arXiv:2407.18414v1 [csLG] 25 Jul 2024

ADVERSARIAL ROBUST DECISION TRANSFORMER: ENHANCING
ROBUSTNESS OF RVS VIA MINIMAX RETURNS-TO-GO

A PREPRINT
Xiaohang Tang* Afonso Marques*
University College London University College London
xiaohang.tang.20Qucl.ac.uk afonso.marques.22@ucl.ac.uk
Parameswaran Kamalaruban* Ilija Bogunovic
Featurespace University College London
kamal .parameswaran@featurespace.co.uk bogunovic.ilija@gmail.com
ABSTRACT

Decision Transformer (DT), as one of the representative Reinforcement Learning via Supervised
Learning (RvS) methods, has achieved strong performance in offline learning tasks by leveraging
the powerful Transformer architecture for sequential decision-making. However, in adversarial
environments, these methods can be non-robust, since the return is dependent on the strategies of
both the decision-maker and adversary. Training a probabilistic model conditioned on observed
return to predict action can fail to generalize, as the trajectories that achieve a return in the dataset
might have done so due to a weak and suboptimal behavior adversary. To address this, we propose a
worst-case-aware RvS algorithm, the Adversarial Robust Decision Transformer (ARDT), which learns
and conditions the policy on in-sample minimax returns-to-go. ARDT aligns the target return with
the worst-case return learned through minimax expectile regression, thereby enhancing robustness
against powerful test-time adversaries. In experiments conducted on sequential games with full data
coverage, ARDT can generate a maximin (Nash Equilibrium) strategy, the solution with the largest
adversarial robustness. In large-scale sequential games and continuous adversarial RL environments
with partial data coverage, ARDT demonstrates significantly superior robustness to powerful test-time
adversaries and attains higher worst-case returns compared to contemporary DT methods.

1 Introduction

Reinforcement Learning via Supervised Learning (RvS) [Emmons et al., 2021]], has garnered attention within the
domain of offline Reinforcement Learning (RL). Framing RL as a problem of outcome-conditioned sequence modeling,
these methodologies have showcased strong performance in offline benchmark tasks [Wu et al.l 2024, |Yamagata
et al., |2023| Janner et al.| 2021} Schmidhuber, 2019} [Kumar et al.,|2019]. One of the representative RvS methods is
Decision Transformer (DT) [[Chen et al.;|2021]], which simply trains a policy conditioned on target return via behavior
cloning loss. Given the apparent efficacy and simplicity of RvS, our attention is drawn to exploring its performance
in adversarial settings. In this paper, we aim to use RvS to achieve adversarial robustness, a critical capability for
RL agents to manage environmental variations and adversarial disturbances [Pinto et al., 2017, [Tessler et al.| 2019,
Kamalaruban et al., 2020, [Vinitsky et al.l 2020} |Curi et al.; 2021} Rigter et al.,[2022]. Such challenges are prevalent in
real-world scenarios, e.g., changes in road conditions and decision-making among multiple autonomous vehicles.

In offline RL with adversarial actions, the naive training of action-prediction models conditioned on the history and
observed returns such as DT, or expected returns such as ESPER and DoC [Paster et al., 2022, |[Yang et al., 2022,
Yamagata et al.,[2023]], may result in a non-robust policy. This issue arises from the potential distributional shifts in
the policy of the adversary during offline learning. Specifically, if the behavior policies used for data collection are

*Equal contribution. Codebase: https://github.com/xiachangt/ardt/tree/master

https://github.com/xiaohangt/ardt/tree/master

Adversarial Robust Decision Transformer A PREPRINT

Algorithms Policy (R = 6): (P(ag), P(a1))

DT (0.5400, 0.4600)
ERC-DT (0.9998, 0.0002)
ARDT (ours) (0.0006, 0.9994)
Algorithms Expected Worst-case Return
DT 0.4600
ERC-DT 0.0002
ARDT (ours) 0.9994

Figure 1: LHS presents the game where decision-maker P is confronted by adversary A. In the worst-case scenario, if
P chooses action ag, A will respond with ag, and if P chooses a1, A will counter with a,. Consequently, the worst-case
returns for actions ag and a; are 0 and 1, respectively. Therefore, the robust choice of action for the decision-maker is
a1. RHS displays tables of action probabilities and the worst-case returns for the Decision Transformer (DT), Expected
Return-Conditioned DT (ERC-DT) methods and our algorithm, when conditioned on the largest return-to-go 6. After
training using uniformly collected data that covered all possible trajectories, the results reveal that DT fails to select
the robust action a1, whereas our algorithm manages to do so.

suboptimal, a well-trained conditional policy overfitted to the training dataset may fail to achieve the desired target
return during testing, if the adversary’s policy at test time has changed or become more effective.

We illustrate this using a sequential game with data collected by a uniform random policy with full coverage shown in
Figure[T] The standard RvS methods (DT and ERC-DT) when conditioned on high target return, show poor worst-case
performance. DT’s failure stems from training data containing the sequences (ao, az) and (a1, as), inaccurately
indicating both actions ag and aq as optimal. ERC-DT missteps because the adversary’s uniform random policy skews
the expected return in favor of ay over a;, wrongly favoring ag. A robust strategy, however, exclusively selects a;
against an optimal adversary to guarantee a high reward. Moreover, in more complex multi-decision scenarios, the
adversarial strategy should not only minimize but also counterbalance with maximized returns by the decision-maker
at the subsequent state, aligning with a minimax return approach for robust policy development.

Main Contributions. Consequently, there is a need for data curation to indicate the potential worst-case returns
associated with each action in the Decision Transformer (DT), improving the robustness against adversarial actions.
Building on this concept, we introduce the first robust training algorithm for Decision Transformer, the Adversarial
Robust Decision Transformer (ARDT). To the best of our knowledge, this paper represents the first exploration of
the robustness of RvS methods from an adversarial perspective. In ARDT, we leverage Expectile Regression [Newey
and Powell, |1987| |Aigner et al., [1976] to transform the original returns-to-go to in-sample minimax returns-to-go,
and train DT with the relabeled returns. In the experiments, we illustrate the robustness of ARDT in three settings
(i) Games with full data coverage (ii) A long-horizon discrete game with partial data coverage (iii) Realistic continuous
adversarial RL problems. We provide evidence showcasing the robustness of ARDT to more powerful adversary
compared to the behavior policy and the distributional shifts of the adversary’s policy in the test time. Furthermore,
in the adversarial MuJoCo tasks, namely Noisy Action Robust MDP [Tessler et al.l [2019]], ARDT exhibits better
robustness to a population of adversarial perturbations compared to existing DT methods.

Related work. Reinforcement Learning via Supervised Learning is a promising direction for solving general offline
RL problems by converting the RL problem into the outcome-conditioned prediction problem [Kumar et al., {2019}
Schmidhuber, 2019, |(Ghosh et al., 2019, |Paster et al.| 2020, [Emmons et al.,[2021]]. Decision Transformer (DT) is one
of the RvS instance [Chen et al., 2021} |Kim et al., [2023]], leveraging the strength of the sequence model Transformer
[Vaswani et al.,2017]]. The variants of DT have been extensively investigated to address the trajectory stitching [Wu
et al.| 2024} [Yamagata et al., [2023]], stochasticity [Paster et al., 2020, Ortega et al.| 2021} [Paster et al., 2022, |Yang
et al.| 2022]], goal-conditioned problems [Furuta et al.,[2021]], and generalization in different environments [Meng et al.}
2021} Xu et al| [2022] Lee et al.,|2022] Xu et al., 2023]||. For different problems, it is critical to select an appropriate
target as the condition of the policy. QQ-Learning DT [[Yamagata et al.,[2023]] relabels the trajectories with the estimated
Q-values learned to achieve trajectory stitching [Kumar et al., 2020]. ESPER [Paster et al.,[2022]], aims at solving
the environmental stochasticity via relabeling the trajectories with expected returns-to-go. Although our method also
transform the returns-to-go to estimated values, we instead associate worst-case returns-to-go with trajectories, aiming
at improving its robustness against adversarial perturbations.

Adversarial Robust Decision Transformer A PREPRINT

Adversarial RL can be framed as a sequential game; with online game-solving explored extensively in literature
[Lanctot et al., 2009, Heinrich et al., |2015] |Sunehag et al., [2017, Lowe et al., 2017} |Lanctot et al., 2017, |Srinivasan
et al., 2018| |[Schrittwieser et al.| 2020, Tang et al.| |2023]]. In the offline setting, where there is no interaction with
the environment, solving games is challenging due to distributional shifts in the adversary’s policy, necessitating
adequate data coverage. Tabular methods, such as Nash)-Learning—a decades-old approach for decision-making
in competitive games [Hu and Wellman, 2003]—and other similar methods [[Cui and Du, [2022} Zhong et al.| [2022]
address these challenges through pessimistic out-of-sample estimation. While value-based methods are viable for
addressing adversarial problems, our focus is on enhancing the robustness of RvS methods in these settings. Note that
while some offline multi-agent RL methods, including DT-based approaches, are designed for cooperative games [Meng
et al., 2021} [Wen et al.| 2022} Tseng et al.| [2022, Wang et al.|2024]], our research is oriented towards competitive games.

2 Problem Setup

We consider the adversarial reinforcement learning problem involving a protagonist and an adversary, as described
by [Pinto et al.|[2017]]. This setting is rooted in the two-player Zero-Sum Markov Game framework [Littman|[[1994],
Perolat et al|[2015]. This game is formally defined by the tuple (S, A, A, T, R,po). Here, S represents the state
space, where A and 4 denote the action spaces for the protagonist and adversary, respectively. The reward function
R:S8 x Ax A — R and the transition kernel 7' : S x A x A — A(S) depend on the state and the joint actions of
both players. The initial state distribution is denoted by py. At each time-step ¢ < H, both players observe the state
s¢ € S and take actions a; € A and a; € A. The adversary is considered adaptive if its action @; depends on s, and a;.
The protagonist receives a reward r, = R(s¢, as, Gt), while the adversary receives a negative reward —r.

Denote trajectory 7 = (¢, at, g, rt)flzo and its sub-trajectory 7;.; = (S¢, at, Gy, rt)g:i for0 < ¢ < j < H. The
return-to-go refers to the sum of observed rewards from state s; onwards: R(7.p) = Zf/{: , T+. The protagonist policy
7 and the adversary policy 7 can be history-dependent, mapping history (7o.;—1, $¢) to the distribution over protagonist
and adversary’s actions, respectively.

In offline RL, direct interaction with the environment is unavailable. Instead, we rely on an offline dataset D, which
consists of trajectories generated by executing a pair of behavioral policies, (7p, Tp). Our objective in this adversarial
offline RL setting is to utilize this dataset D to learn a protagonist policy that seeks to maximize the return, while being
counteracted by an adversary’s policy 7:

maxminE, .= [Z rt] , @))

t

where p™™ (1) = po(so) - [1, m(a¢ | To:t—1,8¢) - 7(@s | 70:0—1, St, a¢) - T(Se41 | ¢, ar, @;). The maximin solution to
this problem and its corresponding optimal adversary are denoted as 7* and 7*, respectively.

2.1 RvS in Adversarial Environments

We extend the RvS framework by incorporating adversarial settings within the Hindsight Information Matching (HIM)
paradigm [Furuta et al.| 2021]]. In adversarial HIM, the protagonist receives a goal (denoted by z) and acts within
an adversarial environment. The protagonist’s performance is evaluated based on how well it achieves the presented
goal. Mathematically, the protagonist aims to minimize a distance metric D(-, -) between the target goal z and the
information function I(-) applied to a trajectory 7. This sub-trajectory follows a distribution p dependent on both the
protagonist’s policy m, = 7w(a: | To:t—1, ¢, 2) and the test-time adversarial policy Ties;. Formally, the information
distance is minimized as follows:

Ir;in E;premed [D(I(7), 2)] ,)

where p™='Tes represents the trajectory distribution obtained by executing rollouts in a Markov Game with the pro-
tagonist’s policy 7, and the test-time adversarial policy 7es,. Under HIM framework, Decision Transformer |[Chen
et al.[[2021]] uses adopt return-to-go value as the information function, while ESPER |[Paster et al.| [2022] employs the
expected return-to-go. The well-trained RvS policy, including DT and ESPER, is derived from behavior trajectories
filtered based on the condition I(7) = z:

7, =g | Tow—1,5¢,2) = P2 7P (ay | Tow—1, 8¢, 1(T) = 2). 3)

If the conditional policy ensures that the information distance in Eq. (Z) is minimized to 0, the generated policy
T, 1S robust against T by simply conditioning on a large target return, or even the maximin optimal protagonist

Adversarial Robust Decision Transformer A PREPRINT

Q(St—ly At

1,G¢-1)
Q(sg,ap) —>

—_—
a —

:

Jswojsuel] |esnen

&

ag

Q(stv atyﬁt) -_—

Ayl

Q(8t+1,at+1)—> ' ' : ' ______ ' Q*(St+laat+l) @ ’fﬂ*@_

t+1

1

Figure 2: Training of Adversarial Robust Decision Transformer. We adopt Expectile Regression for estimator @ to
approximate the in-sample minimax. In the subsequent protagonist DT training, we replace the original returns-to-go

with the learned values @* to train policy.

7w = lim,_, 4 o 7, if the test-time adversary is optimal. Consequently, our objective shifts from learning a maximin
policy in Eq. (T) to minimizing the distance in Eq. ().

For a given target goal z, the trajectories where the information function I(7) = z can be considered as optimal
demonstrations of achieving that goal, i.e. information distance minimization, D(I(7), z) = 0. However, in adversarial
environments, this information distance is hard to be minimized to 0. In adversarial offline RL, a trajectory in the dataset
might achieve a goal due to the presence of a weak behavior adversary, rather than through the protagonist’s effective
actions. Filtering datasets for trajectories with high return-to-go could select the ones from encounters with suboptimal
adversaries. Consequently, an agent trained through behavioral cloning on these trajectories is not guaranteed to achieve
a high return when facing a different and powerful adversary at test time. We show this formally through a theorem:

Theorem 1. Let mp and 7p be the data collecting policies used to gather data for training an RvS protagonist
policy . Assume T(sti1 | Styae,a:) = p™2 P (S¢1 | Tot—1, St, G, s, L(T) = 2) E| for any goal z such that
p™ ™ (I(1) = z | s9) > O, the information distance can be minimized: E; . r- 7 [D(I(71), 2)] = 0 if Teest(@r |
TO:t—15 St at) = p™PTP (at | TO:t—15 St At I(T) = Z)

Theorem [I] suggests that the protagonist policy ., defined in Eq. (3), can minimize the information distance when
the test-time adversarial policy is Test = p™2"? (G4 | To:t—1, St, at, I(T) = 2). In other words, 7, conditioned on a
large target return, is guaranteed to be robust against p™® " (a; | To.4—1, S¢, a¢, I(T) = z). Consequently, the policies
of DT and ESPER are only guaranteed to perform well against behavior adversarial policies and will be vulnerable to
powerful test-time adversaries since their information function is dependent on behavior adversary. This is a concern
because, in practice, offline RL datasets are often collected in settings with weak or suboptimal adversaries.

In this context, to enhance robustness, we consider using an information function I(7) to train the protagonist policy .
by simulating the worst-case scenarios we might encounter during test time. A natural choice for I(7) is the minimax
return-to-go, which we formally introduce in Section [3|and use as a central component of our method. With this
I(7) and sufficient data coverage, p™>"® (ay | To.t—1, St, at, [(T) = z) can be approximated to the optimal adversarial
policy, implying that 7, is robust against the optimal adversary. Furthermore, even without sufficient data coverage, 7,
remains more robust compared to previous DT methods, which tend to overfit to the behavior adversarial policy.

3 Adversarial Robust Decision Transformer

To tackle the problem of suboptimal adversarial behavior in the dataset, we propose Adversarial Robust Decision
Transformer (ARDT), a worst-case-aware RvS algorithm. In ARDT, the information function is defined as the
expected minimax return-to-go:

H
I(T) = min max Est/+1NT("St’7at’7at’) E R(st,7at/7dt/)

un 1 TO:t—15St, Q¢ | - 4
t:H Gt41:H ¢ €[t H] bt

2This condition can be readily met in environments formulated as a game with deterministic transitions, which are prevalent
in many sequential games (e.g., Go and Chess [Schrittwieser et al.,2020]), as well as in frequently considered MuJoCo environments
involving adversarial action noise [Pinto et al.||2017} |Cheng et al.| [2022].

Adversarial Robust Decision Transformer A PREPRINT

Algorithm 1 Adversarial Robust Decision Transformer (ARDT)

1: Inputs and hyperparameters: offline dataset D containing collection of trajectories; o = 0.01
2: Initialization: Initialize the parameters w and v for in-sample returns-to-go networks @Q,, and @, with the original
returns-to-go, and parameter 6 of the protagonist policy my.
// expectile regression updates for in-sample returns-to-go networks
for iteration k = 0,1,--- do
4: for trajectory 7 € D do
// update w while keeping v fixed

el

5: W+ w — V0t ~%(w), where /1 ~(w) is given in (9).
// update v while keeping w fixed
6: v < v — V, (*(v), where £*(v) is given in (8).

// relabeling dataset D using in-sample returns-to-go
7: Create Dyorst = {T = (-, Ri 1,581,001, Ri,s0,a,---) | T € D, Ry = @u(st,at)}
/I protagonist policy update
8: L(g) = — ZTGDWON Zt IOg 7T9(at | TO:t—15 Sty Rt)
9: for iteration k =0,1,--- do
10: 0+ 06— VoL(0)
11: Output: Policy 7

Intuitively, this information function represents the expected return when an adversary aims to minimize the value,
while the protagonist subsequently seeks to maximize it. To train a protagonist policy as described in Eq. (3), ARDT
first relabels the trajectory with the minimax returns-to-go in Eq. {@). Secondly, the protagonist policy is then trained
similarly to a standard Decision Transformer (DT). This two-step overview of ARDT is provided in Figure[2] where the
left block includes the minimax return estiation with expectile regression for trajectory relabeling, and the right block
represents the DT training conditioned on the relabeled returns-to-go.

We relabel the trajectories in our dataset with the worst-case returns-to-go by considering the optimal in-sample
adversarial actions. In practice, we approximate the proposed information function using an (in-sample) minimax
returns-to-go predictor, denoted by Q: We simplify the notation of the appearance of actions in the dataset a; €
A : mp(at|T0.4-1,8¢) > 0and a; € A : Tp(a@¢|70.4-1, ¢, a¢) > 0to a; € D and a; € D, respectively. The optimal
predictor @* is a history-dependent state-action value function satisfying the following condition that at any time
t=1,---,T:

* o . *
Q" (T0:t—1, 8¢, 4¢) = Zglel%rt+Es,+1~T(-\st,a,,,a,,) agl?é(DQ (T0:t> St415 Ge41) | 5 (5)

We adopt Expectile Regression (ER) [Newey and Powell, 1987, |Aigner et al.,|1976] to approximate (). This choice is
particularly advantageous for RL applications because it helps avoid out-of-sample estimation or the need to query
actions to approximate the minimum or maximum return [Kostrikov et al.l 2021]]. Specifically, the loss function for ER
is a weighted mean squared error (MSE):

Lgg(u) =By [Jo — 1(u > 0)] - w?] . (6)

Suppose a random variable y follows a conditional distribution y ~ p(-|), function g, () := arg ming,) Lgg (9(x) —
h(z,y)) can serve as an approximate minimum or maximum operator for the function i (z, y) over all possible value of
1y, 1.e.,
li = i h(x,y), or li = h(z,y). 7
Jim ga(z) = min_ h(w.y), or lim ga(z) = max h(z,y) o

Our algorithm uses coupled losses for maximum and minimum operators to approximate the in-sample minimax
returns-to-go. Formally, given an offline dataset D, we alternately update the minimax and maximin returns-to-go

estimators: @, (s,a) and @ (s, a,a). In each iteration, we fix w (or v), denoted as @ (or 7), and then update v (or
w) based on the following loss functions:

Ea(l/) =E;vp [LgR(éu(TO:tfla St,at) - QG(TO:t—h Sty At C_lt))} s (8)

Y (w) =Erup [Léﬁa(Qw(TO:t—l, Sty 0ty at) — Qo (T0ut 8141, A1) — Tt)} . 9

Adversarial Robust Decision Transformer A PREPRINT

The minimizers (v* and w*) of the two losses mentioned above (with & — 0), combined with Eq. (7), satisfy the
following condition for all s, as, a; € D:

Qu+(Tot—1, Sty a1) = T_%%Qm (To:t—1, S¢, at, @), (10)
a
Qu= (To:t—1, 8¢, @, 0t) = By, <y 7D (10,41 50,00,30) max Qu- (T0:t, Se41,a") + 14 - (11)

By substituting Eq. into Eq. (T0), the minimax returns-to-go predictor @, - satisfies Eq. (3).

The formal algorithm of ARDT is presented in Algorithm [T where from line 3-6 is the minimax return estimation
diagrammed as the left block in Figure[2] and line 7-10 is the Transformer training on the right of Figure[2] Initially,
we warm up two returns-to-go networks with the original returns-to-go values from the dataset. This step ensures the
value function converges to the expected values, facilitating faster maximin value estimation and guaranteeing accurate
value function approximation at terminal states. Subsequently, we estimate the minimax returns-to-go by alternately
updating the parameters of the two networks based on the expectile regression losses in Eq. (9) and Eq. (8). Once the
minimax expectile regression converges, we replace the original returns-to-go values in the trajectories with the values

predicted by él,. Finally, we train the Decision Transformer (DT) conditioned on the states and relabeled returns-to-go
to predict the protagonist’s actions. Then the ARDT protagonist policy is ready to be deployed for evaluation in the
adversarial environment directly.

4 [Experiments

In this section, we conduct experiments to examine the robustness of our algorithm, Adversarial Robust Decision
Transformer (ARDT), in three settings: (i) Short-horizon sequential games, where the offline dataset has full coverage
and the test-time adversary is optimal (Section @, (i) A long-horizon sequential game, Connect Four, where the
offline dataset has only partial coverage and the distributional-shifted test-time adversary (Section4.2)), and (iii) The
standard continuous Mujoco tasks in the adversarial setting and a population of test-time adversaries (Section {.3]). We
compare our algorithm with baselines including Decision Transformer and ESPER. The implementation deatils are
in Appendix [C] Notably, since the rewards and states tokens encompass sufficient information about the adversary’s
actions, all DT models are implemented not conditioned on the past adversarial tokens to reduce the computational cost.

4.1 Full Data Coverage Setting

The efficacy of our solution is first evaluated on three short-horizon sequential games with adaptive adversary: (1) a
single-stage game, (2) an adversarial, single-stage bandit environment depicting a Gambling round [Paster et al.| [2022],
and (3) a multi-stage game. These are depicted in Figure[I] Figure [6] and Figure [§] respectively. The collected data
consists of 10° trajectories, encompassing all possible trajectories. The online policies for data collection employed by
the protagonist and adversary were both uniformly random.

Figure [3] illustrates the efficacy of ARDT in comparison to vanilla DT and ESPER. Across all three environments,
ARDT achieves the return of maximin (Nash Equilibrium) against the optimal adversary, when conditioned on a large
target return. As illustrated in Figure [T} ARDT is aware of the worst-case return associated with each action it can
take due to learning to condition on the relabeled minimax returns-to-go, and successfully takes robust action a;. In
single-stage game (Figure 3)), ESPER is vulnerable to the adversarial perturbations, and DT fails to generate robust
policy when conditioned on large target return. While, it is worth noting that DT has achieved worst-case return 1
when conditioning on target returns around 1. This imposes the question: Can we learn the robust policy by simply
conditioning on the largest worst-case return in testing with vanilla DT training?

We show via the Gambling environment in Figure (3| that vanilla DT can still fail even conditioning on the largest
worst-case return. In this environment, the worst-case returns of three protagonist actions are —15, —6 and 1. At the
target return 1, DT is unable to consistently reach a mean return of 1. Similar to DT in the single-stage game, it tends to
assign equal likelihood to a; and a9 to reach return 1, leading to a drop of performance to less than 1 under adversarial
perturbations. Therefore, simply conditioning on the robust return-to-go in testing is insufficient to generate robust policy
with vanilla DT. Moreover, as the target return approaches 5, DT’s performance drops more since DT tends to choose
ao more often to hopefully achieve a return of 5, but instead get negative return against the adversarial perturbations.

Conversely, ARDT’s policy is robust since it is trained with worst-case returns-to-go. ESPER also performs well in
Gambling due to that in this game the robust action is also the one with the largest expected return (Figure[8). ARDT
also attains the highest return in a multi-stage game when conditioned on large target return, while other two algorithms

Adversarial Robust Decision Transformer A PREPRINT

Nash Equilibrium — DT —— ESPER —— ARDT (ours)

Single-stage Game . Gambling Multi-stage Game

4/ —

g
=)
v

2.5

Worst-case Return
o
wu

o
=)

0.0

0 2 8 10 3 10

4 6 1 1 3 3 7
Target Return Target Return Target Return

Figure 3: Worst-case return versus target return plot comparing the proposed ARDT algorithm against vanilla DT, on
our Single-stage Game (left), Gambling (centre) and our Multi-stage Game (right), over 10 seeds.

—— Adv: 10% — Adv: 30% Adv: 50%

Protagonist: 30% Protagonist: 40% Protagonist: 50%

0.2} o4l 0.4f
£
2
[0]
o 0.0f
& %] 0.0F E 0.0r
©
L0 g%

. " 0.4 . . 0.4 s '
ARDT DT ARDT DT ARDT DT

Figure 4: Average return of ARDT and vanilla DT on Connect Four when trained on suboptimal datasets collected with
different levels of optimality for both the online protagonist’s policy (30%, 40% and 50% optimal) and the adversary’s
policy (10%, 30%, 50% optimal), over 10 seeds. We test against a fixed adversary that acts optimally 50% of the time,
and randomly otherwise.

Test-time adversary 30% optimal 50% optimal 70% optimal 100% optimal

DT 0.18 (0.09) -0.28 (0.05) -0.57 (0.06) -1.00 (0.00)
ESPER 0.44 (0.09) 0.00 (0.10) -0.42 (0.05) -0.98 (0.01)
ARDT (ours) 0.55 (0.11) 0.11 (0.22) 0.02 (0.09) -1.00 (0.00)

Table 1: Average returns of ARDT, vanilla DT and ESPER on Connect Four when trained on data mixed from both a
near-random (30%, 50%) dataset and a near-optimal (90%, 90%) dataset. Evaluation is done against different optimality
levels of adversary.

fail. Consequently, in the context of full data coverage and an adaptive adversary, ARDT is capable of approximating
the maximin (Nash Equilibrium) robust policy against the optimal adversarial policy, whereas DT is unable to do so.

4.2 Discrete Game with Partial Data Coverage

Connect Four is a discrete sequential two-player game with deterministic dynamics [Paster et al.| [2022], which can
also be viewed as a decision-making problem when facing an adaptive adversary. There is no intermediate reward;
rather, there is a terminal reward of either —1, 0, or 1, meaning lose, tie or win for the first-moving player, respectively.
Therefore we fix the target return in Connect Four as 1. We fix the protagonist to be the first-move player. This game
has a maximum horizon of 22 steps. Since we have a solver of this game, we manage to collect the data with e-greedy
policy. We define the optimality of an e-greedy policy of protagonist or adversary as (1 — €) - 100%. Each dataset
includes a total of 10° number of steps for variable-length trajectories.

Adversarial Robust Decision Transformer A PREPRINT

Worst-case Return

Datasets DT ESPER ARDT (ours)
Hopper-Ir 112.10 (63.40) 66.80 (5.50) 477.90 (219.90)
Hopper-mr 330.20 (286.80) 103.20 (11.70) 482.20 (83.70)
Hopper-hr 298.62 (319.72) 63.00 (11.50) 331.69 (187.18)

Walker2D-Ir 429.60 (31.90) 380.60 (156.90) 405.60 (39.80)
Walker2D-mr 391.00 (20.60) 426,90 (29.70) 508.40 (61.80)
Walker2D-hr ~ 413.22 (54.69) 502.60 (31.30) 492.63 (109.28)

Halfcheetah-Ir 1416.00 (48.50) 1691.80 (63.00) 1509.20 (33.80)
Halfcheetah-mr 1229.30 (171.10) 1725.60 (111.80) 1594.60 (137.50)
Halfcheetah-hr ~ 1493.03 (32.87) 1699.80 (32.80) 1765.71 (150.63)

Table 2: Results of DT, ESPER, and our algorithm ARDT with and without conditioned on past adversarial tokens:
the Worst-case Return against 8 different online adversarial policies on MuJoCo Noisy Action Robust MDP tasks
across b seeds. We tested with the same set of target returns and select the best target for each method. To expand
the data coverage, we inject random trajectories collected by 0.1-greedy online policies into the pre-collected online
datasets with high robust returns. We use low (suffix -Ir), medium (suffix -mr) and high randomness (suffix -hr) to
indicate the proportion of random trajectories.

Halfcheetah Hopper Hopper
—— DT —— DT 1200 _§ pr

—— ESPER —&— ESPER 1000 —§— ESPER
—— ARDT —&— ARDT —— ARDT —

2500

©
o
S

N
=3
=3
S

o

=]

S

800

w
1=}
1=}

-

S o

S o

Worst-case Return
H -
S &
g 3
5 8
Worst-case Return

Average Return

N
1=
1=}

0

500 0.01 0.05 0. 0.2 0.01 0.05 0.1 0.2 0.5

1 . . . 0.7 1.0 1.5 2.0
Test-time Noise Weight 6 Test-time Noise Weight 6 Relative Mass

Figure 5: From left to right, (1) the worst-case return under adversarial perturbations with different weights in
Halfcheetah, (2) in Hopper, and (3) average returns of algorithms in environments with different relative mass. The
initial target returns in the environments Halfcheetah and Hopper are 2000 and 500, respectively.

The results of training ARDT and DT on suboptimal datasets are presented in Figure] To demonstrate the stitching
ability of the two methods, datasets collected by suboptimal protagonist and adversarial policies were chosen, namely at
30%, 40% and 50% optimality for the protagonist and 10%, 30%, 50% optimality for the adversary. The figures show
that ARDT outperforms DT learning from suboptimal datasets, and more clearly so when tested against more powerful
adversaries than the behavior adversary.

We hypothesise that one important factor accounting for the negative returns of DT in the setting in[d may be the lack
of long, winning trajectories in the dataset. To exclude this factor, in Table [T we mix near-random and near-optimal
datasets for training, and test our algorithms against different levels of adversary. Compared to ESPER and DT, ARDT
still significantly outperforms DT, which suggests that even in the presence of trajectories with high returns in the
data, training DT with original returns-to-go in this setting will limit its ability to extract a powerful and robust policy.
In addition, the results show that ESPER outperforms DT, indicating relabeling trajectories with expected return can
help the extracted policy be robust to distributionaly-shifted and more powerful test-time adversarial policies. ESPER
conditioned on the expected return generates policy overfitted to the behavioral adversarial policy, which can fail under
distributional shift. However, ARDT as a worst-case-aware algorithm, can achieve greater robustness at test time.

Therefore, in discrete environment with partial data coverage and adaptive adversary, ARDT is more robust to
distributional shift and a more powerful test-time adversary.

4.3 Continuous Adversarial Environments

In this section, we test the algorithms on a specific instance of Adversarial Reinforcement Learning problems, namely
Noisy Action Robust MDP (NR-MDP), which was introduced by [Tessler et al.|[2019]. This includes three continuous

Adversarial Robust Decision Transformer A PREPRINT

control problems of OpenAl Gym MuJoCo, Hopper, Walker2D and Halfcheetah [Todorov et al.||2012]] involving
the adversarial action noise. In NR-MDP, the protagonist and adversary act jointly. Specifically, they exact a total force
over one or more parts of the body of the agent in a Mujoco environment, corresponding to the weighted sum of their
individual forces (adversary’s weight §). Despite no longer being in the discrete setting, the return minimax expectile
regression in ARDT is implemented with the raw continuous states and actions input, without any discretization.

To collect the data, we first trained Action Robust Reinforcement Learning (ARRL) online policies on NR-MDP tasks
[Tessler et al., 2019] to create the online protagonist policy and adversary policy for evaluation. Subsequently, the
pre-collected data consist of the replayed trajectories removing the ones with low cumulative rewards. We collect the
suboptimal trajectories with the e-greedy of the saved ARRL agents, i.e. online protagonist and adversary policies. We
then mix them with the pre-collected datasets to create the final training datasets. The proportion of random trajectories
to pre-collected trajectories are 0.01 : 1, 0.1 : 1 and 1 : 1, respectively, for datasets categorised as being low, medium,
and high randomness. At test time, we evaluate each of our trained ARDT protagonist policies against a population of 8
adversarial online policies, each across 5 seeds. We sweep over the same set of target returns for all algorithms, and
pick the best results.

As shown in Table] ARDT has overall better worst-case performance than DT and ESPER. In Hopper, ARDT
has significantly higher worst-case return than both ESPER and DT. In Halfcheetah, ARDT has significantly higher
worst-case return than DT and competitive results with ESPER. This is despite the much lower data coverage than in
the previous settings due to the continuous environment. Low data coverage is in theory a greater limitation for ARDT
given that it attempts to learn a single best worst-case outcome, rather than an expectation over outcomes. Even so,
our proposed solution outperforms the baselines in most settings across all three environments. In addition, ARDT also
has better performance when varying the adversary’s weight ¢ and relative mass (Figure[3)), implying the robustness
of ARDT to test-time environmental changes. Therefore, in the context of a continuous state and action space, and
when facing a diverse population of adversaries or environmental changes, ARDT trained with minimax returns-to-go
can still achieve superior robustness than our baselines.

5 Conclusions and Limitations

This paper introduces a worst-case-aware training algorithm designed to improve the adversarial robustness of the
Decision Transformer. By relabeling trajectories with the estimated in-sample minimax returns-to-go through expectile
regression, our algorithm is demonstrated to be robust against adversaries more powerful than the behavior ones, which
existing DT methods cannot achieve. In experiments, our method consistently exhibits superior worst-case performance
against adversarial attacks in both gaming environments and continuous control settings.

Limitations. In our experiments, our practical algorithm estimates the minimax returns-to-go without accounting for
stochasticity, as the transitions in all tested environments, as well as many real-world game settings, are deterministic
when conditioned on the actions of both players. Future work should explore both stochastic and adversarial
environments to further evaluate the performance of our proposed solution.

Broader Impact. Adversarial RvS holds potential for improving the robustness and security of autonomous agents
in dynamic and potentially hostile environments. By training agents to withstand adversarial actions and unpredictable
conditions, our work can improve the reliability and safety of technologies such as autonomous vehicles, cybersecurity
defense systems, and robotic operations.

6 Acknowledgments

Ilija Bogunovic was supported by the EPSRC New Investigator Award EP/X03917X/1; the Engineering and Physical
Sciences Research Council EP/S021566/1; and Google Research Scholar award. Xiaohang Tang was supported by
the Engineering and Physical Sciences Research Council [grant number EP/T517793/1, EP/W524335/1]. The authors
would like to thank the Department of Statistical Science, in particular Chakkapas Visavakul, for co-ordinating the
computer resources, and the Department of Electronic and Electrical Engineering at University College London for
providing the computer clusters.

References
Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for offline rl via
supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. Advances in Neural Information
Processing Systems, 36, 2024.

Adversarial Robust Decision Transformer A PREPRINT

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer: Leveraging dynamic
programming for conditional sequence modelling in offline rl. In International Conference on Machine Learning,
pages 38989-39007. PMLR, 2023.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling problem.
In Advances in Neural Information Processing Systems, 2021.

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards—just map them to actions. arXiv
preprint arXiv:1912.02875, 2019.

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. arXiv preprint arXiv:1912.13465,
2019.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srinivas,
and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances in neural
information processing systems, 34:15084—-15097, 2021.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforcement learning. In
International Conference on Machine Learning, pages 2817-2826. PMLR, 2017.

Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and applications in continuous
control. In International Conference on Machine Learning, pages 6215-6224. PMLR, 2019.

Parameswaran Kamalaruban, Yu-Ting Huang, Ya-Ping Hsieh, Paul Rolland, Cheng Shi, and Volkan Cevher. Robust
reinforcement learning via adversarial training with langevin dynamics. Advances in Neural Information Processing
Systems, 33:8127-8138, 2020.

Eugene Vinitsky, Yuqing Du, Kanaad Parvate, Kathy Jang, Pieter Abbeel, and Alexandre Bayen. Robust reinforcement
learning using adversarial populations. arXiv preprint arXiv:2008.01825, 2020.

Sebastian Curi, Ilija Bogunovic, and Andreas Krause. Combining pessimism with optimism for robust and efficient
model-based deep reinforcement learning. In International Conference on Machine Learning, pages 2254-2264.
PMLR, 2021.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline reinforcement
learning. Advances in neural information processing systems, 35:16082—-16097, 2022.

Keiran Paster, Sheila Mcllraith, and Jimmy Ba. You can’t count on luck: Why decision transformers and rvs fail in
stochastic environments. Advances in Neural Information Processing Systems, 35:38966-38979, 2022.

Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Dichotomy of control: Separating what you can
control from what you cannot. arXiv preprint arXiv:2210.13435, 2022.

Whitney K Newey and James L Powell. Asymmetric least squares estimation and testing. Econometrica: Journal of
the Econometric Society, pages 819-847, 1987.

Dennis J Aigner, Takeshi Amemiya, and Dale J Poirier. On the estimation of production frontiers: maximum likelihood
estimation of the parameters of a discontinuous density function. International economic review, pages 377-396,
1976.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach, and Sergey Levine.
Learning to reach goals via iterated supervised learning. arXiv preprint arXiv:1912.06088, 2019.

Keiran Paster, Sheila A Mcllraith, and Jimmy Ba. Planning from pixels using inverse dynamics models. arXiv preprint
arXiv:2012.02419, 2020.

Jeonghye Kim, Suyoung Lee, Woojun Kim, and Youngchul Sung. Decision convformer: Local filtering in metaformer
is sufficient for decision making. arXiv preprint arXiv:2310.03022, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, F.ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Pedro A Ortega, Markus Kunesch, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Joel Veness, Jonas Buchli,
Jonas Degrave, Bilal Piot, Julien Perolat, et al. Shaking the foundations: delusions in sequence models for interaction
and control. arXiv preprint arXiv:2110.10819, 2021.

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline hindsight
information matching. arXiv preprint arXiv:2111.10364, 2021.

Linghui Meng, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li, Weinan Zhang, Ying Wen, Haifeng Zhang, Jun
Wang, and Bo Xu. Offline pre-trained multi-agent decision transformer: One big sequence model tackles all smac
tasks. arXiv preprint arXiv:2112.02845, 2021.

10

Adversarial Robust Decision Transformer A PREPRINT

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan. Prompting
decision transformer for few-shot policy generalization. In international conference on machine learning, pages
24631-24645. PMLR, 2022.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadarrama, Ian Fischer,
Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision transformers. Advances in Neural Information
Processing Systems, 35:27921-27936, 2022.

Mengdi Xu, Yuchen Lu, Yikang Shen, Shun Zhang, Ding Zhao, and Chuang Gan. Hyper-decision transformer for
efficient online policy adaptation. arXiv preprint arXiv:2304.08487, 2023.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforcement
learning. Advances in Neural Information Processing Systems, 33:1179-1191, 2020.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte carlo sampling for regret minimization in
extensive games. Advances in neural information processing systems, 22, 2009.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games. In International
conference on machine learning, pages 805-813. PMLR, 2015.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jaderberg, Marc
Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296, 2017.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. Advances in neural information processing systems, 30, 2017.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat, David Silver,
and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Sriram Srinivasan, Marc Lanctot, Vinicius Zambaldi, Julien Pérolat, Karl Tuyls, Rémi Munos, and Michael Bowling.
Actor-critic policy optimization in partially observable multiagent environments. Advances in neural information
processing systems, 31, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur
Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi by planning with
a learned model. Nature, 588(7839):604-609, 2020.

Xiaohang Tang, Stephen Marcus McAleer, Yaodong Yang, et al. Regret-minimizing double oracle for extensive-form
games. In International Conference on Machine Learning, pages 33599-33615. PMLR, 2023.

Junling Hu and Michael P Wellman. Nash g-learning for general-sum stochastic games. Journal of machine learning
research, 4(Nov):1039-1069, 2003.

Qiwen Cui and Simon S Du. When are offline two-player zero-sum markov games solvable? Advances in Neural
Information Processing Systems, 35:25779-25791, 2022.

Han Zhong, Wei Xiong, Jiyuan Tan, Liwei Wang, Tong Zhang, Zhaoran Wang, and Zhuoran Yang. Pessimistic minimax
value iteration: Provably efficient equilibrium learning from offline datasets. In International Conference on Machine
Learning, pages 27117-27142. PMLR, 2022.

Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-agent
reinforcement learning is a sequence modeling problem. Advances in Neural Information Processing Systems, 35:
16509-16521, 2022.

Wei-Cheng Tseng, Tsun-Hsuan Johnson Wang, Yen-Chen Lin, and Phillip Isola. Offline multi-agent reinforcement
learning with knowledge distillation. Advances in Neural Information Processing Systems, 35:226-237, 2022.

Xiangsen Wang, Haoran Xu, Yinan Zheng, and Xianyuan Zhan. Offline multi-agent reinforcement learning with
implicit global-to-local value regularization. Advances in Neural Information Processing Systems, 36, 2024.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In Machine learning
proceedings 1994, pages 157-163. Elsevier, 1994.

Julien Perolat, Bruno Scherrer, Bilal Piot, and Olivier Pietquin. Approximate dynamic programming for two-player
zero-sum markov games. In International Conference on Machine Learning, pages 1321-1329. PMLR, 2015.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic for offline
reinforcement learning. In International Conference on Machine Learning, pages 3852-3878. PMLR, 2022.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021.

11

Adversarial Robust Decision Transformer A PREPRINT

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026-5033. IEEE, 2012.
doif10.1109/IROS.2012.6386109.

Gerhard Neumann and Jan Peters. Fitted g-iteration by advantage weighted regression. Advances in neural information
processing systems, 21, 2008.

12

https://doi.org/10.1109/IROS.2012.6386109

Adversarial Robust Decision Transformer A PREPRINT

Supplementary Material

A Proofs

Theorem. |/| Let mp and Tp be the data collecting policies used to gather data for training an RvS protagonist
policy w. Assume T(siy1 | St,a1,a1) = p™® P (S41 | To:e—1, 8¢, as, a5, I(T) = 2), for any goal z such that
p™> ™ (I(1) = z | s9) > 0, the information distance can be minimized: E . - mex [D(I(7),2)] = 0 if Teese(r |
T0:t—15 St5 G¢) = P 2P (A | Tot—1, 8¢, ag, [(T) = 2).

Proof. According to Eq. (3):

m(at | To:—1,8t,2) = "7 (ay | To:4—1, St L(T) = 2). (12)

If the sufficient condition is satisfied: Ties (a1 | To:t—1, S¢,a¢) = p™ " (ay | T0.4—1, St, at, I(T7) = z), combined with
our assumption, we have

7TD77T"‘D(

Test (Gt | Tot—1,5¢,a¢) - T(Se41 | S¢,ae) = p St41 | Tort—1, 8¢, a4, I(T) = 2). (13)

Then, we have:
ETNszy"?lesl(.lsO) [D(I(T)7 Z)]
me,ml(T | s0) - D(I(T),z)

=
ZHW(% | TO:t7173t7Z) 'ﬁtesx(@t | TO:tflaSt»at) 'T(St+1 | St>at>at) 'D(I(T)az)
T t

ZHP”D’ﬁD(CLt | TO:tfhstaI(T) = Z) : PWDﬁD(StH | TO:tflastaata-[(T) = Z) : D(I(T)az)
T t

S 572 (r | 50, 1(7) = 2) - D(I(7), 2)

= ETNPW'D'%'D (*|s0,I(T)=z) [D(I(T)’ Z)]
= 0.

The second equation satisfies by simply decomposing p as in section[2] The third equation satisfies due to Eq. and
Eq. (). The fourth equation satisfies by simply merging all p terms. The final equation satisfies since the expectation in
the last but one equation is over the probability distribution conditional on I(7) = z, leading to that for any sampled
trajectory 7, I(7) = z, and thus D(I(7), z). O

B Environments

Multi-Stage Game. Apart from using a single-stage game as a motivating example, we also conducted experiments
on a multi-stage game to highlight the importance of multi-step minimax instead of a single-step minimum by an
adversary. This is because the optimal adversary will also consider the optimal protagonist strategy in the subsequent
states. A multi-step minimax return is more accurate in describing the value of states and sub-trajectories.

Gambling. Gambling [Paster et al., 2022] is originally a simple stochastic bandit problem with three arms and
horizon one. When taking the first arm, the reward will be either 5 or —15 with 50% probability each. Similarly, when
taking the second arm, the reward will be 1 or —6 with equal probabilities. The third arm has deterministic reward 1. In
this paper, we extend it to an adversarial setting by considering an adversary controlling the outcomes, shown in Figure

Connect Four. Connect Four has a long horizon of 22 in the worst case. Figure7|shows an example of this game’s
dynamics. The outcomes only consist of win, tie, and lose, leading to the reward for the protagonist 1, 0, and —1.
We leverage the solver in https://github.com/PascalPons/connect4|to generate a stochastic policy for data
collection.

13

https://github.com/PascalPons/connect4

Adversarial Robust Decision Transformer A PREPRINT

Figure 6: Multi-stage Game. LHS is the tree representation of the problem, where P and A are decision-maker
(protagonist) and adversary, respectively. RHS is the same game tree where we attach the learned minimax return
and the action probabilities of the well-trained ARDT of a single run when conditioning on the target return 7 to the
adversarial node and the branches, respectively. For example, the highlighted node has minimax return-to-go 4.9. 0.99
on the branch leads to the highlited node, which indicates the action probability of taking aq at the initial state. Thick
lines represent the optimal adversarial actions.

]

2) a
s]] [
Figure 7: Connect Four game. Two players put pieces to specific ' .
columns in turns. The pieces will drop to the final empty row. Figure 8: Two-player zero-sum game Gambling:
P: protagonist, and A: adversary. The payoff
at the leaves are for protagonist.

C Implementation Details

Our implementation is based on the implementation of Decision Transformer 2021]l, and ESPER [Paster
2022]. Our data collection and part of the evaluation against online adversaries are based on the implementation
in Noisy Action Robust Reinforcement Learning [Tessler et al., 2019].

The hyperparameters of the Minimax Expectile Regression are in Table 3] In the practical version of ARDT’s minimax
regression, we adopt a leaf regularization to ensure the accuracy of predicting outcomes at the terminal state (leaf node).
We record our training iterations of minimax regression in the hyperparameters table. The number of training iterations
in full coverage examples and Connect Four are larger than twice the maximum trajectory length, guaranteeing the
minimax return propagated from the leaves to every node. The predicted values are relatively accurate according to the
prediction in Figure[] While in the MuJoCo environment, the trajectory length is too long for minimax regression to
make full propagation, partial propagate already brings robustness based on the MuJoCo results in Section i3]

Decision Transformer is trained with cross-entropy loss in the discrete environment and MSE in the continuous
environment, as in Decision Transformer [Chen et al., 2021]]. During action inference at test time, all DT-based methods

14

Adversarial Robust Decision Transformer A PREPRINT

Process Hyperparameters Values (Full coverage game/Connect Four/MuJoCo)
Number of training steps 5000/100000/100000
Number of testing iterations 100
Context length 4/20/22
Transformer training Legrmng rate 0.0001
Weight decay 0.0001
Warm up steps 1000
Drop out 0.1
Batch size 128/128/512
Optimizer AdamW
Number of training iterations 6/44/50
Learning rate 0.001
Weight decay 0.0001
Minimax expectile regression Model LSTM or MLP
Batch size 128/128/512
Leaf weight 0.9
Expectile level 0.01
Optimizer AdamW

Table 3: Hyperparameters of ARDT.

Datasets Returns of Behavior Policy Dataset Returns of Behavior Policy
Hopper-Ir 942.8 (417.4) (30, 10) 0.49 (0.87)
Hopper-mr 870.5 (467.4) (30,30) 0.13(0.99)
Hopper-hr 505.4 (532.2) (30,50) -0.23 (0.97)
Walker2D-Ir 1330.2 (654.2) (40,10) 056 (0.83)
(40,30) 0.24 (0.97)
Walker2D-mr 1277.4 (653.9) (40,50) -0.13 (0.99)
Walker2D-hr 1013.1 (581.1) (50,10) 0.61 (0.79)
Halfcheetah-1r 1516.4 (215.8) (50,30) 0.32(0.95)
Halfcheetah-mr 1395.1 (461.2) (50,50) -0.02 (1)

Halfcheetah-hr 795.3 (764.4)

Table 5: Data profile of Connect Four. The

tuples represent the optimal percentages of pro-
Table 4: Data profile of MuJoCo NR-MDP. tagonist and adversary.

are prompted with a desired initial target return and state to generate the strategy 7. Subsequently, the trajectory
is generated in an auto-regressive manner, utilizing both the actions sampled by the protagonist’s strategy 7 and the
adversarial strategy 7, along with the transitions and rewards provided by the online environments, till the environment
terminates or the maximum trajectory length is reached for evaluation. Notably, the target return will be subtracted
from the observed immediate reward once received from the environment.

Notably, given that the rewards and states tokens encompass sufficient information about the adversary’s action, we
train the Transformer model with sequences without adversarial tokens, as it ensures that the model capacity remains
consistent across algorithms. As usual, vanilla DT’s are conditioned on the observed returns-to-go, contaminated by
the adversarial actions and states. Similarly, ESPER policy is conditional on the expected returns-to-go and states.
Since the adversary only influences the transition and rewards, ESPER treats the adversary implicitly as part of the
environment that causes stochasticity and addresses it with expected return as the information function.

D Comparison to Other Methods

Tabular value-based works have been studied to solve zero-sum games offline by leveraging pessimism for out-of-sample
estimation [Cui and Dul 2022} [Zhong et al.|[2022]. In contrast, we did not incorporate pessimism due to the difficulty of
tuning its associated hyperparameter. We employ expectile regression to approximate the in-sample minimax return,
inspired by Implicit Q Learning [Kostrikov et al.| [2021] to approximate the Bellman optimal ()-values leveraging
expectile regression (ER). ER is efficient since it doesn’t rely on querying the actions during minimax return estimation,

15

Adversarial Robust Decision Transformer A PREPRINT

thus reducing complexity. Learning value functions this way, and learning strategy from the data is much less complex.
Thus, learning values and extracting policy from them is reasonable. In addition, training Transformer based on
relabeled returns-to-go is similar to doing policy extraction from the learned values (returns-to-go) [Neumann and
Peters|, |2008]]. Transformers demonstrating strong reasoning in sequence modeling should be exploited to improve
reinforcement learning.

E Data and Computing Resources

We publish our datasets of Connect Four and Mujoco data collected by executing Noisy Action Robust Re-
inforcement Learning and save the data on a Google drive: https://drive.google.com/drive/folders/
1fd9RNmntLOp86ywECRkbIKZbKTgJ6BY17usp=sharing. There are no data access restrictions. The Mujoco data
profiles are in Table[5|and 4] The MuJoCo data has a 1000 number of trajectories, each with 1000 steps of interactions.
The Connect Four datasets also have a 106 number of interaction steps, where each trajectory has a length of at most 22.

We conducted experiments on GPUs: a GeForce RTX 2080 Ti with memory 11GB and an NVIDIA A100 with memory
80 GB. The memory for the entire computing is around 100GB when parallelizing the running over random seeds in the
Connect Four game and MuJoCo.

F Additional Experimental Results

With Adversarial Token Without Adversarial Token
Datasets DT ESPER ARDT DT ESPER ARDT
Hopper-Ir 175.9 (7.5) 210.6 (21.5) 302.0 (221.0) 112.1 (63.4) 66.8 (5.5) 477.9 (219.9)
Hopper-mr 361.3 (278.0) 302.8 (159.4) 454.7 (402.5) 330.2 (286.8) 103.2 (11.7) 482.2 (83.7)
Hopper-hr 322.8 (225.9) 48.8 (0.3) 158.5 (2.8) 298.62 (319.72) 63.0(11.5) 331.69 (187.18)

Walker2D-Ir 4754 (84.8) 406.1 (1082) 528.6 85.7) 429.6 (31.9) 380.6 (156.9) 405.6 (39.8)
Walker2D-mr 505.1 (39.5) 455.2 (47.0) 485.5 (67.2) 391.0 (20.6) 4269 (29.7) 508.4 (61.8)
Walker2D-hr 5119 (94.6) 618.8(100.5) 475.2(842) 413.22(54.69) 502.6 (31.3) 492.63 (109.28)

Halfcheetah-Ir 1170.6 (94.9) 1368.6 (58.1) 1323.2 (76.8) 1416.0 (48.5) 1691.8 (63.0) 1509.2 (33.8)
Halfcheetah-mr 1599.9 (464.2) 1433.5 (64.7) 1299.9 (115.0) 1229.3 (171.1) 1725.6 (111.8) 1594.6 (137.5)
Halfcheetah-hr 1140.8 (251.4) 1558.5 (345.5) 974.3 (52.3) 1493.03 (32.87) 1699.8 (32.8) 1765.71 (150.63)

Table 6: Ablation study on training policy conditioning on adversary tokens with average Worst-case returns against 8
adversaries including algorithms with and without past adversary tokens. ARDT trained without adversarial token has
better performance in general.

Halfcheetah Hopper

—%— DT 200 — DT
—é— ESPER —é— ESPER
—&— ARDT —— ARDT

Walker2d

—¥— DT
—— ESPER
600 —&— ARDT

2500 900

N
=]
o
o

300

Worst-case Return
o —
o w
o o
o o
Worst-case Return

Worst-case Return

0

500 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0 0.01 0.05 0.1 0.2

Test-time Noise Weight 6 Test-time Noise Weight 6 Test-time Noise Weight 6

Figure 9: Average results in environments with different test-time weight of adversarial noise. The target return of the
three environments are set to 2000, 500 and 800.

16

https://drive.google.com/drive/folders/1fd9RNmntL0p86ywEcRkbIKZbKTgJ6BY1?usp=sharing
https://drive.google.com/drive/folders/1fd9RNmntL0p86ywEcRkbIKZbKTgJ6BY1?usp=sharing

	Introduction
	Problem Setup
	RvS in Adversarial Environments

	Adversarial Robust Decision Transformer
	Experiments
	Full Data Coverage Setting
	Discrete Game with Partial Data Coverage
	Continuous Adversarial Environments

	Conclusions and Limitations
	Acknowledgments
	Proofs
	Environments
	Implementation Details
	Comparison to Other Methods
	Data and Computing Resources
	Additional Experimental Results

