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ABSTRACT

We address the challenge of offline reinforcement learning using realistic data,
specifically non-expert data collected through sub-optimal behavior policies. A
primary concern is that the learned policy must be conservative enough to manage
distribution shift while maintaining sufficient flexibility for generalization. To
tackle this issue, we introduce a novel method called Outcome-Driven Action Flex-
ibility (ODAF), which seeks to reduce reliance on the empirical action distribution
of the behavior policy. Specifically, we develop a new reward mechanism that
evaluates whether the subsequent states, following the current policy, meet speci-
fied performance requirements (e.g., safety—remaining within the state support
area), rather than solely depending on the characteristics of the actions taken (e.g.,
whether the action imitates the behavior policy). Besides theoretical justification,
we provide empirical evidence on widely used D4RL benchmarks, demonstrating
that our ODAF method, implemented using uncertainty quantification techniques,
effectively tolerates unseen transitions for improved "trajectory stitching," while
enhancing the agent’s ability to learn from realistic non-expert data.

1 INTRODUCTION

Offline reinforcement learning (RL) aims to learn a high-capacity policy from an offline dataset
previously collected via a behavior policy (Zhang & Tan, 2024), which has yielded significant
improvements in various fields, including robotics tasks (Mnih et al., 2015; Peng et al., 2017), game
playing (Silver et al., 2017), and large language models (Achiam et al., 2023; Touvron et al., 2023).
However, prior studies (Fujimoto et al., 2019; Kumar et al., 2020) have indicated that offline RL
algorithms suffered from the distributional shift (Fujimoto et al., 2019; Jin et al., 2021b) problem,
where the divergence between the new and behavior policies makes the agent encounter with some
unseen actions or states, which are challenging for generalization.

In practice, obtaining ideal expert data is often challenging, and the most realistic data used for
training is generated through sub-optimal behavior policies. The difficulty of addressing distributional
shift becomes more pronounced when learning from realistic non-expert data, as blindly cloning these
potentially highly sub-optimal behaviors can be dangerous. Unfortunately, many previous works,
such as Behavior Regularized Actor-Critic (BRAC) (Wu et al., 2019b), Conservative Q-Learning
(CQL) (Kumar et al., 2020), and TD3+BC (Fujimoto & Gu, 2021), focus on cloning expert behaviors
and may be adversely affected by the sub-optimal behaviors present in the dataset (Bai et al., 2022).

While more recent action-based support set approaches, such as Bootstrapping Error Accumulation
Reduction (BEAR) (Wu et al., 2019a) and Supported Policy Optimization (SPOT) (Wu et al., 2022),
attempt to relax cloning conditions through supported regularization, they still face the challenge of
being overly restrictive when learning from non-expert offline data. Specifically, they may reject all
actions not taken by the behavior policy (i.e., Out of Distribution, OOD actions), including those that,
while potentially unsafe, could lead to in-distribution safe states.

In this paper, we proposed a new method to address the above issues. Our key idea is to design
a reward mechanism based on whether the subsequent states by following the current policy are
beneficial to improve the performance (e.g., being safe - falling within the state support area), instead
of explicitly restricting the range of action space for each state. In other words, in our method, the
OOD actions are allowed as long as they are safe and are beneficial to performance improvement.
In this way, our approach is not only more conducive to shaping the desired behavior but also
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Figure 1: This figure showcases how our ODAF method excels in "trajectory stitching". Specifically,
in the left diagram, our method bases decisions on whether a transition’s outcomes are backed by
the dataset. Even if the necessary action is unsupported by the dataset, its safe outcomes suggest
potential for generalization, warranting inclusion in the candidate set. The right diagram illustrates
the benefits of this decision-making approach, seamlessly combining high-value segments from
diverse trajectories through generalization of unseen transitions, resulting in superior trajectories.

less susceptible to being misled by sub-optimal behavior policies. This is in contrast with the
aforementioned action-support constraints-based offline reinforcement learning algorithms (e.g.,
SPOT, SVR, et al.), which overlooks the correlation between agent decision-making and potential
outcomes, thus diminishing the agent’s flexibility in decision-making.

In particular, our method focuses on the potential consequences that an action can yield, rather than
the specific properties of the action itself, e.g., whether it looks like the behavior policy. Actually,
there are previous methods that can be seen through this lens. For example, State Deviation Correction
(SDC) (Zhang et al., 2022) and Out-of-sample Situation Recovery (OSR) (Jiang et al., 2023), which
were initially developed to help agents recover from Out-of-distribution (OOD) situations by trying to
align the transition behavior of the learned policy with that of the behavior policy, can be thought of
as matching the consequences of the actions with those in the dataset. However, even these methods
are not robust against non-expert data as they do not take the quality of decisions’ consequences
into account. Actually, blindly cloning the transitions in the dataset may hinder the process of
"trajectory stitching" in the case of a sub-optimal behavior policy. As illustrated in Figure 1, the
optimal trajectory cannot be synthesized by either OSR or SDC methods, while our proposed method,
called Outcome-Driven Action Flexibility (ODAF), naturally tolerates unseen transitions during the
"trajectory stitching" process, thereby enhancing the agent’s ability to learn from non-expert data.

In what follows, after an introduction and a review of related works, Section 3 provides a brief
overview of the preliminary knowledge on action constraint methods and consequence-driven methods
in offline RL. Section 4 details the ODAF method, along with a theoretical explanation of its effect
and the practical implementation. Experimental results are presented in Section 5 to evaluate the
effectiveness of both methods under various settings. Finally, the paper concludes with a summary.

2 RELATED WORKS

Action-supported offline RL. Action-supported regularization plays a pivotal role in offline RL,
striking a balance between conservatism and the ability of the learned policy to stitch trajectories.
The Bootstrapping Error Accumulation Reduction (BEAR) (Wu et al., 2019a) method pre-trains an
empirical behavior policy and regulates the divergence within a relaxation factor of the new policy.
Supported Policy Optimization (SPOT) (Wu et al., 2022) takes a different approach by explicitly
estimating the behavior policy’s density using a high-capacity Conditional VAE (CVAE) (Kingma
& Welling, 2014) architecture. The most recent advancement in this field is Supported Value
Regularization (SVR) (Mao et al., 2023), which simplifies action-supported regularization by only
requiring an estimation of the behavior policy’s action visitation frequency, significantly reducing
estimation errors and enhancing robustness. However, action-supported regularization would be too
restrictive in avoiding all unseen actions, even those with safe consequences and are worth exploring.

State recovery-based offline RL. As the relaxation of action-constraint, state recovery-based
methods like State Deviation Correction (SDC) (Zhang et al., 2022) align the transitioned distributions
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of the new policy and the behavior policy, forming a robust transition to avoid the OOD consequences.
To further avoid the explicit estimation of consequences in high-dimensional state space, Out-
of-sample Situation Recovery (OSR) (Jiang et al., 2023) introduces an inverse dynamics model
(IDM) (Allen et al., 2021) to consider the consequential knowledge in an implicit way when decision
making. In this paper, we also consider them as the consequence-driven methods that implicitly avoid
the state distributional shift problem via aligning the transitioned distribution of the new policy with
that of the behavior policy. But such methods would hinder their ability of trajectory stitching and
generalization on non-expert data.

Trajectory stitching in offline RL. Recently, Model-based Return-conditioned Supervised Learn-
ing (MBRCSL) (Zhou et al., 2023) is proposed to equip the agent with trajectory stitching ability.
Although this method has achieved great improvement in certain scenarios, demonstrating the impor-
tance of trajectory stitching, it needs a large number of rollouts with the pre-trained model to correct
the sub-optimal data distribution of the dataset, accumulating the model error. This motivates us to
propose the ODAF method to achieve the trajectory stitching ability via only policy constraint.

3 PRELIMINARIES

A reinforcement learning problem is usually modeled as a Markov Decision Process (MDP), which
can be represented by a tuple of the form (S,A, P,R, γ, ρ0), where S is the state space, A is the
action space, P is the transition probability matrix, R and γ are the reward function and the discount
factor, ρ0 is the initial state distribution. A policy is defined as π : S → A that makes decisions
acting with the environment.

In general, we define a Q-value function Qπ(s, a) = (1− γ)E[
∑∞

t=0 γ
tR(st, π(at|st))|s, a] to rep-

resent the expected cumulative rewards. Besides, we define the advantage as Aπ(s, a) = Qπ(s, a)−
V π(s), where V π(s) = Ea∼π(·|s)[Q

π(s, a)]. Then we define the γ-discounted future state distribu-
tion (stationary state distribution) for convenience as, dπ(s) = (1− γ)

∑∞
t=0 γ

tPr(st = s;π, ρ0),
where ρ0 is the initial state distribution and the (1− γ) is the normalization factor.

In offline setting, Q-Learning (Watkins & Dayan, 1992) learns a Q-value function Q̂(s, a) and
a policy π from a dataset D collected by a behavior policy πβ , which consists of quadruples
(s, a, r, s′) ∼ dπβ (s)πβ(a|s)P (r|s, a)P (s′|s, a). Then the objective is minimizing the Bellman error
over the offline dataset (Watkins & Dayan, 1992), using exact or an approximate maximization
scheme, such as CEM (Kalashnikov et al., 2018), onto the above method to recover the greedy policy,

min
Q

E(s,a,r,s′)∼D
[
r + γEs′∼P (s′|s,a)[Ea′∼π(a′|s′)Q(s′, a′)]−Q(s, a)

]2
(1)

max
π

Es∼DEa∼π(·|s)[Q(s, a)] (2)

3.1 ACTION-SUPPORTED OFFLINE RL

The well-known extrapolation error problem would occur (Fujimoto et al., 2019) when estimating the
maxa′ Q(s′, a′) in the Eq.(1)’s TD target. Methods, such as BEAR (Wu et al., 2019a), SPOT (Wu
et al., 2022) and SVR (Mao et al., 2023), are proposed to address such issue while preserving the
ability of trajectory stitching through the action-supported regularization. In general, these methods
could be represented in the following form,

min
Q

E(s,a,r,s′)∼D
[
r + γEs′∼P (s′|s,a)[ max

π∈Πac

Ea′∼π(·|s′)Q(s′, a′)]−Q(s, a)
]2

(3)

Πac = {π|∀s, supp(π(a|s)) ⊆ supp(πβ(a|s))} (4)

where the Πac is the candidate policy set, in which all the policies π would only generate actions
supported by the behavior policy πβ .

4 THE METHOD

In this section, we introduce the proposed method in detail. First, the objective of the proposed
Outcome-Driven Action Flexibility (ODAF) is given and its properties are discussed in a theoretical
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way. Then we give the way of implicit implementation, where we utilize the uncertainty lower bound
of Q ensembles to approximate the ODAF constraint, which is utilized for empirical analysis in Sec.5.

4.1 OUTCOME-DRIVEN POLICY BOOTSTRAPPING

First, we define an outcome-driven candidate set for policy search,

Π ={π|∀s ∈ D, supp(P (s′|s, π)) ⊆ supp(dπβ (s′))} (5)

where supp(p) denotes the support set of a distribution p, dπβ denotes the stationary state distribution
of the behavior policy πβ , and P (s′|s, π) = Ea∼π(·|s)P (s′|s, a) is the transitioned distribution of the
new policy π. In words, this Π defines a policy set for a given environment based on some behavior
policy πβ , in which each policy is safe in the sense that by following it, the transition state will always
fall within the support of dπβ . Comparing to previous methods, e.g., those defined in E.q.(4), we see
that our candidate policy set Π are based on the outcome of the policy rather than the behaviors the
policy performed.

In fact, compared to action-support candidate sets as in Eq.(4), this outcome-driven policy candidate
set imposes a looser constraint on the policy space, which ensures that under the optimal state
coverage assumption (Xie et al., 2021) (this will be discussed later), the optimal policy will fall into
our set. Therefore, intuitively, the Bellman operator constructed using this candidate set is expected
to have better theoretical properties.

Despite the aformentioned advantages, finding an optimal solution from the policy set defined in Eq.
(5) is a computationally challenging problem. In what follows in this section, we will construct a
formal theoretical framework to address this issue. Specifically, we first define the Outcome-Driven
bootstrapping Bellman operator over Π as follows:

T̂ΠQ(s, a) := r(s, a) + γEs′∼P̂ (s′|s,a) max
π∈Π

Ea∼π(a|s)Q(s, a) (6)

where P̂ is the empirical dynamics model of the dataset. In particular, if using the true dynamics
model P to replace P̂ , the T̂Π would be noted as TΠ.

To justify the above Outcome-Driven bootstrapping Bellman operator, Theorem 1 gives the per-
formance lower bound of the value function learned by this Bellman operator. Before Theorem 1,
Lemma 1 shows that the Outcome-Driven bootstrapping Bellman operator is a γ-contraction operator.
Lemma 1. (Contraction.) The Bellman operator defined in Eq.(6) is a contraction operator.

The proof of Lemma 1 is shown in Appendix A.
Theorem 1. If we have constructed the outcome-driven policy candidate set Π, such that the
transitioned distribution of all the candidate policies are covered by the dataset well, i.e., ∀π ∈
Π, s ∈ D, sups′

P̂ (s′|s,π)
dπβ (s′)

≤ ϵ < 1. Then we can bound the performance lower bound of our method,

∥Q̂k −Q∗∥(s, a) ≤ γRmax

1− γ

√
2

N · dπβ (s, a)
log(

|S||A| · 2|S|

δ
) + γk · ϵ · ∥△0∥ (7)

where |S|, |A| are the dimensions of the state and action spaces. ∥△0∥ = maxπ∈Π(Q̂
0− Q̂∗), where

Q̂0 is an arbitrary initial value function and Q̂∗ is the fixed point of T̂Π, and Q∗ is the fixed point of
TΠ. Rmax is the upper bound of rewards and N is the size of dataset.

The proof of Theorem 1 is shown in Appendix A.
Corollary 1. If we assume the dataset has sufficient coverage over the optimal policy’s stationary

state distribution, i.e., sups
dπ∗

(s)
dπβ (s)

≤ C, then the fixed point Q∗ of TΠ would be the true optimal
value function of the MDP. Then Theorem 1 can bound the learned agent’s performance lower bound.

Theorem 1 and Corollary 1 indicates that the convergence of the value function learned by the
Outcome-Driven bootstrapping Bellman operator constructed in Eq.(5) is influenced by the data
number N · dπβ (s, a) and the quality of the approximate solution to the candidate set of state-
supported policies (see Eq.(5)). Therefore, we ought to determine how to design a policy constraint
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algorithm that maximizes the satisfaction of the outcome-driven constraints proposed in Eq.(5) during
the learning process, which would be introduced in detail in the next section.

Before ending this section, we provide two discussions to briefly compare the performance lower
bound of our method with other methods, including the action-support constraint method (Wu et al.,
2019a) and the pessimistic constraint method (Xie et al., 2021).
Discussion 1. (vs. Action-supported constraint) Assuming we learn the action support set with the
same accuracy as in the assumption of Theorem 1, i.e., sups,a

π(a|s)
πβ(a|s) ≤ ϵ. Consequently, we can

derive the following, ∀s ∈ D,

π(a|s) ≤ πβ(a|s) · ϵ ⇒ P (s′|s, π) ≤ P (s′|s, πβ) · ϵ ⇒
Edπβ (s)P (s′|s, π)

dπβ (s′)
≤ ϵ (8)

Then we have ∃s ∈ D, s.t., P (s′|s,π)
dπβ (s′)

> ϵ, which conflict the assumption for Theorem 1. Therefore,
Theorem 1 could not be applied onto the action-supported method as in (Wu et al., 2019a).

As far as we know, to bound the performance lower bound of the action-support methods, it is
important to raised the centralization assumption as in the paper (Wu et al., 2019a), which often
requires sufficient coverage of the entire state-action space by the dataset. This is challenging to
achieve in practice.
Discussion 2. (vs. Pessimistic constraint) First, we introduce the optimal coverage assumption

in (Xie et al., 2021), i.e., sups
dπ∗

(s)
dπβ (s)

≤ C. Then we have supp(dπ
∗
(s)) ⊆ supp(dπβ (s)), so

π∗ ∈ ΠODAF , where ΠODAF is a state-supported candidate set as defined in Eq.(5).

Next, we can directly apply Corollary 2 from (Xie et al., 2021). This corollary is particularly general,
as it does not impose any prior assumptions about the policy candidate set, only requiring that the
optimal policy is included within that set. Denoting the policy learned by ODAF as π̂ODAF ,

J(π∗)− J(π̂ODAF ) ≤ O

Vmax

√
C2

1− γ

√
log |F ||ΠODAF |

δ

N
+

√
C2(ϵF,F + ϵF )

1− γ

 (9)

where J(π) = Eρ0(s)V
π(s) is the performance of π with initial distribution ρ0. Vmax is the upper

bound of value function, |F | and |ΠODAF | are the sizes of the approximated Q function space and
the policy candidate set, ϵF,F and ϵF bound the quality of the learned q function, as are assumed
in (Xie et al., 2021).

We observe that, since the size of our policy candidate set |ΠODAF | is smaller than that of the
Pessimistic method in (Xie et al., 2021), which almost has no constraint over the policy candidate set,
the bound of our method must be tighter than that of the Pessimistic method.

It is worth noting that due to the assumption sups
dπ∗

(s)
dπβ (s)

≤ C could not guarantee that the op-
timal policy is in the action-supported policy candidate set Πac = {π|∀s ∈ D, supp(π(a|s)) ⊆
supp(πβ(a|s)} as in Eq.(4), the bound in Eq.(9) can not apply to the action-supported methods.

4.2 AN UNCERTAINTY-BASED REGULARIZATION ALGORITHM FOR IMPLEMENTATION

To find the best policy in Π, we can utilize an ϵ−approximation for the policy support set Π ≈ Πϵ,
where Πϵ = {π|∀s ∈ D, s′, s′ /∈ supp(dπβ (s′)) ⇒ P (s′|s, π) < ϵ}. Then with a Lagrange
approximation performed on the regularization π ∈ Πϵ, we have the following objective function1,

min
π

βssb ·
∑

s′ /∈supp(dπβ (s′))

(P (s′|s, π)− ϵ) (10)

Then to implement Eq.(10), recall that if we execute an action a at any state s in the offline dataset D,
the distribution of the potential consequence s′ is given by the dynamics model P (s′|s, a). Our key
idea is then to approximate Eq.(10) from above based on the estimation of the state uncertainty of the
state s′ resulted from a policy. We call it Outcome-Driven Action Flexibility (ODAF).

1Note that for simplicity, here we ignore the Bellman error term (see E.q.( 2)).
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To this end, we may define a new learning objective by minimizing the state uncertainty of the new
policy π over the perturbed s, as follows,

min
π

Es∼D

[∑
s′

P (s′|s, π)Uπ(s′)

]
(11)

where Uπ(s) = Eπ(a|s)U(s, a) and U(s, a) ∈ [0,+∞) is an uncertainty quantifier as is introduced
in (Jin et al., 2021a), which has proven to have the property that if the input data (s, a) is OOD, the
U(s, a) would be large and otherwise it would be small (An et al., 2021). Here we utilize it as the
indicator to judge the averaged reliability of the learned policy π over the potential consequences,
aiming to margin out those behaviors which would lead to unsafe consequences.

Next we explicitly build the connection between the uncertainty-based regularization in Eq.(11) and
the support region of the dataset. In particular, Theorem 2 shows that under certain mild condition
given in Appendix B, we can use uncertainty to bound the support region of the dataset.
Theorem 2. Given an arbitrary state s, a conservative policy π and a state estimator Uπ based on
the policy π. Then the minimizing the ODAF term in Eq.(11), i.e.,

min
π

∑
s′

P (s′|s, π)Uπ(s′)

is equivalent to minimizing the upper bound of the following objective as in Eq.(10),∑
s′ /∈supp(dπβ (s′))

P (s′|s, π) (12)

where supp(dπβ (s′)) is the support of the dataset.

Proof of Theorem 2 is given in Appendix C.1. By Theorem 2 , we see that it is less likely for the agent
to select the actions that would transit to those states outside the support region of the dataset, hence
avoiding being misled by the sub-optimal behavior data, as what may happen for a naive behavior
cloning algorithm. 2

In practice, we implement the proposed Outcome-Driven Action Flexibility (ODAF) onto a SAC-
N (An et al., 2021) framework. The ODAF in Eq.(11) could be implemented as the loss,

Lodaf = Es∼D

[
max

ŝ∈B
ϵodaf
s

[∑
ŝ′

P (ŝ′|ŝ, π)Uπ′
(ŝ′)

]]
(13)

where B
ϵodaf
s is a perturbation ball around state s with magnitude ϵodaf . The learned policy π′ is

soft-updated via the new policy π in this implementation. Here we implicitly assume that the Bϵodaf
s

term is related to π in that the state s is sampled from the latter’s state occupancy dπ(·), where the
implementation of Bϵodaf

s is discussed in Appendix E.1. In words, the new objective Eq.(11) aims
to find a robust policy π that minimizes the maximum (worst) possibility of driving the agent to
encounter unfamiliar regions. Such regularization could also be theoretically referred as a relaxed
state recovery principle (discussed in detail in Appendix D, due to the limitation of space).

Here we select the standard deviation based uncertainty estimator in (Bai et al., 2022; An et al., 2021):

Uπ(s) ≈ β · Std(Qk(s, a)) = β ·

√√√√ 1

K

K∑
k=1

(
Qk(s, a)− Q̄(s, a)

)
(14)

where {Qk}Kk=1 is the Q-ensemble and β is a constant. The Eq.(13) often utilize a Monte-Calro
approximation in implementation. Then we attach the Lodaf in Eq.(13) onto the actor loss introduced
in (Bai et al., 2022) as,

Lπ = −Es∼D,a∼π(·|s)
[

min
j=1..N

Q′
j(s, a)− β log π(a|s)

]
+ βodaf · Lodaf (15)

where βodaf is the wight of the ODAF term. The critic loss function LQ is as introduced in (Bai
et al., 2022),

LQ = Es,a,r,s′∼D
[(
Q(s, a)− (r + γEa′∼π(·|s′)[ min

j=1..N
Q′

j(s
′, a′)− β log π(a′|s′)]

)]
(16)

where {Q′
j}Kj=1 are the K Q ensembles.

To sum up, the whole ODAF could be implementation as Algorithm 1.
2Empirical evidences that ODAF term is adequate for our needs are also given in Appendix 5.5.
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Algorithm 1 The pseudocode of the proposed Uncertainty-based Outcome-Driven Action Flexibility
(ODAF) algorithm
Input: the offline dataset D, maximal update iterations T , the pretrained dynamics model P .
Parameter: policy network π, evaluation policy π′, Q-networks Qi.
Policy Training

Initialize the policy network, Q-networks.
while t < T do

Sample mini-batch of N samples (s, a, r, s′) from D.
Get the perturbed ŝ with adversarial method in (Yang et al., 2022).
Feed ŝ to the policy network π and get â.
Feed ŝ, â to the dynamics model P and get the potential consequence ŝ′.
Compute the agent’s state uncertainty of ŝ′ according to the Q-networks Q and π′.
Update the policy network π according to Eq.(15).
Update the Q-networks according to (16).
Soft update the parameters of the evaluation policy π′.

end while
Output: The learned policy network π.

5 EXPERIMENTS

In experiments we mainly aim to answer the following three key questions:

1) Does ODAF achieve the state-of-the-art performance on standard MuJoCo benchmarks with
non-expert data, compared to the latest closely related methods?

2) Does ODAF has better stability (generalization ability) when learning on non-expert data?

3) Does ODAF enable the agent to stitch the sub-optimal trajectories to achieve higher performance?

Our experimental section is organized as follows: First, we perform a test on PointMaze benchmark -
a benchmark designed especially for testing the agent’s trajectory stitching (Zhou et al., 2023) to
directly confirm whether our method can achieve our claim - stitching for better trajectories and
getting higher performance, answering Question 3; then, we verify that it is hard for the traditional
methods to learn from non-expert datasets on standard MuJoCo benchmarks, but the proposed method
ODAF has a superior performance among these methods, answering Question 1; to answer Question
2, we perform ODAF in the MuJoCo with limited valuable data setting (Zhang et al., 2022; Jiang
et al., 2023; Mao et al., 2023) to explore how the performance of ODAF changes when learning
with different levels of non-expert data; besides, we also conduct the experiments over the more
complicated tasks of AntMaze to evaluate the ability of multi-step dynamic programming; finally, we
conduct a validation study to verify what role the ODAF term plays. 3

5.1 POINTMAZE: TRAJECTORY STITCHING TESTING

Figure 2: Sub-figure (a) shows the PointMaze map we used. (b) shows the dataset description, where
S is the initial point and G is the goal. The red line is a sub-optimal trajectory while the blue line is a
trajectory for stitching. (c) shows the results of the methods, and the proposed ODAF is marked red
and the highest score is bolded. (d) is the visualization of part of results in (c).
To investigate if the learned agents could do stitching, we introduce a specially designed PointMaze
dataset (Zhou et al., 2023), which consists of two kinds of sub-optimal trajectories with equal number,

3A brief introduction of our code is available in Appendix E.4. Some experiments are listed in Appendix E.
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as is shown in (a) and (b) of Figure 2: 1) A detour trajectory S → A → B → G that reaches the goal in
a sub-optimal manner; 2) A trajectory for stitching: S → M, whose return is very low, but is essential
for getting the optimal policy. The optimal trajectory should be a stitching of the two trajectories in
dataset (S → M → G). The resulting dataset has averaged return 40.7 and highest return 71.8.

To answer question 3, we compare the proposed ODAF with several offline RL baselines, including: 1)
Traditional action-constraints: CQL (Kumar et al., 2020) and SPOT (Wu et al., 2022); 2) Consequence-
driven method: OSR (Jiang et al., 2023); 3) Model-based methods: COMBO (Yu et al., 2021) and
MOPO (Yu et al., 2020); 4) The method specially designed for trajectory stitching: MBRCSL (Zhou
et al., 2023). The results are shown in (c) of Figure 2, where the ODAF and MBRCSL both
outperforms all the other baselines with a large margin, successfully stitching together sub-optimal
trajectories. However, unlike MBRCSL, our method ODAF does not need large number of rollouts
based on the approximated dynamics model, which means that ODAF is less likely to suffer from the
error accumulation of the learned model, achieving higher performance and better efficiency.

In (d) of Figure 2, we observe that the trajectories generated via SVR and OSR are scattered and
coincide with the trajectories listed in the dataset, which demonstrates that these two methods would
significantly over-fit to the transitions listed in the dataset instead of generalizing to those unseen but
with higher value. However, the proposed ODAF successfully generate trajectories stitched with the
two kinds of samples demonstrated in the dataset, achieving higher performance.

5.2 LEARNING FROM NON-EXPERT DATASETS

In this section, we compare the two proposed implementations of our method with several significant
methods, including CQL (Kumar et al., 2020), PBRL (Bai et al., 2022), SPOT (Wu et al., 2022),
SVR (Mao et al., 2023), EDAC (An et al., 2021), RORL (Yang et al., 2022), SDC (Zhang et al., 2022)
and OSR-10 (Jiang et al., 2023), based on the D4RL (Fu et al., 2020) dataset in the standard MuJoCo
benchmarks. MuJoCo (D4RL). There are three types of high-dimensional control environments
representing different robots in D4RL: Hopper, Halfcheetah and Walker2d, and five kinds of datasets:
’random’, ’medium’, ’medium-replay’, ’medium-expert’ and ’expert’. The ’random’ is generated by a
random policy and the ’medium’ is collected by an early-stopped SAC (Haarnoja et al., 2018) policy.
The ’medium-replay’ collects the data in the replay buffer of the ’medium’ policy. The ’expert’ is
produced by a completely trained SAC. The ’medium-expert’ is a mixture of ’medium’ and ’expert’.

Table 1: Results of ODAF(ours), CQL, PBRL, SPOT, SVR, EDAC, RORL, SDC and OSR-10 on
offline MuJoCo tasks averaged over 4 seeds. We bold the highest scores in each task.

CQL PBRL SPOT SVR EDAC RORL SDC OSR-10 ODAF(Ours)

ha
lf

ch
ee

ta
h r 17.5 11.0 35.3 27.2 28.4 28.5 36.2 26.7 30.2±1.7

m 47.0 57.9 58.4 60.5 65.9 66.8 47.1 67.1 68.7±0.3
m-e 75.6 92.3 86.9 94.2 106.3 107.8 101.3 108.7 111.1±2.4
m-r 45.5 45.1 52.2 52.5 61.3 61.9 47.3 64.7 65.1±0.3
e 96.3 92.4 97.6 96.1 106.8 105.2 106.6 106.3 107.9±1.1

ho
pp

er

r 7.9 26.8 33.0 31.0 25.3 31.4 10.6 30.4 32.1±1.5
m 53.0 75.3 86.0 103.5 101.6 104.8 91.3 105.5 106.3±1.2
m-e 105.6 110.8 99.3 111.2 110.7 112.7 112.9 113.2 114.3±0.8
m-r 88.7 100.6 100.2 103.7 101.0 102.8 48.2 103.1 104.8±0.8
e 96.5 110.5 112.3 111.1 110.1 112.8 112.6 113.6 114.7±0.7

w
al

ke
r2

d

r 5.1 8.1 21.6 2.2 16.6 21.4 14.3 19.7 24.4±2.3
m 73.3 89.6 86.4 92.4 92.5 102.4 81.1 102.0 104.1±2.8
m-e 107.9 110.8 112.0 109.3 114.7 121.2 105.3 123.4 123.8±0.7
m-r 81.8 77.7 91.6 95.6 87.1 90.4 30.3 93.8 95.1±1.9
e 108.5 108.3 109.7 110.0 115.1 115.4 108.3 115.3 115.9±1.3

average 67.4 74.4 78.8 80.0 82.9 85.7 70.2 86.2 87.9

The results is shown in Table 1, where part of the results for the comparative methods are obtained
by (Yang et al., 2022; Jiang et al., 2023). We have observed that the performance of all methods
experiences a significant decrease when applied to non-expert datasets such as ’random’, ’medium’,
’medium-replay’, and ’medium-expert’. This highlights the inherent difficulty in learning from non-
expert data in practical settings. However, our proposed method, ODAF, consistently outperforms
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other approaches across most benchmarks, particularly surpassing methods that rely on behavior
cloning such as CQL, PBRL, and EDAC. Furthermore, ODAF achieves state-of-the-art performance
in terms of the average score. Additionally, we would like to emphasize that ODAF demonstrates
significant improvements over the state-of-the-art conservative methods (e.g., SVR and OSR) on the
’medium’ and ’medium-replay’ datasets. This notable margin can be attributed to ODAF’s ability
to avoid error compounding through its flexibility in trajectory stitching. This further underscores
the advantages of ODAF in effectively handling non-expert data. In the next section, we will delve
deeper into exploring the advantages of ODAF across different levels of non-expert datasets.

5.3 INFLUENCE OF DIFFERENT LEVELS OF NON-EXPERT DATA

In this section, we further explore the feasibility of the proposed ODAF on different levels of non-
expert offline dataset, where we mix the ’expert’ and ’random’ datasets with different ratios. This is a
setting widely used, such as in (Zhang et al., 2022; Mao et al., 2023; Jiang et al., 2023). Here, the
proportions of ’random’ data are 0.5, 0.6, 0.7, 0.8 and 0.9, for Halfcheetah, Hopper and Walker2d.

Figure 3: The results on the MuJoCo benchmarks with different levels of non-expert data.

We compare the proposed ODAF with SVR (Mao et al., 2023), OSR (Jiang et al., 2023) and
SDC (Zhang et al., 2022), as is shown in Figure 3, ODAF outperforms the other three methods on three
type of control environments over the normalized scores. We have observed that both of our proposed
methods, particularly ODAF, exhibit a significantly lower decrease rate over the ’Halfcheetah’
benchmark compared to the other two methods as the random ratio increases, which can be attributed
to the agent’s heightened sensitivity to the quality of data collection in this environment. Furthermore,
when testing on the ’Hopper’ and ’Walker2d’ benchmarks, we note that ODAF demonstrates the least
decrease in performance among all methods when the random ratio reaches 0.9, which highlights the
advantage of the implicit implementation in addressing more complex tasks and learning from data
of lower quality in practical scenarios. Therefore, we emphasize that our method, ODAF, is better
equipped for learning with non-expert data, and they exhibit improved stability and performance
across various benchmarks with lower data quality.

5.4 EXPERIMENTS ON MORE COMPLICATED ENVIRONMENT - ANTMAZE

Table 2: Results of ODAF(ours), CQL, IQL, SPOT, ATAC, SDC and OSR-10 on offline AntMaze
tasks averaged over 4 seeds. We bold the highest scores in each task.

CQL IQL SPOT ATAC SDC OSR-10 ODAF(Ours)

A
nt

M
az

e umaze 82.6 87.5 93.5 70.6 89.0 89.9 94.6±0.9
umaze-diverse 10.2 62.2 40.7 54.3 57.3 74.0 71.3±4.7
medium-play 59.0 71.2 74.7 72.3 71.9 66.0 79.0±2.1
medium-diverse 46.6 70.0 79.1 68.7 78.7 80.0 79.6±1.7
large-play 16.4 39.6 35.3 38.5 37.2 37.9 59.3±5.7
large-diverse 3.2 47.5 36.3 43.1 33.2 37.9 47.4±9.3

average 36.3 63.0 59.9 57.9 61.2 64.3 71.9

Compared to the MuJoCo environment, the AntMaze environment requires the agent to have the
ability of multi-step dynamic planning, making it considered a more complex scenario. In this
environment, we compare CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), SPOT (Wu et al.,
2022), ATAC (Cheng et al., 2022), SDC (Zhang et al., 2022), and OSR-10 (Jiang et al., 2023). In
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the AntMaze environment, based on the size and shape of the maze, it can be categorized into
’umaze,’ ’medium,’ and ’large’; and based on different tasks, it can be classified as ’diverse’ and
’play’. From the results in Table 2, we can observe that our method outperforms other methods in
most environments, particularly in the ’large’ and ’diverse’ tasks, where our method significantly
outperforms others. This indicates that our method exhibits strong generalization capabilities even
when facing more complex and challenging tasks.

5.5 VALIDATION STUDY FOR ODAF REGULARIZATION

In this section, we perform a series of validation experiments to explore the impact of two key
components of the proposed method: the pre-trained dynamics models P̂ (s′|s, a) and the uncertainty
approximations Uπ(s′). Both components are integrated into the ODAF term in Eq. (11), which
evaluates the safety of the outcome resulting from a given action. To assess the effectiveness of the
ODAF term, we conducted a straightforward experiment within the MuJoCo environment.

In the experiment, we first generated two sets of actions: one set with safe outcomes, obtained by
selecting two similar states from the dataset and generating actions through the inverse dynamics
model; the other set with unsafe outcomes, composed of a series of random actions. We then utilized
either the true dynamics model (TDM) or our pre-trained dynamics model (PDM) to predict the next
states of these actions and assess their safety as score(s, a) = EP̂ (s′|s,a)U

π(s′).

Table 3: Validation study for ODAF regularization.
Halfcheetah Hopper Walker2d

Safe actions w. TDM 0.07 0.13 0.12
Random actions w. TDM 0.48 0.49 0.53
Safe actions w. PDM 0.13 0.11 0.21
Random actions w. PDM 0.54 0.64 0.57

Table 3 shows the results. Comparing the results of the first and second rows, we observe that
our safety scoring method is sensitive to whether the consequences of actions are in-distribution or
out-of-distribution (OOD), which supports the validity of this measurement. Looking at the results of
the third and fourth rows, we find that the uncertainty quantifier also reveals a significant score gap
between the two types of actions when using the pre-trained dynamics model. This gap is comparable
to that observed in the first and second rows. This suggests that the performance of the pre-trained
dynamics model is sufficient to distinguish whether the consequences of actions are safe, without
even requiring a perfect reconstruction of the outcome state of those actions.

6 CONCLUSION

In this paper, we propose a novel method called Outcome-Driven Action Flexibility (ODAF) to
trade-off the conservatism and generalization when learning from non-expert data in offline RL.
In particular, ODAF liberates the agent from the shackles of non-expert data in a consequence-
driven manner - it implicitly avoids the agent suffering from distributional shift via controlling its
consequences within in-distributional (safe) regions, while preserving its ability of trajectory stitching,
which is critical for achieving superior performance from non-expert demonstrations. We provide two
ways to implement the proposed idea. Theoretical and experimental results validate the effectiveness
and feasibility of ODAF. We believe that the problem addressed in this work and the proposed method
hold promise for practical applications of offline RL.
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Appendix

A PROOF OF LEMMA 1 AND THEOREM 1.

Lemma 1. (Contraction.) The Bellman operator defined in Eq.(6) is a contraction operator.

Proof. Suppose there exist two variables u, v in the value function space, then we have,

∥TΠu− TΠv∥∞ = max
s

|TΠu(s)− TΠv(s)| (17)

= max
s

|max
π∈Π

E[r + γu(s′)|s, a]−max
π∈Π

E[r + γv(s′)|s, a]| (18)

≤ max
s

max
π∈Π

|γE[u(s′)− v(s′)|s, a]| (19)

≤ max
s

max
π∈Π

γE[|u(s′)− v(s′)|
∣∣s, a] (20)

≤ max
s

max
π∈Π

γE[∥u(s′)− v(s′)∥∞
∣∣s, a] (21)

= γ∥u(s′)− v(s′)∥∞ (22)

Completing the proof.

Theorem 1. If we have constructed the policy candidate set Π, such that the transitioned distribution
of all the candidate policies are covered by the dataset well, i.e., ∀π ∈ Π, s ∈ D, sups′

P̂ (s′|s,π)
dπβ (s′)

≤
ϵ < 1. Then we can bound the performance lower bound of our method,

∥Q̂k −Q∗∥(s, a) ≤ γRmax

1− γ

√
2

N · dπβ (s, a)
log(

|S||A| · 2|S|

δ
) + γk · ϵ · ∥△0∥ (23)

where |S|, |A| are the dimensions of the state and action spaces. ∥△0∥ = maxπ∈Π(Q̂
0− Q̂∗), where

Q̂0 is an arbitrary initial value function and Q̂∗ is the fixed point of T̂Π, and Q∗ is the fixed point of
TΠ. Rmax is the upper bound of rewards and N is the size of dataset.

Proof of Theorem 1. First we decompose the ∥Q̂k−Q∗∥(s, a) = ∥Q̂k−Q̂∗∥(s, a)+∥Q̂∗−Q∗∥(s, a)
with the triangle inequality.

Then we aim to bound ∥Q̂∗ −Q∗∥. First, by the triangle inequality, we have,

∥Q̂∗ −Q∗∥(s, a) ≤ ∥T̂ΠQ̂∗ − T̂ΠQ∗∥(s, a) + ∥T̂ΠQ∗ −Q∗∥(s, a) (24)

Because T̂Π is a γ-contraction operator (see Lemma 1), we have,

∥Q̂∗ −Q∗∥(s, a) ≤∥TΠQ∗ − TΠQ∗∥(s, a)
1− γ

(25)

=
γ

1− γ
∥P (s′|s, a)− P̂ (s′|s, a)∥1 max

π∈Π
Q∗(s′, π) (26)

≤γ ·Rmax

1− γ
∥P (s′|s, a)− P̂ (s′|s, a)∥1 (27)

≤γ ·Rmax

1− γ

√
2

N · dπβ (s, a)
log(

|S||A| · 2|S|

δ
) (28)

The last inequality holds because of the Proposition 9 in Ghavamzadeh et al. (2016).
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Then we bound the ∥Q̂k − Q̂∗∥(s, a).
∥Q̂k − Q̂∗∥(s, a) ≤(a)γk∥EP̂ (sk|{π1...πk−1},s,a) max

π∈Π
(Q̂0 − Q̂∗)(sk, π)∥ (29)

=γk∥
∑
sk

P̂ (sk|{π1...πk−1}, s, a)
dπβ (sk)

dπβ (sk)max
π∈Π

(Q̂0 − Q̂∗)(sk, π)∥ (30)

≤γk
∑
sk

P̂ (sk|{π1...πk−1}, s, a)
dπβ (sk)

∥dπβ (sk)max
π∈Π

(Q̂0 − Q̂∗)(sk, π)∥ (31)

≤γk sup
t

∑
st

P̂ (st|{π1...πt−1}, s, a)
dπβ (st)

∑
sk

∥dπβ (sk)max
π∈Π

(Q̂0 − Q̂∗)(sk, π)∥

(32)

=γk sup
t

∑
st

P̂ (st|{π1...πt−1}, s, a)
dπβ (st)

∥△0∥ (33)

(34)

where ∀i ∈ [1, k], πi = argmaxπ∈Π(Q̂
k−i − Q̂∗)(s, π). The k-step transition distribution

P̂ (sk|{π1...πk}, s, a) means that starting form s, a, taking policy from index 1...k, and the final
state distribution at the k-step.

The inequality (a) holds because,

∥Q̂k − Q̂∗∥(s, a) = ∥T̂ΠQ̂k−1 − T̂ΠQ̂∗∥(s, a) (35)

= γ∥EP̂ (s1|s,a)(Q̂
k−1 − Q̂∗)(s1, π1)∥ (36)

≤ γ∥EP̂ (s1|s,a)(γEP̂ (s2|π1,s1)
(Q̂k−2 − Q̂∗)(s2, π2))∥ (37)

= γ2∥EP̂ (s2|π1,s,a)
(Q̂k−2 − Q̂∗)(s2, π2)∥ (38)

........... (39)

= γk∥EP̂ (sk|{π1...πk−1},s,a)(Q̂
0 − Q̂∗)(sk, πk)∥ (40)

Then ∀π ∈ Π, s ∈ D, sups′
P̂ (s′|s,π)
dπβ (s′)

≤ ϵ, so we have, ∀t, supst
P̂ (st|s,{π1...πt})

dπβ (st)
≤ ϵt ≤ ϵ, where

π1...πt ∈ Π. Therefore, finally we have,
∥Q̂k − Q̂∗∥(s, a) ≤ γk · ϵ · ∥△0∥ (41)

Completing the proof.

B ASSUMPTION FOR THEOREM 2

Assumption 1. (Bounded uncertainty). ∀(s, a) /∈ supp(dπβ (s′)), Umin ≤ u(s, a), where Umin

and Umax are constants, and Umin > 0.

where D is the offline dataset and supp(D) is the support of D. Assumption 1 assumes that for any
OOD state-action pair, the uncertainty estimator is strictly positive, which conform to the empirical
results in (An et al., 2021).

C PROOFS

C.1 PROOF OF THEOREM 2

The proof of Theorem 2 is performed under Assumption 1.

Theorem 2.Given an arbitrary state s, a conservative policy π and a state estimator Uπ
D based on

the policy π and dataset D. Then the minimizing the ODAF term in Eq.(11), i.e.,

min
π

∑
s′

P (s′|s, π)Uπ
D(s

′)
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is equivalent to minimizing the upper bound of the following objective,∑
s′ /∈supp(dπβ (s′))

P (s′|s, π) (42)

where supp(dπβ (s′)) is the support of the dataset.

Proof. ∑
s′

P (s′|s, π)Uπ
D(s

′)

=
∑

s′∈supp(dπβ (s′))

P (s′|s, π)Uπ
D(s

′) +
∑

s′ /∈supp(dπβ (s′))

P (s′|s, π)Uπ
D(s

′) (43)

≥
∑

s′ /∈supp(dπβ (s′))

P (s′|s, π)Uπ
D(s

′) (44)

where, by Assumption 1, then ∀s′ ∈ D, Uπ
D(s

′) > 0, so that Eq.(43) upper bounds Eq.(44). Then, via
Assumption 1, we have,

∑
s′ /∈supp(dπβ (s′))

P (s′|s, π)Uπ
D(s

′)

=
∑

s′ /∈supp(dπβ (s′))

P (s′|s, π)Ea′∼π(·|s′)u(s
′, a′)

≥
∑

s′ /∈supp(dπβ (s′))

P (s′|s, π)Ea′∼π(·|s′)Umin

=Umin ·
∑

s′ /∈supp(dπβ (s′))

P (s′|s, π)

where Umin is a constant according to π. Therefore we have,

min
π

Umin ·
∑

s′ /∈supp(dπβ (s′))

P (s′|s, π)

⇔min
π

∑
s′ /∈supp(dπβ (s′))

P (s′|s, π)

Complete the proof.

D A LINK TO TRADITIONAL CONSEQUENCE-DRIVEN METHODS

In this section, we give an interesting link between the proposed ODAF and the SDC (Zhang et al.,
2022) (or OSR (Jiang et al., 2023)). First, we would like to introduce a weight KL divergence as
is in (Moharana & Kayal, 2019) as Dw

KL(p(x)∥q(x)) =
∑

x w(x)p(x) log
p(x)
q(x) , where w(x) is the

weight factor. First, a smooth assumption should be given,
Assumption 2. (Smooth). Given the new policy π and the behavior policy πβ . For any state s ∼ D
and its perturbed state ŝ ∼ Bϵodaf

s , the ratio of the transitioned distributions of these two policies is
bounded, i.e., δ = maxs′

P (s′|s,πβ)
P (s′|ŝ,π) .

Then in particular,
Theorem 3. Given a state s ∼ D and the perturbed state ŝ ∈ Bϵodaf

s , the log-prob. version of ODAF
term in Eq.(11) upper bounds the equivalent form of a weighted version of model-based OSR term as
in Eq.(??) with a term that maximizes the entropy of the transitioned distribution,

min
π

max
ŝ∈B

ϵodaf
s

Dw
KL(P (s′|s, πβ)∥P (s′|ŝ, π))− δ ·H(P (·|ŝ, π)) (45)
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where Dw
KL(p∥q) is a weighted KL divergence, and the weight factor w(s′) = Umax−Uπ

D(s′)
Umax

∈ [0, 1].
The δ is the upper bound of the transitioned distributions’ ratio as in Assumption 2 and the Umax is
the upper bound of the uncertainty estimator.

Proof. First we attach a log probability trick onto the ODAF term in Eq.(11). Given a state s ∼ D
and the perturbed state ŝ ∈ Bϵodaf

s , we have

min
π

max
ŝ∈B

ϵodaf
s

∑
s′

Uπ
D(s

′) · logP (s′|ŝ, π) (46)

Then we have,

min
π

max
ŝ∈B

ϵodaf
s

∑
s′

logP (s′|ŝ, π)Uπ
D(s

′)

⇔min
π

max
ŝ∈B

ϵodaf
s

∑
s′

logP (s′|ŝ, π)Uπ
D(s

′)

+ δ · Umax ·H(P (·|ŝ, π))− δ · Umax ·H(P (·|ŝ, π))

≥(a) min
π

max
ŝ∈B

ϵodaf
s

∑
s′

logP (s′|ŝ, π)Uπ
D(s

′) +
∑
s′

UmaxP (s′|s, πβ) log
1

P (ŝ′|ŝ, π)
− δ · Umax ·H(P (·|ŝ, π))

≥(b) min
π

max
ŝ∈B

ϵodaf
s

∑
s′

[Umax − Uπ
D(s

′)]P (s′|s, πβ) log
1

P (s′|ŝ, π)
− δ · Umax ·H(P (·|ŝ, π))

≥(c) min
π

max
ŝ∈B

ϵodaf
s

[Umax − Uπ
D(s

′)] ·
∑
s′

P (s′|s, πβ) log
P (s′|s, πβ)

P (s′|ŝ, π)
− δ · Umax ·H(P (·|ŝ, π))

⇔min
π

max
ŝ∈B

ϵodaf
s

∑
s′

w(s′) · P (s′|s, πβ) log
P (s′|s, πβ)

P (s′|ŝ, π)
− δ ·H(P (·|ŝ, π))

⇔(d) min
π

max
ŝ∈B

ϵodaf
s

Dw
KL(P (s′|s, πβ)∥P (s′|ŝ, π))− δ ·H(P (·|ŝ, π)) (47)

Note that the inequality (a) holds because δ = maxs′
P (s′|s,πβ)
P (s′|ŝ,π) .

And the inequality (b) depends on ∀s, s′, the probability P (s′|s, πβ) ≤ 1.

Then the inequality (c) holds via adding a negative constant [Umax −
Uπ
D(s

′)]P (s′|s, πβ) logP (s′|s, πβ) < 0 according to the policy π.

Finally the equivalence (d) holds via the definition of weighted KL divergence Dw
KL(p(x)∥q(x)) =∑

x w(x)p(x) log
p(x)
q(x) , as in (Moharana & Kayal, 2019).

Complete the proof.

Theorem 3 demonstrates that minimizing the log-prob. version of ODAF term in Eq.(11) is equivalent
to minimizing the upper bound of a weighted OSR while maximizing the entropy of the transitioned
distribution. The weight w(s′) takes into account the qualitative characteristic related to state
uncertainty, and the maximization of the entropy of the transitioned distribution P (·|ŝ, π) ensures
sufficient variance of the policy a prior. Theorem 3 shows that, compared to OSR-10, our method
further takes the quality of the consequences of decisions into account, which means that even if
the consequences of actions fall within the state support set, the agent may not be rewarded if there
is high uncertainty. In this sense, our method is more robust to challenging tasks and sub-optimal
offline data compared to the OSR-10 approach.

E EXTERNAL EXPERIMENTS

E.1 ADVERSARIAL ATTACKS

We adopt three attack methods, namely random, action diff, and min Q following prior works (Zhang
et al., 2020; Pinto et al., 2017), about which the details are discussed in (Yang et al., 2022), as follows,
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(a) Halcheetah-medium-v2 under adversarial attacks.

(b) Hopper-medium-v2 under adversarial attacks.

(c) Walker2d-medium-v2 under adversarial attacks.

Figure 4: Results of RORL, OSR-10, ODAF (ours) on MuJoCo under different scales of adversarial
attacks on the normalized score.

1) random: uniformly samples perturbed states in an l∞ ball of norm ϵ.

2) action_diff: an effective attack based on the agent’s policy and is proved to be an upper bound on
the performance difference between perturbed and unperturbed environments (Zhang et al., 2020).
It directly finds perturbed states in an l∞ ball of norm ϵ to satisfy maxŝ∈Bd(s,ϵ) DJ(π(·|s)∥π(·|ŝ)).

3) min_Q: an attack requires both the agent’s policy and value function to perform a relatively
stronger attack. The attacker finds a perturbed state to minimize the expected return of taking an
action from that state: minŝ∈Bd(s,ϵ) Q(s, π(ŝ)). For ensemble-based algorithms, Q is set as the
mean of ensemble Q functions.

The results of RORL, OSR-10 and our method ODAF are show in Figure 4, from which we observe
that the proposed ODAF outperforms other two methods on most of the benchmarks, especially at the
benchmarks with ’action_diff’ attacks, which obtain the perturbed state with the largest divergence
with the learned policy, probably because ODAF is more skilled in dealing with the OOD states where
the agent’s decision making is sensitive to the perturbations. However, we also remark that ODAF is
not good at dealing with ’min_Q’ attacks, probably due to ODAF’s decision making depends on the
ability of the Q-ensemble, which would be a valuable direction for research.

E.2 SENSITIVE ANALYSIS OVER HYPERPARAMETERS OF ODAF

The ODAF weight βodaf is the hyperparameter that control the magnitude of how the ODAF term
influence the training. Its influence to ODAF is as shown in Figure 5, where three agents are all
trained on the ’meidum’ datasets. From the results we remark that the best choice for βodaf in this
implementation is around 0.3 in the three standard MuJoCo benchmarks.
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Figure 5: The sensitive analysis results of βodaf . The left is on ’halfcheetah-medium’, the middle is
on ’hopper-medium’ and the right is on ’walker2d-medium’.

Figure 6: The results of ODAF and ODAF w/o Lodaf on the standard MuJoCo benchmarks.

E.3 ABLATION STUDY

In this section, we perform an ablation study on the two implementations to evaluate how the ODAF
term behaves. From the results in the left part of Figure 6, we observe that ODAF significantly
outperforms ODAF w/o Lodaf (the regularization term in Eq.(15)) by nearly 20% improvement on
average, which demonstrates the important role ODAF term playS in learning a higher-capacity
policy that is more likely to control the agent moving within the high-valuable regions.

Furthermore, we also visualize some of the results of ODAF and ODAF w/o Lssbu on the ’Halfcheetah-
OOS-large’, ’Hopper-OOS-large’ and ’Walker2d-OOS-large’ benchmarks, as shown in the right part
of Figure 6, from which we observe that compared with the results of ODAF w/o Lssbu , the ODAF
agent generalizes better when falling into OOD situations and is more likely to generate transitions
with those in-distributional consequences, enhancing the robustness, which could also be seen as a
phenomenon that follows the (loosed) state recovery principle in another way.

E.4 CODE

We build the proposed based on the RORL project from github4. The reasons why we choose
YangRui2015’s project are as follows: 1) The RORL framework is a classic baseline for the con-
servative offline reinforcement learning based on an implementation of PBRL (Bai et al., 2022). 2)
Learning conservative Q functions can be easily implemented using the RORL framework. 3) To our
knowledge, the RORL framework is the baseline with the highest scores in MuJoCo benchmarks.
Our code is provided in the supplemental material.

E.5 TRAINING DETAILS

In this section, we introduce our training details, including: 1) the hyperparameters our method use;
2) the structure of the neural networks we use: the Q-networks, inverse dynamics model network
and policy network; 3) the training details of ODAF; 4) the total amount of compute and the type of
resources used.

4Project of RORL: https://github.com/YangRui2015/RORL
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E.5.1 HYPERPARAMETERS OF ODAF

In Table 4 and Table 5, we give the hyperparameters used by ODAF to generate Table 1 results. The
ϵodaf is the perturbation scalar of a perturbation ball Bϵodaf

s around state s in ODAF loss and βodaf

is the weight of the ODAF loss.

Table 4: Hyperparameters of ODAF in standard MuJoCo benchmarks.
Halfcheetah Hopper Walker2d

ϵodaf 0.001 0.005 0.01
βodaf 0.3 0.3 0.3

Table 5: Hyperparameters of ODAF in adversarial attack MuJoCo benchmarks.
Halfcheetah Hopper Walker2d

ϵodaf 0.05 0.005 0.07
βodaf 0.3 0.3 0.3

E.5.2 NEURAL NETWORK STRUCTURES OF ODAF

In this section, we introduce the structure of the networks we use in this paper: policy network, Q
network and the dynamics model network.

The structure of the policy network and Q networks is as shown in Table 6, where ’s_dim’ is the
dimension of states and ’a_dim’ is the dimension of actions. ’h_dim’ is the dimension of the hidden
layers, which is usually 256 in our experiments. The policy network is a Guassian policy and the Q
networks includes ten Q function networks and ten target Q function networks.

Table 6: The structure of the policy net and the Q networks.
policy net Q net

Linear(s_dim, 256) Linear(s_dim, h_dim)
Relu() Relu()
Linear(h_dim, h_dim) Linear(h_dim, h_dim)
Relu() Relu()
Linear(h_dim, a_dim) Linear(h_dim, 1)

The structure of the dynamics network is as shown in Table 7, which is a conditional variational
auto-encoder. ’s_dim’ is the dimension of states, ’a_dim’ is the dimension of actions and ’h_dim’ is
the dimension of the hidden variables. ’z_dim’ is the dimension of the Gaussian hidden variables in
conditional variational auto-encoder.

Table 7: The structure of the dynamics model network.
dynamics model net

Linear(s_dim + a_dim, h_dim)
Linear(h_dim, h_dim)
Linear(h_dim, h_dim)
Linear(h_dim, z_dim) Linear(h_dim, z_dim)
Linear(s_dim + a_dim + z_dim, h_dim)
Linear(h_dim, h_dim)
Linear(h_dim, s_dim)
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E.5.3 COMPUTE RESOURCES

We conducted all our experiments using a server equipped with one Intel Xeon Gold 5218 CPU, with
32 cores and 64 threads, and 256GB of DDR4 memory. We used a NVIDIA RTX3090 GPU with
24GB of memory for our deep learning experiments. All computations were performed using Python
3.8 and the PyTorch deep learning framework.

F DISCUSSION

F.1 LIMITATIONS

Just like the methods based on the traditional state recovery principle, the proposed ODAF is also
unable to generalize to those states that are quite far away from the offline dataset, where any action
executed would not lead to any low-uncertainty state. In this situation, the ODAF term would not
embed any useful information for the new policy, because all the forward consequences have high
uncertainty, which make such guidance degrade to a random-walk. Exploring the performance
boundary of ODAF is also a major direction for our future work.

F.2 DIFFERENCES WITH OTHER WORKS

In Figure 7, we illustrate the differences between the basic ideas of our method and other methods,
including action-constrained methods (conservative method), action-supported methods and state
recovery based methods.

Figure 7: These figures illustrate the fundamental concepts underlying the four types of current
conservative constraints. (a) depicts the action-constrained method, which aims to reduce the
discrepancy between the new policy and the behavior policy, i.e., behavior cloning. (b) represents the
action-supported method, where the new policy generates actions within regions where the density
of the behavior policy πβ(a|s) exceeds a certain threshold. (c) showcases the consequence-driven
method, which mimics the behavior policy’s transition distribution in the new policy. Lastly, (d)
introduces our approach, where the high-density region (blue box) of the new policy’s transition
distribution P (s′|s, π) aligns with areas where the stationary state distribution of the behavior policy
dπβ (s′) surpasses the threshold. It is evident that our constraint method is the most relaxed among the
four methods, indicating that it may have the potential to achieve better generalization performance.
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