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ABSTRACT

Predicting molecule-protein interactions (MPIs) is a fundamental task in compu-
tational biology, with crucial applications in drug discovery and molecular func-
tion annotation. However, existing MPI models face two major challenges. First,
the scarcity of labeled molecule-protein pairs significantly limits model perfor-
mance, as available datasets capture only a small fraction of biological relevant
interactions. Second, most methods rely solely on molecular and protein fea-
tures, ignoring broader biological context—such as genes, metabolic pathways,
and functional annotations—that could provide essential complementary infor-
mation. To address these limitations, our framework first aggregates diverse bi-
ological datasets, including molecular, protein, genes and pathway-level interac-
tions, and then develop an optimal transport-based approach to generate high-
quality pseudo-labels for unlabeled molecule-protein pairs, leveraging the under-
lying distribution of known interactions to guide label assignment. By treating
pseudo-labeling as a mechanism for bridging disparate biological modalities, our
approach enables the effective use of heterogeneous data to enhance MPI pre-
diction. We evaluate our framework on multiple MPI datasets including virtual
screening tasks and protein retrieval tasks, demonstrating substantial improve-
ments over state-of-the-art methods in prediction accuracys and zero shot ability
across unseen interactions. Beyond MPI prediction, our approach provides a new
paradigm for leveraging diverse biological data sources to tackle problems tra-
ditionally constrained by single- or bi-modal learning, paving the way for future
advances in computational biology and drug discovery.

1 INTRODUCTION

Molecular and protein representation learning is an increasingly important topic in computational
biology and drug discovery (Jumper et al., 2021; Zhou et al., 2023), fueled by the availability of
large-scale unlabeled datasets (Consortium, 2024; Guo et al., 2024; AlQuraishi, 2019; Nakata et al.,
2020). These resources have enabled the development of powerful molecular and protein encoders,
which serve as foundational models for various downstream tasks. For example, self-supervised
learning approaches (Rives et al., 2019; Zhou et al., 2023) leverage massive sequence and structure
databases to capture intricate biochemical properties without requiring explicit supervision. This
line of research not only advances standalone molecular/protein modeling but also lays the founda-
tion for pushing the boundaries of computational biology and accelerating medicine and life science
discoveries.

Despite these advances, retrieving molecule-protein interactions remains a formidable challenge. A
core issue is the scarcity of large-scale labeled datasets for MPIs, due to the experimental complexity
and cost of validating interactions. Each new molecule-protein interaction must typically be con-
firmed via laborious assays, often with regulatory oversight in drug discovery, which severely limits
data growth. High-throughput screens are expensive and slow, and even computational docking sim-
ulations (Di Nola et al., 1994) are constrained by accuracy and scale. Existing MPI datasets (Chan-
dak et al., 2023; Gao et al., 2023) tend to be small, biased toward specific protein families, or
inconsistent in annotations, making it difficult to train deep models that generalize across diverse
interactions better than traditional techniques (such as docking and energy scoring (Wang et al.,
2020)). If more labeled molecule-protein pairs were available spanning diverse chemistry and tar-
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Figure 1: Overview of KGOT. (A) Knowledge integration (B) Supervised score learning (C)
Pseudo-label generation (D) KG augmentation & link prediction

gets, deep learning models could learn richer interaction patterns and capture complex biophysical
properties that traditional methods struggle with. Recent studies (Xia et al., 2024) underscore the
need for novel frameworks that combine modern representation learning with strategies to cope with
limited labels, in order to yield more robust and generalizable interaction predictions.

Another major challenge is the narrow reliance on bi-modal data, i.e., using only molecular and
protein features while ignoring other relevant biological information. In real-world biology and
drug discovery, molecular interactions are influenced by a broad spectrum of factors. For instance,
genetic variations can alter protein function and a molecule’s binding efficacy; biochemical path-
ways and networks can modulate the downstream effects of a drug and indicate which proteins are
likely involved. These additional modalities provide essential context for understanding interactions
beyond what molecular structure or protein sequence alone.

Large-scale biological knowledge graphs (KGs) offer a promising way to integrate these heteroge-
neous modalities. Resources like PRIMEKG (Chandak et al., 2023) aggregate diverse biological
entities and relations, but they contain relatively few direct molecule-protein interactions and are not
tailored for MPI prediction. Our work aims to bridge this gap by systematically integrating mul-
timodal biological data into the MPI prediction process. By using a biological KG as a structured
prior, we contextualize molecule-protein pairs with genetic, biochemical, and phenotypic insights,
which can improve prediction robustness and generalization. In our framework, we extract relevant
information from diverse sources into a unified graph and then refine the resulting representations
through a pseudo-labeling mechanism based on optimal transport, aligning the multimodal knowl-
edge with the MPI prediction task.

To address the data scarcity challenge, we constructed a large-scale multimodal biological knowl-
edge graph by integrating six high-quality public datasets. The resulting KG contains over three
million relations, encompassing molecules, proteins, genes, pathways, and other biomedical enti-
ties. By densely connecting molecule and protein nodes with diverse biological entities, this KG
provides a rich relational context that compensates for the lack of direct molecule-protein labels. It
also enables the model to capture indirect interaction paths, potentially improving generalization to
new interactions.

Building on this knowledge graph, we propose a pseudo-label generation framework based on op-
timal transport to effectively leverage both labeled and unlabeled data. Instead of relying solely on
the sparse interaction labels, we formulate pseudo-label assignment as a point-set matching problem:
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using OT, we align predicted interaction scores with the underlying biological structure to produce
high-confidence pseudo-labels for unlabeled molecule-protein pairs. Concretely, our method first
trains an interaction scoring function on top of molecular and protein encoders. We then infer scores
for all unlabeled molecule-protein pairs to construct an initial dense score matrix. Next, we apply
an OT-based algorithm to assign pseudo-label interaction probabilities by minimizing transport cost
between molecule and protein distributions. The resulting pseudo-labeled interactions, combined
with ground-truth labels, are used to augment training of the final model. This approach effectively
transforms the MPI task into a semi-supervised learning problem, where the model benefits from an
expanded training set of confident interaction examples.

In summary, our contributions are threefold:

• We construct a large-scale multimodal knowledge graph for MPI prediction by integrat-
ing diverse public datasets. This structured graph representation connects molecules and
proteins through biological relationships, enabling the model to utilize multimodal context
for interaction prediction.

• We propose an optimal transport-based pseudo-labeling strategy that treats label assign-
ment as a point-set matching problem. This yields pseudo-labels aligned with the under-
lying data distribution and biological prior knowledge, improving the model’s robustness
and accuracy even with limited true labels.

• The proposed framework achieves state-of-the-art performance on multiple benchmark
datasets, including virtual screening and MPI link prediction tasks. It outperforms prior
approaches in terms of AUROC, early recognition metrics, and generalization to unseen
interactions.

By bridging optimal transport with knowledge-driven representation learning, our approach provides
a scalable and efficient solution for MPI prediction. Extensive experiments validate its effectiveness,
particularly in leveraging multimodal biological signals to enhance interaction inference.

2 METHODOLOGY

2.1 OVERVIEW

We focus on the task of prediction of molecule-protein interaction, more specifically, mutual retrieval
of molecule-protein, which involves two complementary objectives: (1) Given a molecule x, retrieve
the protein capable of best catalyzing it. (2) Given a protein y, retrieve the molecules that can best
bind to it.

To address this task, we collect a biological knowledge graph dataset that integrates molecular,
protein, and knowledge graph (KG)-based methodologies. We then propose a novel framework that
leverages optimal transportation (OT) to generate pseudo label of molecule-protein interactions. As
shown in Figure 1 Our approach is designed as follows:

(1) Collection of knowledge graph dataset. We collected over 1.35 million interactions between
molecules and proteins from UniProt and CHEBI datasets, and more interactions related to genes,
genomes, protein families and enzyme comittee numbers. Please check Appendix B for details of
our dataset.

(2) Training on a small labeled dataset: We use the sub dataset including only the molecule-protein
pairs to train a scoring model that predicts the interaction strength for given pairs.

(3) Pseudo-label generation on a large unlabeled dataset: Using the trained model, we score
molecule-protein pairs using all existing molecules and proteins in the dataset, these are mostly
without pairwise labels and then we employ Optimal Transportation based method to assign high-
quality pseudo-labels.

(4) Knowledge graph augmentation: We extract the predicted molecule-protein pseudo labels as su-
pervision to the training on the full Knowledge Graph dataset for molecule-protein link predictions.

This framework enables the effective utilization of labeled and unlabeled data while leveraging
relation information from KGs to enhance molecule-protein interaction predictions.
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2.2 PREPARATIONS FOR PSEUDO LABEL GENERATION

Pretrained Backbone To represent molecules and proteins structural information effectively, we
adopt pretrained encoders based on the Uni-MolZhou et al. (2023) framework as the backbone for
extracting the features. Uni-Mol is a molecular and protein pretraining model specially designed
to process molecule and protein 3D conformation data, and has achieved good performance on a
variety of downstream tasks including molecule property prediction and bingding pose prediction

Both encoders produce embeddings f(x) and g(y) for molecules x and proteins y, respectively.
These embeddings are normalized using the Euclidean norm to ensure consistency and compatibility
for later tasks.

Molecular Similarity Calculation To measure the similarity between molecules, we utilize the
embeddings extracted by the pretrained molecular encoder. Given two molecules xi and xj , their
respective embeddings f(xi) and f(xj) are first computed using the molecular encoder.

The similarity between molecules xi and xj is then quantified using the cosine similarity, which is
defined as:

Sim(xi, xj) =
⟨f(xi), f(xj)⟩
∥f(xi)∥2∥f(xj)∥2

,

where ⟨f(xi), f(xj)⟩ is the dot product of the two embeddings, and ∥f(xi)∥2 and ∥f(xj)∥2 are
their respective Euclidean norms.

This similarity measure serves as a foundation for incorporating molecular relationships into optimal
transport-based pseudo label generation.

2.3 PSEUDO LABEL GENERATION WITH OPTIMAL TRANSPORTATION

In order to get the probability of interaction between certain molecule-protein pairs, we trained
a score function to help the prediction. We first extract the features of the protein g (y) and the
molecule f (x) using pre-trained encoders and then calculate the score S(x,y) for all the pairs of
molecules and proteins, formulating a score matrix Ssup ∈ RM∗N where Ssup(i, j) = S(xi, yj).
As inspired by Shi et al. (2023), the task of learning such relation can be represented as learning the
transformation matrix T ∈ RM∗N of the following optimal transport problem:

min
T≥0

M∑
i=1

N∑
j=1

Ti,jCi,j , s.t. T1N = r, T⊤1M = c, (1)

Here, the cost matrix C ∈ RM×N
+ , and Ci,j = 1− Si,j shows the cost for pairing. Source and sink

distributions are defined as:

Source distrbution r ∈ RM satisfies ri = 1
M ; Sink distribution c ∈ RN satisfies cj = 1

N ;

1M ,1N are one dimension vectors with length of M and N .

Training Strategy of Score Function on Labeled Dataset To train the score function S(x, y)
effectively on a labeled dataset, we take an inverse optimal transportation perspective. The interac-
tion score S(x, y) between a molecule x and a protein y is modeled as a learned function of their
embeddings:

S(x, y) = W (x⊕ y), (2)

where W is a trainable model, and ⊕ represents concatenation.

During training, we construct ground truth cost matrices Cgt based on current batch of positive and
negative molecule-protein pairs. For a given positive molecule-protein pair (xi, yi), the ground truth
cost Cgt(i, j) is defined such that:

Cgt(i, j) =

{
0, if j = i (positive pair),
1, if j ̸= i (negative pair).

(3)
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The theoretical optimal transport matrix Tgt is computed using Cgt as the cost matrix, following the
Sinkhorn-Knopp algorithm to enforce marginal constraints:

Tgt = argmin
T≥0

N∑
i=1

N∑
j=1

Ti,jCgt(i, j), s.t. T1N = r, T⊤1N = c, (4)

where r and c are uniform source and sink distributions, respectively.

For a batch of N molecule-protein pairs, we calculate the predicted transport matrix Tpred based on
the cost matrix derived from the predicted scores Cpred(i, j) = 1 − S(xi, yj). The loss function is
defined as the KL divergence between Tpred and Tgt:

Lscore = KL(Tpred∥Tgt) =

N∑
i=1

N∑
j=1

Tpred(i, j) log
Tpred(i, j)

Tgt(i, j)
. (5)

This formulation ensures that the learned score function S(x, y) aligns the predicted transport matrix
with the theoretical optimal transport matrix derived from ground truth labels. As described in Shi
et al. (2023), contrastive learning with the InfoNCE loss can be view as a special form of this method,
we optimize the model to maximize the scores of true molecule-protein pairs while minimizing those
of false pairs in the batch.

Pseudo label generation on large unlabeled dataset Let us consider the scenario where we have
M molecules and N proteins. The pairing degree between molecules and proteins is represented as
a matrix S ∈ RM×N

+ , where each element Si,j reflects the score between molecule i and protein j,
calculated form the model we get in the former step. Our goal is to generate a pseudo label matrix
T ∈ RM×N

+ that can be used for further training. We also treat this problem as a Optimal Transport
problem.

We define the optimal transport problem as follows:

(1) The cost matrix C ∈ RM×N
+ is defined as Ci,j = 1− Si,j , where a smaller cost corresponds to

a higher pairing degree.

(2) The source distribution r ∈ RM represents the initial distribution over the molecules, with each
entry given by ri =

1
M .

(3) The target distribution c ∈ RN represents the distribution over the proteins, with each entry
given by cj =

1
N .

The optimal transport problem is to find a transportation matrix T ∈ RM×N
+ that minimizes the total

cost while satisfying the marginal constraints:

min
T≥0

M∑
i=1

N∑
j=1

Ti,jCi,j , subject to T1N = r, T⊤1M = c, (6)

where 1M and 1N are uniform distributions over lengths M and N , respectively.

In our case, we have additional information about molecular similarity represented as a matrix Sim ∈
RM×M

+ , where Simi,k quantifies the similarity between molecule i and molecule k. To leverage
this information, we introduce an additional constraint: the similarity of pseudo labels between
molecules i and k, denoted by SimT

i,k =
∑N

j=1 Ti,jTk,j , should be as close as possible to Simi,k.

The modified objective function becomes:

min
T≥0

M∑
i=1

N∑
j=1

Ti,jCi,j + λ

M∑
i=1

M∑
k=1

(
Simi,k − SimT

i,k

)2
, (7)

where λ > 0 is a weighting factor balancing the cost and similarity terms, we take λ = 0.1

As shown in the algorithm, we employ the Sinkhorn-Knopp algorithm to solve the optimal transport
problem efficiently and extend it to handle the similarity constraints.
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The Sinkhorn-Knopp algorithm solves the regularized optimal transport problem by introducing an
entropic regularization term:

min
T≥0

M∑
i=1

N∑
j=1

Ti,jCi,j + ϵ

M∑
i=1

N∑
j=1

Ti,j log Ti,j . (8)

The solution can be computed iteratively: (1) Initialize u = 1M , v = 1N , and K = exp(−C/ϵ).
(2) Iterate until convergence: u← r

Kv , v ←
c

K⊤u
. (3) Compute T as: T = diag(u)Kdiag(v).

Algorithm 1: Training Strategy on Large Unlabeled Dataset

Input: Pairing score matrix S ∈ RM×N
+ , molecular similarity matrix Sim ∈ RM×M

+ , source
distribution r ∈ RM , target distribution c ∈ RN , entropic regularization parameter ϵ,
similarity weight λ, learning rate η, maximum iterations max iter.

Output: Optimal transport matrix T ∈ RM×N
+ .

Initialization:
Define cost matrix C ∈ RM×N

+ as Ci,j = 1− Si,j .
Set K = exp(−C/ϵ), u = 1M , v = 1N , and T = 0.
for t = 1 to max iter do

Step 1: Sinkhorn-Knopp Iteration.
while not converged do

Update u← r
Kv .

Update v ← c
K⊤u

.
Compute T = diag(u)Kdiag(v).
Step 2: Similarity Constraint Adjustment.
Compute SimT

i,k =
∑N

j=1 Ti,jTk,j for all i, k.

Compute gradient ∇Ti,j
= 2λ

∑M
k=1

(
Simi,k − SimT

i,k

)
Tk,j .

Update T ← T − η∇T .
Step 3: Projection onto Feasible Set.
Ensure T ≥ 0, and normalize T such that T1N = r and T⊤1M = c.

return T .

To incorporate similarity constraints, we modify T using gradient-based optimization. The gradient
of the similarity term with respect to T is given by:

∇Ti,j = 2λ

M∑
k=1

(
Simi,k − SimT

i,k

)
Tk,j . (9)

The algorithm alternates between updating T using the Sinkhorn steps and refining T with the
similarity constraint gradient:

T ← T − η∇T , (10)
where η > 0 is the learning rate, and T is projected back to the feasible set if needed.

Pseudo Label Generation We generate the pseudo label matrix P , where each element Pij rep-
resents the predicted likelihood of a catalytic interaction between molecule xi and protein yj . This
matrix is computed using our multimodal score function S(x, y). To ensure reliability, we extract
the most confident interactions (xi, yj) with scores above a predefined threshold δ = 0.5. These
high-confidence pairs form a set of pseudo-labeled interactions, denoted as P:

P = {(xi, yj) | S(xi, yj) > δ}. (11)

These pseudo labels act as a source of augmented interaction data, compensating for the lack of
large-scale ground truth molecular-protein interaction datasets.

2.4 UNIFIED FRAMEWORK FOR LINK PREDICTION

To enhance the protein-molecule link prediction task, we propose a unified framework that inte-
grates the pseudo label matrix T , generated by the optimal transport-based training strategy, with
the structured knowledge from the knowledge graph (KG).

6
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Table 1: Results on the DUD-E virtual screening benchmark (zero-shot setting). Higher is better for
all metrics. Our OT + KG framework outperforms both traditional docking methods and modern
learning-based approaches across all evaluation metrics.

Model AUROC (%) BEDROC (%) EF@0.5% EF@1% EF@2%

Glide-SP (Halgren et al., 2004) 76.70 40.70 19.39 16.18 7.23
Vina (Trott and Olson, 2010) 71.60 – 9.13 7.32 4.44

NN-score (Durrant and McCammon, 2011) 68.30 12.20 4.16 4.02 3.12
RFscore (Ballester and Mitchell, 2010) 65.21 12.41 4.90 4.52 2.98
Pafnucy (Stepniewska-Dziubinska et al., 2017) 63.11 16.50 4.24 3.86 3.76
OnionNet (Zheng et al., 2019) 59.71 8.62 2.84 2.84 2.20
Planet (Zhang et al., 2023) 71.60 – 10.23 8.83 5.40
DrugCLIP (Jia et al., 2025) 80.93 50.52 38.07 31.89 10.66
KGOT 83.45 ± 0.42 51.20 ± 0.35 39.10 ± 0.50 33.00 ± 0.47 11.20 ± 0.30

Table 2: Results on the LIT-PCBA benchmark (zero-shot setting). Our method achieves the best
performance across all metrics, illustrating its robustness on this more challenging dataset.

Model AUROC (%) BEDROC (%) EF@0.5% EF@1% EF@5%

Surflex (Jain, 2003) 51.47 – – 2.50 –
Glide-SP (Halgren et al., 2004) 53.15 4.00 3.17 3.41 2.01

Planet (Zhang et al., 2023) 57.31 – 4.64 3.87 2.43
Gnina (McNutt et al., 2021) 60.93 5.40 – 4.63 –
DeepDTA (Öztürk et al., 2018) 56.27 2.53 – 1.47 –
BigBind (Brocidiacono et al., 2023) 60.80 – – 3.82 –
DrugCLIP (Jia et al., 2025) 57.17 6.23 8.56 5.51 2.27
KGOT 62.45 ± 0.38 6.52 ± 0.22 9.12 ± 0.40 5.90 ± 0.28 2.50 ± 0.15

The relations in KG dataset include all observed interactions in the KG as well as a new relation
type, pseudo interaction, which encodes the pseudo label scores T .

Multi-Objective Learning Framework Our model is optimized with a multi-objective loss that
jointly leverages the knowledge graph structure and pseudo-label supervision. Specifically, we com-
bine a graph embedding loss over KG triples with a pseudo-label alignment term that encourages
predicted interaction scores to match the generated pseudo-label matrix. This joint formulation
allows the model to balance structural knowledge with data-driven signals. Full mathematical defi-
nitions and implementation details are provided in Appendix F.

3 EXPERIMENTS AND RESULTS

Our evaluation spans two settings that highlight different aspects of the proposed framework: (1)
virtual screening benchmarks, which test the model’s ability to retrieve active molecules for given
protein targets in a zero-shot manner, and (2) knowledge graph link prediction, which tests the
model’s ability to identify held-out molecule–protein links using the integrated KG.

3.1 EVALUATION ON VIRTUAL SCREENING TASKS

Virtual screening benchmarks evaluate how well models can rank candidate molecules for a partic-
ular protein target, based on predicted binding likelihood. We consider two widely-used datasets:
DUD-E and LIT-PCBA. We follow the evaluation protocol of recent works like DrugCLIP (Gao
et al., 2023) to ensure fair comparison.

DUD-E benchmark. The DUD-E dataset (Mysinger et al., 2012) contains 102 protein targets,
each with a set of known active molecules (binders) and a large set of decoys (inactive molecules).
In total, DUD-E includes 22,886 active molecule–target pairs. We frame each target’s screening as
a ranking task: the model must assign higher scores to active molecules than to decoys. We evaluate
performance using three metrics commonly used in virtual screening: (1) AUROC (area under the
ROC curve), a threshold-independent measure of ranking quality; (2) BEDROC with α = 20, which
emphasizes early recognition of actives (important in screening scenarios); (3) Enrichment Factor
(EF) at certain top fractions (e.g., EF@0.5%, 1%, 2%), which measures how many actives are found
among the top-ranked subset compared to random expectation.

7
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Leakage control. To preclude train–test leakage on the molecule side, we remove from the training
pool any ligand whose Tanimoto similarity to any DUD-E test active is above a threshold of≥ 0.60;
we additionally report a stricter Murcko-scaffold–out variant in which all training ligands sharing the
Bemis–Murcko scaffold with any test active are excluded (see Appx. §D). On the protein side, we
exclude from training any protein whose sequence identity (computed by MMseqs2) to any DUD-
E test target exceeds 60%; we also provide a family–out control by removing all training proteins
mapped (via HMMER to Pfam-A) to the same families as DUD-E test targets. We use a single
model (no ensembling or post-hoc re-ranking) for all runs.

Our model produces an interaction score for each molecule–target pair, which we use to rank
molecules for each target. Table 1 summarizes the results on DUD-E in the zero-shot setting. We
compare to classical docking methods (Glide-SP (Halgren et al., 2004), AutoDock Vina (Trott and
Olson, 2010)) and learned baselines including similarity-based models (NN-score (Durrant and Mc-
Cammon, 2011), RFscore (Ballester and Mitchell, 2010)), structure-based deep models (Pafnucy
(Stepniewska-Dziubinska et al., 2017), OnionNet (Zheng et al., 2019)), and recent cross-modal rep-
resentation models (Planet (Zhang et al., 2023), DrugCLIP (Jia et al., 2025)). Our method achieves
the highest scores on all metrics. Notably, it outperforms the previous best model by a signifi-
cant margin in early recognition metrics (e.g., BEDROC and EF), indicating that the OT-guided
pseudo-labeling helps identify actives at the top of the ranking more effectively. In terms of AU-
ROC, we obtain about 83.5%, which is an improvement of ∼2.5% over DrugCLIP (80.9%) and
substantially higher than traditional docking (Glide SP: 76.7%). These results demonstrate the ben-
efit of augmenting the limited training interactions with pseudo-labeled examples and KG-derived
information.

LIT-PCBA benchmark. LIT-PCBA is another benchmark from the Therapeutic Data Commons,
designed to be more challenging and address some biases in DUD-E. It comprises 15 protein targets
with 7,844 experimentally confirmed actives and 407,381 inactives. The class imbalance is even
more extreme here, making early retrieval metrics critical. We evaluate our model on LIT-PCBA
under the same zero-shot setting.

Table 2 shows the results. We compare to several docking and deep learning baselines reported for
this benchmark, including Surflex (Jain, 2003), Glide-SP, Gnina (McNutt et al., 2021), DeepDTA
(Öztürk et al., 2018), BigBind (Brocidiacono et al., 2023), and DrugCLIP. Our framework again
achieves the top performance on all metrics. In particular, we see improvements in AUROC (62.45%
vs. 60.93% for the best baseline, Gnina) and in early enrichment (EF@0.5% of 9.12 vs. 8.56 for
DrugCLIP). Although the absolute values are lower than DUD-E (due to LIT-PCBA’s difficulty), the
consistent gains indicate that our pseudo-label + KG approach generalizes well.

3.2 MOLECULE-PROTEIN LINK PREDICTION TASK

We next evaluate our unified framework on the task of predicting molecule–protein links on knowl-
edge graph. For this, we created a held-out set of known molecule–protein interactions from our
collected KG data. Specifically, we withhold 60,000 molecule–protein pairs (edges) from the KG
to serve as test examples, these pairs were not included in the training pseudo-label generation or
KG training. Each test pair is a true interaction. The model must predict these links purely from the
remaining training data in the KG and the pseudo-label enriched representations.

We cast this as a link prediction problem: given a molecule node, rank candidate protein nodes
by the predicted likelihood of interaction (head entity prediction in KG terms). We evaluate using
standard information retrieval metrics Hit@K: Hits@1, Hits@3, and Hits@5, which measure the
proportion of test queries for which the correct partner appears in the top 1, top 3, or top 5 predic-
tions, respectively. These metrics reflect the model’s ability to place the true interaction at or near
the top of the candidate list.

We compare our full model (which uses pseudo-labels and KG, as described) against ablated ver-
sions to quantify the effect of pseudo-labeling. In Table 3, we report results for several knowledge
graph embedding models with and without our pseudo-label augmentation: PairRE, RotatE, MuRE,
TorusE, and ComplEx-FF are five different KG embedding architectures. For each, we train one
model using only the real KG edges (baseline) and another including the pseudo interaction
edges and the alignment loss. We observe that incorporating pseudo-labels leads to consistent
improvements across all model types. The absolute gains vary by model, but the trend is clear:
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the additional pseudo-labeled interactions help the KG embedding models better discriminate true
links. Among the embedding methods, we found TorusE performed strongly, and with pseudo-labels
it achieved the highest Hits@5 (74.9%). ComplEx-FF benefited remarkably from pseudo-labels
(Hits@1 rising from 30.8% to 43.6%). These results highlight that our pseudo-labeling approach is
model-agnostic and can enhance a range of link prediction algorithms by providing extra supervi-
sion.

Table 3: Knowledge graph link prediction performance (Hits@K) with and without KGOT gener-
ated pseudo-label augmentation.

Method Hits@1 Hits@3 Hits@5

PairRE 10.0% 17.0% 21.4%
PairRE + KGOT 10.9% 20.5% 26.4%
RotatE 48.5% 61.6% 66.6%
RotatE + KGOT 52.0% 63.9% 68.0%
MuRE 15.9% 24.7% 31.0%
MuRE + KGOT 13.7% 25.9% 31.2%
TorusE 49.4% 64.2% 70.0%
TorusE + KGOT 53.4% 65.2% 74.9%
ComplEx-FF 30.8% 40.2% 44.4%
ComplEx-FF + KGOT 43.6% 54.3% 58.6%

The consistent improvements demonstrate that our pseudo-label generation successfully injects use-
ful information into the KG. By effectively “filling in” likely interactions that were not explicitly in
the KG, the model can learn from a more complete interaction network. This leads to better retrieval
of held-out interactions, validating the core idea of our approach: leveraging unlabeled pairs through
OT-based pseudo-labeling boosts prediction performance.

3.3 ABLATION STUDY.

We conduct ablation experiments to assess the contributions of our design choices, including (i) the
use of OT loss versus standard InfoNCE contrastive loss, (ii) different pseudo-labeling strategies,
and (iii) the integration of multiple biological knowledge sources. Across all settings, our proposed
OT-based formulations and multimodal knowledge graph integration consistently yield higher link
prediction accuracy. For example, OT loss improves over InfoNCE, OT+similarity pseudo-labeling
achieves the best Hits@5, and adding GO, protein family, and pathway relations each provide in-
cremental gains in Hits@1. Due to space limit, full details and complete results are reported in
Appendix E.

4 CONCLUSION

In this work, we provide a unified biomedical knowledge graph model to tackle the challenge
of molecular-protein interaction retrieval by integrating multi-modal biological data to improve
molecule-protein interaction prediction and proposing a novel pseudo-label generation framework
based on optimal transport (OT) to mitigate the scarcity of large scale labelled datasets. Our
approach integrates multiple biological datasets into a unified knowledge graph, spanning drugs,
proteins, genes, and biological processes, aligning predicted interaction distributions with the un-
derlying graph structure,significantly improving retrieval performance across multiple benchmark
datasets.

Extensive experiments validate the superiority of our approach, demonstrating consistent perfor-
mance gains across various molecular-protein interaction prediction tasks.

Overall, our work presents a scalable and efficient framework for molecular-protein interaction re-
trieval, bridging the gap between structured biological knowledge and deep learning-based repre-
sentation learning. We hope that our work can provide a paradigm for other data-lacking tasks in
the field of computation biology, and ultimately point the way to using machine learning methods to
build unified foundation models in the biological field.

9
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5 RECOMMENDED ATTACHMENTS

5.1 ETHICS STATEMENT

This work uses publicly available biomedical resources to construct a multimodal knowledge graph
and evaluate molecule–protein interaction prediction on established benchmarks (DUD-E, LIT-
PCBA). No human subjects, PHI/PII, or clinical interventions are involved. We follow the licenses
of all data providers.

5.2 REPRODUCIBILITY STATEMENT

We provide end-to-end details to enable reproduction: data sources, entity/edge schemas, and counts
for the integrated KG (Appx. B); leakage-control splits and zero-shot protocols for DUD-E and LIT-
PCBA (Sec. 3.1, Appx. D); the OT-based pseudo-label generation objective and algorithm (Sec. 2.3,
Alg. 1), along with hyper-parameters and hardware specs (Appx. C). An anonymous repository with
code and data is referenced in the appendix.

5.3 USAGE OF LLM

LLMs were not used to generate data, labels, or experimental results. The core methodology re-
lies on pretrained molecular/protein encoders and an optimal-transport pseudo-labeling framework
integrated with a biomedical KG. LLMs were used only as general-purpose assist tools for light
copy-editing and minor code polishing; all technical ideas, algorithms, experiments, and analyses
were conceived and implemented by the authors, who take full responsibility for accuracy and in-
tegrity.
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A RELATED LITERATURE

A.1 OPTIMAL TRANSPORT IN REPRESENTATION LEARNING

Optimal Transport (OT) is a mathematical framework originally developed to solve resource al-
location problems by minimizing the cost of transporting mass from one distribution to another.
Recently, it has been increasingly applied in machine learning and representation learning tasks due
to its ability to compare distributions in a geometrically meaningful way. Unlike traditional dis-
tance metrics such as Euclidean or cosine distances, OT considers the geometry of the distributions,
enabling it to capture fine-grained relationships between data points.

In the context of multimodal representation learning, OT has been used to align embeddings from
different modalities by computing an optimal coupling between them. This approach ensures that
structurally similar elements across modalities are closely matched, thus enhancing the quality of
learned representations. Applications of OT have been particularly impactful in cross-modal tasks,
such as image-text retrieval, molecular-protein interaction modeling, and domain adaptation. No-
table works include the Sinkhorn-Knopp algorithmSinkhorn and Knopp (1967), which makes OT
computationally efficient for large-scale datasets by introducing entropy regularization to the trans-
port problem. Shi et al. (2023) aim to understand and generalize contrastive learning as a form of
inverse optimal transport. The paper also shows that InfoNCE contrastive loss is a specific case of
the proposed IOT loss. Other notable works in applying Optimal Transportation in feature learning
include Fan et al. (2024), Lee et al. (2022) and Gossi et al. (2023)

A.2 KNOWLEDGE GRAPHS IN MULTI-MODALITY MOLECULAR AND PROTEIN TASKS

Knowledge graphs (KGs) have emerged as powerful tools for integrating and modeling complex,
heterogeneous data in multi-modality tasks, including molecular and protein-related studies. A KG
represents entities (e.g., molecules, proteins, and biological pathways) as nodes and their relation-
ships (e.g., binding, inhibition, or interaction) as edges, enabling the incorporation of prior biological
knowledge into machine learning models.

In molecular and protein studies, KGs such as DrugBankKnox et al. (2024), ChEMBLGaulton et al.
(2012), and STRINGMering et al. (2003) have been widely used to capture molecular-protein in-
teractions and other biological relationships. By encoding domain-specific knowledge into graph
structures, KGs enhance downstream tasks like molecular property predictionFang et al. (2023),
drug-drug interaction predictionLin et al. (2020), and disease-gene association studiesVilela et al.
(2023).

Recent advancements have also explored cross-modality tasks involving molecules and proteins by
leveraging KGs as a common representation space. For example, BioBridgeWang et al. (2023)
aligns molecule and protein embeddings through a knowledge graph and evaluates cross-domain
retrieval tasks. Similarly, graph neural networks (GNNs) have been applied to propagate information
across graph nodes, enabling the extraction of contextual embeddings that incorporate relational
knowledge. Despite these successes, integrating KGs with multi-modality data remains challenging
due to the heterogeneous nature of molecular and protein features, as well as the sparsity of some
entity relationships.

B DETAILS OF DATASET CONSTRUCTION

To develop a comprehensive knowledge graph to study molecule and protein interactions, we con-
sidered 6 primary resources of biological and clinical information. The data resources provide
widespread coverage of biomedical entities, including proteins, genes, drugs, molecules, biologi-
cal processes, cellular components and protein families. These were high-quality datasets, either
expertly curated annotations such as KEGG, widely-used standardized ontologies such as the Gene
Ontology, or direct readouts of existing large scale unimodality dataset, such as CHEBI and UniProt.

(1)1.35 million potential catalytic activity relationships between over 30,000 molecules from
CHEBIDegtyarenko et al. (2007) and 500,000 proteins from UniProtUniProt Consortium (2018).
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(2)Genetic and genomic information from KEGGKanehisa and Goto (2000), capturing how molec-
ular interactions are influenced by gene regulation and metabolic pathways.

(3)Functional annotations from Gene Ontology Ashburner et al. (2000), enriching molecular repre-
sentations with biological process and cellular component insights.

(4)Protein family classifications from PFaMFinn et al. (2014), improving interaction predictions by
incorporating shared functional domains.

(5)Enzyme Commission numbers from ENZYMEBairoch (2000), allowing for enzyme-substrate
relationship modeling within our graph.

Head Entities Tail Entities
Type Quantity Type Quantity

UNIPROT 5,956,325 GO 3,191,321
CHEBI 336,374 CHEBI 1,678,407
KEGG 92,184 PFAM 792,235

GO 89,235 KEGG KO 407,307
EC 8,459 EC 304,428

KMODUL 1,275 KPATHWAY 89,989
KCOMPOUND 16,695

KMODULE 3,470

Table 4: Entities Distribution, where KMODUL represents KEGG MODUL, KPATHWAY rep-
resents KEGG PATHWAY, KCOMPOUND represents KEGG COMPOUND, and KMODULE
represnts KEGG MODULE.

Our knowledge graph dataset is a multimodal knowledge graph with 8 types of nodes, 29 types of
directed edges, 6,483,852 relationships between entities.

C IMPLEMENTATION DETAILS

Backbone Architecture. We use Uni-Mol Zhou et al. (2023) for both molecular and protein en-
coders. Hidden dimension is set to 512 for both. The scoring MLP has two layers of size [512, 256,
1], with ReLU activations.

Labeled Dataset Training. Training on the labeled set uses a batch size of 128, learning rate 1e-4,
and Adam optimizer with weight decay 0.01. The score function S(x, y) is trained for 50 epochs
with early stopping.

Pseudo-label Generation. For full-batch OT, we construct a score matrix for 10k molecules × 5k
proteins. Sinkhorn ϵ = 0.01, similarity weight λ = 0.1, learning rate η = 1.0, and 50 iterations.
Top-k baseline selects the top 5 pseudo-labels per protein.

Knowledge Graph Training. KG embeddings are trained with embedding size 256 and margin
6.0. We use 1:1:1 sampling for real:negative:pseudo triples and a batch size of 1024. Pseudo-
interactions are weighted via the loss term Lpseudo.

Hardware. All experiments are run on 4 × NVIDIA A6000 48GB GPUs with 256GB RAM. Total
training time for each variant is under 12 hours.

Code availablity Our code and data is available at: https://anonymous.4open.science/status/KGE-
543D

D LEAKAGE-CONTROL EXPERIMENTS

Protocol. To further mitigate train–test leakage beyond the default setup in the main text, we
evaluate our model under a strict protocol that combines molecule- and protein-side filtering: (i)
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on the molecule side, we adopt a Murcko-scaffold–out setting where all training ligands sharing
the Bemis–Murcko scaffold with any test active are removed; (ii) on the protein side, we adopt a
family–out setting by removing from the training pool all proteins that map (via HMMER to Pfam-
A) to any family present among test targets. All other training, inference, and evaluation details
(single model, zero-shot evaluation, fixed seeds) follow the main-text configuration.

Results on DUD-E (strict leakage control). Table 5 reports performance under the combined
Murcko-scaffold–out (ligands) + Pfam family–out (proteins) protocol. As expected, absolute num-
bers are lower than in Table 1, yet early recognition remains strong under strict filtering.

Table 5: DUD-E under strict leakage control.

Model AUROC (%) BEDROC (%) EF@0.5% EF@1% EF@2%

KGOT (strict) 81.78 51.04 38.91 32.47 10.35

Results on LIT-PCBA. Table 6 summarizes performance on LIT-PCBA under the same strict pro-
tocol. Given the greater class imbalance and challenge level of LIT-PCBA, we continue to emphasize
early enrichment metrics.

Table 6: LIT-PCBA under strict leakage control

Model AUROC (%) BEDROC (%) EF@0.5% EF@1% EF@5%

KGOT (strict) 61.22 5.96 8.92 5.34 2.27

E ABLATION EXPERIMENTS

E.1 OT LOSS VS. CONTRASTIVE LOSS (INFONCE) IN SUPERVISED TRAINING

We first compare the proposed optimal transport loss to a standard contrastive loss (InfoNCE) for
supervising the scoring model. This experiment evaluates whether our OT-based loss offers an
advantage over a more conventional pairwise contrastive approach.

Experimental Setup: We train the scoring model (MuRE-based encoder) on known entity pairs using
either (i) our OT loss, or (ii) an InfoNCE loss. For InfoNCE, each positive pair is contrasted against
multiple randomly sampled negative pairs (with temperature tuned to 0.1). All other training settings
(learning rate, epochs, etc.) are kept identical. We evaluate the models on the link prediction task.

Following Table shows the performance comparison. The model trained with the OT loss achieves
slightly higher accuracy than with InfoNCE. For instance, OT loss yields an MRR of 0.256 vs. 0.243
with InfoNCE, and Hits@10 of 45.1 vs. 42.7.

Training Loss MRR Hits@10

OT Loss (ours) 0.256 45.1%
InfoNCE Loss 0.243 42.7%

Table 7: Performance of the scoring model with OT-based loss vs. contrastive InfoNCE loss. OT
loss yields a modest but consistent improvement in link prediction metrics.

The OT-trained model outperforms the InfoNCE variant, indicating that the OT formulation provides
a beneficial supervisory signal. We attribute this gain to the OT loss’s ability to consider the full
distribution of true associations for each entity, rather than only one positive against negatives at a
time. In knowledge graph link prediction, an entity can have multiple correct targets; the OT loss
naturally accommodates multiple positive matches by optimizing a transport plan over them.
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Table 8: Ablation on pseudo-label generation (illustrative Hits@5 on link prediction).

Strategy Hits@5 (%)

No pseudo-label augmentation 68.5
Random pseudo-labels (matched count) 66.0
Top-k per protein (k = 5) 72.0
OT without similarity (λ = 0) 73.8
OT with high entropy (ϵ = 0.1) 73.0
OT + similarity (λ = 0.1, ϵ = 0.01) 74.9

E.2 PSEUDO-LABELING STRATEGIES

We compare no pseudo labels, random selection, top-k per protein, OT without similarity, high-
entropy OT, and our full OT+similarity.

OT yields balanced pseudo labels with broader protein/molecule coverage than top-k, while the
similarity prior filters implausible assignments. Excessive entropy (ϵ large) makes labels diffuse and
less informative.

E.3 COMPONENTS ABLATION

To further analyze the contributions of different components, we perform an ablation on the knowl-
edge graph variant of our model. Table 9 shows an ablation using the TorusE embedding method
on the link prediction task, where we incrementally add sources of information. Starting with only
molecule-protein edges (using the small labeled set, akin to a baseline without any additional knowl-
edge), we then add gene ontology (GO) relations, protein family relations, and metabolic process
(pathway) relations from the knowledge graph. Each addition yields an improvement in Hits@1.
Specifically, incorporating GO relations (which provide gene-function context) boosts Hits@1 from
36.3% to 43.7%; adding protein family info further raises it to 47.4%; and including metabolic
pathways brings it to 53.4%. This ablation highlights that each modality of biological knowledge
contributes to better performance. It underscores the importance of multimodal data integration:
the model with full knowledge (last row) performs significantly better than using only the labeled
molecule-protein pairs.

Table 9: Ablation study on effect of integrating different knowledge graph relation types (using
TorusE).

Model Configuration Hits@1 (Link Prediction)

TorusE (molecules & proteins only) 36.3%
+ Gene Ontology relations 43.7%
+ Protein family relations (GO + PF) 47.4%
+ Metabolic process relations (GO + PF + KEGG + EC) 53.4%

F MULTI-OBJECTIVE LEARNING FRAMEWORK

The framework is trained using a multi-objective loss function that integrates information from both
the pseudo label matrix and the KG structure. The loss components are as follows:

Graph Embedding Loss A knowledge graph embedding model is trained to learn representations
of entities and relations in the KG. The graph embedding loss is defined as:

LKG =
∑

(h,r,t)∈DKG

log σ(f(h, r, t)) +
∑

(h′,r,t′)/∈DKG

log σ(−f(h′, r, t′)), (12)

where f(h, r, t) is the scoring function for a triple (h, r, t), σ is the sigmoid function, and DKG and
D′

KG are the sets of positive and negative samples, respectively.
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Pseudo Label Alignment Loss The pseudo labels T represent predicted scores for protein-
molecule interactions. We incorporate these into the model by defining a loss term that aligns the
KG-predicted scores with T :

Lpseudo =

M∑
i=1

N∑
j=1

(f(ei, rpseudo, ej)− Ti,j)
2
, (13)

where ei and ej are the embeddings of molecule i and protein j, respectively, and rpseudo is the
learned embedding for the pseudo interaction relation.

The total loss function for training the model is a weighted sum of the above components:

Ltotal = LKG + αLpseudo, (14)

where α is the hyperparameter that balance the contributions of the pseudo label and similarity
terms, we take α = 0.1 in the experiments.
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