
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BOOTSTRAPPED MODEL PREDICTIVE CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Model Predictive Control (MPC) has been demonstrated to be effective in contin-
uous control tasks. When a world model and a value function are available, plan-
ning a sequence of actions ahead of time leads to a better policy. Existing methods
typically obtain the value function and the corresponding policy in a model-free
manner. However, we find that such an approach struggles with complex tasks,
resulting in poor policy learning and inaccurate value estimation. To address this
problem, we leverage the strengths of MPC itself. In this work, we introduce
Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs
policy learning in a bootstrapped manner. BMPC learns a network policy by im-
itating an MPC expert, and in turn, uses this policy to guide the MPC process.
Combined with model-based TD-learning, our policy learning yields better value
estimation and further boosts the efficiency of MPC. We also introduce a lazy re-
analyze mechanism, which enables computationally efficient imitation learning.
Our method achieves superior performance over prior works on diverse contin-
uous control tasks. In particular, on challenging high-dimensional locomotion
tasks, BMPC significantly improves data efficiency while also enhancing asymp-
totic performance and training stability, with comparable training time and smaller
network sizes. Code is available at https://github.com/bmpc-anonymous/bmpc.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) algorithms that incorporate online planning—often
referred to as plan-based methods—have demonstrated superior performance and data efficiency
across a range of domains, including chess (Silver et al., 2016; 2017; Schrittwieser et al., 2020),
games (Ye et al., 2021), continuous control (Sikchi et al., 2022; Hansen et al., 2023), and the rea-
soning of large language models (Zhao et al., 2024; Putta et al., 2024). By leveraging future states
and rewards predicted by a world model, planning algorithms can evaluate actions online and with
greater accuracy, resulting in a better and more robust policy. This represents a key advantage of
model-based planning, in contrast to model-free algorithms that learn a neural network directly
through trial and error.

In the field of continuous control, model predictive control (MPC) has proven to be an effective
planning approach (Lowrey et al., 2018; Hafner et al., 2019b; Hansen et al., 2022; Schubert et al.,
2023). A notable example is TD-MPC2 (Hansen et al., 2023), an MPC-based MBRL algorithm
with a robust world model, which demonstrates strong performance across a diverse range of con-
tinuous control tasks. Similar to existing methods (Bhardwaj et al., 2020; Sikchi et al., 2022),
TD-MPC2 learns a network policy and a value function in a model-free manner. During inference,
it uses policy-guided MPC for online planning, integrating the world model and the value function.
However, our experiments reveal that despite having high-quality interaction data from MPC, the
model-free policy learning struggles with challenging control tasks. The struggle in policy learning
further indicates poor value learning, which can lead to inaccurate value estimation during MPC and
degrade the overall performance of the MPC policy.

To address this problem, inspired by expert iteration algorithms (Anthony et al., 2017; Silver et al.,
2017), we propose Bootstrapped Model Predictive Control (BMPC), which performs policy learn-
ing in a bootstrapped manner. We first execute MPC guided by the action sequences generated by a
network policy, yielding a bootstrapped MPC expert. The network policy is then updated by imitat-
ing this expert, thus achieving policy improvement. By employing this iterative process, we leverage
the capabilities of MPC planning to boost the efficiency of policy learning. For value learning, we

1

https://github.com/bmpc-anonymous/bmpc

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Policy
𝑝

MPC Policy 𝜋

World
Model

EnvironmentMPPI

Buffer

Guide Rollout

𝜋𝑡 ← 𝜋(𝑠𝑡)

Lazy Reanalyze

𝑝(𝑠𝑡) 𝜋𝑡
min KL

Expert Imitation

Model-based TD-Learning

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Avg. 28 tasks

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0

200

400

600

800

1000
Avg. 7 high-dim tasks

BMPC (MPC policy)
BMPC (network policy)

TD-MPC2 (MPC policy)
TD-MPC2 (network policy)

Figure 1: Overview. (left) BMPC learns a network policy through expert imitation and lazy rean-
alyze mechanism, planning during inference using guided MPC, and performs model-based value
learning in an on-policy manner. (right) Averaged evaluation performance of the network policy
compared to the MPC policy in BMPC and TD-MPC2 on DMControl tasks. BMPC achieves better
policy learning, which further boosts the performance of MPC. Mean and 95% CIs over 5 seeds.

compute TD-targets online using the world model to mitigate off-policy issues. For imitation target
generation, we adopt a lazy reanalyze mechanism to maintain an expert action dataset, thereby sup-
porting expert imitation from the MPC policy in a computationally efficient manner. An overview
of BMPC is presented in Figure 1.

Through experiments, we show that learning a network policy through expert imitation can better
leverage the strengths of MPC than learning a policy in a model-free manner, thus leading to better
value estimation and MPC performance. Our method, BMPC, achieves superior sample efficiency
over prior data-efficient RL methods across 42 continuous control tasks in DMControl (Tassa et al.,
2018) and HumanoidBench (Sferrazza et al., 2024), with comparable training time and smaller net-
work sizes. In particular, in challenging high-dimensional locomotion tasks, BMPC significantly
improves data efficiency while also enhancing asymptotic performance and training stability. Ad-
ditionally, our lazy reanalyze approach reduces the proportion of reanalyzed samples required by
expert iteration algorithms (Ye et al., 2021; Wang et al., 2024) from 99% to 0.8%, while maintaining
comparable policy learning efficiency. This avoids the need for extensive re-planning, significantly
reducing the computational cost of BMPC.

2 RELATED WORK

Model-based reinforcement learning. MBRL focuses on using a model of the environment to
help an agent make decisions, which typically involves learning a dynamic model and a reward
model from data. To elaborate further, dyna-style approaches (Sutton, 1991; Janner et al., 2019;
Hafner et al., 2019a; Okada & Taniguchi, 2022; Robine et al., 2023; Hafner et al., 2023a) use the
model to simulate additional experiences based on real data, which improves the sample efficiency
of the algorithm. In contrast, plan-based methods leverage the model for planning, resulting in better
policies and further enhancing the sample efficiency of reinforcement learning. In the case of plan-
based MBRL, if the model and value function are sufficiently accurate, planning alone can lead to a
highly effective policy (Hafner et al., 2019b; Hansen et al., 2022; Schubert et al., 2023).

Expert iteration. Typically, planning algorithms need to roll out a large number of trajectories using
the model to explore the solution space, which can be computationally intensive. Expert iteration
methods (Anthony et al., 2017; Silver et al., 2017) improve the efficiency of planning by employing
a network policy to guide the search direction. The planning algorithm, guided by the network
policy, can be considered an expert, allowing the network policy to learn from it and thus achieve
policy improvement. By combining these two aspects, expert iteration can bootstrap the efficiency
of planning and the capability of the network policy. Although tree-search-based expert iteration
has achieved strong performance and data efficiency across a range of domains (Wang et al., 2024),
in the domain of continuous control, pure MPC-based MBRL without expert iteration remains the
superior approach (Hansen et al., 2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Imitating and enhancing MPC. Methods that aim to mimic or enhance MPC have gained signif-
icant attention in RL and robotics. Guided policy search methods (Levine & Koltun, 2013; Levine
et al., 2016; Zhang et al., 2016; Sun et al., 2018) help RL policies explore effectively in challenging
tasks by using an external plan-based policy, such as MPC, to guide the learning of a neural net-
work policy. Pan et al. (2017; 2020); Sacks & Boots (2022); Fishman et al. (2023) propose methods
where a neural network learns by mimicking an MPC controller, either to achieve a faster policy or
to develop a more efficient neural planner. Alternatively, there are approaches that attempt to learn a
residual policy on top of MPC (Silver et al., 2018; Sacks et al., 2024), which serves as another way of
bootstrapping MPC. Additionally, Power & Berenson (2022); Sacks & Boots (2023) aim to improve
MPC via learned sampling distributions. Unlike MBRL, the MPC policy in the aforementioned
methods is derived from a real, carefully designed model, rather than a learned model. Moreover,
these approaches do not adopt the iterative policy optimization scheme like expert iteration.

3 BACKGROUND

Problem formulation. We address reinforcement learning problems in continuous action spaces,
which are modeled as an infinite-horizon Markov Decision Process (MDP). This MDP is defined
by the tuple (S,A,P,R, γ), where S ∈ Rn and A ∈ Rm are state and action spaces, s ∈ S are
states, a ∈ A are actions, P : S × A 7→ S is the state transition function, R : S × A 7→ R
is the reward function, and γ is the discount factor. The objective in reinforcement learning is to
derive a policy π : S 7→ A that maximizes the expected discounted cumulative reward, expressed as
Eπ [

∑∞
t=0 γ

trt], where rt = R(st, π(st)).
TD-MPC2. TD-MPC2 (Hansen et al., 2023) is a plan-based MBRL algorithm that learns a world
model, a Q-function, and a corresponding policy, which are then used for MPC to derive an plan-
based policy π. The model components of TD-MPC2 can be described by a tuple (h, d,R,Q, p),
where z = h(s) is the encoder that maps the observation s into a latent space vector z, z′ = d(z,a)
is the latent-space dynamics model, r̂ = R(z,a) is the reward prediction function, q̂ = Q(z,a) is
the Q-value prediction function, and â = p(z) is the prior neural network policy. In this paper, we
omit the representation of task embedding inputs of TD-MPC2, as we do not focus on its multi-task
capabilities. Similar to model-free approaches like SAC (Haarnoja et al., 2018), TD-MPC2 learns
the Q-function through iterations of the Bellman equation, and the network policy p is optimized
by maximizing the Q-value with entropy regularization, which can be formalized as the following
update rules:

ϕ← argmin
ϕ

E(s,a,r,s′)∼B
[
CE(Qϕ(z,a), r + γQϕ−(z′, pθ(z

′)))
]

(1)

θ ← argmax
θ

Es∼B [Qϕ(z, pθ(z)) + βH(pθ(·|z))] , z = h(s), z′ = h(s′) (2)

whereH is the entropy of p, β is a hyperparameter for loss balancing, θ, ϕ, ϕ− denote the parameters
of the neural networks for p, Q, and the target Q-network, respectively. B represents the replay
buffer. CE is the cross-entropy, used because TD-MPC2 formulates value prediction as a discrete
regression problem. For simplicity, we omit the temporal expansion of the latent vector in update
rules for TD-MPC2; for the full temporally weighted objectives, see Hansen et al. (2023).

MPC with a policy prior. During inference, TD-MPC2 performs MPC planning guided by the prior
policy pθ. Specifically, TD-MPC2 leverages Model Predictive Path Integral (MPPI) (Williams et al.,
2015) as its underlying MPC algorithm. MPPI models the action sequence (at,at+1, ...,at+H) of
length H as being drawn from a time-dependent multivariate Gaussian with diagonal covariance,
parameterized as (µ, σ), where µ, σ ∈ RH×m. During the planning process, MPPI iteratively sam-
ples sequences fromN (µ, σ2), estimates their values by rolling out trajectories with the model, and
updates (µ, σ) based on a weighted average of the top-k sequences, thus maximizing the expected
estimated value of action sequence, which is expressed as:

µ∗, σ∗ = argmax
µ,σ

E
at:t+H∼N (µ,σ2)

[
Q̂(zt,at:t+H)

]
(3)

Q̂(zt,at:t+H)
.
= γHQ(zt+H ,at+H) +

H−1∑
h=t

γhR(zh,ah) (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 0.5 1.0 1.5 2.0
Environment steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Walker Run

0 0.5 1.0 1.5 2.0
Environment steps (×106)

0

100

200

300

400

500 Dog Run

0 0.5 1.0 1.5 2.0
Environment steps (×106)

0

100

200

300

400

500 Humanoid Run

TD-MPC2 (MPC policy) TD-MPC2 (network policy)

0
1

2
3

4
5

6
7

8

Action value difference(MPC policy-network policy)

0

200k

400k

600k

800k

1M En
vir

on
men

t s
tep

s

0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Walker Run Humanoid Run Dog Run

Figure 2: Performance gap between TD-MPC2 policies. (left) Evaluation performance of the net-
work policy compared to the MPC policy in TD-MPC2. The network policy struggles with complex
tasks like Dog Run and Humanoid Run. Mean and 95% CIs over 5 seeds. (right) Distributions of
action value differences during MPPI over environment steps.

To integrate prior policy guidance, a portion of the sampled sequences is drawn from the distribution
pθ. Ultimately, the first action of the optimized distribution at ∼ N (µ∗

t , σ
∗
t) is selected for execution

during inference. For more details on the planning procedure, see Hansen et al. (2022).

In this paper, we adopt the same world model architecture and MPPI algorithm as TD-MPC2, and
we use similar mathematical notations to describe our algorithm components.

4 METHOD

4.1 INSUFFICIENT POLICY LEARNING IN MODEL-FREE APPROACH

A model-free approach is adopted in TD-MPC2 to learn both the Q-function and a max-Q network
policy. During inference, it leverages MPC to plan actions, guided by the network policy. Since the
MPC policy—based on the learned model and online planning—typically outperforms the network
policy, it provides higher-quality samples for model-free learning, thereby improving the efficiency
of both policy and value learning. However, we find that in challenging environments, even with
high-quality samples from the MPC policy, the model-free approach still struggles, leading to a
performance gap between the MPC policy and the network policy. This gap indicates inaccurate
value estimation, further degrading the planning performance of MPC.

Figure 2 shows the evaluation performance of both the network policy and MPC policy during
training, on three locomotion tasks in DMControl (Tassa et al., 2018): Walker Run, Humanoid Run,
and Dog Run. In all three tasks, a policy performance gap is evident, though the extent of the gap
varies. In simpler task Walker Run, the network policy performs comparably to the MPC policy.
However, in more complex tasks like Humanoid Run and Dog Run, the network policy struggles to
improve, while the MPC policy maintains high performance.

To better understand the root cause of this performance gap, we analyze the planning process of
MPPI. We represent the prior action sequences generated by the network policy as {ai,pθ

t:t+H}ni=1,
where n is the number of prior action sequences, and the final action sequence selected by MPPI
as ampc

t:t+H . To quantify the optimization achieved by MPPI, we compute the difference between the
value of the final selected sequence and the average value of the prior sequences:

∆Q̂(zt)
.
= Q̂(zt,a

mpc
t:t+H)− 1

n

n∑
i=1

Q̂(zt,a
i,pθ

t:t+H) (5)

where Q̂ denotes the value estimated by the model in Equation 4. Overall, ∆Q̂(zt) reflects the
improvements that MPC makes to action value at time-step t. As illustrated in Figure 2, we plot
the distributions of ∆Q̂ over training steps within an episode. The figure shows that improvements
brought by MPC are continuously increasing in Humanoid Run and Dog Run, whereas in Walker
Run, the network policy already performs well, leaving little room for MPC to further optimize.

These experiments demonstrate that, although TD-MPC2 exhibits strong performance in high-
dimensional locomotion tasks, much of its performance is due to the use of online planning. In

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

contrast, network policy learning struggles considerably with these tasks. Consequently, we argue
that this inefficient policy learning indicates poor value learning, reducing the data efficiency of the
algorithm. Specifically, because the value network is learned to represent the value of the corre-
sponding network policy, this gap implies that the terminal value used by MPC is derived from a
weaker policy, which will result in inaccurate value estimation during planning. A natural solution,
which we propose, is to leverage the imitation of the MPC expert to achieve policy learning.

4.2 BOOTSTRAPPED MODEL PREDICTIVE CONTROL

We propose BMPC, a plan-based MBRL algorithm based on TD-MPC2’s world model. BMPC
learns a neural network policy by imitating an MPC expert, and in turn, uses this policy to guide the
MPC process. The world model is leveraged in BMPC to perform on-policy TD-learning of a value
network, which is used for terminal value calculation during MPC. Additionally, we introduce a
lazy reanalyze mechanism to maintain an expert dataset for more computationally efficient imitation
learning. The algorithm for BMPC training is presented in Algorithm 1.

Policy learning through expert imitation. BMPC uses a prior policy pθ to guide the planning
process of MPC. In other words, we can describe this as MPC bootstrapping pθ into an expert
policy, denoted as π(·|z, pθ). Thus, we learn the policy pθ by imitating π, which can be formalized
as the following objective:

Lp(θ)
.
= E

(s,a)0:H∼B

[
H∑
t=0

λt [KL(π(·|h(st), pθ), pθ(·|zt))/max(1, S)− βH(pθ(·|zt))]

]
, (6)

z0 = h(s0), zt+1 = d(zt,at), S
.
= EMA(Per(KL(π, pθ), 95)− Per(KL(π, pθ), 5), 0.99) (7)

where H is the entropy, KL is the Kullback–Leibler divergence, z0:H are latent vectors rolled out
through model h and d. β and λ are hyperparameters for loss balancing and temporal weighting,
respectively. Empirically, when action space is large, imitating the action distribution π is more ef-
ficient than imitating the exact actions a ∼ π, especially when both the student and expert policies’
distributions belong to the same parametric family. Since the MPC policy is parameterized as a mul-
tivariate Gaussian, we choose to parameterize the neural network policy as a multivariate Gaussian
as well, allowing us to compute the KL divergence in closed form. As the KL divergence between
multivariate Gaussian distributions can vary significantly across tasks and action spaces, affecting
training stability, we normalize the KL loss using moving percentiles S to keep the loss value within
an acceptable range. This method is also commonly used to balance the policy loss and entropy loss
(Hafner et al., 2023a; Hansen et al., 2023).

Model-based TD-learning. Since we do not employ a SAC-style max-Q approach for policy im-
provement, we opt to learn a state value function Vϕ instead of a state-action value function Qϕ. We
construct an n-step TD-target V̂ using the latest model, policy, and target value network. The value
network learns to minimize the cross-entropy loss with respect to the discretized TD-target:

LV (ϕ)
.
= E

(s,a)0:H∼B

[
H∑
t=0

λt
[
CE(Vϕ(zt), V̂ (h(st)))

]]
, z0 = h(s0), zt+1 = d(zt,at) (8)

V̂ (z′t)
.
= γNVϕ−(z′t+N) +

N−1∑
k=0

γkR(z′t+k, pθ(z
′
t+k)), z

′
t+1 = d(z′t, pθ(z

′
t)) (9)

where N is the TD horizon, z0:H are latent vectors rolled out through model h and d. V̂ is the
TD-target computed using the model d,R and the policy pθ in an on-policy manner. In practice, we
found that N = 1 is a more suitable choice, likely because the world model of TD-MPC2 is trained
with a short horizon (H = 3, λ = 0.5), limiting its ability to predict rewards over long sequences.
As a result, setting N too large would lead to excessive compounding errors.

Indeed, using the original Q-iteration method for value learning is also a feasible choice. However,
due to the changes in the policy learning approach, this option introduces certain off-policy issues,
which can lead to lower data efficiency and unstable training in tasks where the policy varies sig-
nificantly during training. We compare the results of the two value learning approaches in Section
5.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Lazy reanalyze. In practice, it is costly to compute the policy objective 6 directly, as it requires
re-planning for all samples during every update, which is infeasible for MPC algorithms. Instead,
we choose to maintain imitation targets in the replay buffer through lazy reanalyze, thus resulting in
a surrogate policy objective 10.

Algorithm 1 BMPC training

Require: Initialize pθ, Vϕ, h, d,R randomly.
B, k: replay buffer, lazy reanalyze interval.

1: while not converged do
2: // Collect experience
3: for step t = 0...T do
4: πt ← π(·|h(st), pθ)
5: at ∼ πt

6: (st+1, rt)← env.step(at)
7: B ← B ∪ (st,at, rt, st+1, πt)

8: // Update networks
9: for num updates per episode do

10: {st,at, rt, st+1, πt}t:t+H ∼ B
11: Update h, d,R as in TD-MPC2.
12: Update Vϕ via Equation 8.
13: Update pθ via Equation 10.
14: Update Vϕ− via EMA.
15: // Lazy reanalyze
16: if update step % k == 0 then
17: πt:t+H ← π(·|h(st:t+H), pθ)

18: B update←−−− πt:t+H

During every k-th network update, we draw
b samples from the batch, re-plan them, and
obtain fresh imitation targets, i.e., the mean
and standard deviation of the action distribu-
tion πt = π(·|h(st), pθ). These targets πt are
then placed back into the replay buffer. This re-
analyzing process is performed independently
of the training process. Thus, we can approx-
imately regard the replay buffer as an expert
dataset, and directly sample state-action pairs
from it for supervised learning. To increase ex-
ploration in MPC planning, we additionally add
noise to the prior policy during re-planning.

This approach is inspired by the reanalyze pro-
posed in Schrittwieser et al. (2020), a common
method in sample-efficient expert iteration al-
gorithms (Ye et al., 2021; Wang et al., 2024).
The key difference is that reanalyze performs
re-planning during every network update, with
99%-100% of samples re-planned (i.e., reana-
lyze ratio). These reanalyzed samples are im-
mediately used for imitation learning and then
discarded. In contrast, lazy reanalyze performs
far fewer re-plannings and places the reanalyzed samples back into the buffer for reuse.

Specifically, the reanalyze interval k and the reanalyze batch size b are hyperparameters, where
we choose k = 10 and b = 20, with a batch size of 256 for network updates. Under this setup,
lazy reanalyze achieves a computational cost equivalent to a reanalyze ratio of 0.8%, which is over
100 times lower than the typical reanalyze ratio of 99% (Ye et al., 2021; Wang et al., 2024). When
combined with batched MPPI planning on GPU, lazy reanalyze introduces only a 10%-20% increase
in training wall-time.

The surrogate policy objective with lazy reanalyze can be formalized as:

Llazy
p (θ)

.
= E

(s,a,π)0:H∼B

[
H∑
t=0

λt [KL(πt, pθ(·|zt))/max(1, S)− βH(pθ(·|zt))]

]
(10)

where πt is the expert action distribution we maintain in the replay buffer.

5 EXPERIMENTS

In this paper, we propose BMPC to more effectively leverage the strengths of MPC in continuous
control tasks. Our approach integrates expert imitation for policy learning, performs model-based
TD-learning for value learning, and introduces lazy reanalyze to better utilize re-planning results.
Through our experiments, we aim to answer the following key questions:

• How does BMPC perform as a data-efficient continuous control algorithm compared to the
current state-of-the-art methods?

• Does BMPC lead to better policy learning, and how can this be further leveraged?
• How does lazy reanalyze affect the performance and training time of BMPC?

To ensure a direct comparison, we evaluate BMPC on 28 DMControl (Tassa et al., 2018) tasks used
in the TD-MPC2 (Hansen et al., 2023) 1, and 14 tasks from HumanoidBench (Sferrazza et al., 2024)

1Excluding custom tasks created for multitask training.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

locomotion suite. The tasks covers a diverse range of continuous control challenges, including sparse
reward, locomotion with high-dimensional state and action space (up to A ∈ R61). Visualizations
of the tasks can be found in Appendix D. To avoid ambiguity, we use the term “environment step”
in our experiments, where an environment step refers to the number of inference steps multiplied by
the action repeat (2 in DMControl, 1 in HumanoidBench).

Baselines. We select three state-of-the-art data-efficient RL methods as baselines: (1) SAC
(Haarnoja et al., 2018), a model-free actor-critic algorithm rooted in maximum entropy reinforce-
ment learning; (2) DreamerV3 (Hafner et al., 2023a), a Dyna-style MBRL algorithm that trains a
model through reconstruction loss and learns a model-free policy from trajectories imagined by the
model; (3) TD-MPC2 (Hansen et al., 2023), an MPC-based MBRL algorithm that learns a network
policy and Q-function in a model-free manner, and performs MPC planning at inference based on
them and the model. Both MBRL methods learn an implicit model to roll out sequences in latent
space and predict rewards.

For SAC, we use the results from TD-MPC2 and HumanoidBench; For DreamerV3, we use its
default settings on DMControl tasks, corresponding to a network size of 12M, and use the results
from HumanoidBench; For TD-MPC2, we use its default configuration, corresponding to a network
with 5M parameters. For BMPC, we adopt a network almost identical to TD-MPC2, except that
we replace the Q-network with a V-network. Notably, as we do not use a Q-based method, we
find that BMPC’s performance is less dependent on ensemble networks, allowing us to reduce the
default 5 ensemble value networks to 2. This results in a smaller network for BMPC, with only 3M
parameters. We use the same hyperparameters for BMPC across all tasks, see Table 2, and detailed
baseline configurations are provided in Appendix B.

5.1 RESULTS

Benchmark performance. We first compare BMPC against the baselines across all 28 DMControl
tasks. Due to limited space, we only present results for 10 selected tasks, as shown in Figure 3. The
training curves for all tasks are provided in Appendix C. Our results show that BMPC consistently
achieves either superior or comparable performance relative to the baselines on most tasks. Notably,
on high-dimensional locomotion tasks, such as Dog and Humanoid, BMPC shows significant im-
provements in data efficiency, despite having fewer learnable parameters. The results on DMControl
indicate that BMPC maintains the performance of TD-MPC2 across a wide range of control tasks,
while significantly enhancing performance in tasks where model-free approach struggles.

We further compare BMPC with the baselines on the 7 high-dimensional tasks, as shown in Figure
4. The environment steps are extended from 1M to 4M for a comprehensive comparison. In addition
to its improved data efficiency at short training lengths, BMPC also outperforms the baselines in
terms of asymptotic performance and training stability, as indicated by the confidence intervals of
the curves. Finally, the average steps-to-solve (the number of steps required to achieve 795, which
is 90% of the asymptotic reward) across the 7 tasks for BMPC is 90k steps, while for TD-MPC2 it
is 360k steps, indicating a 300% increase in data efficiency.

On the HumanoidBench locomotion suite, which requires the agent to control a more complex
embodiment—a Unitree robot with a large action space (A ∈ R61)—BMPC maintains supe-
rior performance compared to baselines, further demonstrating its advantage on challenging high-
dimensional tasks. We present results for all tasks in Figure 5.

Leveraging better policy learning. In BMPC, we obtain a network policy through expert imitation.
To verify whether this network policy is better and how we can leverage it, we design ablation
experiments as shown in Figure 6 and Figure 7a.

Figure 6 illustrates the performance gap between the network policy and MPC policy for BMPC and
TD-MPC2 on DMControl, similar to Figure 2. Training curves for all tasks are provided in Appendix
C. Surprisingly, through expert imitation, BMPC enables its network policy to perform nearly on
par with its MPC policy. In contrast, TD-MPC2 exhibits a substantial performance gap between its
network policy and MPC policy, particularly in challenging tasks such as Dog and Humanoid. This
indicates that BMPC’s network policy can serve as a viable final inference strategy without the need
for online planning, which is suitable for real-time control tasks that demand low latency.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0
200
400
600
800

1000

Ep
iso

de
 re

wa
rd

Avg. 28 tasks Avg. 7 high-dim tasks Cheetah Run Cartpole Swingup Sparse

0
200
400
600
800

1000
Ep

iso
de

 re
wa

rd
Dog Stand Dog Trot Finger Turn Hard Hopper Stand

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0
200
400
600
800

1000

Ep
iso

de
 re

wa
rd

Humanoid Stand

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Humanoid Walk

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Quadruped Walk

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Walker Stand

BMPC (ours) TD-MPC2 SAC DreamerV3

Figure 3: DMControl tasks. Comparing BMPC to baselines on DMControl tasks. In the top left,
we present the average performance of 7 high-dimensional locomotion tasks and all 28 tasks. Mean
and 95% CIs over 5 seeds2. Training curves for all tasks are provided in Appendix C.

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Average Dog Stand Dog Trot Dog Walk

0 1.0 2.0 3.0 4.0
Environment steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Dog Run

0 1.0 2.0 3.0 4.0
Environment steps (×106)

Humanoid Stand

0 1.0 2.0 3.0 4.0
Environment steps (×106)

Humanoid Walk

0 1.0 2.0 3.0 4.0
Environment steps (×106)

Humanoid Run

BMPC (ours) TD-MPC2 DreamerV3

Figure 4: High-dimensional locomotion tasks. Comparison of BMPC with baselines on the 7
most challenging high-dimensional locomotion tasks; The environment steps are extended to 4M
for a comprehensive comparison. In the top left, we present the results averaged over all 7 tasks.
Mean and 95% CIs over 5 seeds.

We further conduct ablation studies to show how this improved network policy contributes to
BMPC’s performance. We introduce three BMPC variants for comparison: (1) Variant 1: based
on TD-MPC2, we use expert imitation to additionally learn a network policy, which is used to guide
MPPI planning, while value learning still relies on the original policy; (2) Variant 2: based on Vari-
ant 1, we use both two network policies to guide MPPI planning simultaneously; (3) Variant 3: we
replace TD-MPC2’s policy learning approach with expert imitation, thus changing the policy used
in value learning, while still learning value based on Q-iteration; (4) BMPC: based on Variant 3, we
adopt model-based on-policy TD-learning. For further details of these variants, see Appendix A.

Figure 7a shows the results of BMPC variants on the Dog Run and Humanoid Run. We find that even
with a better policy, using it to guide MPC does not result in improved performance, as shown by
the results of Variant 1 and Variant 2. The key to performance improvement lies in using this policy

2Except SAC, which uses 3 seeds.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0

200

400

600

800

1000

Ep
iso

de
 re

tu
rn

Avg. 13 tasks

0

200

400

600

800

1000 Balance Hard

0

200

400

600

800

1000 Balance Simple

0

200

400

600

800

1000 Crawl

0

200

400

600

800

1000 Hurdle

0

200

400

600

800

1000

Ep
iso

de
 re

tu
rn

Maze

0

200

400

600

800

1000 Pole

0

2800

5600

8400

11200

14000 Reach

0

200

400

600

800

1000 Run

0

200

400

600

800

1000 Sit Hard

0 0.5 1.0 1.5 2.0
Environment steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 re

tu
rn

Sit Simple

0 0.5 1.0 1.5 2.0
Environment steps (×106)

0

200

400

600

800

1000 Slide

0 0.5 1.0 1.5 2.0
Environment steps (×106)

0

200

400

600

800

1000 Stair

0 0.5 1.0 1.5 2.0
Environment steps (×106)

0

200

400

600

800

1000 Stand

0 0.5 1.0 1.5 2.0
Environment steps (×106)

0

200

400

600

800

1000 Walk

BMPC (ours) TD-MPC2 DreamerV3 SAC

Figure 5: HumanoidBench locomotion suite. Comparing BMPC to baselines on HumanoidBench
locomotion suite. In the top left, we present the average performance of all 13 tasks except for Reach
due to the different reward scales. Mean and 95% CIs over 3 seeds.

0 0.5 1.0 1.5 2.0
Environment steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Walker Run

0 0.5 1.0 1.5 2.0
Environment steps (×106)

0

160

320

480

640

800 Dog Run

0 0.5 1.0 1.5 2.0
Environment steps (×106)

0

140

280

420

560

700 Humanoid Run

BMPC (MPC policy)
BMPC (network policy)

TD-MPC2 (MPC policy)
TD-MPC2 (network policy)

0
1

2
3

4
5

6
7

8

Action value difference(MPC policy-network policy)

0

200k

400k

600k

800k

1M En
vir

on
men

t s
tep

s

0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Walker Run Humanoid Run Dog Run

Figure 6: Performance gap between BMPC policies. (left) Evaluation performance of the network
policy compared to the MPC policy in BMPC and TD-MPC2, The performance gap of BMPC is
barely noticeable. Mean and 95% CIs over 5 seeds. Curves for all tasks are provided in Appendix
C. (right) Distributions of action value differences during MPPI over environment steps for BMPC.

to learn a better value function, as indicated by the results of Variant 3 and BMPC. Additionally,
model-based value learning avoids off-policy issues, leading to improved data efficiency.

Lazy reanalyze ablation. BMPC maintains an expert dataset through lazy reanalyze to achieve
computationally efficient expert imitation. We explore the relationship between the frequency of re-
planning and performance by evaluating lazy reanalyze interval k ∈ {10, 40, 80,∞}, corresponding
to reanalyze ratios of 0.8%, 0.2%, 0.1%, and 0%, respectively. The results, shown in Figure 7b,
indicate that the reanalyze interval k considerably affects BMPC’s performance. However, as k
decreases, the impact becomes less pronounced. Beyond k = 10, further increasing the reanalyze
frequency does not significantly improve performance but results in substantial computational over-
head. Thus, we set k = 10 as the default value. It is worth noting that in all our experiments, the
replay buffer size is 1M, which is quite large for an expert dataset, but even with low-frequency
reanalyzing, the freshness of the data is sufficient to support expert imitation.

Training wall-time. We compare the training wall-time and time-to-solve of BMPC and TD-MPC2
in Walker Walk and Dog Walk, where time-to-solve is defined as the time required to achieve rewards
of 899 and 872, respectively (90% of the asymptotic reward), as shown in Table 1. The experiments

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0

100

200

300

400

500

600

Ep
iso

de
 re

wa
rd

Dog Run

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Humanoid Run

BMPC Variant 1 Variant 2 Variant 3

(a) Performance of BMPC variants

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0

100

200

300

400

500

600

Ep
iso

de
 re

wa
rd

Dog Run

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Humanoid Run

k=10 k=40 k=80 k=

(b) Lazy reanalyze ablation

Figure 7: Ablations. (a) Performance of BMPC variants with different ways to leverage the network
policy, demonstrating the importance of value learning. (b) Performance of BMPC with different
lazy reanalyze interval k; Mean and 95% CIs over 5 seeds.

are conducted using a single RTX 3090 GPU. BMPC and TD-MPC2 have similar training times per
500k steps, although lazy reanalyze increases training time by approximately 20%, this increase is
offset by the reduced size of the network. Due to its high data efficiency, the time-to-solve of BMPC
is 2 times shorter than TD-MPC2 on Dog Walk.

Table 1: Wall-time. Time-to-solve and time per
500k environment steps for the Walker Walk and
Dog Walk. Mean of 3 runs.

Walker Walk Dog Walk
Wall-time(h) TD-MPC2 BMPC TD-MPC2 BMPC
time-to-solve 0.40 0.43 2.03 0.87
h/500k steps 7.67 7.32 8.47 8.71

Notably, our BMPC implementation uses only
a single thread for training and does not fully
parallelize the lazy reanalyze process. Since
lazy reanalyze operates independently of net-
work training, it could be parallelized using a
separate thread to further reduce training time.
Additionally, BMPC’s network policy performs
nearly on par with MPC planning on DMCon-
trol tasks, making it feasible to use the network
policy for inference without planning, which would significantly reduce inference time.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduce BMPC, a plan-based MBRL algorithm that leverages the strong perfor-
mance of MPC to achieve better policy and value learning in continuous control tasks. Our approach
demonstrates superior performance, particularly in complex locomotion tasks, while maintaining a
comparable training time and a smaller network size compared to state-of-the-art methods.

Due to the current world model’s lack of long-horizon prediction capability, BMPC is limited to
a TD-horizon of 1. As the model capability improves, there is potential to extend the TD-horizon
for enhanced value learning. Moreover, BMPC can further benefit from advanced expert iteration
techniques, such as the plan-based value estimation proposed in Wang et al. (2024).

It is also worth exploring the combination of expert imitation with the max-Q gradient for joint pol-
icy improvement, integrating the strengths of both approaches, such as by combining loss functions
or integrating independent value functions for planning.

Finally, BMPC can also be applied in multi-task and offline settings. Although experiments in these
areas have yet to be conducted, we believe BMPC can further harness the capabilities of MPC.

7 REPRODUCIBILITY STATEMENT

We have anonymously open-sourced our work, available at https://github.com/bmpc-
anonymous/bmpc. By running the code with the default configuration, the results presented
in this paper can be reproduced.

10

https://github.com/bmpc-anonymous/bmpc
https://github.com/bmpc-anonymous/bmpc

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and
tree search. Advances in neural information processing systems, 30, 2017.

Mohak Bhardwaj, Sanjiban Choudhury, and Byron Boots. Blending mpc & value function approxi-
mation for efficient reinforcement learning. arXiv preprint arXiv:2012.05909, 2020.

Adam Fishman, Adithyavairavan Murali, Clemens Eppner, Bryan Peele, Byron Boots, and Dieter
Fox. Motion policy networks. In Conference on Robot Learning, pp. 967–977. PMLR, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019b.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104v2, 2023a.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104v1, 2023b.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
uous control. arXiv preprint arXiv:2310.16828, 2023.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Sergey Levine and Vladlen Koltun. Guided policy search. In International conference on machine
learning, pp. 1–9. PMLR, 2013.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Masashi Okada and Tadahiro Taniguchi. Dreamingv2: Reinforcement learning with discrete world
models without reconstruction. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 985–991. IEEE, 2022.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos Theodorou,
and Byron Boots. Agile autonomous driving using end-to-end deep imitation learning. arXiv
preprint arXiv:1709.07174, 2017.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos A Theodorou,
and Byron Boots. Imitation learning for agile autonomous driving. The International Journal of
Robotics Research, 39(2-3):286–302, 2020.

Thomas Power and Dmitry Berenson. Variational inference mpc using normalizing flows and out-
of-distribution projection. arXiv preprint arXiv:2205.04667, 2022.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world mod-
els are happy with 100k interactions. arXiv preprint arXiv:2303.07109, 2023.

Jacob Sacks and Byron Boots. Learning to optimize in model predictive control. In 2022 Interna-
tional Conference on Robotics and Automation (ICRA), pp. 10549–10556. IEEE, 2022.

Jacob Sacks and Byron Boots. Learning sampling distributions for model predictive control. In
Conference on Robot Learning, pp. 1733–1742. PMLR, 2023.

Jacob Sacks, Rwik Rana, Kevin Huang, Alex Spitzer, Guanya Shi, and Byron Boots. Deep model
predictive optimization. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 16945–16953. IEEE, 2024.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Ingmar Schubert, Jingwei Zhang, Jake Bruce, Sarah Bechtle, Emilio Parisotto, Martin Riedmiller,
Jost Tobias Springenberg, Arunkumar Byravan, Leonard Hasenclever, and Nicolas Heess. A
generalist dynamics model for control. arXiv preprint arXiv:2305.10912, 2023.

Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-
bench: Simulated humanoid benchmark for whole-body locomotion and manipulation. arXiv
preprint arXiv:2403.10506, 2024.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In
Conference on Robot Learning, pp. 1622–1633. PMLR, 2022.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual policy learning. arXiv
preprint arXiv:1812.06298, 2018.

Liting Sun, Cheng Peng, Wei Zhan, and Masayoshi Tomizuka. A fast integrated planning and
control framework for autonomous driving via imitation learning. In Dynamic Systems and Con-
trol Conference, volume 51913, pp. V003T37A012. American Society of Mechanical Engineers,
2018.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Shengjie Wang, Shaohuai Liu, Weirui Ye, Jiacheng You, and Yang Gao. Efficientzero v2: Mastering
discrete and continuous control with limited data. arXiv preprint arXiv:2403.00564, 2024.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control
using covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in neural information processing systems, 34:25476–25488, 2021.

Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning deep control policies
for autonomous aerial vehicles with mpc-guided policy search. In 2016 IEEE international con-
ference on robotics and automation (ICRA), pp. 528–535. IEEE, 2016.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

Exploration in lazy reanalyze. The network policy of BMPC uses a neural network to obtain the
mean and log standard deviation of a Gaussian distribution. The mean is derived by applying the
tanh function to squash the output. The log standard deviation is first squashed to the range [−1, 1]
using the tanh function, and then linearly mapped to the range [−1, 1] using the tanh function, and
then mapped linearly to the range [log std min, log std max].

During lazy reanalyze, we increase the value of log std min to enhance exploration in MPC.
Specifically, the default values are log std min=−3 and log std max=1. When reanalyzing,
we set log std min=−2 and log std max=1. Mathematically, this adjustment is equivalent to
log stdreanalyze = log std× 0.75 + 0.25.

This mechanism does not increase overall performance but helps prevent BMPC from prematurely
converging to local optima due to iterative policy learning. Increasing the policy std during lazy
reanalyze may further improve the exploration of MPC, but this would likely require increasing the
number of MPPI iterations to ensure convergence, which we opt not to do.

Policy loss. In our experiments, we try both log probability loss in Wang et al. (2024) and KL loss
for expert imitation, observing substantial differences in the policy std. We find that network policy
accurately mimics the std of the MPC policy through KL loss; while using log probability loss tends
to result in a large policy std, affecting the optimality of the algorithm. We speculate this may be due
to the use of lazy reanalyze, leading the expert action dataset to encompass behaviors of different
MPC policies over a longer period, necessitating a larger std for the network policy. Alternatively, it
may result from the MPC policy’s tendency to produce ”shaky actions” 3, leading to a larger policy
std when using log prob loss.

Hyperparameters. We use the same hyperparameters for all tasks. BMPC is based on the world
model and MPPI of TD-MPC2. For the hyperparameters in these components, we use the same
default values as those in TD-MPC2 (Hansen et al., 2023). The hyperparameters of BMPC are
detailed in Table 2.

Table 2: BMPC Hyperparameters. We use the same hyperparameters for all tasks.

Hyperparameter Value
Value loss coef. 1
Policy loss coef. 1
Entropy loss coef. 1× 10−4

Batch size 256
TD horizon (N) 1
Number of ensemble value networks 2
Lazy reanalyze interval (k) 10
Lazy reanalyze batch size (b) 20
Re-planning horizon 3
Policy log std. min. -3
Policy log std. max. 1
Policy log std. min. (re-planning) -2
Policy log std. max. (re-planning) 1

3see https://github.com/nicklashansen/tdmpc2/issues/26

13

https://github.com/nicklashansen/tdmpc2/issues/26

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

BMPC variants. We conduct ablation studies by introducing three BMPC variants in the Experi-
ments section. Below, we provide a detailed explanation of these variants along with their respective
design choices.

Key Facts: The design of BMPC and its variants is guided by the following components:

• A network policy can be learned using:
– (1a) Max-Q gradient-based learning;
– (1b) Expert imitation.

• A network policy is used for:
– (2a) Computing the TD-target during value learning;
– (2b) Guiding the planning process of MPPI.

• The value function can be learned using:
– (3a) Off-policy TD-learning (Q-iteration);
– (3b) On-policy model-based TD-learning.

BMPC Variants: We define the following three BMPC variants based on different combinations of
the above components:

• Variant 1:
– Learn network policy A using (1a) and network policy B using (1b).
– Use policy A for (2a) and policy B for (2b).
– Learn the value function using (3a).

• Variant 2:
– Learn network policy A using (1a) and network policy B using (1b).
– Use policy A for (2a) and both policies A and B for (2b).
– Learn the value function using (3a).

• Variant 3:
– Learn network policy A using (1b).
– Use policy A for both (2a) and (2b).
– Learn the value function using (3a).

BMPC: For comparison, our proposed BMPC approach is defined as follows:

• Learn network policy A using (1b).
• Use policy A for both (2a) and (2b).
• Learn the value function using (3b).

Additional Remarks: For all variants, we use 5 ensemble Q-networks instead of 2 as in BMPC. For
Variant 2, we generate 24 guiding trajectories from each policy (A and B), and increase the number
of elite trajectories in the MPPI process from 64 to 88.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B BASELINES DETAILS

We report our implementation details of baselines in this section.

SAC. We use the results from TD-MPC2 4 and HumanoidBench 5 for DMControl and Humanoid-
Bench, respectively. For the hyperparameters of SAC, see Hansen et al. (2023) and Sferrazza et al.
(2024).

DreamerV3. For DMControl, we use the latest implementation6, referencing Hafner et al. (2023a),
which differs from the older version Hafner et al. (2023b). We use the default settings on DMC
proprio tasks, corresponding to a network size of 12M and a UTD ratio of 512. We discover that the
performance of DreamerV3 diverges from what is reported in Hansen et al. (2023). For example,
the performance on the Fish Swim has improved, while the performance on the Walker Run has
decreased. This is likely because the newer version of DreamerV3 changes the policy learning
approach in continuous action space, from stochastic backpropagation to the Reinforce. However,
since both results underperform relative to TD-MPC2, this does not affect the overall comparison.
For a comprehensive list of hyperparameters, please refer to the original paper (Hafner et al., 2023a).
For HumanoidBench, we use the results from HumanoidBench repository5.

TD-MPC2. For both DMControl and HumanoidBench, we use the latest code with its default
hyperparameters4. For a comprehensive list of hyperparameters, please refer to their original pa-
per(Hansen et al., 2023).

C ALL TRAINING CURVES

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Average Dog Run Dog Stand Dog Trot

0 1.0 2.0 3.0 4.0
Environment steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Dog Walk

0 1.0 2.0 3.0 4.0
Environment steps (×106)

Humanoid Run

0 1.0 2.0 3.0 4.0
Environment steps (×106)

Humanoid Stand

0 1.0 2.0 3.0 4.0
Environment steps (×106)

Humanoid Walk

BMPC (MPC policy)
BMPC (network policy)

TD-MPC2 (MPC policy)
TD-MPC2 (network policy)

Figure 8: Performance of different policies on high-dimensional locomotion tasks. Evaluation
performance of the network policy compared to the MPC policy in BMPC and TD-MPC2 on the 7
high-dimensional locomotion tasks. The environment steps are extended to 4M for a comprehensive
comparison. In the top left, we present the average performance. Mean and 95% CIs over 5 seeds.

4We use results and code in https://github.com/nicklashansen/tdmpc2.
5We use results in https://github.com/carlosferrazza/humanoid-bench.
6We use the code in https://github.com/danijar/dreamerv3.

15

https://github.com/nicklashansen/tdmpc2
https://github.com/carlosferrazza/humanoid-bench
https://github.com/danijar/dreamerv3

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Avg. 28 tasks Avg. 7 high-dim tasks Acrobot Swingup Cartpole Balance Cartpole Balance Sparse

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Cartpole Swingup Cartpole Swingup Sparse Cheetah Run Cup Catch Dog Run

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Dog Stand Dog Trot Dog Walk Finger Spin Finger Turn Easy

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Finger Turn Hard Fish Swim Hopper Hop Hopper Stand Humanoid Run

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Humanoid Stand Humanoid Walk Pendulum Swingup Quadruped Run Quadruped Walk

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Reacher Easy

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Reacher Hard

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Walker Run

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Walker Stand

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Walker Walk

BMPC (ours) TD-MPC2 SAC DreamerV3

Figure 9: All DMControl tasks. Comparing BMPC to baselines on DMControl tasks. In the top
left, we present the average performance of 7 high-dimensional locomotion tasks and all 28 tasks.
Mean and 95% CIs over 5 seeds7.

7Except SAC, which uses 3 seeds.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Avg. 28 tasks Avg. 7 high-dim tasks Acrobot Swingup Cartpole Balance Cartpole Balance Sparse

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Cartpole Swingup Cartpole Swingup Sparse Cheetah Run Cup Catch Dog Run

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Dog Stand Dog Trot Dog Walk Finger Spin Finger Turn Easy

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Finger Turn Hard Fish Swim Hopper Hop Hopper Stand Humanoid Run

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Humanoid Stand Humanoid Walk Pendulum Swingup Quadruped Run Quadruped Walk

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Reacher Easy

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Reacher Hard

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Walker Run

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Walker Stand

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Walker Walk

BMPC (MPC policy)
BMPC (network policy)

TD-MPC2 (MPC policy)
TD-MPC2 (network policy)

Figure 10: Performance of different policies on DMControl. Evaluation performance of the
network policy compared to the MPC policy in BMPC and TD-MPC2. In the top left, we present
the average performance of 7 high-dimensional locomotion tasks and all 28 tasks. Mean and 95%
CIs over 5 seeds.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D TASK VISUALIZATION

Figure 11: DMControl tasks visualization. Images of all the embodiments we control in the DM-
Control tasks. The tasks include controlling them to run, walk, jump, balance, reach, and perform
actions like swing-up and spin, covering a diverse range of continuous control scenarios.

Figure 12: HumanoidBench locomotion suite visualization. Images of the Unitree robot we con-
trol in the HumanoidBench locomotion suite. The tasks include running, walking, crawling, bal-
ancing, sitting, reaching, and performing actions like walking on stairs or walking while avoiding
collisions with poles, which cover a diverse range of robotic locomotion scenarios.

18

	Introduction
	Related work
	Background
	Method
	Insufficient policy learning in model-free approach
	Bootstrapped Model Predictive Control

	Experiments
	Results

	Conclusions and Future Directions
	Reproducibility Statement
	Implementation Details
	Baselines Details
	All Training Curves
	Task visualization

