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Abstract

We address the challenging task of Universal Novel Category Discovery (UniNCD)
in image classification, where models must distinguish between common and novel
categories while avoiding the misclassification of novel categories as private-
known ones. Previous prototype-based approaches face two major challenges:
first, they significantly increase the negative transfer risk by often misaligning
novel categories with private-known categories; second, they lead to sub-optimal
prototypes because traditional prototype learning ignores diverse object charac-
teristics of images, resulting in insufficient semantic guidance when optimizing
instance representations using only instance-level prototypical distributions. To
tackle these challenges, we present a Semantic-Enhanced Prototypical Network,
dubbed SEPNet. This prototypical network is enhanced by refined prototypes
and enriched semantics to learn better representations and avoid negative transfer,
including three key ideas: (1) we design a Prototype Refinement (PR) strategy that
can decouple common, private-known, and novel categories from unlabeled data,
which can exclude misaligned prototypes to avoid negative transfer; (2) we attach
prototypical distribution to each patch of images, which embed enhanced semantic
information to prototypes and guide prototypical contrastive learning and, (3) we
design a patch-entropy balance (PEB) method to encourage sparser patch-level
prototypical distributions while maintaining the uniformity of dense distributions,
sparsity emphasizes dominant category characteristics, and uniformity avoids the
misguidance of irrelevant disturbance, thereby enhancing the distinctiveness of
instances to the prototypes. Our method demonstrates superior performance on
the UniNCD task across three benchmark datasets, outperforming existing state-
of-the-art approaches by approximately 3.4% in terms of accuracy. We will release
our code for reproduction.

1 Introduction

1.1 Universal Novel Category Discovery

Recent image classification advancements often rely on predefined categories for training, but these
methods fall short in real-world situations with emerging categories, leading to the Novel Category
Discovery (NCD) task, where models adapt to novel categories from unlabeled images. Existing
approaches assume either “Disjoint NCD” (Hsu et al., 2017; Han et al., 2019; 2020) or “Open-World
NCD” settings (Vaze et al., 2022; Cao et al., 2021; Rizve et al., 2022), but practical scenarios often
involve private-known categories in labeled data, which do not exist in the unlabeled data.

In this paper, we consider a more challenging task, Universal Novel Category Discovery (UniNCD).
In UniNCD, the labeled dataset includes “private-known” categories that do not exist in the unlabeled
dataset, and “common” categories are shared between labeled and unlabeled data, while the rest in
the unlabeled dataset are “novel” categories. For example, a model trained on doves, quail (common
categories), and swans (a private-known category) encounters ducks (a novel category) and should
avoid misclassifying ducks as swans (Figure 1 left). In this context, we aim to classify unlabeled
images as common or novel categories without misclassifying them as private-known categories.

Recent research in Open-world Novel Category Discovery focused on learning known and novel
categories in a decoupled manner by aligning the prototypes of unlabeled data with those of labeled

1



Under review as a conference paper at ICLR 2024

Figure 1: Left: task scenarios of Novel Category Discovery. Universal Novel Category Discovery
introduces private-known categories (swan) in labeled data. Right: prototypical distributions of
different patches of an image, the patches contain more discriminative semantic information, leading
to sparser patch-level distributions (in green rectangle), while others are more general or irrelevant.

data (An et al., 2023). However, matching the entire labeled dataset with the unlabeled dataset can
lead to prototype misalignment, that is to say, some novel prototypes in unlabeled data are incor-
rectly aligned with those of private-known categories. This misalignment significantly increases the
negative transfer risk (NTR) (Wang et al., 2019), where the model misclassifies unlabeled data as
private-known categories. Moreover, previous works also employed Prototypical Contrastive Learn-
ing (PCL) (Snell et al., 2017; Li et al., 2020), which performs iterative clustering and representation
learning to learn discriminative representations for a group of similar instances (Yu et al., 2022; Zhao
et al., 2023; An et al., 2023). However, these methods solely relied on instance-level prototypical
distributions, failing to comprehensively consider the diverse characteristics within images. This
limitation leads to insufficient semantic guidance during instance representation optimization, which,
in turn, yields sub-optimal prototypes within prototypical networks. We hypothesize that using a
single prototypical distribution to represent the classification probability of an image is similar to
using a single word embedding to represent its complex conceptual details, which falls short in
capturing multiple characteristics in complex images.

1.2 Our Solutions

To address the above challenges, we introduce a Semantic-Enhanced Prototypical Network (SEPNet).
In this method, a prototypical network is refined by our Prototypes Refinement (PR) strategy and im-
proved by enriched semantics with our Patch-Entropy Balance (PEB) method. These enhancements
aim to improve representation learning and mitigate negative transfer risk (section 3). First, multi-
task pre-training (Zhang et al., 2022) is combined with the generalized contrastive loss to enhance
the model generalization ability. By leveraging instance-level contrastive learning that doesn’t rely
on known labels for supervision, this approach encourages the model to concentrate on the intrinsic
semantic information of objects and gain a comprehensive insight into their diverse characteristics,
bolstering the model’s robustness to noise in the supervision signal.

Second, the PR strategy is employed during the initial training epochs to rectify prototype mis-
alignment caused by private-known categories. This strategy leverages a Z-score filter along with
robust rank statistics (Han et al., 2020) to access the prototype alignment confidence, which is often
overlooked by previous methods(Zhao et al., 2023; An et al., 2023). By quantifying this confidence,
misaligned prototypes can be identified and refined iteratively, thereby mitigating the NTR. Addi-
tionally, the PR strategy aids in estimating private-known categories and generating pseudo labels
for unlabeled data, facilitating the creation of negative sets for PCL.

Third, we attach a prototypical distribution to each patch of images, creating patch-level prototypical
distributions to guide PCL with enriched semantics. Notably, we observe certain regions with
discriminative details have sparse patch-level prototypical distributions, while others with general or
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irrelevant information exhibit denser distributions (Figure 1 right). Inspired by this, our PEB method
promotes sparsity in sparse prototype distributions while maintaining uniformity in dense ones. This
balancing encourages prototypes to capture distinctive category characteristics and reduces confusion
from irrelevant noise, enhancing instance distinctiveness relative to the prototypes.

We evaluate our method on three public benchmarks (section 4) within the UniNCD task. Our method
surpasses the performance of existing state-of-the-art techniques (section 2) by approximately 3.4%.
The main contributions of our paper are summarized as follows:

1. We propose a Semantic-Enhanced Prototypical Network (SEPNet) for Universal Novel Cat-
egory Discovery. SEPNet incorporates a Prototype Refinement (PR) strategy to effectively
rectify prototype misalignment caused by private-known categories, significantly mitigating
negative transfer risk.

2. We propose a Patch-Entropy Balance (PEB) method to enrich semantics by attaching a pro-
totypical distribution to each image patch, creating patch-level prototypical distributions.
PEB method is employed to promote sparsity in sparse prototype distributions while main-
taining uniformity in dense ones, encouraging prototypes to capture distinctive category
characteristics while reducing confusion from irrelevant noise.

3. Experimental results demonstrate the superiority of SEPNet, outperforming existing state-
of-the-art techniques in UniNCD tasks across three datasets.

2 Related Work

2.1 Novel Category Discovery (NCD)

In novel category discovery (Hsu et al., 2017; Han et al., 2019; 2020; Zhong et al., 2021; Fini et al.,
2021; Li et al., 2023), the goal is to cluster the unlabeled dataset, comprised of disjoint but similar
categories, utilizing knowledge from the labeled set. However, this task tends to overlook known
categories in the unlabeled dataset, assuming all categories in it are novel. Unlike conventional NCD,
Open-World NCD assumes the unlabeled set also shares all categories in the labeled set, making
model creation challenging (Vaze et al., 2022; Sun & Li, 2022; Rizve et al., 2022; Cao et al., 2021;
Liu et al., 2023; Zhang et al., 2023). Pu et al. (2023) introduces a semi-supervised Gaussian Mixture
Model with dynamic prototype selection and prototypical contrastive learning for representation
improvement, iteratively refining clusters for unlabeled data. An et al. (2023) addresses Open-world
NCD by effectively separating known and novel categories, explicit category-specific knowledge
transfer, and enhanced feature learning via Semantic-aware Prototypical Learning. However, in
UniNCD, the division of the label space is stricter, which emphasizes the influence of private-known
categories in the labeled dataset, which simulates more realistic real-world scenarios.

2.2 Universal Domain Adaption (UniDA)

Universal Domain Adaptation (UniDA) addresses category-shift issues similar to UniNCD. Previous
works such as Universal Adaption Network (You et al., 2019), DANCE (Saito et al., 2020), and
OVANet (Saito & Saenko, 2021) use confidence scores to recognize novel categories. However,
they classify all novel categories as one, limiting their utility for classification and NCD tasks.
Additionally, they don’t leverage prior information from labeled data to guide the categorization and
clustering of unlabeled data. In this study, we extend the universal setting to NCD.

3 Method

3.1 Preliminary

Notation. In UniNCD task, the training dataset D𝑡𝑟 consists of a labeled dataset D𝑙 = {(x𝑙
𝑖
, 𝑦𝑙

𝑖
)}𝑁𝑙

𝑖=1
with known categoriesC𝑙 , and an unlabeled datasetD𝑢 = {(x𝑢

𝑖
, 𝑦𝑢

𝑖
)}𝑁𝑢

𝑖=1 with certain known categories
plus its novel categories, collectively referred to as C𝑢. The test dataset D𝑡𝑠 includes both known
and novel categories. For clarity, three finer-grained concepts are defined: common categories,
private-known categories, and novel categories denoted as C𝑐𝑜𝑚, C𝑝𝑘 , C𝑛, where C𝑐𝑜𝑚 = C𝑙 ∩ C𝑢,
C𝑝𝑘 = C𝑙\C𝑐𝑜𝑚 and 𝐶𝑛 = C𝑢\C𝑐𝑜𝑚. The common categories are the set of categories shared by
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both datasets, while private-known categories exclusively exist in the labeled dataset. The model is
trained and optimized on D𝑡𝑟 and then evaluated on D𝑢 and D𝑡𝑠 . Given an unlabeled instance x𝑢,
the goal of the UniNCD task is to employ an encoder 𝜙 : X → R𝑑 that encodes x𝑢 to a feature
embedding f = 𝜙(x) with dimension 𝑑, then either classify it as one of the common categories C𝑐𝑜𝑚
or group it with similar unlabeled instances to form one of the discovered novel categories amongst
C𝑛. Crucially, the model must refrain from misclassifying it into private-known categories C𝑝𝑘 .

Overall Process. Our approach has three principal stages: (1) A transformer-based model is pre-
trained with loss displayed as Eq. 1, which is composed of the supervised contrastive loss LSCL
on public datasets plus the labeled internal dataset (Khosla et al., 2020), and the self-supervised
contrastive loss LSSCL on the unlabeled internal dataset (Chen et al., 2020), resulting a pre-trained
model 𝜙′; (2) Then a prototypes alignment and refinement strategy is applied to iteratively update
the prototypes of labeled and unlabeled data {𝝁𝑙 , 𝝁𝑢}, along with the estimation of prototypes
representing private-known categories 𝝁𝑙

𝑝𝑘
and pseudo labels for unlabeled data {�̂�𝑢

𝑖
} | |D𝑢 | |1
𝑖=1 ; (3)

Afterward, a model is trained using prototypical contrastive loss on instance level, with an entropy-
regularized uniformity loss on patch level. The overall process is also depicted in Appendix B.

LMTP = LSCL (D𝑙;θ) + LSSCL (D𝑢;θ) (1)

Prototype Alignment. Taking unlabeled data as examples, we maintain a feature memory, denoted
as V𝑢, to store their features. Each v𝑢

𝑖
represents the feature vector of x𝑢

𝑖
. The memory is initialized

with 𝜙′ (x𝑢
𝑖
) and updated using momentum 𝑚 after each batch (Eq. 2a). Then 𝐾-means clustering

is performed on V𝑢 to obtain unlabeled clusters 𝚲𝑢 and then the unlabeled data prototype matrix
H𝑢 =

[
𝝁𝑢

1 · · · 𝝁𝑢
| |C𝑢 | |1

]
(Eq.2b). The labeled data prototypes matrix H𝑙 is computed using the

ground truth, and memory updating for labeled data is similar to unlabeled data.

v𝑢
𝑖 ← 𝑚v𝑢

𝑖 + (1 − 𝑚)𝜙(x𝑢
𝑖 ) (2a)

𝝁𝑢
𝑗 =

1
| |𝚲𝑢

𝑗 | |1

∑︁
v𝑢
𝑖
∈𝚲𝑢

𝑗

v𝑢
𝑖 (2b)

Aiming to separate known and novel categories within unlabeled data, we adopt a bipartite matching
strategy following An et al. (2023). This strategy aligns prototypes {𝝁𝑢

𝑗
} | |C𝑢 | |1
𝑗=1 and {𝝁𝑙

𝑗
} | |C𝑙 | |1
𝑗=1 , by

seeking an optimal permutation denoted as P̂. This permutation minimizes the Euclidean distance
between {𝝁𝑙

𝑗
} | |C𝑙 | |1
𝑗=1 and their corresponding permutations in {𝝁𝑢

𝑗
} | |C𝑢 | |1
𝑗=1 , as defined by the equation:

P̂ = arg min
P∈P𝑎𝑙𝑙

| |C𝑙 | |1∑︁
𝑖=1
( | |𝝁𝑙

𝑖 − 𝝁𝑢
P(𝑖) | |) (3)

Once the optimal matching is achieved, the categories represented by unlabeled data prototypes are
considered to be those of their matched labeled data prototypes, with indexes denoted as {P̂ (𝑖)} | |C𝑢 | |1

𝑖=1 .

3.2 Prototypes Refinement

However, in UniNCD, directly aligning unlabeled data prototypes with labeled data prototypes can
significantly increase NTR, because prototypes representing novel categories may be misaligned with
those representing private-known categories, namely, misaligned prototypes. To address this, we
introduce a distance-based Prototype Refinement strategy to decouple prototypes into three groups,
𝝁𝑝𝑘 , 𝝁𝑐𝑜𝑚, 𝝁𝑛, representing private-known, common, and novel categories, respectively (Figure 2
middle). We presume that the distance within misaligned prototypes is apparently larger than others
(Figure 2 left), and calculate the Z-score for distances within aligned prototypes (Eq. 4) to filter out
these misaligned prototypes with a high NTR.

𝑍𝑖 =

𝑑 (𝝁𝑙
𝑖
, 𝝁𝑢

P̂ (𝑖)
) − 𝜇

𝜎
(4)

Here, 𝑑 (·, ·) represents the Euclidean distance, while 𝜇 and 𝜎 represent the mean and standard
deviation of all distances, respectively. Aligned prototypes with Z-scores above the 0.75-quantile
of all Z-scores are considered misaligned prototypes and removed from P̂ (𝑞 is set to 0.75 for best
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Figure 2: Prototype Refinement (PR). Prototypes are decoupled into those representing private-
known, common, and novel categories, then unlabeled data prototypes are updated with RS criteria.

performance, the choice of 𝑞 is discussed in Appendix H.2). Next, we order the unlabeled data
prototypes according to categories represented by their corresponding labeled data prototypes, and
the remaining unlabeled data prototypes represent novel categories.

During early training, instability in 𝐾-Means and indiscriminate representations can result in poor-
quality prototypes, which can negatively impact the performance of our model. To address this issue,
we propose an iterative updating strategy that combines intra-cluster distance and robust rank statistics
(Figure 2 right). This strategy aims to enhance the quality of unlabeled data prototypes by iteratively
refining them, especially during early training. Specifically, for each unlabeled data prototype (𝝁𝑢

𝑖
)

and its related instances (I𝑖), we select instances that share the same 𝑘 nearest prototypes of 𝝁𝑢
𝑖

to
calculate the updating criterion 𝑑𝑟𝑠 as follows:

I𝑟𝑠𝑖 = {I𝑖𝑗 | I𝑖𝑗 ∈ I𝑖 , where 𝝁𝑢
𝑖 and I𝑖𝑗 share the same k nearest prototypes}

𝑑𝑟𝑠 =

| |C𝑢 | |1∑︁
𝑖

1
| |I𝑟𝑠

𝑖
| |1

∑︁
I𝑖∈I𝑟𝑠

𝑖

𝑑 (𝝁𝑢
𝑖 , I

𝑖) (5)

If 𝑑𝑟𝑠 in the current iteration decreases compared to the previous iteration, we update the unlabeled
data prototypes; otherwise, they remain unchanged. This refinement strategy also enhances the
quality of pseudo labels generated for unlabeled data using �̂�𝑢

𝑖
= arg min𝑘 𝑑 (𝝁𝑢

𝑘
, 𝜙(x𝑢

𝑖
)).

3.3 Prototypical Contrastive Learning

In prototypical contrastive learning (PCL), we assume that labeled instances from common categories
share highly similar characteristics with unlabeled data prototypes representing the same common
categories (𝝁𝑢

𝑐𝑜𝑚), the same for unlabeled instances and labeled data prototypes. In this regard, we
select out labeled and unlabeled instances from common categories using the decouple prototypes
(𝝁𝑝𝑘) and pseudo-labels (�̂�𝑢

𝑖
), respectively. These instances subsequently yield feature sets F𝑙 =

{f𝑙 , f𝑢𝑐𝑜𝑚} and F𝑢 = {f𝑙𝑐𝑜𝑚, f𝑢}, leading to semi-supervised PCL setting (Figure 3 (a)).

For each feature f𝑢𝑖 ∈ F𝑢, we calculate its prototypical distribution with respect to unlabeled data
prototypes, represented as 𝑃𝑢

𝑖 =
[
𝑝𝑢
𝑖,1 · · · 𝑝𝑢

𝑖, | |C𝑢 | |1
]
, following Eq. 6a. We then compute the

prototypical contrastive loss for unlabeled data prototypes using their distributions and cluster label
𝑐𝑢
𝑖, 𝑗

(Eq. 6b). A similar loss is applied to F𝑙 , resulting in the overall PCL loss (Eq. 6c).

𝑝𝑢𝑖, 𝑗 =
exp(𝝁𝑢

𝑗
· f𝑢𝑖 /𝜏)∑

𝝁𝑢∈H𝑢
exp(𝝁𝑢 · f𝑢𝑖 /𝜏)

(6a)

LPCL𝑢
(F𝑢) = −

1
| |F𝑢 | |1

| |F𝑢 | |1∑︁
𝑖=1

| |C𝑢 | |1∑︁
𝑗=1

𝑐𝑢𝑖, 𝑗 log 𝑝𝑢𝑖, 𝑗 (6b)

LPCL = 𝜆𝑙LPCL𝑙
(F𝑙) + LPCL𝑢

(F𝑢) (6c)
where 𝜆𝑙 controls the contribution of PCL loss w.r.t labeled data prototypes.
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Figure 3: Overview of our prototypical network. (a) Prototypical Contrastive Learning (PCL)
with Prototype Refinement (PR) Strategy. (b) Patch-Entropy Balance (PEB) method.

3.4 Patch-Entropy Balance for Semantic Enrichment

As mentioned before, the classification of complex images requires enriching semantic guidance
during the optimization of PCL. Also, a complex image can be considered as a composition of
various levels of descriptions: a concept word (cls token) and several detail-oriented words
(patch tokens), where each patch token conveys specific local information about the image.
Building upon this concept, we represent each image using multiple patch tokens and attach a pro-
totypical distribution to each patch. This approach results in the creation of patch-level prototypical
distributions, which guide prototypes to pay attention to diverse characteristics, thereby enhancing
semantics awareness during optimization.

However, there’s a trade-off: smaller patches provide local details, enhancing the model’s generaliza-
tion capability during pretraining but increasing computational cost, and larger patches contain more
global semantic information, offering better guidance in specific classification tasks. To balance this,
we use 2D pooling on patch-tokens to fuse adjacent representations (Figure 3 (b)), then multiplied
the outputs with prototypes to generate the patch-level prototypical distributions 𝑃𝑝

𝑖, 𝑗
(prototypical

distributions of 𝑗-th patch in image x𝑖). The trade-off is further analyzed in Appendix G.

We notice that some patches have sparse prototypical distributions, containing category-relevant in-
formation, while others have denser distributions, offering auxiliary or even irrelevant disturbances.
To enhance category-related semantics and reduce irrelevant noise, we introduce the Patch-Entropy
Balance (PEB) loss. PEB loss achieves a balance between sparsity and uniformity across all
patch-level prototypical distributions. It combines self-entropy loss for sparsity promotion and Kull-
back–Leibler divergence from uniformity (KLDU) loss for uniformity enhancement. Specifically,
PEB dynamically encourages sparse distributions to become even sparser and dense distributions to
approach uniformity. The PEB loss is formulated as follows:

LPEB =
1

| |D𝑡𝑟 | |1 × 𝑁𝑝

| |D𝑡𝑟 | |1∑︁
𝑖

𝑁𝑝∑︁
𝑗

[
𝐻 (𝑃𝑝

𝑖, 𝑗
) + 𝜆uni (𝛼 𝑗

𝑖
𝑃
𝑝

𝑖, 𝑗
log(

𝑃
𝑝

𝑖, 𝑗

𝑈𝑐

))
]

𝐻 (𝑃𝑝

𝑖, 𝑗
) = − 𝑃𝑝

𝑖, 𝑗
log 𝑃𝑝

𝑖, 𝑗
and 𝛼

𝑗

𝑖
= exp(𝐻 (𝑃𝑝

𝑖, 𝑗
))

(7)

In this formula, 𝐻 (𝑃𝑝

𝑖, 𝑗
) quantifies distribution entropy, and 𝜆uni is the weight for KLDU loss. 𝛼 𝑗

𝑖

modulates the KL divergence term based on the initial distribution’s entropy in patch x 𝑗

𝑖
, with

larger values for higher entropy (uniform distributions) and smaller values for lower entropy (sparse
distributions). The PEB method is further analyzed theoretically in Appendix D.

As mentioned before, the patch-level tokens capture intricate image details, while classification tokens
(cls-token) focus on category concepts. To further boost model performance, we incorporate
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cross-entropy loss for both labeled and unlabeled instances as follows:

LCE = − 1
| |D𝑡𝑟 | |1

| |D𝑡𝑟 | |1∑︁
𝑖

𝑃𝐺𝑇 (x 𝑗

𝑖
) log(𝑃𝑐𝑙𝑠 (x𝑖)) (8)

Here, 𝑃𝑐𝑙𝑠 represents predicted probabilities of the cls-token, and 𝑃𝐺𝑇 stands for ground-truth
category probabilities. For unlabeled instances x𝑢, we use pseudo labels �̂�𝑢

𝑖
as ground truth.

In consequence, the overall loss of our prototypical framework is formulated as follows:

LSEPNet = 𝜆PCLLPCL + 𝜆PEBLPEB + 𝜆CELCE (9)

4 Experiments

4.1 Data and Experimental Details

With the popular datasets in NCD task: Cifar10, Cifar100 (Krizhevsky et al., 2009) and Ima-
geNet100 (Deng et al., 2009), we split the categories of each dataset into private-known, com-
mon, and novel categories (C𝑝𝑘 ,C𝑐𝑜𝑚,C𝑝𝑘) to construct the UniNCD task. The splitting ratio are
|C𝑐𝑜𝑚 |/|C𝑝𝑘 |/|𝐶𝑛 | = 6/2/2 for Cifar10, 60/20/20 for Cifar100 and ImageNet100. We then select
50% of common categories with all private-known categories to form the labeled dataset and keep
the remaining to form the unlabeled dataset. Implementation details are discussed in Appendix H.

Comparison of Methods. We compared our method with ten methods: (1) Deep Transfer Clustering
(DTC) (Han et al., 2019), (2) Ranking Statistics (RS) (Han et al., 2020), (3) Divide and Conquer
(CompEX) (Yang et al., 2022), (4) NCD Spectral Contrastive Loss (NSCL) (Sun et al., 2023), (5)
Inter-class and Intra-class Constraints (IIC) (Li et al., 2023), which are methods mainly for disjoint
NCD; The methods for Open-World NCD are (6) Open-World Semi-Supervised Learning (ORCA)
(Cao et al., 2021), (7) Generalized Category Discovery (GCD) (Vaze et al., 2022), (8) Open-World
Contrastive Learning (OpenCon) (Sun & Li, 2022), (9) Contrastive Affinity Learning (PromptCAL)
(Zhang et al., 2023), and (10) Decoupled Prototypical Networks (DPN) (An et al., 2023).

Evaluation Protocols. The performance was evaluated by measuring accuracy between the model’s
cluster assignments and ground-truth labels on the test set, with three aspects: all instances (All),
instances from known categories (Known), and instances from novel categories (Novel). The number
of categories in the unlabeled dataset (C𝑢) is often unknown. Following previous studies (Xie et al.,
2016; Han et al., 2020; Sun & Li, 2022), we set 𝐾 (cluster number) equal to C𝑢 based on previous
studies, as approximate cluster estimation is usually feasible in the real world. We also discuss
estimating the number of categories in unlabeled datasets in Appendix F.2.

4.2 Experiments Results and Discussion

4.2.1 Main Results.

Our method consistently outperforms other NCD methods across all datasets on the test set, with an
average improvement of 2.96% (Known), 6.29% (Novel), and 3.34% (All) over the top-performing
baseline (Table 1). This reflects our model’s efficacy in handling both known and novel categories.
Additionally, our strategy excels in novel category accuracy, demonstrating its ability to mitigate
negative transfer risk. This can be mainly attributed to the fact that our prototypical framework
considers and excludes misaligned prototypes. By doing so, we manage to obtain higher-quality
supervision signals for prototypical contrastive learning. We also try to improve DPN (An et al.,
2023) with Prototype Refinement strategy (“DPN w/ PR”), which indeed brings improvement.
However, its performance still lags behind ours by a large margin. Furthermore, on the complex
dataset, Cifar100, which mirrors the unpredictability of real-world conditions, our method distinctly
outperformed previous strategies by a larger margin than the other two datasets.

4.3 Ablation Study

We have three Prototype Refinement strategy variations: “w/o PR” (prototype alignment without
refinement), “w/o filtering” (refining prototypes without Z-score filtering), and “w/o update” (no
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Table 1: Evaluation results (%) for all, known and novel categories. Asterisk (∗) denotes that
the original method can not recognize known categories. Results on ORCA, GCD, OpenCon,
PromptCAL, DPN, and SEPNet (Ours) are averaged over three runs with different random seeds.

Method Cifar10 Cifar100 ImageNet100
Known Novel All Known Novel All Known Novel All

∗DTC 50.63 39.54 48.41 29.65 12.52 26.22 22.89 15.54 21.42
∗RS 70.56 52.29 66.91 26.35 18.68 24.81 45.00 24.55 40.91
∗CompEX 76.72 62.20 73.82 33.01 24.83 31.37 61.03 41.86 57.20
∗NSCL 79.26 69.53 77.31 39.82 30.20 37.90 66.15 47.84 62.49
∗IIC 82.10 72.27 80.13 44.16 34.60 42.25 71.81 52.68 68.00
ORCA 85.24±0.1 79.41±0.4 84.07±0.2 63.95±0.3 39.59±1.0 59.07±0.8 85.46 66.34 81.64
GCD 86.12±0.4 79.04±0.5 84.70±0.5 66.25±0.5 40.61±0.9 61.12±0.6 86.79 69.79 83.39
OpenCon 86.78±0.2 84.11±0.4 86.25±0.2 66.13±0.4 43.51±0.6 61.06±0.4 86.56 74.13 84.07
PromptCAL 87.29±0.7 85.55±1.0 86.94±0.8 67.32±1.0 45.24±1.4 62.94±1.2 86.96 75.33 84.63
DPN 85.74±0.4 78.52±0.8 84.30±0.5 64.20±0.7 40.55±0.9 59.47±0.7 86.32 68.23 82.70
DPN w/ PR 87.35±0.7 83.25±1.0 86.53±0.8 65.58±1.1 44.92±1.5 61.45±1.2 86.66 73.00 83.93
SEPNet 91.47±1.2 90.04±1.5 91.18±1.3 71.57±1.3 48.97±1.6 67.05±1.4 87.40 82.98 86.51
Improvement +4.18 +4.59 +4.24 +4.25 +3.73 +4.11 +0.44 +7.65 +1.88

Table 2: Accuracy for ablation study using
Cifar10 dataset. Bold and underlined indicate
the best and worst performance, respectively.

Method Known Novel All
Ours 91.47 90.04 91.18
w/o PR 86.59 77.90 84.84
w/o filtering 87.24 80.13 85.02
w/o update 91.05 84.52 89.72
w/o LPEB 86.48 80.60 85.30
w/o PPD 87.02 82.86 86.19
w/o KLDU 90.20 87.32 89.63

Table 3: Negative transfer risk (NTR) assessed
on Cifar10 dataset. Lower indicates mitigating
negative transfer better.

Method Cifar10 Cifar100 ImageNet100
∗CompEX 14.32 36.34 23.13
∗IIC 11.24 28.09 19.36
GCD 8.08 19.72 11.90
OpenCon 9.09 20.30 13.91
PromptACL 6.61 14.89 9.37
DPN 10.16 22.38 14.13
SEPNet 2.41 12.53 5.38

iterative updates of unlabeled data prototypes). Additionally, there are three Patch-Entropy Balance
method versions: “w/o LPEB” (loss computation without patch-entropy balance loss), “w/o PPD”
(computing LPEB using instance-level prototypical distributions), and “w/o KLDU” (using self-
entropy loss without KL divergence from uniformity loss in LPEB). Table 2 shows that LPEB
significantly impacts known categories, while PR strategy primarily affects novel and all categories.

4.4 Experimental Analysis

Negative Transfer Risk (NTR). Negative transfer in UniNCD primarily arises when instances
belonging to novel categories are misclassified as private-known categories. Following Wang et al.
(2019), with the dataset consisting of all instances from novel categories, denoted as D𝑛, and the
model 𝜙, we define a measurable metric to access the NTR in the UniNCD task as follows:

𝑅𝑁𝑇 (𝜙) B Ex∼D𝑛
[𝜑(𝜙(x)) ∈ C𝑝𝑘] (10)

where 𝜑 represents 𝐾-Means algorithm and C𝑝𝑘 represents the set of private-known categories.
Table 3 shows NTR comparisons between our method and six other NCD methods across three
datasets. Our method consistently achieves significantly lower NTR on all datasets, highlighting
its effectiveness in addressing the UniNCD task. Notably, OpenCon (Sun & Li, 2022) and DPN
(An et al., 2023) exhibit higher NTR than other Open-World NCD methods, potentially due to
their explicit decoupling of unlabeled data into known and novel categories, which increases NTR.
In contrast, our method decouples categories with a focus on private-known categories, avoiding
optimizing representations guided by misaligned prototypes, resulting in lower NTR.

Effectiveness of Prototype Refinement (PR) strategy. To verify the efficacy of our PR strategy,
we employ PCA and t-SNE to visualize the prototypes at epoch 1, before refinement, and at epoch

8
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Figure 4: t-SNE on prototypes of Cifar10: impact of Prototype Refinement strategy.

Figure 5: Changes in patch-level prototypical distributions during training. Left: the image
from Cifar10 dataset is (enhanced by super-resolution for visualization) encoded into 3 x 3 patches.
Right: prototypical distributions from patch 4 to 9 over epochs 10, 20, and 30.

3 (both before and after refinement). As depicted in Figure 4, initial private-known-category
prototypes are distant from other prototypes (circled in scarlet), compared to common-category
prototypes (circled in green). Furthermore, at the beginning of training, the representations lack
discriminative qualities, leading to several misaligned prototypes. With three epochs of refinement,
common-category prototypes are aligned correctly (circled in blue), but novel-category prototypes
remain misaligned with private-known-category prototypes (circled in red), resulting in negative
transfer (Figure 4, middle). With PR strategy, these misaligned prototypes are successfully excluded
from the matching pairs, achieving optimal prototype alignment (Figure 4, right). The stability of
PR strategy across different datasets is discussed in Appendix F.1.

Sparsity of Patch-level Prototypical Distributions. To further validate its effectiveness, we
visualize the changes in patch-level prototypical distributions at epochs 10, 20, and 30 using an
image from Cifar10 (enhanced using super-resolution for clearer visualization). We focus on patches
4, 5, 6, and 9, which contain category-related information (highlighted in green), and patches 7
and 8, which contain irrelevant information. We observe that the prototypical distributions of these
informative patches become sparser (highlighted in green). The prototype corresponding to their
respective categories exhibits a higher peakiness, indicating their increased contribution to prototype
learning. Notably, the prototype distribution of patch 7 is initially concentrated on category-related
prototypes and gradually becomes less category-related after several epochs of training.

5 Conclusions

We present a Semantic-Enhanced Prototypical Network (SEPNet) for Universal Novel Category
Discovery (UniNCD). SEPNet addresses the challenges of prototype misalignment faced by previous
prototype-based methods. With the Prototype Refinement (PR) strategy and the Patch-Entropy
Balance (PEB) method, our framework enhances the distinctiveness of instances to prototypes while
avoiding negative transfer. Experimental results across three benchmark datasets demonstrated the
effectiveness of SEPNet, surpassing state-of-the-art methods by a large margin.
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A Pretraining Loss

A.1 Generalized Contrastive Loss

Following the recent work (Sun & Li, 2022), we first introduce a generalized contrastive loss that
can provide the foundation for the loss in the pretraining stage. The contrastive loss given anchor
point x can be formulated as:

L𝜙 (x) = −
1

| |P(x) | |1

∑︁
f+∈P(x)

log
exp(f⊤ · f+/𝜏)∑

f−∈N(x) exp(f⊤ · f−/𝜏) (11)

where, 𝜏 is the temperature parameter, P(x) and N(x) are the positive and negative set of feature
embeddings, respectively.

A.2 Supervised Contrastive Loss (SCL)

For a mini-batch B𝑙 with instances drawn from D𝑙 , two random augmentations are applied for each
instance and construct a two-viewed batch B̃𝑙 , with its feature embeddings batch denoted asA𝑙 . Then
for any instance x in B𝑙 , the positive and negative set can be expressed as:{

P𝑙 (x𝑎) = {f′ | f′ ∈ {A𝑙\f𝑎}, 𝑦′ = 𝑦𝑎}
N𝑙 (x𝑎) = A𝑙\f𝑎

(12)

Subsequently, the supervised contrastive loss can be defined as:

LSCL (D𝑙) =
∑︁
x∈B̃𝑙

L𝜙 (x; 𝜏𝑙 , P𝑙 (x),N𝑙 (x))) (13)

where 𝜏𝑙 is the temperature.

A.3 Self-Supervised Contrastive Loss (SSCL)

Similarly, for any instance x taken as the anchor point x𝑎 in B𝑢, the positive and negative set can be
expressed as: {

P𝑢 (x𝑎) = {f′ | f′ = 𝜓(x𝑎)}
N𝑢 (x𝑎) = A𝑢\f𝑎

(14)

where 𝜓 : X → X is an augmentation function.

The self-supervised contrastive loss is then defined as:

LSSCL (D𝑢) =
∑︁

x∈B̃𝑢

L𝜙 (x; 𝜏𝑢, P𝑢 (x),N𝑢 (x))) (15)

where 𝜏𝑢 is the temperature.

B Overall Process

We present a general outline of our method, SEPNet, in Algorithm 1. Furthermore, to offer a visual
representation of the framework’s structure, we provide an illustrative overview in Fig. 6.

C Theoretical Analysis of Our Prototypical Network

Our UniNCD learning objective can be effectively understood through the lens of the Expectation-
Maximization (EM) algorithm. This perspective enables us to break down our method into two main
steps: the E-step and the M-step. In the E-step, exemplified here with unlabeled data, we assign
each instance x𝑢 ∈ D𝑢 to a specific prototype based on the refined unlabeled data prototypes 𝝁𝑢.
Following this, in the M-step, the EM algorithm aims to maximize the likelihood under the posterior
class probabilities obtained from the E-step.

12
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Figure 6: Overall process of our proposed method.

Algorithm 1 Semantic-Enhanced Prototypical Network
Input: Labeled public sets D𝑙

𝑒𝑥 , labeled internal set D𝑙 = {x𝑙
𝑖
, 𝑦𝑙

𝑖
}𝑁𝑙

𝑖=1 and unlabeled internal set
D𝑢 = {x𝑢

𝑖
}𝑁𝑢

𝑖=1, neural network encoder 𝜙
Training Stage:

1: Pretrain 𝜙 with LSCL on D𝑙
𝑒𝑥 ∪ D𝑙 , and LSSCL on D𝑢.

2: while convergence do
3: Update feature and label memory via 𝜙
4: if epoch = updating epoch then
5: Update labeled data prototypes {𝝁𝑙

𝑗
} | |C𝑙 | |1
𝑗=1

6: end if
7: if first 𝑁 epochs then
8: Prototype Alignment and Refinement:
9: Align prototypes {𝝁𝑙

𝑗
} | |C𝑙 | |1
𝑗=1 and {𝝁𝑢

𝑗
} | |C𝑢 | |1
𝑗=1 using bipartite matching

10: Rectify unlabeled data prototypes {𝝁𝑢
𝑗
} | |C𝑢 | |1
𝑗=1 using Prototype Refinement strategy

11: Assign pseudo labels �̂�𝑢
𝑖

by prototypes to x𝑢
𝑖

12: end if
13: Enriched Semantic Guidance:
14: Encode images into patch tokens and class tokens
15: Calculate patch-entropy balance loss LPEB using patch tokens
16: Calculate prototypical contrastive loss LPCL and cross-entropy loss LCE using class tokens
17: Employ overall loss LSEPNet to update 𝜙 using back-propagation
18: end while
19: return 𝜙

The theoretical foundation of our approach suggests that minimizing our loss (Eq. 9) partially
maximizes the likelihood by clustering similar instances. Specifically, our loss encourages the
concentration of similar instances around the corresponding prototypes, promoting more compact
representations.

C.1 E-step (Prototype Alignment and Refinement)

In the E-step, the EM algorithm’s objective is to maximize the likelihood using the encoder 𝜙 and
prototype matrix H𝑢, which can be lower bounded as follows:

| |D𝑢 | |1∑︁
𝑖

log 𝑝(x𝑢
𝑖 | 𝜙,H𝑢) ≥

| |D𝑢 | |1∑︁
𝑖

𝑞𝑖 (𝑐) log
∑︁
𝑐∈𝐶𝑢

𝑝(x𝑢
𝑖
, 𝑐 | 𝜙,H𝑢)
𝑞𝑖 (𝑐)

(16)

Here, 𝑞𝑖 (𝑐) represents the prototypical distribution for instance x𝑢
𝑖

w.r.t. category 𝑐, reflecting the
posterior class probability. Based on the concavity of log(·) and 𝑝(x𝑢

𝑖
| 𝜙,H𝑢) in Eq. 16, we can

estimate 𝑞𝑖 (𝑐) as Eq. 17.

𝑞𝑖 (𝑐) =
𝑝(x𝑢

𝑖
, 𝑐 | 𝜙,H𝑢)∑

𝑐∈C𝑢 𝑝(x𝑢
𝑖
, 𝑐 | 𝜙,H𝑢)

=
𝑝(x𝑢

𝑖
, 𝑐 | 𝜙,H𝑢)

𝑝(x𝑢
𝑖
| 𝜙,H𝑢)

= 𝑝(𝑐 | x𝑢
𝑖 , 𝜙,H𝑢) (17)

To estimate 𝑝(𝑐 | x𝑢
𝑖
, 𝜙,H𝑢), we follow Fisher (1953) to model the data with von Mises-Fisher

(vMF) distribution, which is well-suited for our high-dimensional hyperspherical space considering
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𝜙(x𝑢). This allows us to express 𝑝(𝑐 | x𝑢
𝑖
, 𝜙,H𝑢) as Softmax(H⊤

𝑢 · 𝜙(x𝑢
𝑖
) | 𝑐). Additionally, with

the help of pseudo labels �̂�𝑖 , we can further simplify 𝑞𝑖 (𝑐) as 𝑞𝑖 (𝑐) = 1condition{�̂�𝑖 = 𝑐}.

C.2 M-step (Prototypical Contrastive Learning with Enriched Semantic Guidance)

During the M-step, we optimize our prototypical network 𝜙 and the prototype matrixH𝑢 based on the
prototypical distribution 𝑞𝑖 (𝑐) derived from the E-step. And by defining D̃𝑢 (𝑐) = {x𝑢

𝑖
∈ D𝑢 | �̂�𝑖 = 𝑐},

we can convert the maximization into a joint optimization objective as follows:

arg max
𝜙,H𝑢

| |D𝑢 | |1∑︁
𝑖=1

∑︁
𝑐∈C𝑢

𝑞𝑖 (𝑐) log
𝑝(x𝑢

𝑖
, 𝑐 | 𝜙,H𝑢)
𝑞𝑖 (𝑐)

= arg max
𝜙,H𝑢

| |D𝑢 | |1∑︁
𝑖=1

∑︁
𝑐∈C𝑢

𝑞𝑖 (𝑐) log 𝑝(x𝑢
𝑖 | 𝑐, 𝜙,H𝑢) Because of 𝑞𝑖 (𝑐) log

𝑝(𝑐)
𝑞𝑖 (𝑐)

is a constant

= arg max
𝜙,H𝑢

| |D𝑢 | |1∑︁
𝑖=1

∑︁
𝑐∈C𝑢

1condition{�̂�𝑖 = 𝑐} log 𝑝(x𝑢
𝑖 | 𝑐, 𝜙,H𝑢)

= arg max
𝜙,H𝑢

∑︁
𝑐∈C𝑢

∑︁
x𝑢∈D̃𝑢 (𝑐)

log 𝑝(x𝑢 | 𝑐, 𝜙,H𝑢) Because of indexes 𝑐 can be merged with D𝑢

= arg max
𝜙,H𝑢

∑︁
𝑐∈C𝑢

∑︁
x𝑢∈D̃𝑢 (𝑐)

𝜙(x𝑢)⊤ · 𝝁𝑢
𝑐 Because of vMF density function

The final expression above can be interpreted as aligning the representation 𝜙(x) with the correspond-
ing prototype 𝝁𝑢

𝑐 . Notably, our algorithm achieves this maximization step by separately optimizing
H𝑢 and 𝜙 as follows:

1. Optimizing H𝑢:
By fixing 𝜙, we can obtain the optimal prototype µ̂𝑢 through our Prototype Refinement
strategy.

2. Optimizing 𝜙:
By fixing H𝑢, we aim to demonstrate minimize LPCL𝑢

resembles the joint optimization
objective in M-step. To achieve this, we decompose LPCL𝑢

into two parts as follows:

LPCL𝑢
(F𝑢) = −

1
| |F𝑢 | |1

| |F𝑢 | |1∑︁
𝑖=1

| |C𝑢 | |1∑︁
𝑗=1

𝑐𝑢𝑖, 𝑗 log
exp(𝝁𝑢

𝑗
· f𝑢𝑖 /𝜏)∑

𝝁𝑢∈H𝑢
exp(𝝁𝑢 · f𝑢𝑖 /𝜏)

= − 1
| |F𝑢 | |1

| |F𝑢 | |1∑︁
𝑖=1

| |C𝑢 | |1∑︁
𝑗=1

𝑐𝑢𝑖, 𝑗 (𝝁𝑢
𝑗 · f

𝑢
𝑖 /𝜏)︸                                         ︷︷                                         ︸

Lalign (x)

+ 1
| |F𝑢 | |1

| |F𝑢 | |1∑︁
𝑖=1

| |C𝑢 | |1∑︁
𝑗=1

𝑐𝑢𝑖, 𝑗

∑︁
𝝁∈H𝑢

exp(𝝁𝑢 · f𝑢𝑖 /𝜏)

(18)
Notably, minimizing Lalign (Eq. 18) in the PCL loss LPCL promotes the proximity of repre-
sentations to their most similar prototypes. This effectively approximates the maximization
of the objective outlined with optimal prototypes µ̂𝑢 as follows:

arg min
𝜙

∑︁
x𝑢∈D𝑢

Lalign (x𝑢) = arg max
𝜙

∑︁
𝑐∈C𝑢

∑︁
x𝑢∈S(𝑥 )

𝜙(x𝑢)⊤ · µ̂𝑢 (19)

These observations validate that our prototypical network learns representations for novel classes in
an EM fashion. Importantly, we extend EM from a traditional learning setting to the UniNCD task
with the capability to handle universal world data.

D Theoretical Analysis of Patch-Entropy Balance Method

The Patch-Entropy Balance (PEB) method aims to enhance category-related semantics in sparse
distributions and reduce irrelevant noise in dense distributions. It achieves a balance between
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sparsity and uniformity by combining self-entropy loss for sparsity promotion and Kullback-Leibler
Divergence from Uniformity (KLDU) loss for uniformity enhancement.

D.1 Self-Entropy Loss (Sparse Distribution Enhancement)

The term 𝐻 (𝑃𝑝

𝑖, 𝑗
) = −𝑃𝑝

𝑖, 𝑗
log 𝑃𝑝

𝑖, 𝑗
calculates the self-entropy of the patch-level prototypical distri-

bution 𝑃𝑝

𝑖, 𝑗
. This term encourages sparsity by increasing peakiness in the distribution. When 𝑃𝑝

𝑖, 𝑗
is

sparse (i.e., one or a few categories have significantly higher probabilities), the entropy is lower, and
the self-entropy loss penalizes low probabilities, pushing the distribution towards sparsity.

D.2 Kullback-Leibler Divergence from Uniformity (KLDU) Loss (Uniformity
Enhancement)

The term 𝛼
𝑗

𝑖
𝑃
𝑝

𝑖, 𝑗
log

(
𝑃

𝑝

𝑖, 𝑗

𝑈𝑐

)
represents the KLDU loss, which measures how far 𝑃𝑝

𝑖, 𝑗
is from a uniform

distribution𝑈𝑐 (where𝑈𝑐 represents uniformity).

• Weighting Function 𝛼 𝑗

𝑖
: The term 𝛼

𝑗

𝑖
is a weighting function based on the initial distribu-

tion’s entropy in patch x 𝑗

𝑖
. It is computed as 𝛼 𝑗

𝑖
= exp(𝐻 (𝑃𝑝

𝑖, 𝑗
)). The underlying concept is

that 𝛼 𝑗

𝑖
tends to be larger for uniform distributions (high entropy), making the KL divergence

term have a larger impact. Conversely, for sparse distributions with lower entropy, 𝛼 𝑗

𝑖
tends

to be smaller, effectively diminishing the impact of the KL divergence term.

• Effect on Sparse Distributions: For sparse distributions with low initial entropy, 𝛼 𝑗

𝑖
is small,

reducing the impact of the KLDU loss. This means that the loss has a minimal effect on
distributions that are already sparse. It avoids overly penalizing them and preserves their
peakiness.

• Effect on Dense Distributions: For dense distributions that are already close to uniform (high
initial entropy), 𝛼 𝑗

𝑖
becomes larger, making the KLDU loss have a more substantial impact. It

encourages adjustments to bring these distributions closer to uniformity, effectively reducing
peakiness and making them more uniform.

D.3 Overall PEB Loss

The PEB loss combines both the self-entropy loss and the KLDU loss. By doing so, it seeks to strike
a balance between sparsity promotion and uniformity enhancement.

• Balancing Sparsity and Uniformity: The self-entropy loss encourages peakiness reduction
and sparsity promotion. The KLDU loss encourages uniformity enhancement. By com-
bining these two components, the PEB loss ensures that the resulting distribution is not
overly skewed towards specific categories (due to peakiness) while also being sufficiently
deterministic to minimize uncertainty.

• Regularization and Noise Reduction: The KLDU loss acts as a regularization term that pre-
vents overfitting to specific prototypes, which mitigates the catastrophic forgetting problem
of categories, especially when encountering datasets with extensive and diverse categories.
It discourages the model from assigning excessively high probabilities to irrelevant cate-
gories, effectively reducing noise and enhancing category-related semantics.

E Effects of Known Category Ratio

In examining the ramifications of the known category ratio on the efficacy of our model, we manip-
ulated this parameter in a range spanning from 0.3 to 0.7, with gradations of 0.1. Evidence gathered
as displayed in Fig. 7, conclusively highlights our model’s superior performance. It demonstrated
supremacy across all categories, specifically novel categories. This strong showing underscores the
validity and robustness of our model in UniNCD.
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Figure 7: Effects of know category ratios. Clustering accuracies (%) for all, known, and novel
categories are evaluated on the Cifar10 dataset.

Table 4: Estimated number of private-known
categories on Cifar100 and ImageNet100. GT
stands for ground truth, and the unit of error is
the number of categories.

Method Cifar100 ImageNet100
GT {10, 20, 40} {10, 20, 40}
Ours {10, 20, 38} {10, 20, 39}
Error 0.67 0.33

Table 5: The results of estimating the number
of categories on Cifar100 and ImageNet100.
Each number represents the number of cate-
gories in the unlabeled dataset.

Method Cifar100 ImageNet100
GT {50, 60, 80} {50, 60, 80}
DTC {55, 68, 89} {54, 65, 88}
Ours {52, 59, 79} {51, 59, 80}
Error 1.33 0.67

F Estimating the Number of Categories

F.1 Number of Private-known Categories

To evaluate the effectiveness of our Prototype Refinement strategy, we provide estimated values for
private-known categories (C𝑝𝑘) on both the Cifar100 and ImageNet100 datasets, as displayed in
Table 4. Our method displays impressive accuracy in estimating C𝑝𝑘 , especially when it is relatively
small. Even as C𝑝𝑘 approaches half of the total category count, our method exhibits only a minimal
deviation (ranging from 2% to 5%) from the ground truth.

F.2 Number of Novel Categories

We adopt the method outlined in DTC Han et al. (2019) to address the task of estimating the number
of categories (𝐾) from the unlabeled dataset D𝑢. The outcomes are presented in Table 5, illustrating
that our model achieves lower error rates on both Cifar100 and ImageNet100 compared to DTC.
This highlights our model’s competence in effectively utilizing information from both labeled and
unlabeled data, leading to enhanced representations for accurate category number estimation.

G trade-off of the Patch Size

As previously discussed, there’s a trade-off between using smaller and larger patches in our approach.
Smaller patches offer advantages during pre-training, enhancing generalization, but they also raise
computational costs. We address this problem by applying 2D pooling to fuse adjacent represen-
tations. However, even with fusion, there remains a delicate balance to strike between UniNCD
performance and computational efficiency. We systematically experimented with the pooling layer
size, ranging from 2 to 8 patches, while conducting training on one 80GB A-100 GPU for 100 epochs.

As depicted in Figure 8, we observed that the time cost increases almost linearly concerning the num-
ber of patches, which is an expected outcome due to the heightened computational load. Conversely,
the overall error decreases gradually with additional patches. This deceleration in error reduction
suggests diminishing returns as more patches are added. Beyond a certain point, the extra patches
may not substantially enhance discriminative information, resulting in a slower decrease in error.
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Figure 8: Trade-off between UniNCD perfor-
mance and computation cost with respect to the
number of patches. The left axis depicts the clus-
tering error across all categories, while the right axis
represents the total training time (in hours) over 100
epochs.

Figure 9: Analysis of Prototype Refine-
ment strategy epochs on Cifar10. The left
axis represents clustering accuracy across all
categories, while the right axis shows the ac-
curacy of pseudo labels.

Figure 10: Sensitivity analysis for weights of loss on
Cifar10. Subplots 1 ∼ 5 (from left to right) depict five
weights 𝜆PEB , 𝜆PCL, 𝜆CE, 𝜆uni and 𝜆𝑙 in the context
of loss LSEPNet. Subplot 6 depicts the choice of the
quantile 𝑞 for the Prototype Refinement strategy.

Considering real-world applications and the need for efficient incremental learning in novel category
discovery, we opted for a pooling layer size of 4. This choice effectively balances the trade-off
between computational cost and performance, making it a suitable compromise for practical use.

H Sensitivity Analysis

We introduce the hyper-parameter settings for SEPNet and present the best combinations of hyper-
parameters, including the PR strategy employing epochs and loss weights (LSEPNet), determined
through a cross-validation strategy. The validation strategy involves splitting the classes in D𝑙

equally into “known” and “novel” classes, with 50% of the instances from selected known classes
labeled. We then use this new validation dataset to perform grid searching for selecting the best
hyper-parameters, which are summarized in Table 6.

Implementation Details. We employ pre-trained DINO (Caron et al., 2021) as our backbone
network1. During pretraining, we use an early stopping strategy based on the performance of the
validation set. For model optimization, we use AdamW optimizer, and the learning rate is set as 8e-3
for pretraining and 3e-4 for training. For the comparison methods, we split the datasets following
our experimental setting and replace the backbones with the one we employed. Considering the
trade-off, the pooling layer size in our method is set to 4, and other hyperparameters are selected
using cross-validation, details will be discussed in the Appendix G. The basic training settings for
Cifar10/Cifar100/ImageNet100 involve training the model for 80/100/150 epochs with batch sizes
of 2048/2048/1536 using AdamW with coefficients (0.9, 0.999) and a weight decay of 1e-2. The
learning rate starts at 3e-4 and is updated using a cosine annealing schedule, while the momentum
for feature updating (𝑚) remains fixed at 0.95. We also employ a quantile of 0.75 for the Z-score
filter.

1https://github.com/facebookresearch/dino
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Table 6: Hyperparameters groups selected using cross-validation. “PR epochs” denotes the
epochs using the Prototype Refinement strategy, 𝜆PEB, 𝜆PCL, 𝜆CE and 𝜆𝑙 are weights of loss in Eq. 9

.

Dataset PR epochs 𝜆PEB 𝜆PCL 𝜆CE 𝜆uni 𝜆𝑙 𝑞

Cifar10 5 0.8 0.3 0.1 1.3 10.0 0.75
Cifar100 5 0.8 0.3 0.1 1.3 8.0 0.75
ImageNet100 7 0.8 0.3 0.1 1.5 8.0 0.75

H.1 Analysis of Prototypes Refinement Strategy Epochs

To clarify the impact of the Prototype Refinement strategy (PR epochs), while keeping other hyper-
parameters fixed, we present the results on Cifar10 dataset in Figure 9. The evaluation is based
on both the overall clustering accuracy and the accuracy of pseudo labels. It’s worth noting a
positive correlation between overall accuracy and pseudo-label accuracy, which can be attributed to
the inherent characteristics of prototypical contrastive learning and cross-entropy loss with pseudo-
labels. You can find the specific refinement epochs for all datasets in table 6.

H.2 Other Important Hyper-parameters

In Figure 10, we present a sensitivity analysis of crucial hyperparameters using the Cifar10 dataset.
The performance comparisons are displayed in a line plot while maintaining the other hyperparam-
eters constant. We focus first on the loss LSEPNet. Subplots 1 to 5 (from left to right) show the
impact of five weights: 𝜆PEB, 𝜆PCL, 𝜆CE, 𝜆uni, and 𝜆𝑙 within the context of the loss LSEPNet. Subplot
6 examines the choice of the quantile 𝑞 for the Prototype Refinement strategy, where the y-axis
represents the estimation error of the number of private-known categories. Our validation strategy
effectively identifies the optimal values for 𝜆PEB, 𝜆PCL, 𝜆CE, 𝜆uni, 𝜆𝑙 , and 𝑞.
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