. (2023b).

Table 1: LLMs in Ltrain, Lval and Ltest for the generic assessor experiments, on the two considered
collection of datasets.

KindsOfReasoning HELM-Lite

Train openai/text-ada-001,
openai/text-babbage-001,
openai/text-curie-001,
openai/text-davinci-001,
openai/text-davinci-002,
openai/gpt-3.5-turbo-0301,
openai/gpt-3.5-turbo-0613,
openai/gpt-3.5-turbo-1106

01-ai/yi-6b, 01-ai/yi-34b,
AlephAlpha/luminous-base,
AlephAlpha/luminous-supreme, ai21/j2-grande,
ai21/j2-jumbo, cohere/command,
google/text-bison@001, google/text-unicorn@001,
mistralai/mixtral-8x7b-32kseqlen,
mistralai/mistral-7b-v0.1,
openai/gpt-3.5-turbo-0613,
openai/gpt-4-1106-preview,
openai/text-davinci-002,
openai/text-davinci-003, tiiuae/falcon-7b,
writer/palmyra-x-v3, writer/palmyra-x-v2

Validation openai/text-davinci-003,
openai/gpt-3.5-turbo-0125

tiiuae/falcon-40b, openai/gpt-4-0613,
AlephAlpha/luminous-extended,
cohere/command-light

Test openai/gpt-4-0125-preview,
openai/gpt-4-0314,
openai/gpt-4-0613,
openai/gpt-4-1106-preview

anthropic/claude-2.1, anthropic/claude-2.0,
anthropic/claude-instant-1.2,
anthropic/claude-v1.3, meta/llama-2-70b,
meta/llama-2-13b, meta/llama-2-7b,
meta/llama-65b

For both of these collections, we shuffle together all datasets and sample a random train, validation,
and test splits Dtrain,Dval and Dtest with respective sizes 56%, 14% and 30% of the total number of
instances. In Sec. 4.5, we discuss results with OOD splits. Moreover, we identify a split of train,
validation, and test LLMs Ltrain,Lval and Ltest for each collection. We make Ltest as different as
possible from Ltrain and Lval: concretely, we select LLMs from two producers as Ltest for HELM-
Lite and all versions of gpt4 for KindsOfReasoning. In this way, we test the performance of our
proposed methodology when the new LLM we want to predict performance for is substantially
different from the previously seen ones. The LLM splits are given in Table 1.

4.2 METRIC

As a performance metric for the assessors, we use the Area Under the Curve (AUC) which measures
how well a binary probabilistic classifier discriminates between the two classes: a classifier
assigning non-overlapping probabilities to the two classes achieves the maximum value AUC = 1,
while a classifier assigning random values to the two classes achieves AUC = 0.5. As the extreme
values of the AUC are insensitive to the class proportion, it can be used to compare results across

7The older models have been discontinued in January 2024, but we obtained our raw results before that date.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: Predictive performance (AUC) of specific assessors for each of the test LLMs Ltest for the
two dataset collections, for different prompt features.

Figure 3: Predictive performance (AUC) of specific assessors for each of the test LLMs Ltest

for the two dataset collections, with an increasing number of OpenAI embeddings (endpoint
text-embedding-3-large).

various scenarios (such as the two dataset collections and different train/validation/test splits).
However, the AUC is insensitive to monotonic transformation of the output probabilities, implying
that a classifier achieving AUC = 1 can be miscalibrated (such as a classifier assigning probability
0.51 to all positive samples and 0.49 to all negative samples).

4.3 WHAT PROMPT FEATURES LEAD TO BETTER PREDICTIVE PERFORMANCE?

We first train an assessor specific to each considered LLM to identify the set of prompt features f
that maximizes predictive performance. In particular, we consider the prompt embeddings computed
from the OpenAI API (with the text-embedding-3-large endpoint OpenAI (2024b)) and
those obtained with Word2vec (Mikolov et al., 2013) and FastText (Bojanowski et al., 2017);
the latter two generate a vector for each word in the prompt, which we average to form a vector
representing the entire prompt. Lastly, we consider 1-gram vectors, calculated as the frequency of
words in a specific prompt, normalized by the frequencies across the entire set of training prompts.
For each choice of features and test LLM, we train various base classifiers (logistic regression with
l2 and l1 penalty and xgboost) on Dtrain, compute the AUC of each on Dval, pick the one with the
highest validation AUC, and report the AUC of that classifier on Dtest.

Our results, available in Fig. 2, show that the OpenAI embeddings always perform better for the
KindsOfReasoning dataset, while no clear winner emerges for HELM-Lite, where all features lead
to similar performance . Therefore, we will use the OpenAI embeddings in all experiments below.
Moreover, the OpenAI embeddings obtained from the endpoint text-embedding-3-large
were trained using Matryoshka Representation Learning (Kusupati et al., 2022), which allows them
to be truncated (by removing the final elements of the vector) without the embedding losing its
concept-representing properties. As such, we investigate the performance of the specific assessor
by truncating the OpenAI embeddings (Fig 3) and found that the performance saturates using 1024
(out of a total of 3072) embeddings; hence, we’ll apply this truncation below.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: The best setup for the generic assessor experiment, selected according to the performance
on validation LLMs as discussed in Section 4.4.

Instance-intrinsic features Dref selection method Classifier

KindsOfReasoning Similarity Random best of 20 XGBoost

HELM-Lite Similarity with interaction Clustering embeddings Logistic Regression L1 C=0.1

Figure 4: Predictive performance (AUC) of the specific and generic assessor and a few baselines,
for the in-distribution experiment on the KindsOfReasoning and HELM-Lite collections of datasets.

4.4 GENERIC ASSESSOR PERFORMANCE

Next, we study the predictive performance of the generic assessor. In particular, as instance features
f (see Sec. 3.2), we test using the first 1024 elements of the OpenAI embeddings, as well as the
cosine similarity of the embeddings between the considered instance and the reference ones, with
and without pairwise interaction8. To select the reference instances, we test all methods introduced
in Sec. 3.2.2. Finally, we test different base classifiers to build the assessors (logistic regression with
l2 and l1 penalty and xgboost).

For all combinations of instance features, reference dataset selection method and base classifiers, we
test our procedure with Dref of sizes 30, 100, 300 and 1000, for both HELM-Lite and KindsOfRea-
soning. We found that the validation AUC of the classifier approximately saturated for 100 reference
samples (see Appendix C). As such, we use this that size of Dref below.

Next, we evaluate the AUC of each combination of classifier, selection of Dref and instance features f
on Dval for each LLM in Lval. We then compute the win rate of each combination for each validation
LLM and pick the combination with the highest average win rate over Lval (a simple average over
Lval would be impacted by the intrinsic different predictability of the different LLMs, which change
the maximally achievable AUC). The winning combination is reported in Table 2. Interestingly, for
the KindsOfReasoning collection, the randomly sampled Dref performs better than those determined
according to the advanced criteria in Section 3.2.1. While surprising at first, other works (Ye et al.,
2023; Wang et al., 2023; Polo et al., 2024; Kipnis et al., 2024) had found that benchmarks can
be reduced by random sampling for multiple purposes. Next, we compare the performance of the
winning combination on Dtest, alongside the specific assessor (which relies on the test LLM results
on Dtrain and Dval) and three baselines:

• “Random selector”, a generic assessor where Dref is randomly selected.

• “Reference only”, where, for each Ltest, we train an assessor only using the prompt features
and the performance of the elements of Dref (thus, ignoring the previous LLMs).

• “All train data”, obtained by fitting a single assessor on the pooled performance results of
all LLMs in Ltrain on Dtrain only using the intrinsic features f(pi) (effectively considering
all LLMs as a single LLM and ignoring the new LLM’s performance on Dref).

8Notice how the set of reference instances is fixed for all LLMs in Ltest, so the similarities are independent
of the considered test LLM.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Predictive performance (AUC) of the specific and generic assessor and a few baselines,
for a chosen OOD split of the KindsOfReasoning and HELM-Lite collections of datasets.

The results are reported in Fig. 4. The specific assessor always outperforms our generic assessor,
as expected from the former having access to more information about the test LLM; however,
the performance gap is generally small. Further, the generic assessor almost always outperforms
or performs comparably with the “all train data” and “reference only” baselines, indicating that
combining the information on previous LLMs and the evaluation results of the test LLM on Dref

generally performs better than relying only on either one. Moreover, the generic assessor and the
“random selector” baseline often perform comparably and there are a few cases where either one
prevails, in roughly equal frequency; in particular, two LLMs for HELM-Lite show much better
performance with the random selector. This indicates that the generic assessor is not sensitive to
the specific selection of Dref. Notice how, on validation data, the selected combination of selector,
features, and classifier for the generic assessor is always better than the random selector baseline, as
the possible choices for the latter are a subset of those for the former; however, our Figure 4 shows
how, at least in a few cases, it is possible that the random selector performs better on test data.

4.5 OUT-OF-DISTRIBUTION STUDY

We repeat the full set of experiments by considering multiple out-of-distribution (OOD) splits for
the HELM-Lite and KindsOfReasoning collections, where we keep one set of datasets as Dtest (ac-
cording to some criteria), and obtain Dtrain and Dval by randomly shuffling the remaining ones. The
complete description and results are available in Appendix D; here, we only report results on a cho-
sen OOD split for the experiment comparing the generic assessor with the baselines and the specific
assessor. From the results, in Fig. 5, it can be seen how the overall predictive power is decreased
and there is no clear ranking of the various methods as was found in the in-distribution experiments
(Sec. 4). The results in Appendix further confirm this finding.

5 CONCLUSION

We proposed a novel framework for predicting the performance of a new LLM on individual task
instances by leveraging the evaluation results of previously tested LLMs. Our approach minimises
the number of evaluations required for a new LLM by introducing a generic assessor combining
instance-specific features with LLM-specific ones derived from performance on a small set of
reference instances. While we focus on LLMs, our methodology can be seamlessly applied to
predict the performance of other AI systems, by using suitable system-specific and instance-specific
features. Similarly, our approach can also be extended to non-binary correctness metrics, the
investigation of which we leave to future work.

Our empirical studies on the HELM-Lite and KindsOfReasoning dataset collections showed how
the generic assessor performs only slightly worse than the specific one in distribution, while outper-
forming simpler baselines. Moreover, we found that the generic assessor is mostly unsensitive to the
specific set of reference instances used. Finally, out of distribution, the predictive performance de-
creases drastically for all methods, which raises awareness of the low inner predictability of LLMs.
To foster research in making LLMs more predictable (Zhou et al., 2023), we release the instance-
level results of all instruction-finetuned GPT3 and GPT4 models until gpt4-0125-preview on
KindsOfReasoning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Lasha Abzianidze, Joost Zwarts, and Yoad Winter. Spacenli: Evaluating the consistency
of predicting inferences in space. ArXiv, abs/2307.02269, 2023. URL https://api.
semanticscholar.org/CorpusID:259341771.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtzman,
Hannah Rashkin, Doug Downey, Scott Yih, and Yejin Choi. Abductive commonsense rea-
soning. ArXiv, abs/1908.05739, 2019. URL https://api.semanticscholar.org/
CorpusID:201058651.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
subword information. Transactions of the association for computational linguistics, 5:135–146,
2017.

Ryan Burnell, Han Hao, Andrew RA Conway, and Jose Hernandez Orallo. Revealing the structure
of language model capabilities. arXiv preprint arXiv:2306.10062, 2023a.

Ryan Burnell, Wout Schellaert, John Burden, Tomer D Ullman, Fernando Martinez-Plumed,
Joshua B Tenenbaum, Danaja Rutar, Lucy G Cheke, Jascha Sohl-Dickstein, Melanie Mitchell,
et al. Rethink reporting of evaluation results in ai. Science, 380(6641):136–138, 2023b.

Nigel H. Collier, Fangyu Liu, and Ehsan Shareghi. On reality and the limits of language data, 2022.
URL https://arxiv.org/abs/2208.11981.

Dhairya Dalal, Paul Buitelaar, and Mihael Arcan. Calm-bench: A multi-task benchmark for eval-
uating causality-aware language models. In Findings of the Association for Computational Lin-
guistics: EACL 2023, pp. 296–311, 2023.

Patricia Drapal, Telmo Silva-Filho, and Ricardo B. C. Prudêncio. Meta-Learning and Novelty De-
tection for Machine Learning with Reject Option. In 2024 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8, 2024. doi: 10.1109/IJCNN60899.2024.10650424. URL
https://ieeexplore.ieee.org/abstract/document/10650424.

Andrew S. Gordon, Zornitsa Kozareva, and Melissa Roemmele. Choice of plausible alternatives: An
evaluation of commonsense causal reasoning. In AAAI Spring Symposium: Logical Formaliza-
tions of Commonsense Reasoning, 2011. URL https://api.semanticscholar.org/
CorpusID:434646.

Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, and Jesse Davis. Machine
learning with a reject option: A survey. Machine Learning, 113(5):3073–3110, 2024.

José Hernández-Orallo, Wout Schellaert, and Fernando Martı́nez-Plumed. Training on the test set:
Mapping the system-problem space in ai. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 12256–12261, 2022.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. RouterBench: A Benchmark for Multi-LLM Routing
System, 2024. URL http://arxiv.org/abs/2403.12031.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A sur-
vey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2023, pp. 1049–1065, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL
https://aclanthology.org/2023.findings-acl.67.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Cosmos qa: Machine reading
comprehension with contextual commonsense reasoning. In Conference on Empirical Methods
in Natural Language Processing, 2019. URL https://api.semanticscholar.org/
CorpusID:202540590.

11

https://api.semanticscholar.org/CorpusID:259341771
https://api.semanticscholar.org/CorpusID:259341771
https://api.semanticscholar.org/CorpusID:201058651
https://api.semanticscholar.org/CorpusID:201058651
https://arxiv.org/abs/2208.11981
https://ieeexplore.ieee.org/abstract/document/10650424
https://api.semanticscholar.org/CorpusID:434646
https://api.semanticscholar.org/CorpusID:434646
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2403.12031
https://aclanthology.org/2023.findings-acl.67
https://api.semanticscholar.org/CorpusID:202540590
https://api.semanticscholar.org/CorpusID:202540590

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking large language models as
AI research agents, 2024. URL https://openreview.net/forum?id=N9wD4RFWY0.

Shumaila Javaid, Nasir Saeed, and Bin He. Large language models for uavs: Current state and
pathways to the future, 2024.

Henry F Kaiser. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23
(3):187–200, 1958.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36, 2024.

Alex Kipnis, Konstantinos Voudouris, Luca M Schulze Buschoff, and Eric Schulz. metabench–
a sparse benchmark to measure general ability in large language models. arXiv preprint
arXiv:2407.12844, 2024.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233–30249,
2022.

Percy Liang, Yifan Mai, Josselin Somerville, Farzaan Kaiyom, Tony Lee, and Rishi Bommasani.
Helm lite: Lightweight and broad capabilities evaluation. https://crfm.stanford.edu/
2023/12/19/helm-lite.html. Accessed: 2024-06-06.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Kevin Lin, Oyvind Tafjord, Peter Clark, and Matt Gardner. Reasoning over paragraph effects in
situations. In Conference on Empirical Methods in Natural Language Processing, 2019. URL
https://api.semanticscholar.org/CorpusID:201058633.

Alisa Liu, Swabha Swayamdipta, Noah A Smith, and Yejin Choi. Wanli: Worker and ai collabora-
tion for natural language inference dataset creation. arXiv preprint arXiv:2201.05955, 2022.

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan Duan, Ming Zhou, and Yue Zhang. Logiqa
2.0—an improved dataset for logical reasoning in natural language understanding. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 31:2947–2962, 2023. doi: 10.1109/
TASLP.2023.3293046.

Man Luo, Shrinidhi Kumbhar, Mihir Parmar, Neeraj Varshney, Pratyay Banerjee, Somak Aditya,
Chitta Baral, et al. Towards logiglue: A brief survey and a benchmark for analyzing logical
reasoning capabilities of language models. arXiv preprint arXiv:2310.00836, 2023.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In International Conference on Learning Representations, 2013.
URL https://api.semanticscholar.org/CorpusID:5959482.

Philipp Mondorf and Barbara Plank. Beyond accuracy: Evaluating the reasoning behavior of large
language models–a survey. arXiv preprint arXiv:2404.01869, 2024.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and
Yang You. Mixeval: Deriving wisdom of the crowd from llm benchmark mixtures. arXiv preprint
arXiv:2406.06565, 2024.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adver-
sarial nli: A new benchmark for natural language understanding. ArXiv, abs/1910.14599, 2019.
URL https://api.semanticscholar.org/CorpusID:207756753.

OpenAI. Why the api output is inconsistent even after the tem-
perature is set to 0. https://community.openai.com/t/
why-the-api-output-is-inconsistent-even-after-the-temperature-is-set-to-0/
329541/9, 2023. Accessed: 2024-06-05.

12

https://openreview.net/forum?id=N9wD4RFWY0
https://crfm.stanford.edu/2023/12/19/helm-lite.html
https://crfm.stanford.edu/2023/12/19/helm-lite.html
https://api.semanticscholar.org/CorpusID:201058633
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:207756753
https://community.openai.com/t/why-the-api-output-is-inconsistent-even-after-the-temperature-is-set-to-0/329541/9
https://community.openai.com/t/why-the-api-output-is-inconsistent-even-after-the-temperature-is-set-to-0/329541/9
https://community.openai.com/t/why-the-api-output-is-inconsistent-even-after-the-temperature-is-set-to-0/329541/9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

OpenAI. Deprecation information. https://platform.openai.com/docs/
deprecations, 2024a. Accessed: 2024-06-04.

OpenAI. New embedding models and api updates. https://openai.com/index/
new-embedding-models-and-api-updates/, 2024b. Accessed: 2024-06-06.

David Owen. How predictable is language model benchmark performance? arXiv preprint
arXiv:2401.04757, 2024.

Kentaro Ozeki, Risako Ando, Takanobu Morishita, Hirohiko Abe, Koji Mineshima, and Mitsuhiro
Okada. Exploring reasoning biases in large language models through syllogism: insights from
the NeuBAROCO dataset. arXiv preprint arXiv:2408.04403, 2024.

Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail
Yurochkin. tinybenchmarks: evaluating LLMs with fewer examples. In ICLR 2024 Workshop
on Mathematical and Empirical Understanding of Foundation Models, 2024. URL https:
//openreview.net/forum?id=CN4xL9IYRO.

Yangjun Ruan, Chris J Maddison, and Tatsunori Hashimoto. Observational scaling laws and the
predictability of language model performance. arXiv preprint arXiv:2405.10938, 2024.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions, 2019. URL https://arxiv.org/abs/1904.
09728.

Tal Shnitzer, Anthony Ou, Mı́rian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil Thompson,
and Mikhail Yurochkin. Large Language Model Routing with Benchmark Datasets, 2023. URL
http://arxiv.org/abs/2309.15789.

Charlotte Siska, Katerina Marazopoulou, Melissa Ailem, and James Bono. Examining the ro-
bustness of LLM evaluation to the distributional assumptions of benchmarks. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 10406–10421,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.acl-long.560.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Zhiyang Teng, Ruoxi Ning, Jian Liu, Qiji Zhou, Yue Zhang, et al. Glore: Evaluating logical reason-
ing of large language models. arXiv preprint arXiv:2310.09107, 2023.

Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe Kiela. Anchor points: Benchmarking mod-
els with much fewer examples. In Yvette Graham and Matthew Purver (eds.), Proceedings of
the 18th Conference of the European Chapter of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1576–1601, St. Julian’s, Malta, March 2024. Association for Com-
putational Linguistics. URL https://aclanthology.org/2024.eacl-long.95.

Yudong Wang, Chang Ma, Qingxiu Dong, Lingpeng Kong, and Jingjing Xu. A challenging bench-
mark for low-resource learning. arXiv preprint arXiv:2303.03840, 2023.

Qinyuan Ye, Harvey Yiyun Fu, Xiang Ren, and Robin Jia. How predictable are large language
model capabilities? a case study on BIG-bench. In The 2023 Conference on Empirical Methods
in Natural Language Processing, 2023. URL https://openreview.net/forum?id=
XMpzcC9L5z.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. Reclor: A reading comprehension
dataset requiring logical reasoning. ArXiv, abs/2002.04326, 2020. URL https://api.
semanticscholar.org/CorpusID:209485573.

Lexin Zhou, Fernando Martı́nez-Plumed, José Hernández-Orallo, Cèsar Ferri, and Wout Schellaert.
Reject before you run: Small assessors anticipate big language models. In EBeM@ IJCAI, 2022.

13

https://platform.openai.com/docs/deprecations
https://platform.openai.com/docs/deprecations
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openreview.net/forum?id=CN4xL9IYRO
https://openreview.net/forum?id=CN4xL9IYRO
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1904.09728
http://arxiv.org/abs/2309.15789
https://aclanthology.org/2024.acl-long.560
https://aclanthology.org/2024.acl-long.560
https://aclanthology.org/2024.eacl-long.95
https://openreview.net/forum?id=XMpzcC9L5z
https://openreview.net/forum?id=XMpzcC9L5z
https://api.semanticscholar.org/CorpusID:209485573
https://api.semanticscholar.org/CorpusID:209485573

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lexin Zhou, Pablo A Moreno-Casares, Fernando Martı́nez-Plumed, John Burden, Ryan Burnell,
Lucy Cheke, Cèsar Ferri, Alexandru Marcoci, Behzad Mehrbakhsh, Yael Moros-Daval, et al.
Predictable artificial intelligence. arXiv preprint arXiv:2310.06167, 2023.

A INFORMATION ON THE EXCLUDED SCENARIOS FROM HELM-LITE

As mentioned in the main text, we discard some scenarios and subscenarios from HELM-Lite as ei-
ther the performance metric was non-binary or because the available results used a different number
of few-shot prompts for different LLMs. In particular, we discard the following:

• LegalBench:
– corporate lobbying - incoherent number of few-shots across LLMs

• MATH:
– algebra - incoherent number of few-shots across LLMs
– geometry - incoherent number of few-shots across LLMs
– intermediate algebra - incoherent number of few-shots across LLMs

• NarrativeQA: non-binary metric (f1 score)
• NaturalQuestions: non-binary metric (f1 score)
• WMT 2014: non-binary metric (BLEU score)

As such, the subset of HELM-Lite that we consider throughout our experiments is made up of the
following scenarios and subscenarios:

• commonsense
• GSM8K
• MedQA
• LegalBench:

– abercrombie
– function of decision section
– proa
– international citizenship questions

• MATH:
– counting and probability
– number theory
– prealgebra
– precalculus

• MMLU:
– abstract algebra
– college chemistry
– computer security
– econometrics
– US foreign policy

B THE KINDSOFREASONING COLLECTION

Table 3 shows detailed information on the datasets included in the KindsOfReasoning collection.
For some datasets, we only kept a smaller number of instances than the one available, to reduce the
cost of evaluating a model on the full benchmark. We do not do this for the “Arithmetic” dataset
as each of the prompt of that dataset is short, and hence the cost of evaluating it is small (besides,
we use Arithmetic as the test data for one of our chosen splits, and subsampling it would have made
the test data too small).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 3: Datasets used in building the KindsOfReasoning collection. See Appendix B for informa-
tion on the column meanings.

Task name Reasoning type Used in Task Type Used
split

N
sam-
ples

N
sam-
ples
used

Notes Source
used

formal fallacies
syllogisms negation
(Srivastava et al.,
2022)

Logical reasoning BIG-Bench Valid/invalid - 14200 1000 - BIG-
Bench

logical args (Srivas-
tava et al., 2022)

Logical reasoning
common sense

BIG-Bench MC (5) - 32 32 - BIG-
Bench

babi task 16 (Srivas-
tava et al., 2022)

inductive reasoning LogiGLUE 1-word an-
swer

test 5000 1000 - BIG-
Bench

LogiQA 2.0 (Liu
et al., 2023)

deductive reasoning LogiGLUE
GLoRE

MC (4) validation1569 1569 9 OpenAI
evals
library

wanli (Liu et al.,
2022)

deductive reasoning LogiGLUE NLI test 5000 1000 Slightly modified
the prefix

LogiGLUE

alpha nli (Bhagavat-
ula et al., 2019)

abductive CALM-bench
LogiGLUE

MC (2) test 1432 1000 Changed from
NLI to MC
format

LogiGLUE

reclor (Yu et al.,
2020)

abductive, inductive,
deductive reasoning

LogiGLUE
GLoRE

MC (4 op-
tions)

test 500 500 10 OpenAI
evals
library

crass ai (Srivastava
et al., 2022)

Counterfactual
reasoning

BIG-Bench MC (5 op-
tions)

- 44 44 - BIG-
Bench

cause and effect (Sri-
vastava et al., 2022)

Causal reasoning BIG-Bench MC (2) - 102 102 Over 2 different
formats

BIG-
Bench

fantasy reasoning
(Srivastava et al.,
2022)

Causal reasoning BIG-Bench Yes/No - 201 201 - BIG-
Bench

goal step inference
(Srivastava et al.,
2022)

Causal reasoning BIG-Bench MC (4) - 7053 3000 Over 3 subtasks BIG-
Bench

Copa (Gordon et al.,
2011)

Causal reasoning,
world knowledge

CALM-bench MC (2) test 500 500 - Original
source

Cosmos qa (Huang
et al., 2019)

Causal reasoning,
world knowledge

CALM-bench MC (4) validation2985 2985 use validation set
as the test set
does not have la-
bels.

HuggingFace

ropes(Lin et al.,
2019)

Causal reasoning,
world knowledge

CALM-bench Completion validation1688 1688 use validation set
as the test set
does not have la-
bels.

HuggingFace

Anli (Nie et al.,
2019)

Causal reasoning,
world knowledge

LogiGLUE NLI test 3200 3200 Merged the 3
“rounds” (levels
of difficulty)
together

Original
source

Emoji movie (Sri-
vastava et al., 2022)

analogical reasoning,
world knowledge

BIG-Bench MC (5) - 100 100 - BIG-
Bench

abstract narrative
understanding (Sri-
vastava et al., 2022)

analogical reasoning BIG-Bench MC (10 and
100)

- 2000 2000 Over 2 subtasks
(9 and 99 distrac-
tors; I discarded
the one with 4
distractors)

BIG-
Bench

odd one out (Srivas-
tava et al., 2022)

analogical reasoning BIG-Bench MC (variable
number)

- 86 86 - BIG-
Bench

metaphor under-
standing (Srivastava
et al., 2022)

analogical reasoning BIG-Bench True/False - 680 680 - BIG-
Bench

geometric shapes
(Srivastava et al.,
2022)

Spatial reasoning BIG-Bench MC (10) - 360 360 - BIG-
Bench

Space nli (Abzian-
idze et al., 2023)

Spatial reasoning - NLI - 1604 1604 - Original
source

Arithmetic (Srivas-
tava et al., 2022)

Arithmetic ability BIG-Bench Completion - 15023 15023 Over 20 subtasks BIG-
Bench

Most of the datasets included in this collection are present in one (or more) of BIG-Bench (Srivastava
et al., 2022), LogiGLUE (Luo et al., 2023), CALM-bench (Dalal et al., 2023) and GLoRE (Teng
et al., 2023). However, as mentioned in the main text (Sec. 2), our collection covers more kinds of
reasoning. The dataset and the instance-level results of all instruct-GPT models from OpenAI (from
text-ada-001 to gpt4-0125-preview will be released at anonymised).

15

https://github.com/openai/evals/pull/648
https://github.com/openai/evals/pull/648
https://github.com/openai/evals/pull/648
https://huggingface.co/datasets/logicreasoning/logi_glue
https://huggingface.co/datasets/logicreasoning/logi_glue
https://github.com/openai/evals/pull/648
https://github.com/openai/evals/pull/648
https://github.com/openai/evals/pull/648
https://people.ict.usc.edu/~gordon/downloads/COPA-resources.tgz
https://people.ict.usc.edu/~gordon/downloads/COPA-resources.tgz
https://huggingface.co/datasets/cosmos_qa
https://huggingface.co/datasets/ropes
https://dl.fbaipublicfiles.com/anli/anli_v1.0.zip
https://dl.fbaipublicfiles.com/anli/anli_v1.0.zip
https://github.com/kovvalsky/SpaceNLI
https://github.com/kovvalsky/SpaceNLI

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

30 10
0

30
0

10
00

n_ref

0.750

0.775

0.800

0.825

0.850

0.875

AU
RO

C

Random

30 10
0

30
0

10
00

n_ref

Clustering embeddings

30 10
0

30
0

10
00

n_ref

Clustering LLM success

30 10
0

30
0

10
00

n_ref

Clustering IRT values

30 10
0

30
0

10
00

n_ref

FA embeddings

30 10
0

30
0

10
00

n_ref

FA LLM success samples

30 10
0

30
0

10
00

n_ref

FA IRT values

Features
gpt-3.5-turbo-0125, Embeddings
gpt-3.5-turbo-0125, Similarity with interaction
gpt-3.5-turbo-0125, Similarity
text-davinci-003, Similarity with interaction
text-davinci-003, Similarity
text-davinci-003, Embeddings

(a) KindsOfReasoning collection

(b) HELM-Lite collection

Figure 6: AUC with increasing number of reference instances on the validation data split, for the
various validation LLMs, reference dataset selection methods and considered instance features. The
“Clustering LLM successes” for the KindsOfReasoning collection failed to converge for Dref of size
300 and 1000.

C IMPACT OF THE NUMBER OF REFERENCE POINTS

Figure 6 shows the performance (AUC) of the generic assessor for different values of the number of
reference points selected, reference dataset selection methods and instance features, for the valida-
tion LLMs (Lval) on the validation split Dval of the KindsOfReasoning (top panels) and HELM-Lite
(bottom panels) collection respectively. For each value of the number of reference points and each
reference dataset selection method, multiple classifiers were trained, and the one with the highest
AUC is reported. Broadly, it can be seen as the performance on Dval roughly peaks at around 100
reference instances (although a few cases are roughly constant and some others show a drop for
higher number of reference instances). Notice that the ”Clustering LLM successes” for the Kind-
sOfReasoning collection failed to converge for Dref of size 300 and 1000.

D OUT OF DISTRIBUTION STUDY

We repeat all experiments discussed in the main text (Sec. 4) considering different choices for the
train, validation, and test splits Dtrain,Dval and Dtest for both dataset collections. The main text
reported results with a random split, where the various splits are sampled by shuffling together all
instances of all datasets. In addition, we consider multiple out-of-distribution (OOD) splits, where
we keep one set of datasets as Dtest (according to some criteria), and Dtrain and Dval are obtained
from randomly shuffling the other ones. In this way, the data used to train and select the best assessor
(both in the generic and specific setup) have the same distribution, which is however different from
the data where the selected assessor will be evaluated on. Details on the various splits are given in
Table 4. Section 4.5 in the main text reported results using the second OOD splits for both dataset
collections.

First, as done in Sec. 4.3 for the in-distribution case, we compute the predictive performance of
specific assessors built on different features intrinsic to the prompt, for the different data splits of
the KindsOfReasoning and HELM-Lite collections respectively. Results are reported in Figures 7
and 8; in particular, for each figure, the top panel shows performance on Dval, while the latter
shows performance on Dtest, for the classifier selected according to its best performance on Dval. On
the validation data, the performance of the OpenAI embeddings is generally higher and, as such, the
experiments reported in the main text are with this choice of embeddings. However, the performance

9I use the multiple-choice version rather than the NLI one; moreover, the source I used shuffled the order of
options and replaced the correct option with “none is correct”, so the model should always select that.

10The source I used shuffled the order of options and replaced the correct option with “none is correct”, so
the model should always select that.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Size of Dtrain, Dval and Dtest for the different splits for the KindsOfReasoning and HELM-
Lite collections, together with the criteria for which datasets to include in the test split (Dtrain and
Dval are randomly obtained from those not included in Dtest).

Train
size

Validation
size

Test
size

Test set composition

KindsOfReasoning

In-distribution 21016 5254 11259 Random
OOD 1 18069 4517 14943 arithmetic
OOD 2 20705 5176 11648 causal
OOD 3 21273 5318 10938 logical, deductive, inductive, spatial,

abductive, counterfactual, and
analogical reasoning

OOD 4 23238 5810 8481 world knowledge, common sense

HELM-Lite

In-distribution 2400 600 1285 Random
OOD 1 2378 595 1312 Math, GSM, MMU abstract algebra
OOD 2 2182 546 1557 Legalbench
OOD 3 2295 574 1416 Commonsense, Med QA, MMLU

(except abstract algebra)

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

0.5
0.6
0.7
0.8
0.9
1.0

AU
RO

C_
va

l

split = In distribution

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 1

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 2

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 3

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w
llm

split = OOD 4

Features
OAI embeddings
FastText
Unigrams
Word2Vec

(a) AUC with different choices of instance-intrinsic features on Dval.

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

0.5
0.6
0.7
0.8
0.9
1.0

AU
RO

C_
te

st

split = In distribution

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 1

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 2

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 3

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 4

Features
OAI embeddings
FastText
Unigrams
Word2Vec

(b) AUC with different choices of instance-intrinsic features on Dtest.

Figure 7: AUC with different choices of instance-intrinsic features (OpenAI embeddings,
Word2Vec, FastText and 1-gram), for different splits on KindsOfReasoning. For each split and
feature, various classifiers were trained on Dtrain and the best according to its performance on Dval

was selected; the panels report the performance of the latter on Dval and Dtest.

on Dtest for the OOD splits show a mixed picture, with the OpenAI embeddings often performing
worse than simpler ones (such as Word2Vec) and with generally lower performance.

Next, we compute the performance of the specific assessor using the OpenAI embeddings truncated
at different vector sizes, for different data splits of the KindsOfReasoning and HELM-Lite collec-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

01
-a

i/y
i-3

4b
01

-a
i/y

i-6
b

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ba
se

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ex
te

nd
ed

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

su
pr

em
e

ai
21

/j2
-g

ra
nd

e
ai

21
/j2

-ju
m

bo
an

th
ro

pi
c/

cla
ud

e-
2.

0
an

th
ro

pi
c/

cla
ud

e-
2.

1
an

th
ro

pi
c/

cla
ud

e-
in

st
an

t-1
.2

an
th

ro
pi

c/
cla

ud
e-

v1
.3

co
he

re
/c

om
m

an
d

co
he

re
/c

om
m

an
d-

lig
ht

go
og

le
/te

xt
-b

iso
n@

00
1

go
og

le
/te

xt
-u

ni
co

rn
@

00
1

gp
t-3

.5
-tu

rb
o-

06
13

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

m
et

a/
lla

m
a-

2-
13

b
m

et
a/

lla
m

a-
2-

70
b

m
et

a/
lla

m
a-

2-
7b

m
et

a/
lla

m
a-

65
b

m
ist

ra
la

i/m
ist

ra
l-7

b-
v0

.1
m

ist
ra

la
i/m

ix
tra

l-8
x7

b-
32

ks
eq

le
n

te
xt

-d
av

in
ci-

00
2

te
xt

-d
av

in
ci-

00
3

tii
ua

e/
fa

lco
n-

40
b

tii
ua

e/
fa

lco
n-

7b
wr

ite
r/p

al
m

yr
a-

x-
v2

wr
ite

r/p
al

m
yr

a-
x-

v3

llm

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C_
va

l

split = In distribution

01
-a

i/y
i-3

4b
01

-a
i/y

i-6
b

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ba
se

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ex
te

nd
ed

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

su
pr

em
e

ai
21

/j2
-g

ra
nd

e
ai

21
/j2

-ju
m

bo
an

th
ro

pi
c/

cla
ud

e-
2.

0
an

th
ro

pi
c/

cla
ud

e-
2.

1
an

th
ro

pi
c/

cla
ud

e-
in

st
an

t-1
.2

an
th

ro
pi

c/
cla

ud
e-

v1
.3

co
he

re
/c

om
m

an
d

co
he

re
/c

om
m

an
d-

lig
ht

go
og

le
/te

xt
-b

iso
n@

00
1

go
og

le
/te

xt
-u

ni
co

rn
@

00
1

gp
t-3

.5
-tu

rb
o-

06
13

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

m
et

a/
lla

m
a-

2-
13

b
m

et
a/

lla
m

a-
2-

70
b

m
et

a/
lla

m
a-

2-
7b

m
et

a/
lla

m
a-

65
b

m
ist

ra
la

i/m
ist

ra
l-7

b-
v0

.1
m

ist
ra

la
i/m

ix
tra

l-8
x7

b-
32

ks
eq

le
n

te
xt

-d
av

in
ci-

00
2

te
xt

-d
av

in
ci-

00
3

tii
ua

e/
fa

lco
n-

40
b

tii
ua

e/
fa

lco
n-

7b
wr

ite
r/p

al
m

yr
a-

x-
v2

wr
ite

r/p
al

m
yr

a-
x-

v3

llm

split = OOD 1

01
-a

i/y
i-3

4b
01

-a
i/y

i-6
b

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ba
se

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ex
te

nd
ed

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

su
pr

em
e

ai
21

/j2
-g

ra
nd

e
ai

21
/j2

-ju
m

bo
an

th
ro

pi
c/

cla
ud

e-
2.

0
an

th
ro

pi
c/

cla
ud

e-
2.

1
an

th
ro

pi
c/

cla
ud

e-
in

st
an

t-1
.2

an
th

ro
pi

c/
cla

ud
e-

v1
.3

co
he

re
/c

om
m

an
d

co
he

re
/c

om
m

an
d-

lig
ht

go
og

le
/te

xt
-b

iso
n@

00
1

go
og

le
/te

xt
-u

ni
co

rn
@

00
1

gp
t-3

.5
-tu

rb
o-

06
13

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

m
et

a/
lla

m
a-

2-
13

b
m

et
a/

lla
m

a-
2-

70
b

m
et

a/
lla

m
a-

2-
7b

m
et

a/
lla

m
a-

65
b

m
ist

ra
la

i/m
ist

ra
l-7

b-
v0

.1
m

ist
ra

la
i/m

ix
tra

l-8
x7

b-
32

ks
eq

le
n

te
xt

-d
av

in
ci-

00
2

te
xt

-d
av

in
ci-

00
3

tii
ua

e/
fa

lco
n-

40
b

tii
ua

e/
fa

lco
n-

7b
wr

ite
r/p

al
m

yr
a-

x-
v2

wr
ite

r/p
al

m
yr

a-
x-

v3

llm

split = OOD 2

01
-a

i/y
i-3

4b
01

-a
i/y

i-6
b

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ba
se

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ex
te

nd
ed

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

su
pr

em
e

ai
21

/j2
-g

ra
nd

e
ai

21
/j2

-ju
m

bo
an

th
ro

pi
c/

cla
ud

e-
2.

0
an

th
ro

pi
c/

cla
ud

e-
2.

1
an

th
ro

pi
c/

cla
ud

e-
in

st
an

t-1
.2

an
th

ro
pi

c/
cla

ud
e-

v1
.3

co
he

re
/c

om
m

an
d

co
he

re
/c

om
m

an
d-

lig
ht

go
og

le
/te

xt
-b

iso
n@

00
1

go
og

le
/te

xt
-u

ni
co

rn
@

00
1

gp
t-3

.5
-tu

rb
o-

06
13

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

m
et

a/
lla

m
a-

2-
13

b
m

et
a/

lla
m

a-
2-

70
b

m
et

a/
lla

m
a-

2-
7b

m
et

a/
lla

m
a-

65
b

m
ist

ra
la

i/m
ist

ra
l-7

b-
v0

.1
m

ist
ra

la
i/m

ix
tra

l-8
x7

b-
32

ks
eq

le
n

te
xt

-d
av

in
ci-

00
2

te
xt

-d
av

in
ci-

00
3

tii
ua

e/
fa

lco
n-

40
b

tii
ua

e/
fa

lco
n-

7b
wr

ite
r/p

al
m

yr
a-

x-
v2

wr
ite

r/p
al

m
yr

a-
x-

v3

llm

split = OOD 3

Features
OAI embeddings
FastText
Unigrams
Word2Vec

(a) AUC with different choices of instance-intrinsic features on Dval.

01
-a

i/y
i-3

4b
01

-a
i/y

i-6
b

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ba
se

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ex
te

nd
ed

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

su
pr

em
e

ai
21

/j2
-g

ra
nd

e
ai

21
/j2

-ju
m

bo
an

th
ro

pi
c/

cla
ud

e-
2.

0
an

th
ro

pi
c/

cla
ud

e-
2.

1
an

th
ro

pi
c/

cla
ud

e-
in

st
an

t-1
.2

an
th

ro
pi

c/
cla

ud
e-

v1
.3

co
he

re
/c

om
m

an
d

co
he

re
/c

om
m

an
d-

lig
ht

go
og

le
/te

xt
-b

iso
n@

00
1

go
og

le
/te

xt
-u

ni
co

rn
@

00
1

gp
t-3

.5
-tu

rb
o-

06
13

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

m
et

a/
lla

m
a-

2-
13

b
m

et
a/

lla
m

a-
2-

70
b

m
et

a/
lla

m
a-

2-
7b

m
et

a/
lla

m
a-

65
b

m
ist

ra
la

i/m
ist

ra
l-7

b-
v0

.1
m

ist
ra

la
i/m

ix
tra

l-8
x7

b-
32

ks
eq

le
n

te
xt

-d
av

in
ci-

00
2

te
xt

-d
av

in
ci-

00
3

tii
ua

e/
fa

lco
n-

40
b

tii
ua

e/
fa

lco
n-

7b
wr

ite
r/p

al
m

yr
a-

x-
v2

wr
ite

r/p
al

m
yr

a-
x-

v3

llm

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C_
te

st

split = In distribution

01
-a

i/y
i-3

4b
01

-a
i/y

i-6
b

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ba
se

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ex
te

nd
ed

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

su
pr

em
e

ai
21

/j2
-g

ra
nd

e
ai

21
/j2

-ju
m

bo
an

th
ro

pi
c/

cla
ud

e-
2.

0
an

th
ro

pi
c/

cla
ud

e-
2.

1
an

th
ro

pi
c/

cla
ud

e-
in

st
an

t-1
.2

an
th

ro
pi

c/
cla

ud
e-

v1
.3

co
he

re
/c

om
m

an
d

co
he

re
/c

om
m

an
d-

lig
ht

go
og

le
/te

xt
-b

iso
n@

00
1

go
og

le
/te

xt
-u

ni
co

rn
@

00
1

gp
t-3

.5
-tu

rb
o-

06
13

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

m
et

a/
lla

m
a-

2-
13

b
m

et
a/

lla
m

a-
2-

70
b

m
et

a/
lla

m
a-

2-
7b

m
et

a/
lla

m
a-

65
b

m
ist

ra
la

i/m
ist

ra
l-7

b-
v0

.1
m

ist
ra

la
i/m

ix
tra

l-8
x7

b-
32

ks
eq

le
n

te
xt

-d
av

in
ci-

00
2

te
xt

-d
av

in
ci-

00
3

tii
ua

e/
fa

lco
n-

40
b

tii
ua

e/
fa

lco
n-

7b
wr

ite
r/p

al
m

yr
a-

x-
v2

wr
ite

r/p
al

m
yr

a-
x-

v3

llm

split = OOD 1

01
-a

i/y
i-3

4b
01

-a
i/y

i-6
b

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ba
se

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

ex
te

nd
ed

Al
ep

hA
lp

ha
/lu

m
in

ou
s-

su
pr

em
e

ai
21

/j2
-g

ra
nd

e
ai

21
/j2

-ju
m

bo
an

th
ro

pi
c/

cla
ud

e-
2.

0
an

th
ro

pi
c/

cla
ud

e-
2.

1
an

th
ro

pi
c/

cla
ud

e-
in

st
an

t-1
.2

an
th

ro
pi

c/
cla

ud
e-

v1
.3

co
he

re
/c

om
m

an
d

co
he

re
/c

om
m

an
d-

lig
ht

go
og

le
/te

xt
-b

iso
n@

00
1

go
og

le
/te

xt
-u

ni
co

rn
@

00
1

gp
t-3

.5
-tu

rb
o-

06
13

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

m
et

a/
lla

m
a-

2-
13

b
m

et
a/

lla
m

a-
2-

70
b

m
et

a/
lla

m
a-

2-
7b

m
et

a/
lla

m
a-

65
b

m
ist

ra
la

i/m
ist

ra
l-7

b-
v0

.1
m

ist
ra

la
i/m

ix
tra

l-8
x7

b-
32

ks
eq

le
n

te
xt

-d
av

in
ci-

00
2

te
xt

-d
av

in
ci-

00
3

tii
ua

e/
fa

lco
n-

40
b

tii
ua

e/
fa

lco
n-

7b
wr

ite
r/p

al
m

yr
a-

x-
v2

wr
ite

r/p
al

m
yr

a-
x-

v3

llm

split = OOD 2
01

-a
i/y

i-3
4b

01
-a

i/y
i-6

b
Al

ep
hA

lp
ha

/lu
m

in
ou

s-
ba

se
Al

ep
hA

lp
ha

/lu
m

in
ou

s-
ex

te
nd

ed
Al

ep
hA

lp
ha

/lu
m

in
ou

s-
su

pr
em

e
ai

21
/j2

-g
ra

nd
e

ai
21

/j2
-ju

m
bo

an
th

ro
pi

c/
cla

ud
e-

2.
0

an
th

ro
pi

c/
cla

ud
e-

2.
1

an
th

ro
pi

c/
cla

ud
e-

in
st

an
t-1

.2
an

th
ro

pi
c/

cla
ud

e-
v1

.3
co

he
re

/c
om

m
an

d
co

he
re

/c
om

m
an

d-
lig

ht
go

og
le

/te
xt

-b
iso

n@
00

1
go

og
le

/te
xt

-u
ni

co
rn

@
00

1
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-4
-0

61
3

gp
t-4

-1
10

6-
pr

ev
ie

w
m

et
a/

lla
m

a-
2-

13
b

m
et

a/
lla

m
a-

2-
70

b
m

et
a/

lla
m

a-
2-

7b
m

et
a/

lla
m

a-
65

b
m

ist
ra

la
i/m

ist
ra

l-7
b-

v0
.1

m
ist

ra
la

i/m
ix

tra
l-8

x7
b-

32
ks

eq
le

n
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
tii

ua
e/

fa
lco

n-
40

b
tii

ua
e/

fa
lco

n-
7b

wr
ite

r/p
al

m
yr

a-
x-

v2
wr

ite
r/p

al
m

yr
a-

x-
v3

llm

split = OOD 3

Features
OAI embeddings
FastText
Unigrams
Word2Vec

(b) AUC with different choices of instance-intrinsic features on Dtest.

Figure 8: AUC with different choices of instance-intrinsic features (OpenAI embeddings,
Word2Vec, FastText and 1-gram), for different splits on HELM-Lite. For each split and feature,
various classifiers were trained on Dtrain and the best according to its performance on Dval was se-
lected; the panels report the performance of the latter on Dval and Dtest.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C_
va

l

split = In distribution

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 2

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 3

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 4 LLM
text-ada-001
text-babbage-001
text-curie-001
text-davinci-001
text-davinci-002
text-davinci-003
gpt-3.5-turbo-0301
gpt-3.5-turbo-0613
gpt-3.5-turbo-1106
gpt-3.5-turbo-0125
gpt-4-0314
gpt-4-0613
gpt-4-1106-preview
gpt-4-0125-preview

(a) AUC with increasing number of OpenAI embeddings on Dval.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C_
te

st

split = In distribution
1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 2

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 3

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 4 LLM
text-ada-001
text-babbage-001
text-curie-001
text-davinci-001
text-davinci-002
text-davinci-003
gpt-3.5-turbo-0301
gpt-3.5-turbo-0613
gpt-3.5-turbo-1106
gpt-3.5-turbo-0125
gpt-4-0314
gpt-4-0613
gpt-4-1106-preview
gpt-4-0125-preview

(b) AUC with increasing number of OpenAI embeddings on Dtest.

Figure 9: AUC with increasing number of OpenAI embeddings for specific assessors trained on
increasing number of OpenAI embeddings, for different splits on KindsOfReasoning. For each split
and number of embeddings, various classifiers were trained on Dtrain and the best according to its
performance on Dval was selected; the panels report the performance of the latter on Dval and Dtest.

tions respectively. The results are in Figures 9 and 10; in particular, for each figure, the top panel
shows performance on Dval, while the latter shows performance on Dtest, for the classifier selected
according to its best performance on Dval. The performance on Dval (and Dtest for the in-distribution
split) plateaus when the truncation size reaches 1024 and, as such, all the results reported in the
main text are with that truncation size. On Dtest for the various OOD splits, the performance does
not follow a smooth curve, but still seems to peak more often around a truncation size of 1024.

We then move on to considering the generic assessor setup, and we select the best combination
of selector method, instance features and base classifiers as done for the in-distribution study in
Sec. 4.4. The winning combination for each data split is reported in Table 5. Interestingly, for
multiple data splits, the randomly sampled Dref performs better than those determined according to
the advanced criteria in Section 3.2.1. While surprising at first, other works (Ye et al., 2023; Wang
et al., 2023; Polo et al., 2024; Kipnis et al., 2024) had found that benchmarks can be reduced by
random sampling for multiple purposes. In terms of classifier, instead, XGBoost generally performs
better. Finally, using similarity between the embeddings of the reference instances and those of the
considered instance more frequently performs better than directly using the latter as f(p).

Finally, Figure 11 reports the performance results of the best combination for the generic assessor
and the specific assessor, alongside the baselines introduced in Sec. 4.4. From those results, several
considerations can be made. First, notice how the predictive performance generally degrades out
of distribution with respect to the in-distribution (random) split. For some out-of-distribution splits,
some predictive power remains (recall that AUC = 0.5 corresponds to random guess) but, on other
splits, even the specific assessor performs poorly, despite relying on evaluation results of the test
LLMs on the whole train and validation data splits. This indicates that the considered intrinsic
features of the prompt (the OpenAI embeddings) do not reliably capture a general performance
pattern. While, in principle, more informative features could be used, it is also possible that there is
an inner limit to the out-of-distribution predictability of the current generation of LLMs, due to their
stochastic nature.

Moreover, the specific assessor always outperforms our generic assessor in distribution and does
so frequently out of distribution, as expected from the former having access to more information
about the test LLM; however, the performance gap is generally small. In distribution, further, the
generic assessor almost always outperforms or performs comparably with the “all train data” and

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

0.5

0.6

0.7

0.8

0.9

1.0
AU

RO
C_

te
st

split = In distribution

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 2

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 3

LLM
01-ai/yi-34b
01-ai/yi-6b
AlephAlpha/luminous-base
AlephAlpha/luminous-extended
AlephAlpha/luminous-supreme
ai21/j2-grande
ai21/j2-jumbo
anthropic/claude-2.0
anthropic/claude-2.1
anthropic/claude-instant-1.2
anthropic/claude-v1.3
cohere/command
cohere/command-light
google/text-bison@001
google/text-unicorn@001
gpt-3.5-turbo-0613
gpt-4-0613
gpt-4-1106-preview
meta/llama-2-13b
meta/llama-2-70b
meta/llama-2-7b
meta/llama-65b
mistralai/mistral-7b-v0.1
mistralai/mixtral-8x7b-32kseqlen
text-davinci-002
text-davinci-003
tiiuae/falcon-40b
tiiuae/falcon-7b
writer/palmyra-x-v2
writer/palmyra-x-v3

(a) AUC with increasing number of OpenAI embeddings on Dval.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C_
te

st

split = In distribution

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 2

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72

embedding_size

split = OOD 3

LLM
01-ai/yi-34b
01-ai/yi-6b
AlephAlpha/luminous-base
AlephAlpha/luminous-extended
AlephAlpha/luminous-supreme
ai21/j2-grande
ai21/j2-jumbo
anthropic/claude-2.0
anthropic/claude-2.1
anthropic/claude-instant-1.2
anthropic/claude-v1.3
cohere/command
cohere/command-light
google/text-bison@001
google/text-unicorn@001
gpt-3.5-turbo-0613
gpt-4-0613
gpt-4-1106-preview
meta/llama-2-13b
meta/llama-2-70b
meta/llama-2-7b
meta/llama-65b
mistralai/mistral-7b-v0.1
mistralai/mixtral-8x7b-32kseqlen
text-davinci-002
text-davinci-003
tiiuae/falcon-40b
tiiuae/falcon-7b
writer/palmyra-x-v2
writer/palmyra-x-v3

(b) AUC with increasing number of OpenAI embeddings on Dtest.

Figure 10: AUC with increasing number of OpenAI embeddings for specific assessors trained on
increasing number of OpenAI embeddings, for different splits on HELM-Lite. For each split and
number of embeddings, various classifiers were trained on Dtrain and the best according to its per-
formance on Dval was selected; the panels report the performance of the latter on Dval and Dtest.

Table 5: The best combination of instance-intrinsic features, selector and classifier for each data
split in the two considered dataset collections, selected according to the performance on validation
LLMs as discussed in Section 4.4. In the “instance-intrinsic features” column, “embeddings” refers
to using the OpenAI embeddings of the considered instance as f(pi), while “similarity” refers to
using the cosine similarity between the OpenAI embeddings of the reference instances and that of
the considered instance; further, “similarity with interaction” explicitly adds features obtained as the
pairwise produce of each similarity with its corresponding success (notice that this is superfluous
for XGBoost, which can natively leverage interactions between features).

Instance-intrinsic features Selector Classifier

KindsOfReasoning

In-distribution Similarity Random best of 20 XGBoost
OOD 1 Similarity Factor analysis embeddings XGBoost
OOD 2 Similarity with interaction Clustering IRT values XGBoost
OOD 3 Embeddings Random XGBoost
OOD 4 Similarity Random XGBoost

HELM-Lite

In-distribution Similarity with interaction Clustering embeddings Logistic Regression L1 C=0.1
OOD 1 Embeddings Clustering LLM success XGBoost
OOD 2 Similarity with interaction Random Logistic Regression L1 C=1
OOD 3 Similarity with interaction Clustering LLM success Logistic Regression L1 C=1

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 11: Predictive performance (AUC) of the specific and generic assessor and a few baselines,
for different splits of the KindsOfReasoning and HELM-Lite collections of datasets. Some combi-
nations (for instance, the random selector on split 1 of KindsOfReasoning achieve AUC lower than
the lower bound of the panels (0.4) and are hence hidden in the graph.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

“reference only” baselines, indicating that combining the information on previous LLMs and the
evaluation results of the test LLM on Dref generally performs better than relying only on either
one. For some OOD splits (OOD 2 and 3 for KindsOfReasoning and OOD1 and 3 for HELM-Lite),
instead, either or both of these baselines perform better than the generic assessor, indicating how
the generic assessor likely overfits to the training distribution; however, in most of those cases, the
predictive performance is quite low for all methods (except for split 3 in HELM-Lite).

If we instead compare the generic assessor with the “random selector” baseline (which is identical
to the generic assessor but with a random Dref), we see how the two often perform comparably and
there are a few cases where either one prevails, in roughly equal frequency. This indicates that the
generic assessor is not sensitive to the specific selection of Dref (an indication for this could also
be seen in Table 5, where there is no coherent best selector and where a few times the “random”
subset was selected as best). Notice how, on validation data, the selected combination of selector,
features, and classifier for the generic assessor is always better than the random selector baseline, as
the possible choices for the latter are a subset of those for the former; however, our Figure 11 shows
how, at least in a few cases, it is possible that the random selector performs better on test data.

In a similar manner, the “reference only” baseline is identical to a ”specific assessor” trained on
a subset of Dtrain, but with the selection of the best classifier being carried out on the validation
LLMs, instead of using the results of the considered LLM on Dval. Still, the specific assessor
always performs better than “reference only” in-distribution, while the latter sometimes overtakes
the former out-of-distribution, indicating that the specific assessor overfits the training distribution
due to the larger number of training points or due to the classifier selection being performed using
the test LLM.

E CONTROL FOR NUMBER OF TRAINING SAMPLES IN THE
KINDSOFREASONING COLLECTION

Figure 12 shows the difference between the AUC of a specific assessor trained on the full Dtrain

and one trained on a random subsample of Dtrain of size 3000, for different choices of the random
split for the KindsOfReasoning collection. The difference is small on Dval (notice the y scale of
the graphs) and generally small for Dtest for all data splits, except for OOD 1, which reaches higher
absolute values on both sides of 0.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

0.02

0.00

0.02

0.04

0.06

AU
RO

C
- A

UR
OC

_s
ub

sa
m

pl
ed

split = OOD 4

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = In distribution

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 1

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 2

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 3

features
openai
fasttext
ngrams_1
word2vec

(a) Dval.

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

0.4

0.2

0.0

0.2

0.4

0.6

AU
RO

C
- A

UR
OC

_s
ub

sa
m

pl
ed

split = OOD 4

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = In distribution

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 1

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 2

te
xt

-a
da

-0
01

te
xt

-b
ab

ba
ge

-0
01

te
xt

-c
ur

ie
-0

01
te

xt
-d

av
in

ci-
00

1
te

xt
-d

av
in

ci-
00

2
te

xt
-d

av
in

ci-
00

3
gp

t-3
.5

-tu
rb

o-
03

01
gp

t-3
.5

-tu
rb

o-
06

13
gp

t-3
.5

-tu
rb

o-
11

06
gp

t-3
.5

-tu
rb

o-
01

25
gp

t-4
-0

31
4

gp
t-4

-0
61

3
gp

t-4
-1

10
6-

pr
ev

ie
w

gp
t-4

-0
12

5-
pr

ev
ie

w

llm

split = OOD 3

features
openai
fasttext
ngrams_1
word2vec

(b) Dtest.

Figure 12: Difference between the AUC of a specific assessor trained on the full Dtrain and one
trained on a random subsample of Dtrain of size 3000, for different choices of the random split
for the KindsOfReasoning collection. Positive values indicate better performance of the specific
assessor trained on the full Dtrain, and viceversa. For each split and feature, various classifiers were
trained on Dtrain and the best according to its performance on Dval was selected; the panels report
the difference in performance of the latter on Dval and Dtest.

23

	Introduction
	Related work
	Instance-level prediction of success of AI systems
	Predictability of aggregated benchmark scores from LLM features
	Extracting LLM-specific features from existing evaluations
	Predicting performance by benchmark subsampling
	Evaluations of reasoning in LLMs

	Methodology
	Predicting success of a LLM using features intrinsic to the prompt
	Predicting success by evaluation on reference instances
	Selecting the reference instances
	Choosing the best setup on validation data and predicting the performance of a new LLM

	Empirical studies
	Datasets
	Metric
	What prompt features lead to better predictive performance?
	Generic assessor performance
	Out-of-distribution study

	Conclusion
	Information on the excluded scenarios from HELM-Lite
	The KindsOfReasoning collection
	Impact of the number of reference points
	Out of distribution study
	Control for number of training samples in the KindsOfReasoning collection

