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Abstract

Large Language Models (LLMs) tend to be001
unreliable on fact-based answers. To address002
this problem, NLP researchers have proposed003
a range of techniques to estimate LLM’s con-004
fidence over facts. However, due to the lack005
of a systematic comparison, it is not clear how006
the different methods compare to one other. To007
fill this gap, we present a rigorous survey and008
empirical comparison of estimators of factual009
confidence. We define an experimental frame-010
work allowing for fair comparison, covering011
both fact-verification and QA. Our experiments012
across a series of LLMs indicate that trained013
hidden-state probes provide the most reliable014
confidence estimates; albeit at the expense of re-015
quiring access to weights and supervision data.016
We also conduct a deeper assessment of the017
methods, in which we measure the consistency018
of model behavior under meaning-preserving019
variations in the input. We find that the factual020
confidence of LLMs is often unstable across se-021
mantically equivalent inputs, suggesting there022
is much room for improvement for the stability023
of models’ parametric knowledge.024

1 Introduction025

A major problem of Large Language Models026

(LLMs) is that they do not always generate truthful027

information. Models can hallucinate by convinc-028

ingly reporting information that is actually false or029

they are not confident about, or provide factual an-030

swers only when prompted in a certain way (Elazar031

et al., 2021; Wang et al., 2023a; Lin et al., 2022b;032

Ji et al., 2023; Luo et al., 2023). This behavior can033

be severely harmful, especially given the current034

explosion of LLM usage: a lack of truthfulness can035

lead to spread of misinformation and breaches to036

the user trust (Weidinger et al., 2021; Bender et al.,037

2021; Evans et al., 2021; Tamkin et al., 2021). Hav-038

ing a reliable estimate of the model confidence039

over a fact—the degree to which it is expected to040

have accurate factual knowledge with respect to an041

Figure 1: First, we estimate factual confidence using a
range of methods. Then, we test whether semantics-
preserving input variants yield consistent estimates
(Method 1) or not (Method 2).

input—is key for mitigating this problem (Geng 042

et al., 2023; Tonmoy et al., 2024). 043

Recently, a number of papers proposed methods 044

to estimate an LLM’ factual confidence (Burns et al. 045

2022; Lin et al. 2022a; Kuhn et al. 2023; Azaria 046

and Mitchell 2023; Pacchiardi et al. 2023, among 047

others). However, none of them establishes a uni- 048

fied experimental framework to compare methods. 049

This leaves open questions regarding how aligned 050

the methods are in their estimates, and which are 051

the most reliable to apply across LLMs. 052

We aim to fill this gap by presenting a survey 053

on LLM factual confidence estimation, and per- 054

forming a systematic empirical comparison of the 055

methods proposed. We first categorize existing 056

methods into groups of related approaches (e.g., 057

trained probes, verbalized confidence). We then 058

introduce an experimental framework enabling a 059

comparison across methods under fixed experimen- 060

tal conditions (Figure 1). Our work is guided by 061

explicit definitions of two ways of measuring fac- 062

tual confidence: 1) the probability of a statement 063

to be true, noted P (True), and 2) the probabil- 064

ity of yielding a truthful answer to a query, noted 065

P (I know) (Kadavath et al., 2022). These align to 066

a fact-verification (Thorne et al., 2018; Azaria and 067

Mitchell, 2023) and Question Answering (QA) (Ka- 068

davath et al., 2022; Yin et al., 2023) setups, both 069

adopted as test methods. 070

We study the reliability of the confidence estima- 071

tion methods across eight publicly available LLMs. 072

Our results indicate that prompting-based methods 073

are less reliable than supervised-probing, although 074

the latter requires training data and access to model 075
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weights. For instruction-tuned LLMs, some non-076

trained methods provide viable alternatives.077

We argue that all methods for estimating factual078

confidence can ultimately lead to misleading con-079

clusions if only tested on a single way of asserting080

a fact: An LLM may seem to know a fact given081

an input, but then contradict itself given an alterna-082

tive writing of the same fact (Elazar et al., 2021;083

Kassner et al., 2021; Lin et al., 2022b; Qi et al.,084

2023; Kuhn et al., 2023). In our experiments, we085

find evidence of such instability, suggesting that the086

way LLMs encode facts does not always represent087

abstractions over diverse input variations.088

In summary, this paper provides the following089

contributions: 1) A survey of the literature on LLM090

factual confidence estimation; 2) An experimen-091

tal framework enabling a fair comparison across092

proposed methods;1 3) Insights about the reliabil-093

ity and robustness of such methods, providing rec-094

ommendations for NLP practictioners; 4) Insights095

about the consistency of factual confidence across096

semantically equivalent inputs.097

2 Factual Confidence: Key Concepts098

2.1 Fact099

We take a fact to be a piece of information that100

accurately represents a world state.2 A natural-101

language statement is truthful—or factual—if its102

meaning reports a state of affairs that is supported103

by a true fact: e.g., “Paris is a city in France.” is104

truthful as the city of Paris is indeed located in105

France. Facts and natural-language statements are106

not linked by a one-to-one relation: The same fact107

can be declared with multiple statements, varying108

on the surface level, but sharing the same meaning.109

For this reason, one’s confidence in a fact should110

be consistent across meaning-preserving linguistic111

variations, such as paraphrases or translations of112

a statement: If we are certain that “Paris is a city113

in France” is true, we will not doubt that its para-114

phrase “Paris is a French city” or its translation in115

French (if we understand French) are also true.116

2.2 Factual Confidence117

We distinguish between two facets of factual confi-118

dence of LLMs, following Kadavath et al. (2022):119

1We plan to release our code and data upon publication.
2For simplicity, in this work, we restrict our focus to min-

imal, atomic facts, in the sense that they do not involve a
combination of subfacts; e.g., “The Louvre is in Paris” as
opposed to “The Louvre is in Paris, which is in France”.

P (True) , shortened as P (T): the degree to 120

which a model considers likely that a fact stated 121

in the input is true; e.g., “Paris is the capital of 122

France” should get a high P (T) as it is truthful, 123

while “Sidney is the capital of France” should get 124

a low P (T). To estimate P (T) scores we need to 125

pass a statement in the input, which is evaluated in 126

its truthfulness: this is in line with the setup of fact 127

verification (Thorne et al., 2018). 128

P (I Know) shortened as P (IK): the degree to 129

which a model considers likely that it will return 130

the correct answer to an input querying about a 131

fact. For instance, we can compute P (IK) in a 132

QA setup passing a question as input—e.g., "What 133

is the capital of France?". If confident to know 134

the true answer, P (IK)) should be high; it should 135

instead be low in case of uncertainty. In contrast 136

to P (T), P (I Know) is estimated without stating 137

the fact in the input, but rather expecting a factual 138

answer by the model complementing the the query. 139

P (T) and P (IK) are both telling of the under- 140

lying factual confidence of an LLM. However, de- 141

pending on the data format—e.g., statements vs. 142

questions—or task of interest—e.g., fact verifica- 143

tion vs. QA—focusing on one of the measures is 144

more suitable. Previous works introducing meth- 145

ods to estimate factual confidence have typically 146

addressed only one of the two measures. However, 147

as we demonstrate with our experimental frame- 148

work, most method can be adapted to estimate both 149

P (T) and P (IK), although in practice they may 150

not be equally reliable in each setup. 151

2.3 Robustness of Factual knowledge 152

We work from the hypothesis previously voiced 153

by Petroni et al. (2019) that a language model’s fac- 154

tual knowledge may stem from encoding facts in its 155

weights—parametric memory—as an abstraction 156

over the linguistic input in the training data. 157

However, such human-like robustness 158

and abstraction ability cannot be taken for 159

granted (Mitchell and Krakauer, 2023; Mahowald 160

et al., 2023; Bender and Koller, 2020). Testing 161

for consistency to meaning-preserving variations 162

of an input is key to distinguish whether a model 163

has encoded a fact as an abstraction over linguistic 164

forms, as opposed to memorizing statements 165

asserting the fact (Carlini et al., 2022). For 166

instance, if a model has a robust encoding in its 167

parametric memory of what the capital of France 168

is, it should provide the same answer to “What is 169
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Black-box Trained Prompt-based Scores for

Trained Probe No Yes No P (T) & P (IK)
Verbalisation Yes No Yes P (T) & P (IK)
Surrogate Token Probability Yes (*) No Yes P (T) & P (IK)
Average Sequence Probability Yes (*) No No P (T) & P (IK)
Consistency Yes No No P (IK)

Table 1: Differences across the methods for measuring factual confidence. Black-box marks methods which do not
rely on access to model’s weights; (*) denotes the possibility to use sampling if token probabilities are not available.

the capital of France?”, “What is the name of the170

French capital city?” or any other rewording. Prior171

works already provided evidence that models may172

not always act consistently across semantically173

equivalent inputs (Elazar et al., 2021; Kassner174

et al., 2021; Ohmer et al., 2023; Qi et al., 2023).175

However, this has not been investigated yet in176

relation to the degree of factual confidence.177

3 Factual Confidence: Survey of Methods178

Based on a review of the research area, we identify179

5 groups of existing methods to estimate factual180

confidence, which we discuss in the following sub-181

sections. In Table 1, we provide an overview of the182

functional differences among these methods.183

3.1 Sequence Probability184

This methodology uses the averaged probabilities,185

assigned to a sequence of output tokens, to estimate186

factual confidence. It has been applied as a general187

estimator of a model’s confidence over an output188

in various domains (Gal and Ghahramani, 2016;189

Guo et al., 2017; Fomicheva et al., 2020; Xiong190

et al., 2023a). In the context of factual knowledge,191

sequence probability has been applied both in cloze192

tasks and QA setups (Jiang et al., 2020; Yin et al.,193

2023), which corresponds to measuring P (IK).194

Gal and Ghahramani (2016) showed that se-195

quence probabilities produce unreliable, specif-196

ically over-confident, estimates; it is thus used197

mainly as a weak baseline. This is not surprising as198

by focusing on the sequence probability, we target199

confidence over how a claim is made, rather that200

confidence about the claim itself Lin et al. (2022a).201

3.2 Verbalized Confidence202

In the verbalized confidence method (Xiong et al.,203

2023b), the model is directly prompted to report204

its confidence level (e.g., “How confident are you205

that the answer is correct?”). This method has been206

proposed as a general way to probe for the confi- 207

dence of a LLM over its answers. Lin et al. (2022a) 208

find that this method provides well-calibrated and 209

surprisingly accurate estimates for highly capable 210

models like GPT4 (OpenAI, 2023). Additionally, 211

Tian et al. (2023) show that finetuning a model for 212

human preference (RLHF) (Ouyang et al., 2022; 213

Bai et al., 2022) does not reduce calibration, as op- 214

pose to the findings in Kadavath et al. (2022). On 215

factual knowledge, Yin et al. (2023) and Tian et al. 216

(2023) applied this method to QA setups following 217

the P (IK) definition of factual confidence. 218

3.3 Surrogate Token Probability 219

These methods, extensively studied by Kadavath 220

et al. (2022); Xiong et al. (2023b), can be consid- 221

ered a hybrid approach between the methods pre- 222

sented above. The input prompt asks the model to 223

provide as output specific tokens to report the fac- 224

tuality of the claim in the input; the probabilities as- 225

signed to them is used to determine the confidence 226

level. This method can be adapted to measure both 227

P(T) and P(IK) (Kadavath et al., 2022). 228

3.4 Output Consistency 229

The output consistency method (Wang et al., 230

2023b)—also known as self-consistency—builds 231

on the assumption that a high LLM confidence 232

leads to generating consistent outputs. Given a 233

question or incomplete statement, we sample mul- 234

tiple completions and take the inter-responses con- 235

sistency as confidence measure: If the same answer 236

is always generated, confidence is high; it is instead 237

lower if the model outputs different responses. A 238

limitation of this method is that, due to its comple- 239

tion setup, it can be used to estimate P (IK), but 240

not P (T). 241

Manakul et al. (2023) demonstrated the efficacy 242

of this method when applied to factual knowledge, 243

focusing on on GPT models and using output con- 244

sistency to “fact-check” model responses. Kuhn 245
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et al. (2023) adopted this method, but on a different246

family of models (OPT) and insisting on the need247

to cluster outputs that are semantically equivalent248

as instances of the same answer.249

3.5 Layer Output Transformation250

The methods listed so far all focused—in one way251

or another—on model outputs (token scores or gen-252

erated tokens). By contrast, other approaches fo-253

cus on internal representations in earlier layers, in254

the compression stages of the LLM (Voita et al.,255

2019). Azaria and Mitchell (2023) proposed to256

train probes to extract factual confidence scores257

from hidden states, under the argument that such258

estimates are less subject to surface-level features—259

how a claim is phrased—and thus more reliable.260

Their setup is in line with an estimate of P (T).261

Kadavath et al. 2022 also adopted this method,262

though focus on a QA setup—estimating P (IK)—263

and training a value head on top of the final layer.264

4 Methodology265

4.1 Data266

We use two publicly available datasets enabling to267

test factual confidence in both the fact-verification268

and QA setup. These datasets act as a common269

baseline to compare the methods, which up to270

now have not been benchmarked on the same271

data. For instance, Azaria and Mitchell (2023) test272

the Trained probe on a custom True/False dataset,273

while Kadavath et al. (2022) use QA datasets.274

4.1.1 P (T) in Fact Verification: Lama T-REx275

Lama T-REx (Petroni et al., 2019) is a relational276

dataset made of triplets extracted from Wikipedia277

<subject, relation, object>, (e.g., <Victor Hugo,278

was born in, France>). We use this dataset to279

create both true and false statements for estimating280

P (T). We create false versions of each factual281

statement, by randomly substituting the object in282

the triplet with one from the same relation (“Victor283

Hugo was born in China”). This ensures the right284

entity type and avoids grammatical errors.285

There are 34K triplets in the T-REx dataset. We286

keep 80% (27K) and as many corresponding false287

facts for training (only used for Trained Probe).288

This leaves us with 6.8K T-REx true statements289

and an equal number of false ones for analysis.290

4.1.2 P (IK) in QA: PopQA291

The PopQA dataset (Mallen et al., 2022) consists292

of short questions and object-only answers (e.g.293

“What is George Rankin’s occupation? Politician.”). 294

The answers are sets of synonymous phrases, lower- 295

ing the risk of underestimating model’s correctness 296

in a QA setup. We chose this dataset since it cov- 297

ers a broad range of entities, with varying degrees 298

of popularity (estimated based on the number of 299

Wikipedia page views). 300

We use PopQA to test models’ factual confi- 301

dence given a fact-related query, i.e., P (IK). The 302

dataset contains 14K questions: we keep 80% 303

(11K) for training, and 20% (2.8K) for testing. By 304

definition (Section 2.2), the gold labels for P (IK) 305

should indicate if the model outputs a correct an- 306

swer. Ultimately, the model answer will depend 307

on the decoding strategy; in this work, for sim- 308

plicity and clarity of interpretation, we use greedy 309

decoding. If the answer is correct, we set the gold 310

P (IK) to 1, else to 0 (more on this in 4.2). As the 311

labels depend on model correctness, the data will 312

have varying proportions of positive labels across 313

models, ranging from ∼11% to ∼27%.3 314

4.2 Scoring Methods Implementation 315

We report below the main specifics of our imple- 316

mentation of the methods (details in Appendix A). 317

4.2.1 Estimating P(T) 318

Given a statement, we compute P (T) as follows: 319

1. Sequence probability: Average log-probability 320

of the statement’s tokens. 2. Verbalized confi- 321

dence: Prompting for the confidence level that 322

the statement is true (Appendix A). 3. Surrogate 323

token probability: Log-probability of the “Yes” 324

token following a query on whether the statement 325

is true. 4. Trained probe: Following the approach 326

of Azaria and Mitchell (2023), we train a 3-layer 327

fully connected architecture for 10 epochs, passing 328

as input hidden states at layer 24 (better results 329

were found using one of the last layers, but not the 330

very last one). This is a very light network, that can 331

be trained on a CPU in less than 10 minutes. An 332

LLM-specific probe is trained to classify whether 333

a statement is true or false based on the model’s 334

hidden representations. We then take the output 335

logit score as an estimate of P (T). 336

3The proportion of P (IK) labels set to True across mod-
els is as follows: falcon-40b-instruct: .23, falcon-7b-instruct:
.11, falcon-40b: .20, falcon-7b: .15, Mistral-7B: .14, Mixtral-
8x7B-Instruct: .27, Mistral-7B-Instruct-v0.2: .16. The ques-
tions from PopQA are generally considered hard (ChatGPT:
30% accuracy, SelfRAG (Asai et al., 2023): 55% acc.)
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4.3 Estimating P(IK)337

To compute the P (IK) estimates, based exclusively338

on the question, we follow the steps below: 1. Se-339

quence probability: Average log-probability of340

the question’s tokens.4 2. Verbalised confidence:341

Prompting (see Appendix A) for the confidence342

level of knowing the answer to the question. 3.343

Surrogate token probability: Log-probability of344

“Yes” token following a query on knowing the an-345

swer to the question. 4. Trained probe: We use the346

same approach as for P (T), but train the probes to347

predict whether the model’s greedy-generated an-348

swers will be truthful or not.5 Consistency: First,349

we prompt the model with the question and sample350

10 responses at temperature 1. Then, we compute a351

matrix of pairwise NLI scores (Laurer et al., 2023)352

on all generations, and return an average.353

4.4 Evaluating Scoring Methods354

To evaluate the methods, we use AUPRC—the area355

under the precision-recall curve, as also done by356

other works (e.g., Kadavath et al. 2022). Using a357

metric that considers various decision thresholds358

enable a robust comparison across methods. The359

higher AUPRC, the better ranking capability of the360

method, with cleaner separation between true/false361

statements or known/unknown facts.362

4.5 Models363

We study publicly available LLMs, with open ac-364

cess to model weights. This enables us to compare365

the Trained Probe method across all models. We366

consider a range of models with different sizes367

(7B to 46.7B), architecture, and training paradigms368

(instruction-finetuned or not) from the Falcon (Al-369

mazrouei et al., 2023), and Mistral (Jiang et al.,370

2023, 2024) model families (see table 2 for the full371

list of LLMs and their properties).372

4.6 Paraphrasing and Translation373

To test methods robustness and to disentangle con-374

fidence over a fact from confidence based on a375

specific wording, we generate semantically equiv-376

alent variants of statements/questions from Lama377

T-REx and PopQA. For each input, we generate 10378

paraphrases by prompting Mixtral-8x7B-Instruct-379

v0.1 (prompt and examples in Appendix B). We380

4This implementation captures how surprised the model is
by the question, which is linked with expected correctness.

5This is a simpler, less computationally expensive version
of the approach of Kadavath et al. (2022), where multiple an-
swers are sampled and the probe initially predicts a continuous
score—proportion of correct answers in the sampled set.

Names Size Open Arch. Instruct

Falcon-40B Inst. 40B Ë Dense Ë
Falcon-40B 40B Ë Dense
Falcon-7B Inst. 7B Ë Dense Ë
Falcon-7B 7B Ë Dense
Mixtral Inst. 8x7B Ë SMoE Ë
Mixtral 8x7B Ë SMoE
Mistral Inst. 7B Ë Dense Ë
Mistral 7B Ë Dense

Table 2: The models used in our experiments. Dense rep-
resents the usual transformer decoder architecture, while
SMoE stands for Sparse Mixture of Experts (Shazeer
et al., 2017). Instruct. models have been instruction fine-
tuned. Open models have publicly available weights.

Figure 2: AUPRC scores on T-REx with both true and
false statements; P(T).

remove repetitions and only keep paraphrases that 381

are semantically equivalent to the original input 382

(testing entailment in both directions through an 383

NLI model Laurer et al. 2023). This results in an 384

average of 8 paraphrase per original input. 385

We also consider translation as another meaning- 386

preserving transformation. Out of the 8 LLMs we 387

test, only the 7b MistralAI models are monolingual 388

for English (this does not necessarily exclude some 389

degree of exposure to other languages). All other 390

models are described as having been trained on 391

French. Furthermore, all models should have lower 392

capabilities in Polish (Falcon models only report 393

a "limited capability", MistralAI models do not 394

mention it at all). We use the AWS translation 395

API6, manually verifying the quality of a sample 396

of 100 translations. 397

5 Empirical Comparison of the Methods 398

5.1 P (T) on Lama T-REx 399

With each of the 4 methods, we derive estimates of 400

factual confidence for all statements in the Lama 401

T-REx test set, repeating the experiment for each 402

6https://aws.amazon.com/fr/translate/

5



Figure 3: AUPRC scores on PopQA dataset; P(IK).

LLM. We evaluate the reliability of a method by403

checking whether it yields P (T) scores that can ef-404

fectively separate the true from the false statements,405

measured as AUPRC.406

We report the results of this analysis in Figure 2.407

The Trained Probe method performs best, outper-408

forming the sequence probabilities by an average409

AUPRC of .3. Of all methods and models, only the410

Verbalised method is truly competitive, and only411

for Mistral 7B instruct. Otherwise all methods per-412

form at least .1 AUPRC below the Trained probe.413

The fact that a trained probe applied to the hidden414

states extracts the most reliable estimates suggests415

that information about the expected truth value of416

a statement is better captured in the depth of the417

network, as opposed to the output scores.418

While for Trained Probe and Average Sequence419

Probability we note relatively small differences420

in AUPRC across models, for the Verbalized and421

Surrogate methods we see large variation. Con-422

cretely, instruction-tuned models always perform423

better than their counter-parts. This is expected424

as both methods require to follow instructions in425

the prompt. Model size also seems to have an426

effect: all 40B+ models perform better than their427

7B counter-parts, with the exception of Mistral-7B-428

Instruct (this case could be explained by a more429

effective instruction tuning). Finally, the Average430

Sequence probability method performs consistently431

above chance (50%), but overall poorly in compar-432

ison to other methods, only outperforming other433

non-trained methods—Verbalized, Surrogate—on434

non-instruction-tuned models.435

5.2 P (IK) on PopQA436

P (IK) estimates the degree of a model’s confidence437

that its predicted answer will be correct. A good438

estimator of P (IK) would thus assign high scores439

to queries which the model answers correctly, and440

low scores to others. Following this reasoning, for441

P (IK) we compute the AUPRC scores using bi- 442

nary labels that encode whether the model answer 443

(in our case, generated with greedy decoding) is 444

correct. Note that this way of computing AUPRC— 445

based on a model’s future correctness—yields an 446

estimate of the method’s expected effectiveness 447

when used for hallucination mitigation; that is, to 448

automatically detect when the model should ab- 449

stain from answering. In this scenario, a method is 450

effective only if its estimates are actually predictive 451

of the correctness of model answers. 452

The results are reported in Table 3. In this experi- 453

ment we also study the Consistency method, which 454

we omitted from P (T) results because, by design, 455

it cannot be applied to an entire statement. Overall, 456

P (IK) is harder to estimate than P (T), with lower 457

AUPRC results: e.g., The best trained probe is 0.1 458

below in AUPRC for P (IK) than it is for P (T). 459

This may be due to the complexity of the setup—in 460

QA the confidence is estimated only based on a 461

query, in contrast to fact verification. But it is may 462

also be that the binary future correctness labels 463

used for our AUPRC computation introduce some 464

noise: e.g., the model may be genuinely uncertain 465

and still output the correct answer by chance. 466

The Trained probe method is again, by large, the 467

most reliable across all models. With the exception 468

of Falcon-40B instruct, the other methods perform 469

close to or below chance (depending on the model’s 470

label distribution, chance level varies between .11 471

and .27). This indicates that non-trained estima- 472

tors are generally not reliable for P (IK) despite 473

being frequently used in the literature. Within each 474

method, we observe differences across models—up 475

to a 40% margin. This can be linked to 1) whether 476

a model is instruction-tuned (as noted for P(T)) and 477

2) the model family—with more reliable scores for 478

MistralAI models than for Falcon models. 479

5.3 Generalization of the Trained Probe 480

The results above highlight the Trained probe as 481

the most reliable estimator for factual confidence— 482

both for P (T) and P(IK). However, in those exper- 483

iments we trained and evaluated the models within 484

the same domain, which leaves open questions 485

about the probe’s generalization capabilities. We 486

address this gap by evaluating the model from 5.1, 487

trained to estimate P (T) from Lama T-REx data, 488

on the PopQA dataset converted to test for P(T). 489

Specifically, we re-work the PopQA data for the 490

fact-verification setup by turning question-answer 491

pairs into (evenly distributed) true and false state- 492

6



Name Size AUPRC ∆

Falcon 40B .80 -.16
Falcon Ins. 40B .81 -.15
Falcon 7B .66 -.25
Falcon Ins 7B .59 -.28
Mistral 7B .62 -.31
Mistral Ins 7B .75 -.18
Mixtral 46.7B .78 -.18

Table 3: AUPRC on PopQA test set re-worked as
true/false statements, using P (T) estimates from probes
trained on Lama T-REx. ∆: difference of AUPRC with
respect to that for Lama T-REx data (in-domain).

ments, using the template: “The answer to [QUES-493

TION] is [ANSWER]”.7 We derive estimates for494

P (T) on such statements using the probes trained495

on Lama T-REx, and compute AUPRC (Table 3).496

Going from in-domain to out-of-domain test data497

(Lama vs. PopQA), we observe AUPRC differ-498

ences of min -.15 and max -.31; however, the scores499

remain in a high range of [.62, .81] indicating sub-500

stantial generalization. The LLMs for which the501

probe retain the least and the most reliability are502

Mistral-7B and Falcon-40B-instruct, respectively.503

Interestingly, these are also the models getting the504

least and the most answers right on PopQA in the505

QA setup (see footnote 3). This suggests that the506

transferability of the probe may be affected by507

how challenging the out-of-domain dataset is to508

the model. In the next sections we provide fur-509

ther evidence of probe generalization by looking at510

whether and to what extent the AUPRC is affected511

by input paraphrasing and translating.512

6 Robustness to Linguistic Variations513

In this section, we apply meaning-preserving lin-514

guistic variations to each input statement/qustion515

to: 1) assess the robustness of methods, expect-516

ing equally reliable estimates across different in-517

put formulations, and 2) investigate the stability518

of an LLM’s encoding of facts, under the view519

that, if a fact is well abstracted, the factual confi-520

dence should be invariant to semantics-preserving521

changes in the input. We consider two types of522

input variation: paraphrases and translations.523

7For true statements we use the gold answers from PopQA
dataset. For false statements, we sample alternative answers
from the same question class in the dataset; e.g., The answer
to “In which country is Washington?” is “United States of
America” vs. “South Korea”.”).

6.1 Robustness of Methods 524

We study method robustness in both P(T) and P(IK), 525

using the same setup as before; in particular, we 526

do not retrain the Trained probe and do not adapt 527

the prompts in any way.8 To test robustness on 528

paraphrases, we generate 10 different paraphrase 529

sets—each holding different formulations of the 530

original inputs—and compute AUPRC on each set. 531

We notice that the AUPRC remains stable for all 532

methods (full results in Appendix C), indicating 533

they are robust to paraphrasing. The most affected 534

method is the Trained probe in the P(IK) setting, 535

but even here we only note up to a standard devia- 536

tion of 3 percentage points (for Mistral-7B-v0). 537

For translations, we compute a separate AUPRC 538

on the French and Polish versions of T-REx. We 539

find varying degrees of method transferability to 540

new languages. All methods generalize to both 541

French and Polish above chance, except for 1) Ver- 542

balized Confidence, and 2) Surrogate Logits when 543

applied to MistralAI models (see Fig. 7 in Ap- 544

pendix for full results). Notably, the probes trained 545

on English data remain to a large extent reliable 546

(AUPRC for French: .73-.91; for Polish: .61-.91) 547

on unseen languages—with 40B+ models and the 548

instruction-tuned Mistral demonstrating the most 549

transferability. This provides additional evidence 550

for out-of-domain generalization of trained probes 551

(Section 5.3). In particular, the probes can extract 552

scores that are discriminative of true and false facts 553

also from hidden states computed from inputs in 554

a different language than the one used at training. 555

This suggests that the LLMs encode factual confi- 556

dence in a similar way across languages. 557

6.2 Robustness of Facts Encoding in LLMs 558

We hypothesize that, to robustly learn facts and 559

minimize hallucinations, a model has to build sta- 560

ble abstractions over different types of relevant 561

evidence from the training data. We also expect 562

that if the model has built such a robust representa- 563

tion of a fact, this would lead to equal confidence 564

under equivalent formulations of that fact. Incon- 565

sistent confidence would in turn indicate excessive 566

reliance on surface-level features. 567

Fig. 4 shows how paraphrasing the input ( 8 para- 568

phrase/input) causes changes in P (T) estimates 569

across the Lama T-REx dataset. The amount of vari- 570

ation is not stable across facts: On a large amount 571

8Note this also applies to translations; i.e., the trained
probe is trained on English data only and we use English
prompts to query the model about French/Polish inputs.
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Figure 4: Distribution of standard deviation scores com-
puted on normalized P (T) scores for paraphrases of the
same fact.

there is no variation, indicating a stable fact encod-572

ing; but on other facts, different wordings lead to573

varying degrees of confidence, up to .4 standard de-574

viation. This indicates inconsistent LLM behavior575

with excessive sensitivity to how a claim is worded.576

To test robustness of factual knowledge across577

languages, we compare the distributions of P (T)578

scores over the same facts using the Spearman cor-579

relation analysis (for language pairs) and the Fried-580

man test (for language groups). Analysis reveals581

high correlations (Spearman’s ρ > .7; full results in582

Table 4 in Appendix) between factual confidence583

scores on all language pairs for the 40B+ models.584

In particular, we note the highest correlations (in585

the .87-.92 range) for Falcon 40B models, which586

points to highly robust multilingual behavior. How-587

ever, the Friedman tests reveal that for all models,588

the differences across the distributions are statisti-589

cally significant (p-values very close to 0); i.e., the590

differences in scores across the languages are not591

close enough to be coming from the same popula-592

tion. Given those results, we conclude that while593

there is a link between the confidence scores across594

the languages, this is not fully systematic.595

7 Discussion & Conclusion596

In this paper, we compare existing methods to esti-597

mate LLMs factual confidence. Obtaining reliable598

estimates can benefit LLMs applications, by an-599

ticipating potential hallucinations and limiting the600

non-factual information output by a model (Ton-601

moy et al., 2024; Evans et al., 2021). However, if602

not reliable, such estimates can be counterproduc-603

tive, as they would introduce errors and negatively604

affect user-model interactions. 605

Our experiments across eight LLMs demonstrate 606

that Trained Probe is the most reliable estimator 607

of LLM factual confidence. It works well for both 608

fact-verification (P (T)) and Question Answering 609

(P (IK)) consistently across all models, indicating 610

that its reliability is likely to generalize to other 611

LLMs. Unfortunately, applying this method has 612

strong requirements: 1) access to model weights 613

–not always provided for proprietary LLMs, and 2) 614

supervision data. If these requirements cannot be 615

met, but the model is instruction-tuned (Ouyang 616

et al., 2022) we recommend estimating P (T) with 617

Verbalized Confidence or Surrogate Probabilities. 618

The other methods under study, especially if ap- 619

plied to non-instruction-tuned LLMs, are not con- 620

sistently reliable. 621

Our results highlight the need for more research 622

on developing reliable estimators that can be ap- 623

plied to black-box models, whose internal represen- 624

tations cannot be accessed. We expect that the reli- 625

ability gap of methods like Verbalized Confidence 626

with respect to the Trained Probe gets smaller with 627

increasingly powerful LLMs, especially in their 628

ability to follow instructions. However, the strong 629

results of Trained Probe indicate that hidden states 630

contain signal about factual confidence and it is un- 631

clear whether this is fully leveraged by the prompt- 632

ing approaches. 633

Besides the comparison among methods, we also 634

provide insights on the stability of factual knowl- 635

edge in LLMs (Petroni et al., 2019; Mahowald 636

et al., 2023; Mitchell and Krakauer, 2023). We 637

show that the factual confidence of an LLM is not 638

always consistent under meaning-preserving vari- 639

ations of the input (paraphrases and translations): 640

while the model may sometimes be sure that a fact 641

is true or false, or that it knows the answer to a 642

question, it may actually behave differently if we 643

reformulate the statement/question. An interest- 644

ing direction for future research is the exploration 645

of training methods that teach an LLM to better 646

disentangle facts from the diversity of forms they 647

can be stated in, and ultimately exhibit better and 648

more consistent factual knowledge. This would 649

also contribute to increasing LLMs resistance to 650

adversarial attacks (Madry et al., 2018), mitigating 651

the generation of misinformation due to an incor- 652

rect sensitivity to input changes. 653
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Limitations654

Given the extensive scope of this work (8 models,655

5 methods and 2 facets of factual knowledge), we656

did not have the capacity to study more complex as-657

pects of factual confidence, such as non-atomic658

facts, reasoning or in-context learning. While659

our results show that the Trained probe is much660

stronger than other methods on T-REx and PopQA,661

there is no guarantee that this remains the case662

in more complex settings. Furthermore, methods663

themselves have limitations, making comparison664

use-case dependent. The Trained probe method for665

example requires training data, and while we have666

tested for transfer capabilities in our simple atomic667

fact setup, (Kadavath et al., 2022) have shown that668

there are limits to the kind of tasks this method669

can be transferred to. The same can be said of the670

Sequence probability method, which in our experi-671

ments works better than both prompt-based meth-672

ods for non instruction fine-tuned models. While673

this method performs well on simple atomic facts,674

more complex sentences, or even simple but longer675

sentences could lead to weaker results. Further-676

more, both prompt-based methods are very sensi-677

tive to prompt-variations.678

Ethics and Broader Impact679

This work contributes to the wider goal of auto-680

matically reducing risk when using LLMs. We681

contribute to false fact detection, and answer confi-682

dence, leading to potential applications which can683

build trust in LLMs. None of the methods studied684

completely solve the issue of hallucination, or non-685

factual utterances of models, leaving a need for686

future works on the subject. While methods stud-687

ied can work with models with 7B and 40B+ pa-688

rameters, the deployment of those models requires689

specific infrastructure, and is compute intensive.690
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A Implementation of scoring methods922

A.1 Verbalised923

In practice: We use the prompt from Tian et al.924

(2023) with slight variations to adapt to the cur-925

rent task, then filter for non-numerical outputs and926

normalise.927

Prompt used for P (T) experiments: Provide928

your confidence level (on a scale of 1.0 to 10.0)929

that the following statement is correct .\n\nThe930

statement is: $statement \n\nConfidence level:931

Prompt used for P (IK) experiments: Provide your932

confidence level (on a scale of 1.0 to 10.0) that933

you can answer the following question .\n\nThe934

question is: $question \n\nConfidence level:935

A.2 Surrogate token probabilities936

For P (T) we use "Q: Is the following statement937

true: $statement (Yes/No/Maybe)? \nA: ". For938

P (IK) we use "Q: Do you know the answer to the939

following question: $question (Yes/No/Maybe)?940

\nA: ".941

A.2.1 Consistency942

We output 10 samples of up to 25 tokens (leaving943

ample room for the ground truth to be generated944

in a sentence. Ground truth is generally a word,945

ranging between two and five tokens) using a tem-946

perature of 1, and calculate the final consistency947

score by computing the mean NLI (Laurer et al.,948

2023) score of the 10 samples.949

B Paraphrasing950

B.1 Prompt951

Prompt used to generate paraphrases with Mixtral-952

8x7B-Instruct-v0.1: Given a sentence, generate953

paraphrases of it as follows:\n\t- You can change954

and/or add words, and/or change the syntactic955

structure of the sentence;\n\t- Make sure the new956

sentence does not add additional details with re-957

spect to the original.\n\t- Make sure the new sen-958

tence does not omit any details with respect to the959

original.\n\t- Make sure the new sentence is nat-960

ural and plausible, in spite of the changes.\n\t-961

Do not generate the original sentence or previously962

generated ones.\nList your paraphrases as bullet-963

point.\nSentence: $sentence\nNew sentences:964

B.2 Paraphrase examples965

Original sentence from the Lama T-REx dataset:966

Michie Mee is a actress by profession . Paraphrases:967

• Acting is the profession of Michie Mee. 968

• Michie Mee makes a living as an actress. 969

• Michie Mee is a professional actress. 970

• Michie Mee is an actress in her profession. 971

• Michie Mee is an artist who acts for a living. 972

Original sentence from the Lama T-REx dataset: 973

The Munsters was originally aired on Bravo net- 974

work . Paraphrases: 975

• Bravo network was the first to air The Mun- 976

sters. 977

• The Munsters was first shown on Bravo. 978

• The Munsters was first transmitted on Bravo. 979

• Bravo was the first network to air The Mun- 980

sters. 981

• The original network that broadcast The Mun- 982

sters was Bravo. 983

• The Munsters was first broadcasted on Bravo. 984

Original sentence from the PopQA dataset: What 985

is George Rankin’s occupation? Paraphrases: 986

• What does George Rankin do for a living? 987

• What line of work is George Rankin in? 988

• What is George Rankin’s job? 989

• What is George Rankin’s profession? 990

• Can you tell me what George Rankin does? 991

• George Rankin’s employment, could you tell 992

me about it? 993

• George Rankin’s work, what is it? 994

Original sentence from the PopQA dataset: In what 995

city was Louis Renault born? Paraphrases: 996

• Where did Louis Renault come into the world? 997

• In which urban area did Louis Renault enter 998

the world? 999

• In what metropolis did Louis Renault make 1000

his appearance? 1001

• In which city did Louis Renault first see the 1002

light of day? 1003
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• In which city was Louis Renault given birth?1004

• In what city was Louis Renault brought into1005

the world?1006

• In what city was Louis Renault born into the1007

world?1008

C Method robustness to variation1009

In Figure 5 and 6 we randomly sample a paraphrase1010

for every sentence in the original dataset, making1011

ten sets of paraphrases of the same size. We then1012

compute AUPRC without changing the method1013

in any way for the ten sets, and look at the vari-1014

ation. All methods remain stable, and robust to1015

paraphrases. The biggest variation occurs for the1016

Trained probe method, but are only of the order of1017

3 percentage points. Table 4 shows the correlation1018

between scores across different languages, and Fig-1019

ure 7 shows AUPRC of all 4 methods for French1020

and Polish Lama T-RE.1021

Name Size En-Fr En-Po

Falcon 40B .90 .86
Falcon Ins. 40B .92 .87
Falcon 7B .79 .44
Falcon Ins 7B .67 .35
Mistral 7B .67 .58
Mistral Ins 7B .65 .53
Mixtral 46.7B .87 .77

Table 4: Spearman correlation coefficient for English-
French and English-Polish P (T ) scores on translated
Lama T-REx statements.
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Figure 5: Variation in P (IK) AUPRC when sampling paraphrases. 10 sets of paraphrases are randomly sampled,
with one paraphrase for every question in PopQA.

Figure 6: Variation in P (T) AUPRC when sampling paraphrases. 10 sets of paraphrases are randomly sampled,
with one paraphrase for every question in Lama Lama T-RE.

Figure 7: AUPRC for P (T ) scores for translations in French and Polish of the Lama T-REx statements.
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