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Abstract

Large Language Models (LLMs) tend to be
unreliable on fact-based answers. To address
this problem, NLP researchers have proposed
a range of techniques to estimate LLM’s con-
fidence over facts. However, due to the lack
of a systematic comparison, it is not clear how
the different methods compare to one other. To
fill this gap, we present a rigorous survey and
empirical comparison of estimators of factual
confidence. We define an experimental frame-
work allowing for fair comparison, covering
both fact-verification and QA. Our experiments
across a series of LLMs indicate that trained
hidden-state probes provide the most reliable
confidence estimates; albeit at the expense of re-
quiring access to weights and supervision data.
We also conduct a deeper assessment of the
methods, in which we measure the consistency
of model behavior under meaning-preserving
variations in the input. We find that the factual
confidence of LLMs is often unstable across se-
mantically equivalent inputs, suggesting there
is much room for improvement for the stability
of models’ parametric knowledge.

1 Introduction

A major problem of Large Language Models
(LLMs) is that they do not always generate truthful
information. Models can hallucinate by convinc-
ingly reporting information that is actually false or
they are not confident about, or provide factual an-
swers only when prompted in a certain way (Elazar
et al., 2021; Wang et al., 2023a; Lin et al., 2022b;
Jietal., 2023; Luo et al., 2023). This behavior can
be severely harmful, especially given the current
explosion of LLM usage: a lack of truthfulness can
lead to spread of misinformation and breaches to
the user trust (Weidinger et al., 2021; Bender et al.,
2021; Evans et al., 2021; Tamkin et al., 2021). Hav-
ing a reliable estimate of the model confidence
over a fact—the degree to which it is expected to
have accurate factual knowledge with respect to an
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Figure 1: First, we estimate factual confidence using a
range of methods. Then, we test whether semantics-
preserving input variants yield consistent estimates
(Method 1) or not (Method 2).

input—is key for mitigating this problem (Geng
et al., 2023; Tonmoy et al., 2024).

Recently, a number of papers proposed methods
to estimate an LLM’ factual confidence (Burns et al.
2022; Lin et al. 2022a; Kuhn et al. 2023; Azaria
and Mitchell 2023; Pacchiardi et al. 2023, among
others). However, none of them establishes a uni-
fied experimental framework to compare methods.
This leaves open questions regarding how aligned
the methods are in their estimates, and which are
the most reliable to apply across LLMs.

We aim to fill this gap by presenting a survey
on LLM factual confidence estimation, and per-
forming a systematic empirical comparison of the
methods proposed. We first categorize existing
methods into groups of related approaches (e.g.,
trained probes, verbalized confidence). We then
introduce an experimental framework enabling a
comparison across methods under fixed experimen-
tal conditions (Figure 1). Our work is guided by
explicit definitions of two ways of measuring fac-
tual confidence: 1) the probability of a statement
to be true, noted P(True), and 2) the probabil-
ity of yielding a truthful answer to a query, noted
P(Iknow) (Kadavath et al., 2022). These align to
a fact-verification (Thorne et al., 2018; Azaria and
Mitchell, 2023) and Question Answering (QA) (Ka-
davath et al., 2022; Yin et al., 2023) setups, both
adopted as test methods.

We study the reliability of the confidence estima-
tion methods across eight publicly available LLMs.
Our results indicate that prompting-based methods
are less reliable than supervised-probing, although
the latter requires training data and access to model



weights. For instruction-tuned LLMs, some non-
trained methods provide viable alternatives.

We argue that all methods for estimating factual
confidence can ultimately lead to misleading con-
clusions if only tested on a single way of asserting
a fact: An LLM may seem to know a fact given
an input, but then contradict itself given an alterna-
tive writing of the same fact (Elazar et al., 2021;
Kassner et al., 2021; Lin et al., 2022b; Qi et al.,
2023; Kuhn et al., 2023). In our experiments, we
find evidence of such instability, suggesting that the
way LLMs encode facts does not always represent
abstractions over diverse input variations.

In summary, this paper provides the following
contributions: 1) A survey of the literature on LLM
factual confidence estimation; 2) An experimen-
tal framework enabling a fair comparison across
proposed methods;' 3) Insights about the reliabil-
ity and robustness of such methods, providing rec-
ommendations for NLP practictioners; 4) Insights
about the consistency of factual confidence across
semantically equivalent inputs.

2 Factual Confidence: Key Concepts

2.1 Fact

We take a fact to be a piece of information that
accurately represents a world state.” A natural-
language statement is truthful—or factual—if its
meaning reports a state of affairs that is supported
by a true fact: e.g., “Paris is a city in France.” is
truthful as the city of Paris is indeed located in
France. Facts and natural-language statements are
not linked by a one-to-one relation: The same fact
can be declared with multiple statements, varying
on the surface level, but sharing the same meaning.
For this reason, one’s confidence in a fact should
be consistent across meaning-preserving linguistic
variations, such as paraphrases or translations of
a statement: If we are certain that “Paris is a city
in France” is true, we will not doubt that its para-
phrase “Paris is a French city” or its translation in
French (if we understand French) are also true.

2.2 Factual Confidence

We distinguish between two facets of factual confi-
dence of LLMs, following Kadavath et al. (2022):

'We plan to release our code and data upon publication.

2For simplicity, in this work, we restrict our focus to min-
imal, atomic facts, in the sense that they do not involve a
combination of subfacts; e.g., “The Louvre is in Paris” as
opposed to “The Louvre is in Paris, which is in France”.

P(True) , shortened as P(T): the degree to
which a model considers likely that a fact stated
in the input is true; e.g., “Paris is the capital of
France” should get a high P(T) as it is truthful,
while “Sidney is the capital of France” should get
alow P(T). To estimate P(T) scores we need to
pass a statement in the input, which is evaluated in
its truthfulness: this is in line with the setup of fact
verification (Thorne et al., 2018).

P(I Know) shortened as P(IK): the degree to
which a model considers likely that it will return
the correct answer to an input querying about a
fact. For instance, we can compute P(IK) in a
QA setup passing a question as input—e.g., "What
is the capital of France?". If confident to know
the true answer, P(IK)) should be high; it should
instead be low in case of uncertainty. In contrast
to P(T), P(I Know) is estimated without stating
the fact in the input, but rather expecting a factual
answer by the model complementing the the query.

P(T) and P(IK) are both telling of the under-
lying factual confidence of an LLM. However, de-
pending on the data format—e.g., statements Vvs.
questions—or task of interest—e.g., fact verifica-
tion vs. QA—focusing on one of the measures is
more suitable. Previous works introducing meth-
ods to estimate factual confidence have typically
addressed only one of the two measures. However,
as we demonstrate with our experimental frame-
work, most method can be adapted to estimate both
P(T) and P(IK), although in practice they may
not be equally reliable in each setup.

2.3 Robustness of Factual knowledge

We work from the hypothesis previously voiced
by Petroni et al. (2019) that a language model’s fac-
tual knowledge may stem from encoding facts in its
weights—parametric memory—as an abstraction
over the linguistic input in the training data.
However, such human-like robustness
and abstraction ability cannot be taken for
granted (Mitchell and Krakauer, 2023; Mahowald
et al., 2023; Bender and Koller, 2020). Testing
for consistency to meaning-preserving variations
of an input is key to distinguish whether a model
has encoded a fact as an abstraction over linguistic
forms, as opposed to memorizing statements
asserting the fact (Carlini et al., 2022). For
instance, if a model has a robust encoding in its
parametric memory of what the capital of France
is, it should provide the same answer to “What is



Black-box Trained Prompt-based Scores for

Trained Probe No
Verbalisation Yes
Surrogate Token Probability  Yes (*)
Average Sequence Probability Yes (*)
Consistency Yes

Yes No P(T) & P(IK)
No Yes P(T) & P(IK)
No Yes P(T) & P(IK)
No No P(T) & P(IK)
No No P(IK)

Table 1: Differences across the methods for measuring factual confidence. Black-box marks methods which do not
rely on access to model’s weights; (*) denotes the possibility to use sampling if token probabilities are not available.

the capital of France?”, “What is the name of the
French capital city?” or any other rewording. Prior
works already provided evidence that models may
not always act consistently across semantically
equivalent inputs (Elazar et al., 2021; Kassner
et al., 2021; Ohmer et al., 2023; Qi et al., 2023).
However, this has not been investigated yet in
relation to the degree of factual confidence.

3 Factual Confidence: Survey of Methods

Based on a review of the research area, we identify
5 groups of existing methods to estimate factual
confidence, which we discuss in the following sub-
sections. In Table 1, we provide an overview of the
functional differences among these methods.

3.1 Sequence Probability

This methodology uses the averaged probabilities,
assigned to a sequence of output tokens, to estimate
factual confidence. It has been applied as a general
estimator of a model’s confidence over an output
in various domains (Gal and Ghahramani, 2016;
Guo et al., 2017; Fomicheva et al., 2020; Xiong
et al., 2023a). In the context of factual knowledge,
sequence probability has been applied both in cloze
tasks and QA setups (Jiang et al., 2020; Yin et al.,
2023), which corresponds to measuring P(IK).
Gal and Ghahramani (2016) showed that se-
quence probabilities produce unreliable, specif-
ically over-confident, estimates; it is thus used
mainly as a weak baseline. This is not surprising as
by focusing on the sequence probability, we target
confidence over how a claim is made, rather that
confidence about the claim itself Lin et al. (2022a).

3.2 Verbalized Confidence

In the verbalized confidence method (Xiong et al.,
2023b), the model is directly prompted to report
its confidence level (e.g., “How confident are you
that the answer is correct?”’). This method has been

proposed as a general way to probe for the confi-
dence of a LLM over its answers. Lin et al. (2022a)
find that this method provides well-calibrated and
surprisingly accurate estimates for highly capable
models like GPT4 (OpenAl, 2023). Additionally,
Tian et al. (2023) show that finetuning a model for
human preference (RLHF) (Ouyang et al., 2022;
Bai et al., 2022) does not reduce calibration, as op-
pose to the findings in Kadavath et al. (2022). On
factual knowledge, Yin et al. (2023) and Tian et al.
(2023) applied this method to QA setups following
the P(IK) definition of factual confidence.

3.3 Surrogate Token Probability

These methods, extensively studied by Kadavath
et al. (2022); Xiong et al. (2023b), can be consid-
ered a hybrid approach between the methods pre-
sented above. The input prompt asks the model to
provide as output specific tokens to report the fac-
tuality of the claim in the input; the probabilities as-
signed to them is used to determine the confidence
level. This method can be adapted to measure both
P(T) and P(IK) (Kadavath et al., 2022).

3.4 Output Consistency

The output consistency method (Wang et al.,
2023b)—also known as self-consistency—nbuilds
on the assumption that a high LLM confidence
leads to generating consistent outputs. Given a
question or incomplete statement, we sample mul-
tiple completions and take the inter-responses con-
sistency as confidence measure: If the same answer
is always generated, confidence is high; it is instead
lower if the model outputs different responses. A
limitation of this method is that, due to its comple-
tion setup, it can be used to estimate P(IK), but
not P(T).

Manakul et al. (2023) demonstrated the efficacy
of this method when applied to factual knowledge,
focusing on on GPT models and using output con-
sistency to “fact-check” model responses. Kuhn



et al. (2023) adopted this method, but on a different
family of models (OPT) and insisting on the need
to cluster outputs that are semantically equivalent
as instances of the same answer.

3.5 Layer Output Transformation

The methods listed so far all focused—in one way
or another—on model outputs (token scores or gen-
erated tokens). By contrast, other approaches fo-
cus on internal representations in earlier layers, in
the compression stages of the LLM (Voita et al.,
2019). Azaria and Mitchell (2023) proposed to
train probes to extract factual confidence scores
from hidden states, under the argument that such
estimates are less subject to surface-level features—
how a claim is phrased—and thus more reliable.
Their setup is in line with an estimate of P(T).
Kadavath et al. 2022 also adopted this method,
though focus on a QA setup—estimating P (IK)—
and training a value head on top of the final layer.

4 Methodology
4.1 Data

We use two publicly available datasets enabling to
test factual confidence in both the fact-verification
and QA setup. These datasets act as a common
baseline to compare the methods, which up to
now have not been benchmarked on the same
data. For instance, Azaria and Mitchell (2023) test
the Trained probe on a custom True/False dataset,
while Kadavath et al. (2022) use QA datasets.

4.1.1 P(T) in Fact Verification: Lama T-REx

Lama T-REx (Petroni et al., 2019) is a relational
dataset made of triplets extracted from Wikipedia
<subject, relation, object>, (e.g., <Victor Hugo,
was born in, France>). We use this dataset to
create both true and false statements for estimating
P(T). We create false versions of each factual
statement, by randomly substituting the object in
the triplet with one from the same relation (“Victor
Hugo was born in China”). This ensures the right
entity type and avoids grammatical errors.

There are 34K triplets in the T-REx dataset. We
keep 80% (27K) and as many corresponding false
facts for training (only used for Trained Probe).
This leaves us with 6.8K T-REx true statements
and an equal number of false ones for analysis.

4.1.2 P(IK) in QA: PopQA

The PopQA dataset (Mallen et al., 2022) consists
of short questions and object-only answers (e.g.

“What is George Rankin’s occupation? Politician.”).
The answers are sets of synonymous phrases, lower-
ing the risk of underestimating model’s correctness
in a QA setup. We chose this dataset since it cov-
ers a broad range of entities, with varying degrees
of popularity (estimated based on the number of
Wikipedia page views).

We use PopQA to test models’ factual confi-
dence given a fact-related query, i.e., P(IK). The
dataset contains 14K questions: we keep 80%
(11K) for training, and 20% (2.8K) for testing. By
definition (Section 2.2), the gold labels for P(IK)
should indicate if the model outputs a correct an-
swer. Ultimately, the model answer will depend
on the decoding strategy; in this work, for sim-
plicity and clarity of interpretation, we use greedy
decoding. If the answer is correct, we set the gold
P(IK) to 1, else to O (more on this in 4.2). As the
labels depend on model correctness, the data will
have varying proportions of positive labels across
models, ranging from ~11% to ~27%.’

4.2 Scoring Methods Implementation

We report below the main specifics of our imple-
mentation of the methods (details in Appendix A).

4.2.1 Estimating P(T)

Given a statement, we compute P(T) as follows:
1. Sequence probability: Average log-probability
of the statement’s tokens. 2. Verbalized confi-
dence: Prompting for the confidence level that
the statement is true (Appendix A). 3. Surrogate
token probability: Log-probability of the “Yes”
token following a query on whether the statement
is true. 4. Trained probe: Following the approach
of Azaria and Mitchell (2023), we train a 3-layer
fully connected architecture for 10 epochs, passing
as input hidden states at layer 24 (better results
were found using one of the last layers, but not the
very last one). This is a very light network, that can
be trained on a CPU in less than 10 minutes. An
LLM-specific probe is trained to classify whether
a statement is true or false based on the model’s
hidden representations. We then take the output
logit score as an estimate of P(T).

3The proportion of P(IK) labels set to True across mod-
els is as follows: falcon-40b-instruct: .23, falcon-7b-instruct:
.11, falcon-40b: .20, falcon-7b: .15, Mistral-7B: .14, Mixtral-
8x7B-Instruct: .27, Mistral-7B-Instruct-v0.2: .16. The ques-
tions from PopQA are generally considered hard (ChatGPT:
30% accuracy, SelfRAG (Asai et al., 2023): 55% acc.)



4.3 Estimating P(IK)

To compute the P(IK) estimates, based exclusively
on the question, we follow the steps below: 1. Se-
quence probability: Average log-probability of
the question’s tokens.* 2. Verbalised confidence:
Prompting (see Appendix A) for the confidence
level of knowing the answer to the question. 3.
Surrogate token probability: Log-probability of
“Yes” token following a query on knowing the an-
swer to the question. 4. Trained probe: We use the
same approach as for P(T), but train the probes to
predict whether the model’s greedy-generated an-
swers will be truthful or not. Consistency: First,
we prompt the model with the question and sample
10 responses at temperature 1. Then, we compute a
matrix of pairwise NLI scores (Laurer et al., 2023)
on all generations, and return an average.

4.4 Evaluating Scoring Methods

To evaluate the methods, we use AUPRC—the area
under the precision-recall curve, as also done by
other works (e.g., Kadavath et al. 2022). Using a
metric that considers various decision thresholds
enable a robust comparison across methods. The
higher AUPRC, the better ranking capability of the
method, with cleaner separation between true/false
statements or known/unknown facts.

4.5 Models

We study publicly available LLMs, with open ac-
cess to model weights. This enables us to compare
the Trained Probe method across all models. We
consider a range of models with different sizes
(7B to 46.7B), architecture, and training paradigms
(instruction-finetuned or not) from the Falcon (Al-
mazrouei et al., 2023), and Mistral (Jiang et al.,
2023, 2024) model families (see table 2 for the full
list of LLMs and their properties).

4.6 Paraphrasing and Translation

To test methods robustness and to disentangle con-
fidence over a fact from confidence based on a
specific wording, we generate semantically equiv-
alent variants of statements/questions from Lama
T-REx and PopQA. For each input, we generate 10
paraphrases by prompting Mixtral-8x7B-Instruct-
v0.1 (prompt and examples in Appendix B). We
“This implementation captures how surprised the model is
by the question, which is linked with expected correctness.
SThis is a simpler, less computationally expensive version
of the approach of Kadavath et al. (2022), where multiple an-

swers are sampled and the probe initially predicts a continuous
score—proportion of correct answers in the sampled set.

Names Size Open Arch. Instruct
Falcon-40B Inst. 40B « Dense ¢
Falcon-40B 40B « Dense
Falcon-7B Inst. 7B v Dense ¢
Falcon-7B 7B v Dense

Mixtral Inst. 8x7B « SMoE «
Mixtral 8x7B ¢ SMoE

Mistral Inst. B v Dense ¢
Mistral 7B Dense

Table 2: The models used in our experiments. Dense rep-
resents the usual transformer decoder architecture, while
SMOoE stands for Sparse Mixture of Experts (Shazeer
etal., 2017). Instruct. models have been instruction fine-
tuned. Open models have publicly available weights.
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Figure 2: AUPRC scores on T-REx with both true and
false statements; P(T).

remove repetitions and only keep paraphrases that
are semantically equivalent to the original input
(testing entailment in both directions through an
NLI model Laurer et al. 2023). This results in an
average of 8 paraphrase per original input.

We also consider translation as another meaning-
preserving transformation. Out of the 8 LLMs we
test, only the 7b Mistral Al models are monolingual
for English (this does not necessarily exclude some
degree of exposure to other languages). All other
models are described as having been trained on
French. Furthermore, all models should have lower
capabilities in Polish (Falcon models only report
a "limited capability”, Mistral Al models do not
mention it at all). We use the AWS translation
API®, manually verifying the quality of a sample
of 100 translations.

5 Empirical Comparison of the Methods
51 P(T)on Lama T-REx

With each of the 4 methods, we derive estimates of
factual confidence for all statements in the Lama
T-REXx test set, repeating the experiment for each

®https://aws.amazon.com/fr/translate/
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Figure 3: AUPRC scores on PopQA dataset; P(IK).

LLM. We evaluate the reliability of a method by
checking whether it yields P(T) scores that can ef-
fectively separate the true from the false statements,
measured as AUPRC.

We report the results of this analysis in Figure 2.
The Trained Probe method performs best, outper-
forming the sequence probabilities by an average
AUPRC of .3. Of all methods and models, only the
Verbalised method is truly competitive, and only
for Mistral 7B instruct. Otherwise all methods per-
form at least .1 AUPRC below the Trained probe.
The fact that a trained probe applied to the hidden
states extracts the most reliable estimates suggests
that information about the expected truth value of
a statement is better captured in the depth of the
network, as opposed to the output scores.

While for Trained Probe and Average Sequence
Probability we note relatively small differences
in AUPRC across models, for the Verbalized and
Surrogate methods we see large variation. Con-
cretely, instruction-tuned models always perform
better than their counter-parts. This is expected
as both methods require to follow instructions in
the prompt. Model size also seems to have an
effect: all 40B+ models perform better than their
7B counter-parts, with the exception of Mistral-7B-
Instruct (this case could be explained by a more
effective instruction tuning). Finally, the Average
Sequence probability method performs consistently
above chance (50%), but overall poorly in compar-
ison to other methods, only outperforming other
non-trained methods—Verbalized, Surrogate—on
non-instruction-tuned models.

5.2 P(IK) on PopQA

P(IK) estimates the degree of a model’s confidence
that its predicted answer will be correct. A good
estimator of P(IK) would thus assign high scores
to queries which the model answers correctly, and
low scores to others. Following this reasoning, for

P(IK) we compute the AUPRC scores using bi-
nary labels that encode whether the model answer
(in our case, generated with greedy decoding) is
correct. Note that this way of computing AUPRC—
based on a model’s future correctness—yields an
estimate of the method’s expected effectiveness
when used for hallucination mitigation; that is, to
automatically detect when the model should ab-
stain from answering. In this scenario, a method is
effective only if its estimates are actually predictive
of the correctness of model answers.

The results are reported in Table 3. In this experi-
ment we also study the Consistency method, which
we omitted from P(T) results because, by design,
it cannot be applied to an entire statement. Overall,
P(IK) is harder to estimate than P(T), with lower
AUPRC results: e.g., The best trained probe is 0.1
below in AUPRC for P(IK) than it is for P(T).
This may be due to the complexity of the setup—in
QA the confidence is estimated only based on a
query, in contrast to fact verification. But it is may
also be that the binary future correctness labels
used for our AUPRC computation introduce some
noise: e.g., the model may be genuinely uncertain
and still output the correct answer by chance.

The Trained probe method is again, by large, the
most reliable across all models. With the exception
of Falcon-40B instruct, the other methods perform
close to or below chance (depending on the model’s
label distribution, chance level varies between .11
and .27). This indicates that non-trained estima-
tors are generally not reliable for P(IK) despite
being frequently used in the literature. Within each
method, we observe differences across models—up
to a 40% margin. This can be linked to 1) whether
a model is instruction-tuned (as noted for P(T)) and
2) the model family—with more reliable scores for
Mistral Al models than for Falcon models.

5.3 Generalization of the Trained Probe

The results above highlight the Trained probe as
the most reliable estimator for factual confidence—
both for P(T) and P(IK). However, in those exper-
iments we trained and evaluated the models within
the same domain, which leaves open questions
about the probe’s generalization capabilities. We
address this gap by evaluating the model from 5.1,
trained to estimate P(T) from Lama T-REx data,
on the PopQA dataset converted to test for P(T).
Specifically, we re-work the PopQA data for the
fact-verification setup by turning question-answer
pairs into (evenly distributed) true and false state-



Name Size AUPRC A

Falcon 40B .80 -.16
Falcon Ins. 40B .81 -.15
Falcon 7B .66 -25
FalconIns 7B .59 -.28
Mistral 7B .62 -.31
MistralIns 7B 75 -.18
Mixtral 46.7B 78 -.18

Table 3: AUPRC on PopQA test set re-worked as
true/false statements, using P(T) estimates from probes
trained on Lama T-REx. A: difference of AUPRC with
respect to that for Lama T-REx data (in-domain).

ments, using the template: “The answer to [QUES-
TION] is [ANSWER]”.” We derive estimates for
P(T) on such statements using the probes trained
on Lama T-REXx, and compute AUPRC (Table 3).

Going from in-domain to out-of-domain test data
(Lama vs. PopQA), we observe AUPRC differ-
ences of min -.15 and max -.31; however, the scores
remain in a high range of [.62, .81] indicating sub-
stantial generalization. The LLMs for which the
probe retain the least and the most reliability are
Mistral-7B and Falcon-40B-instruct, respectively.
Interestingly, these are also the models getting the
least and the most answers right on PopQA in the
QA setup (see footnote 3). This suggests that the
transferability of the probe may be affected by
how challenging the out-of-domain dataset is to
the model. In the next sections we provide fur-
ther evidence of probe generalization by looking at
whether and to what extent the AUPRC is affected
by input paraphrasing and translating.

6 Robustness to Linguistic Variations

In this section, we apply meaning-preserving lin-
guistic variations to each input statement/qustion
to: [) assess the robustness of methods, expect-
ing equally reliable estimates across different in-
put formulations, and 2) investigate the stability
of an LLM’s encoding of facts, under the view
that, if a fact is well abstracted, the factual confi-
dence should be invariant to semantics-preserving
changes in the input. We consider two types of
input variation: paraphrases and translations.

"For true statements we use the gold answers from PopQA
dataset. For false statements, we sample alternative answers
from the same question class in the dataset; e.g., The answer
to “In which country is Washington?” is “United States of
America” vs. “South Korea”).

6.1 Robustness of Methods

We study method robustness in both P(T) and P(IK),
using the same setup as before; in particular, we
do not retrain the Trained probe and do not adapt
the prompts in any way.® To test robustness on
paraphrases, we generate 10 different paraphrase
sets—each holding different formulations of the
original inputs—and compute AUPRC on each set.
We notice that the AUPRC remains stable for all
methods (full results in Appendix C), indicating
they are robust to paraphrasing. The most affected
method is the Trained probe in the P(IK) setting,
but even here we only note up to a standard devia-
tion of 3 percentage points (for Mistral-7B-v0).

For translations, we compute a separate AUPRC
on the French and Polish versions of T-REx. We
find varying degrees of method transferability to
new languages. All methods generalize to both
French and Polish above chance, except for 1) Ver-
balized Confidence, and 2) Surrogate Logits when
applied to MistralAl models (see Fig. 7 in Ap-
pendix for full results). Notably, the probes trained
on English data remain to a large extent reliable
(AUPRC for French: .73-.91; for Polish: .61-.91)
on unseen languages—with 40B+ models and the
instruction-tuned Mistral demonstrating the most
transferability. This provides additional evidence
for out-of-domain generalization of trained probes
(Section 5.3). In particular, the probes can extract
scores that are discriminative of true and false facts
also from hidden states computed from inputs in
a different language than the one used at training.
This suggests that the LLMs encode factual confi-
dence in a similar way across languages.

6.2 Robustness of Facts Encoding in LLMs

We hypothesize that, to robustly learn facts and
minimize hallucinations, a model has to build sta-
ble abstractions over different types of relevant
evidence from the training data. We also expect
that if the model has built such a robust representa-
tion of a fact, this would lead to equal confidence
under equivalent formulations of that fact. Incon-
sistent confidence would in turn indicate excessive
reliance on surface-level features.

Fig. 4 shows how paraphrasing the input ( 8 para-
phrase/input) causes changes in P(T) estimates
across the Lama T-REx dataset. The amount of vari-
ation is not stable across facts: On a large amount

8Note this also applies to translations; i.e., the trained

probe is trained on English data only and we use English
prompts to query the model about French/Polish inputs.
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Figure 4: Distribution of standard deviation scores com-
puted on normalized P(T) scores for paraphrases of the
same fact.

there is no variation, indicating a stable fact encod-
ing; but on other facts, different wordings lead to
varying degrees of confidence, up to .4 standard de-
viation. This indicates inconsistent LLM behavior
with excessive sensitivity to how a claim is worded.

To test robustness of factual knowledge across
languages, we compare the distributions of P(T)
scores over the same facts using the Spearman cor-
relation analysis (for language pairs) and the Fried-
man test (for language groups). Analysis reveals
high correlations (Spearman’s p > .7; full results in
Table 4 in Appendix) between factual confidence
scores on all language pairs for the 40B+ models.
In particular, we note the highest correlations (in
the .87-.92 range) for Falcon 40B models, which
points to highly robust multilingual behavior. How-
ever, the Friedman tests reveal that for all models,
the differences across the distributions are statisti-
cally significant (p-values very close to 0); i.e., the
differences in scores across the languages are not
close enough to be coming from the same popula-
tion. Given those results, we conclude that while
there is a link between the confidence scores across
the languages, this is not fully systematic.

7 Discussion & Conclusion

In this paper, we compare existing methods to esti-
mate LLMs factual confidence. Obtaining reliable
estimates can benefit LLMs applications, by an-
ticipating potential hallucinations and limiting the
non-factual information output by a model (Ton-
moy et al., 2024; Evans et al., 2021). However, if
not reliable, such estimates can be counterproduc-
tive, as they would introduce errors and negatively

affect user-model interactions.

Our experiments across eight LLMs demonstrate
that Trained Probe is the most reliable estimator
of LLM factual confidence. It works well for both
fact-verification (P(T)) and Question Answering
(P(IK)) consistently across all models, indicating
that its reliability is likely to generalize to other
LLMs. Unfortunately, applying this method has
strong requirements: 1) access to model weights
—not always provided for proprietary LLMs, and 2)
supervision data. If these requirements cannot be
met, but the model is instruction-tuned (Ouyang
et al., 2022) we recommend estimating P(T) with
Verbalized Confidence or Surrogate Probabilities.
The other methods under study, especially if ap-
plied to non-instruction-tuned LLMs, are not con-
sistently reliable.

Our results highlight the need for more research
on developing reliable estimators that can be ap-
plied to black-box models, whose internal represen-
tations cannot be accessed. We expect that the reli-
ability gap of methods like Verbalized Confidence
with respect to the Trained Probe gets smaller with
increasingly powerful LLMs, especially in their
ability to follow instructions. However, the strong
results of Trained Probe indicate that hidden states
contain signal about factual confidence and it is un-
clear whether this is fully leveraged by the prompt-
ing approaches.

Besides the comparison among methods, we also
provide insights on the stability of factual knowl-
edge in LLMs (Petroni et al., 2019; Mahowald
et al., 2023; Mitchell and Krakauer, 2023). We
show that the factual confidence of an LLM is not
always consistent under meaning-preserving vari-
ations of the input (paraphrases and translations):
while the model may sometimes be sure that a fact
is true or false, or that it knows the answer to a
question, it may actually behave differently if we
reformulate the statement/question. An interest-
ing direction for future research is the exploration
of training methods that teach an LLM to better
disentangle facts from the diversity of forms they
can be stated in, and ultimately exhibit better and
more consistent factual knowledge. This would
also contribute to increasing LLMs resistance to
adversarial attacks (Madry et al., 2018), mitigating
the generation of misinformation due to an incor-
rect sensitivity to input changes.



Limitations

Given the extensive scope of this work (8 models,
5 methods and 2 facets of factual knowledge), we
did not have the capacity to study more complex as-
pects of factual confidence, such as non-atomic
facts, reasoning or in-context learning. While
our results show that the Trained probe is much
stronger than other methods on T-REx and PopQA,
there is no guarantee that this remains the case
in more complex settings. Furthermore, methods
themselves have limitations, making comparison
use-case dependent. The Trained probe method for
example requires training data, and while we have
tested for transfer capabilities in our simple atomic
fact setup, (Kadavath et al., 2022) have shown that
there are limits to the kind of tasks this method
can be transferred to. The same can be said of the
Sequence probability method, which in our experi-
ments works better than both prompt-based meth-
ods for non instruction fine-tuned models. While
this method performs well on simple atomic facts,
more complex sentences, or even simple but longer
sentences could lead to weaker results. Further-
more, both prompt-based methods are very sensi-
tive to prompt-variations.

Ethics and Broader Impact

This work contributes to the wider goal of auto-
matically reducing risk when using LLMs. We
contribute to false fact detection, and answer confi-
dence, leading to potential applications which can
build trust in LLMs. None of the methods studied
completely solve the issue of hallucination, or non-
factual utterances of models, leaving a need for
future works on the subject. While methods stud-
ied can work with models with 7B and 40B+ pa-
rameters, the deployment of those models requires
specific infrastructure, and is compute intensive.
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A Implementation of scoring methods

A.1 Verbalised

In practice:  We use the prompt from Tian et al.
(2023) with slight variations to adapt to the cur-
rent task, then filter for non-numerical outputs and
normalise.

Prompt used for P(T) experiments: Provide
your confidence level (on a scale of 1.0 to 10.0)
that the following statement is correct . \n\nThe
statement is: $statement \n\nConfidence level:
Prompt used for P(IK) experiments: Provide your
confidence level (on a scale of 1.0 to 10.0) that
you can answer the following question . \n\nThe
question is: $question \n\nConfidence level:

A.2 Surrogate token probabilities

For P(T) we use "Q: Is the following statement
true: $statement (Yes/No/Maybe)? \nA: ". For
P(IK) we use "Q: Do you know the answer to the
following question: $question (Yes/No/Maybe)?
\nA: "

A.2.1 Consistency

We output 10 samples of up to 25 tokens (leaving
ample room for the ground truth to be generated
in a sentence. Ground truth is generally a word,
ranging between two and five tokens) using a tem-
perature of 1, and calculate the final consistency
score by computing the mean NLI (Laurer et al.,
2023) score of the 10 samples.

B Paraphrasing
B.1 Prompt

Prompt used to generate paraphrases with Mixtral-
8x7B-Instruct-v0.1: Given a sentence, generate
paraphrases of it as follows:\n\t - You can change
and/or add words, and/or change the syntactic
structure of the sentence; \n\t- Make sure the new
sentence does not add additional details with re-
spect to the original. \n\t- Make sure the new sen-
tence does not omit any details with respect to the
original. \n\t- Make sure the new sentence is nat-
ural and plausible, in spite of the changes.\n\t-
Do not generate the original sentence or previously
generated ones.\nList your paraphrases as bullet-
point.\nSentence: $sentence \nNew sentences:

B.2 Paraphrase examples

Original sentence from the Lama T-REx dataset:
Michie Mee is a actress by profession . Paraphrases:
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* Acting is the profession of Michie Mee.

* Michie Mee makes a living as an actress.

* Michie Mee is a professional actress.

* Michie Mee is an actress in her profession.

* Michie Mee is an artist who acts for a living.

Original sentence from the Lama T-REx dataset:
The Munsters was originally aired on Bravo net-
work . Paraphrases:

e Bravo network was the first to air The Mun-
sters.

¢ The Munsters was first shown on Bravo.
e The Munsters was first transmitted on Bravo.

¢ Bravo was the first network to air The Mun-
sters.

* The original network that broadcast The Mun-
sters was Bravo.

¢ The Munsters was first broadcasted on Bravo.

Original sentence from the PopQA dataset: What
is George Rankin’s occupation? Paraphrases:

* What does George Rankin do for a living?
* What line of work is George Rankin in?

* What is George Rankin’s job?

* What is George Rankin’s profession?

* Can you tell me what George Rankin does?

* George Rankin’s employment, could you tell
me about it?

* George Rankin’s work, what is it?

Original sentence from the PopQA dataset: In what
city was Louis Renault born? Paraphrases:

e Where did Louis Renault come into the world?

e In which urban area did Louis Renault enter
the world?

* In what metropolis did Louis Renault make
his appearance?

* In which city did Louis Renault first see the
light of day?



* In which city was Louis Renault given birth?

* In what city was Louis Renault brought into
the world?

* In what city was Louis Renault born into the
world?

C Method robustness to variation

In Figure 5 and 6 we randomly sample a paraphrase
for every sentence in the original dataset, making
ten sets of paraphrases of the same size. We then
compute AUPRC without changing the method
in any way for the ten sets, and look at the vari-
ation. All methods remain stable, and robust to
paraphrases. The biggest variation occurs for the
Trained probe method, but are only of the order of
3 percentage points. Table 4 shows the correlation
between scores across different languages, and Fig-
ure 7 shows AUPRC of all 4 methods for French
and Polish Lama T-RE.

Name Size En-Fr En-Po
Falcon 40B .90 .86
Falcon Ins. 40B .92 .87
Falcon 7B .79 44
FalconIns 7B .67 35
Mistral 7B .67 .58
Mistral Ins 7B .65 .53
Mixtral 46.7B .87 77

Table 4: Spearman correlation coefficient for English-
French and English-Polish P(T") scores on translated
Lama T-REX statements.



Trained probe Avg. Seq. Prob. Verbalised Surrogate
07 07 0.7 0.7

% 06 0.6 0.6

06
L]
0.5 0.5 0.5 0.5
- =
0.4 0.4 0.4 0.4
9 - =
5 =
2 o3 03 03 03
L]
R - -
0.2 0z = 02 o 02
- = — _— =
- a—— — — - - -
0.1 01 = 01 — 0.1 = -
0.0 0.0 0.0 0.0
(—“u"'\"’ﬁ.s“.\ 55‘@«‘@.@ SLHEP RO P PP éc’?w“’ﬁ.@.a
& & = & x < P e S & S
ik \‘\e Lo(‘ @(9@'\ '100 :;60" ) \‘{1 & 1.°° @b '}\, b '\‘{-; s \‘P‘\\ @(‘o@\:\ '}9)(‘ ,‘,\9)0 ) &S \1.°° @(,0@\’\ -.,oc ;;9?9”\
b@":\"f‘@ & F b@,«‘“@ t,n\o @\ & A S & AT @ &
s e & F @ T & W Y o A% AT
& ¥ gy W & b \" & ¥ g o & ¥ Gt a0
@& ® 3 @ @ A & S @& ® S
S & S B
- & - -
model model model model

Figure 5: Variation in P(IK) AUPRC when sampling paraphrases. 10 sets of paraphrases are randomly sampled,
with one paraphrase for every question in PopQA.
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Figure 6: Variation in P(T) AUPRC when sampling paraphrases. 10 sets of paraphrases are randomly sampled,
with one paraphrase for every question in Lama Lama T-RE.
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Figure 7: AUPRC for P(T') scores for translations in French and Polish of the Lama T-REx statements.
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