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Abstract

Time series forecasting is a critical and complex task, characterized by diverse
temporal patterns, varying statistical properties, and different prediction horizons
across datasets and domains. Conventional approaches typically rely on a single,
unified model architecture to handle all forecasting scenarios. However, such
monolithic models struggle to generalize across dynamically evolving time series
with shifting patterns. In reality, different types of time series may require distinct
modeling strategies. Some benefit from homogeneous multi-scale forecasting
awareness, while others rely on more complex and heterogeneous signal perception.
Relying on a single model to capture all temporal diversity and structural variations
leads to limited performance and poor interpretability. To address this challenge,
we propose a Multi-Agent Forecasting System (MAFS) that abandons the one-size-
fits-all paradigm. MAFS decomposes the forecasting task into multiple sub-tasks,
each handled by a dedicated agent trained on specific temporal perspectives (e.g.,
different forecasting resolutions or signal characteristics). Furthermore, to achieve
holistic forecasting, agents share and refine information through different commu-
nication topology, enabling cooperative reasoning across different temporal views.
A lightweight voting aggregator then integrates their outputs into consistent final
predictions. Extensive experiments across 11 benchmarks demonstrate that MAFS
significantly outperforms traditional single-model approaches, yielding more robust
and adaptable forecasts. Code:

1 Introduction

Time series forecasting [79, 78,49, 7,2, 3,52, 11, 13, 12, 53, 64] plays a vital role in a wide range of
real-world applications, including finance, energy, healthcare, and intelligent transportation. Despite
remarkable progress achieved by deep learning models such as RNNs [9, 24], CNNs [55, 22], and
Transformers [60, 28, 23, 76, 25, 76], many existing approaches rely on monolithic architectures that
often struggle to generalize across ever-changing temporal patterns and continuously-evolving signal
characteristics inherent in time series [27, 16, 29, 51].

Meanwhile, Multi-Agent Systems (MAS) [18, 48] have emerged as a powerful paradigm for ad-
dressing complex problems through collaboration among specialized agents [75]. This framework
has achieved remarkable success in a wide range of domains, including robotics [66], question
answering [65], and sequential decision-making [67]. Crucially, Multi-Agent Systems allow in-
dividual agents to process information from distinct perspectives and coordinate their outputs to
achieve a common objective [74, 57]. This design promotes modularity, scalability, and robustness in
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solving high-dimensional and complex tasks [40, 5]. Inspired by these successes, a natural question
arises: Can Multi-Agent Systems also benefit time series forecasting, particularly in scenarios with
heterogeneous temporal patterns or task decomposition requirements?

However, directly applying multi-agent systems to time series forecasting remains non-trivial and
faces three key challenges: (i) Task Decomposition for Specialized Modeling. Time series forecasting
tasks are inherently unified and not easily divisible [8]. A critical question arises: how can we
decompose a global forecasting task into meaningful sub-tasks that enable each agent to develop
domain-specific expertise? Without proper decomposition, agents risk learning overlapping or
redundant representations, which limits the benefits of specialization [68]. (ii) Limited Agent
Perception. If an agent consistently operates within a narrow temporal scope, such as focusing only
on local trends or periodic components, it may fail to capture important contextual signals needed
for precise processing [74, 57]. A lack of holistic understanding can hinder the agent’s ability to
generalize across variable temporal conditions. (iii) Forecasting Collaboration Bottlenecks. Even
when agents are well-specialized, enabling effective collaboration among them remains a substantial
challenge [30, 4]. Agents must not only share information efficiently but also resolve potential
conflicts in their predictions. Poor coordination can lead to inconsistent or contradictory outputs,
undermining the overall forecasting accuracy [47].

To bridge the gap between monolithic forecasting models and the need for adaptive, collaborative
intelligence, we propose a novel Multi-Agent Forecasting System (MAFS) that introduces principled
mechanisms for modular time series forecasting. Fundamentally, to enable each agent to specialize
in modeling a distinct temporal attribute, MAFS explores two types of subtask decomposition: (i)
forecasting across multiple homogeneous future horizons, and (ii) predicting heterogeneous signal
features such as frequency-domain energy, statistical moments, periodicity, and trend. This design
allows each agent to learn a well-defined aspect of the temporal structure. Furthermore, to expand
each agent’s receptive field beyond local input views, we introduce inter-agent communication
that allows information exchange at the representation level. This is implemented via structured
message passing over predefined topologies, including Ring, Star, Chain, and Fully-Connected
Graphs, enabling flexible and scalable coordination across agents. Third, to realize effective decision
fusion across agents, MAFS incorporates a two-stage voting aggregator composed of: (i) an Agent
Confidence Estimator that evaluates the confidence or relevance of its own prediction; and (ii) a
Global Voter that aggregates forecasts across agents based on both their internal ratings and mutual
assessments. This mechanism enables robust collaboration by assigning adaptive weights to different
agents during inference. Overall, MAFS is designed to fully harness the strengths of collective
intelligence while maintaining scalability and generalization across a variety of forecasting scenarios.

Our contributions are summarized as follows:

* We propose Multi-Agent Forecasting System (MAFS), the first general-purpose time
series forecasting framework based on Multi-Agent Systems, which leverages collective
intelligence to tackle complex, evolving, and heterogeneous temporal patterns.

* Within MAFS, we introduce two principled task decomposition strategies to enable each
agent to specialize in distinct forecasting sub-tasks. Furthermore, we design an inter-agent
communication module to enhance the generalization capacity of each agent through struc-
tured message passing. Finally, a two-stage voting aggregator combines self-assessments
and global voting to facilitate robust and coordinated multi-agent forecasting.

» Through agent specialization and structured collaboration, MAFS demonstrates superior
forecasting performance. Extensive experiments on 11 real-world datasets demonstrate
that MAFS consistently outperforms competitive baselines, achieving on average a 6.35%
reduction in MSE and a 4.03 % reduction in MAE compared to its single-agent counterpart.
MATFS also ranks first on 16 out of 22 metrics, and secures a top-2 position on 20 out of 22
metrics, spanning both MSE and MAE evaluations.

2 Related Work

2.1 Time Series Forecasting

Time series forecasting is a foundational task in machine learning that aims to predict future values
from past observations [63, 36, 50, 62, 21, 70, 35, 54, 56, 43, 32, 42, 10]. Traditional statistical
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Figure 1: Illustration of different forecasting paradigms: (a) Single-model Forecasting, (b) Mixture-
of-Experts Forecasting, and (c) Multi-Agent Forecasting System (MAFS). Compared to traditional
paradigms, MAFS achieves better specialization, collaboration, adaptability, and interpretability.

models such as ARIMA [1] and VAR [31] are widely used for their simplicity, yet often struggle
with capturing nonlinear and long-term dependencies. With the advent of deep learning, models
such as RNNs [9, 24], MLPs [58, 37, 29, 34, 14], and Transformers [25, 44, 69, 77, 71, 76, 38, 33]
have demonstrated remarkable improvements in modeling complex temporal dynamics. As shown
in Figure 1(a), these models typically adopt monolithic architectures, where a single model is
trained end-to-end to learn all patterns across the entire time series. However, such one-size-fits-all
approaches often underperform in heterogeneous or nonstationary environments, where different
segments of the data may exhibit distinct behaviors or require different inductive biases [16].

2.2 Mixture-of-Experts Forecasting

To improve modeling capacity and flexibility, Mixture-of-Experts (MoE) [45] has been applied
to time series forecasting, where multiple expert models are trained to extract diverse high-level
features from the input sequences. As shown in Figure 1(b), a Router mechanism is typically
employed to dynamically select or weight experts for adaptive specialization across different temporal
patterns. Time-MoE [46] introduces a scalable autoregressive Transformer equipped with sparse
mixture-of-experts, enabling billion-scale time series pretraining with reduced inference cost and
flexible forecasting horizons. From frequency aspect, MOIRAI-MoE [26] eliminates the need
for human-defined frequency specialization by learning token-level expert routing within a sparse
MoE framework. Despite their strengths, MoE-based forecasting models typically operate within a
monolithic architecture and lack modular agent-level interpretability [20, 72].

2.3 Multi-Agent System

Multi-agent Systems (MAS) has emerged as a powerful paradigm for solving complex problems
through the cooperation of multiple specialized agents [4]. In the context of machine learning,
MAS enables agents to learn distinct competencies, share information, and coordinate actions to
collectively solve tasks that are difficult for a single model [30]. Recently, there has been growing
interest in leveraging large language model agents for multi-agent collaboration in open-domain
reasoning [75, 65], but its application to time series forecasting remains largely unexplored. As
shown in in Figure 1(c), in contrast to Mixture-of-Experts, which implicitly routes inputs through
fixed expert networks without agent awareness or coordination, multi-agent systems offer explicit
control, communication, and division of labor. Thus, designing an MAS forecasting system offers a
promising pathway to harness specialization and collaboration for forecasting complex time series.

3 Problem Formulation

Time Series Forecasting We consider a standard time series forecasting problem. Given a historical
input sequence X = [x1,Xa,..,x7] € RT*M with T time steps and M variables, the goal is to
predict the future series Y = [x741, X742, .., X174 1.] € REXM where L is future horizon.

Multi-agent System for Forecasting To improve forecasting performance and interpretability,
we introduce a multi-agent forecasting system S = {Agent,(-), Agent,(-),..., Agent ()}



consisting of N specialized forecasting agents. Each Agent, (-) is responsible for solving a distinct
sub-task of the forecasting problem. The agents interact and exchange information via a predefined
communication topology G = {S, A, E}, where A € {0,1}¥*¥ is a binary adjacency matrix, and
E € RY*Y denotes the edge weights. The agent outputs are aggregated by an Agent-rated Voting
Aggregator AVA(+) to produce the final forecasting result. The overall process is formulated as:

Y = AVA(Comm({Agent, (X), Agent,(X), ..., Agent 5 (X}; G)) (1)

where Comm(+; G) represents the communication mechanism. Let ©4 = {61,...,0y} denote
the parameters of all agents, ©7 the parameters of communication weight (i.e., E), and © p the
parameters of the Agent-rated Voting Aggregator. The joint training objective is to minimize the
expected mean squared error (MSE) between the predicted and the truth:

: V12
o min Eccypn 1Y = VI3, @)

where D denotes the empirical data distribution.

4 Methodology

First Stage: Multi-agent Forecasting System Learning via Agent
Communication and Task Specmllzcmon
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Figure 2: Overview of the two-stage learning in Multi-Agent Forecasting System.

As illustrated in Figure 2, the Multi-Agent Forecasting System (MAFS) is structured around a two-
stage learning paradigm. Stage 1: Specialization Pretraining. Each agent is assigned a distinct
sub-task (e.g., different signal characteristics) and exchanges hidden states at every layer using a
fixed communication graph with uniform weights. Only agent-specific parameters © 4 are optimized
in this stage, enabling each agent to specialize independently. Stage 2: Collaborative Forecasting.
Agent parameters are frozen. Edge weights in communication is now learnable by Topology-aware
Weight Adjuster with © . An Agent-rated Voting Aggregator (AVA) with parameters © p aggregates
the communicated features to produce the final prediction.

4.1 Forecasting Agent Architecture

In the Multi-Agent Forecasting System (MAFS), as shown in Figure 3, each forecasting agent adopts
a pluggable encoder-based time series model as its backbone, enabling flexible integration with
various architectures. Given an input sequence X € R7*M  the encoding process is formulated as:

HO® = Embed(X"), H*Y = EncoderLayer(HY), O = Head(H®)) 3)

Here, H() represents the hidden state at the I-th encoder layer. The EncoderLayer(-) can follow any

standard design, making MAFS extensible to a wide range of forecasting backbones. O is the agent
output of specialized forecasting sub-task.
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Figure 3: The overall architecture of MAFS. Each forecasting agent employs a pluggable encoder-
based time series model, and their representation are aggregated to produce the final forecast.

4.2 Agent Communication

Each agent is assigned with a dedicated forecasting sub-task. While such specialization facil-
itates inductive bias and modeling diversity, it inevitably leads to data bias. To mitigate this
limitation and enable agents to form coherent and globally consistent predictions, we intro-
duce an explicit communication mechanism. This communication can be formally expressed as,
{HC!,HC), ..., HC, = Comm(H!,Hb, ..., H\; G); H/"' = EncoderLayer,(HC!)}. Here,
H! denotes the output of the I-th encoder layer of agent i, and HCé represents the updated repre-
sentation after communication. The communication function Comm(-) is instantiated as a graph
convolution operation, enabling structured message passing across agents connected via G. Specifi-
cally, we implement the communication via a Graph Convolutional Network [19],

HCi=0| Y A, W Hj 4)
JEN (i)

where A (7) is the set of connected agents of Agent;, A;; is the normalized adjacency matrix
indicating communication strength between agents i and j, W € Rmoaet X dmoaet jg 3 Jearnable projection
matrix, and o(-) is a non-linear activation function. This formulation enables each agent to refine its
hidden representation by aggregating contextual information from others, thereby overcoming the
limitations of isolated modeling and improving coordination among agents.

4.3 Agent Specialization via Sub-task Decomposition

To promote diversity and specialization among agents, we design two sub-task decomposition
strategies: (1) Multi-scale temporal forecasting (homogeneous setting): Each agent focuses on
predicting a different portion of the future horizon at increasing lengths, e.g., the Agent, predicts
the first ﬁ x L steps. This encourages specialization across temporal scales, from short-term to
long-term forecasting. (2) Multi-aspect signal forecasting (heterogeneous setting): Agents are
assigned complementary signal analysis tasks, including trend extraction, seasonality modeling,
spectral energy estimation, and statistical summary prediction. Each sub-task targets a distinct
property of the future signal, fostering diverse and orthogonal representations. These decompositions
enable the agent ensemble to capture rich temporal dynamics from multiple perspectives, improving
overall forecasting accuracy. More details are availavle at Appendix A.

4.4 Topology-aware Weight Adjuster

In the second stage of training, we freeze the parameters of each forecasting agent and make the
inter-agent communication weights learnable. Specifically, the fixed edge weight matrix E is replaced
by a parameterized matrix Eg,, € RV*¥ where each entry denotes the learnable communication
strength between a pair of agents.



To retain the prior topology, we keep a fixed binary adjacency mask A € 0, 1V*% | which encodes
the initial traffic-aware structure. The learnable edge weights are modulated by this mask to obtain
the soft communication graph, A’ = 0(Eg,) ® A, where o(+) is the sigmoid function and ® denotes
element-wise multiplication. To ensure symmetric communication [19], we construct the normalized
adjacency matrix as,

Anom = D™Y2(A)D™Y2, where A = %(A’ +A ") +1, D =diag (Z Aij> : 5)
J

This topology-aware normalization allows information exchange to be dynamically adjusted while
preserving structural priors. Crucially, Eg, is optimized jointly with the forecasting objective via
backpropagation, enabling the system to learn an adaptive, task-specific communication topology
that enhances coordination among agents and improves overall prediction performance.

4.5 Agent-rated Voting Aggregator

During forecasting phase, we aggregate the final embedding from all agents to complete forecasting.
To dynamically make decision-making process adaptive to each agent, we design a two-stage voting
aggregator (AVA), which include an Agent Confidence Estimator and a Global Voter.

Agent Confidence Estimator Let {H HZ, ... HZ%} denote the final output representations
of all forecasting agents. The Agent Confidence Estimator evaluates the confidence of each agent
through a self-assessment mechanism. Each HF is paired with a shared contextual embedding C;,
and passed through a learnable gating network to produce an element-wise gate coefficient:

o :J(Gate([Cth,...,CN])) 6)
The final gated representation is computed as:

Here, ® denotes element-wise multiplication, o (-) is the sigmoid activation function, and Gate(-) is a
shared learnable network. This formulation enables each agent to adjust its output by blending its
own prediction with the global context, based on estimated confidence.

Global Voter To further integrate the confidence-adjusted outputs from all agents, we introduce
a Global Voter that computes agent-wise collaboration weights CW € R” based on the encoded
input X, with MLP. These weights indicate the relative importance or contribution of each agent
to final prediction. Each weight in CW is then broadcast to match the shape of its corresponding
agent representation and used to perform a weighted sum over {HY HI ... va} This results in a
unified latent representation Z, which captures the aggregated knowledge across all agents.

Finally, Z is projected through a linear layer to produce the final multivariate time series forecast
Y € RMXL where L denotes the forecast horizon.

5 Experiments
5.1 Experimental Setups

Datasets We evaluate our model on 11 real-world datasets covering different domains. In Electricity
domain, we use ETTh1, ETTh2, ETTm1, and ETTm?2 [77, 60]. The Environment domain includes
Weather [60], PM2.5 [59], AQShunyi and AQWan [41] . The Nature domain consists of CzeLan,
ZafNoo [41] as well as Temp [59]. For the ETT datasets, we adopt a 6:2:2 train/validation/test split,
and a 7:1:2 split for the remaining datasets.

Implementation Details MAFS explores four distinct communication topologies for the agent
interaction graph G, including ring, star, chain, and fully-connected structures. Each forecasting
agent is implemented using iTransformer architecture [28]. MAFS is trained in two stages: the first
stage independently optimizes each agent with a learning rate of le-3 for 10 epochs; the second
stage freezes agent parameters and finetunes only the topology-aware weight adjuster and agent-rated
voting aggregator for another 10 epochs with a reduced learning rate of le-4. We set a hidden
dimension of 128, and configure the encoder with 2 layer for all datasets. The number of agents



Table 1: Comparison of long-term time series forecasting methods on 11 datasets using MSE and
MAE (lower is better). Best results are marked in red ; second-best results are underlined in blue .

Methods MAFS  iTransformer TimeMixer | PatchTST |Crossformer TiDE ‘TimesNet DLinear |Autoformer Informer

(Ours) [2024] [2024] [2024] [2023] [2024] [2023] [2023] [2021] [2021]
Datasets |MSE MAE MSE MAE MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE MSE MAE|MSE MAE MSE MAE

ETThl |0.433 0.437|0.467 0.466 0.447 0.44 |0.469 0.454|0.529 0.522|0.541 0.507|0.458 0.45 |0.456 0.452|0.496 0.487| 1.04 0.795
ETTh2 |0.356 0.394|0.386 0.415 0.364 0.395|0.387 0.407(0.942 0.684|0.611 0.55|0.414 0.427|0.559 0.515| 0.45 0.459|4.431 1.729
ETTml |0.366 0.388|0.383 0.403 0.381 0.395|0.387 0.4 |0.513 0.496|0.419 0.419| 0.4 0.406|0.403 0.407|0.588 0.517|0.961 0.734
ETTm2 [0.265 0.321| 0.29 0.339 0.275 0.323]0.281 0.326|0.757 0.61 |0.358 0.404/0.291 0.333| 0.35 0.401|0.327 0.371| 1.41 0.81
Weather |0.233 0.267|0.243 0.276 0.24 0.271|0.259 0.281]0.259 0.315]|0.271 0.32 ]0.259 0.287]0.265 0.317|0.338 0.382|0.634 0.548
AQShunyi|0.701 0.509|0.723 0.515 |0.719 0.529|0.705 0.509|0.694 0.504 |0.778 0.554|0.726 0.516|0.706 0.522|0.764 0.541|0.782 0.545
AQWan |0.802 0.503|0.817 0.507 |0.828 0.499|0.812 0.499|0.786 0.49 |0.856 0.536/0.813 0.5 |0.818 0.512| 0.84 0.525|0.866 0.525
CzeLan |0.222 0.271]0.232 0.28 |0.228 0.28 |0.227 0.29 [0.956 0.576|0.237 0.303|0.224 0.285|0.284 0.342|0.307 0.355|0.316 0.355
ZafNoo | 0.52 0.451]0.541 0.468 |0.538 0.44 |0.511 0.465|0.494 0.455|0.569 0.498|0.537 0.465 0.496 0.451|0.725 0.5990.744 0.602
PM2.5 |0.398 0.414|0.421 0.421 0.415 0.436| 0.46 0.479|0.456 0.472|0.481 0.497|0.473 0492‘0‘453 0.477|0.515 0.524|0.539 0.561
Temp | 0.14 0.288/0.173 0.321 0.146 0.304|0.147 0.306|0.206 0.423|0.164 0.338|0.208 0428‘0.159 0.327]0.244 0.5 |0.238 0.492

N is selected from the range {4, 8,12, 16, 20, 24} to investigate the impact of varying agent scale.
All experiments adopt a symmetric prediction setting, where the input sequence length equals the
forecasting horizon [76]. More Details are available at Appendix C.

Baselines The proposed method is evaluated against a range of representative baselines, which
can be categorized by model architecture. Transformer-based models include Informer [77], Auto-
former [60], Crossformer [76], PatchTST [38], and iTransformer [28]. Linear-based models such
as TimeMixer [58], TiDE [6] and DLinear [73] focus on efficient feature extraction and forecsating.
Periodicity-based models, such as TimesNet [61], enhance forecasting performance by modeling
multi-period temporal patterns.

5.2 Main Results

The experimental results are presented in Table |, where we comprehensively evaluate the proposed
MAFS against a range of SOTA models on long-term time series forecasting benchmarks. Experimen-
tal results consistently demonstrate the superior performance and robustness of MAFS across diverse
datasets and prediction horizons. Specifically, MAFS achieves an average improvement of 3.24%
in MSE and 1.71% in MAE over the recent SOTA model TimeMixer, confirming the effectiveness
of our multi-agent collaborative framework. Furthermore, although MAFS adopts the iTransformer
backbone, which is not the most competitive SOTA model in terms of forecasting accuracy, our
multi-agent framework effectively overcomes this limitation. By leveraging agent specialization
and structured inter-agent collaboration, MAFS achieves an average improvement of 6.35% in MSE
and 4.03% in MAE compared to iTransformer, successfully reaching state-of-the-art performance
across multiple benchmarks. In addition, MAFS ranks first on 16 out of 22 evaluation metrics and
secures a top-2 ranking in 20 out of 22 metrics (covering both MSE and MAE across 11 datasets),
showcasing its strong generalization capability across various application domains. In summary,
MATFS breaks the limitations of monolithic forecasting models by introducing a flexible and adaptive
multi-agent collaboration mechanism, delivering more accurate and reliable predictions across diverse
and challenging time series forecasting scenarios. Full results are available at Appendix G.

5.3 Ablation Analysis

To evaluate the effectiveness of each key component in our proposed MAFS framework, we conduct a
series of ablation studies. The experimental results are presented in Table 2. We evaluate the removal
of three critical modules, 1) w/o Comm: Disables inter-agent communication by removing the shared
semantic vector h., preventing collaborative reasoning. 2) w/o AVA: Removes the Agent-Rated
Voting Aggregator, directly averaging agent embeddings without adaptive gating and collaboration
weights. 3) w/o STS: Disables Sub-task Specialization, assigning identical forecasting tasks to all
agents instead of specialized sub-tasks.

Main results. (1) w/o Comm: Without communication, MSE and MAE increase by 4.18% and
2.62%, highlighting its role in enabling agents to share complementary temporal information. (2)
Removing AVA leads to a significant MSE and MAE increase of 7.24% and 5.70%, confirming its
importance in adaptively integrating agent outputs for accurate forecasting. (3) Without sub-task



Table 2: Ablation Study on the Contribution of Communication, Aggregation, and Specialization
Modules in MAFS. Bold values indicate the best performance.

Variant |Metric| ETTh1|ETTh2|ETTm1|ETTm?2| Weather | AQShunyi| AQWan | CzeLan| ZafNoo|PM2.5| Temp

MAES MSE | 0.433 | 0.356 | 0.366 | 0.265 | 0.233 0.701 0.802 | 0.222 | 0.520 | 0.398 |0.140

MAE | 0.437 | 0.394 | 0.388 | 0.321 | 0.267 0.509 0.503 | 0.271 | 0.451 | 0.414 |0.288

w/o Comm MSE | 0.445 | 0.364 | 0.375 | 0.277 | 0.238 0.719 0.824 | 0.228 | 0.529 | 0.439 |0.167
MAE | 0.446 | 0.402 | 0.398 | 0.335 | 0.273 0.517 0.513 | 0.279 | 0.456 | 0.427 |0.312

w/o AVA MSE | 0.454 1 0.373 | 0.379 | 0.288 | 0.265 0.722 0.845 | 0.253 | 0.536 | 0.421 |0.158
MAE | 0.456 | 0.409 | 0.403 | 0.335 | 0.293 0.520 0.532 | 0.292 | 0.487 | 0.426 |0.301

w/o STS MSE | 0.461 | 0.384 | 0.374 | 0.286 | 0.244 0.726 0.823 | 0.243 | 0.546 | 0.417 [0.171
MAE | 0.462 | 0.412 | 0.397 | 0.332 | 0.275 0.517 0.512 | 0.285 | 0.475 | 0.415 |0.317

specialization, MSE and MAE rise by 6.97% and 3.93%, demonstrating that specialized agents
improve representation and capture diverse signal characteristics.

5.4 Evaluating the Advantage of MAFS over Single Models

As shown in Figure 4, MAFS consistently outperforms the single-agent model across 11 datasets,
achieving an average improvement of 6.35% in MSE and 4.03% in MAE, demonstrating the effec-
tiveness of collaborative forecasting. The most significant improvement occurs on the Temp dataset,
with a 19.08% reduction in MSE and 10.28% in MAE. This gain likely results from strong temporal
patterns and variable dependencies in temperature data, which are better captured by specialized
agents and collaborative reasoning. Overall, these results confirm that MAFS effectively realizes
collective intelligence, enabling specialized agents to achieve superior forecasting accuracy, and
highlighting the advantages of a multi-agent framework over monolithic models.
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Figure 4: Performance comparison between single forecasting model and MAS forecasting system

5.5 Analysis of MAFS Scaling and Communication Structures
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The results are shown in Figure 5. (1) Agent Scaling: Increasing the number of agents generally
improves performance by enhancing modeling diversity and specialization. However, beyond 16
agents, improvements become marginal, indicating a saturation point. Minor performance fluctuations
are trivial and likely caused by random initialization or local optima. Full results are available at
Appendix E. (2) Communication Structures: Among chain, ring, fully-connected, and star topologies,
the star structure consistently yields better and more stable results. Its centralized design effectively
integrates global information, reducing noise amplification and ensuring critical trends are shared
across agents. In conclusion, using 16 agents with a star communication structure offers the best
trade-off between performance and complexity for time series forecasting.

5.6 Impact of Sub-task Division on Agent Specialization
AQShunyi

-
.

|
7

Fully Star in ain Fully Star in Chain

=

Figure 6: Comparison of agent specialization under different sub-task division strategies

Figure 6 shows the average forecasting accuracy under different sub-task divisions across prediction
horizons. First, in most cases, the performance difference between homogeneous and heterogeneous
task divisions is minor. For example, the performance gap remains within 1% between ZafNoo and
AQShunyi, suggesting that task division strategies have limited influence under such data conditions.
Second, for datasets with smaller variance and more stable patterns (e.g., ETTm1 and Temp),
homogeneous task division significantly outperforms heterogeneous division. This indicates that
consistent modeling strategies are better suited for stable datasets without introducing unnecessary
task diversity. In summary, the choice of sub-task division should consider the characteristics of
the target dataset, with homogeneous division preferred for stable data and heterogeneous division
applicable when greater diversity is required. Full results are available at Appendix D.

5.7 Case Study

As shown in Figure 7,
we take ETTm2 to illus-
trate effectiveness of MAFS
through sub-task evaluation,
voting scores of different
agents, and the learned com-
munication Weights' (1) l:lu‘l;;kl [ Task2 [ m.‘,{r': Taskd
Each ag@nt. can success- (a) Sub-Task Evaluation &
fully specialize and perform
well on its assigned sub-
task. (2) The voting results
show that all agents actively F IR TTTIEZET I T
contribute to the final deci- SRR AN ey Agent] (@
sion, avoiding issues such (b) Voting Score KLZ (c) Learned Communication Weight -
?:hziecrelt o(;loillas?rle : 1;;}:]:1,1;' Figure 7: Case study of MAFS on ETTm2.

(3) In the second stage, the learned adaptive communication weights reflect task-aware information
exchange, optimizing collaboration between agents under a fixed topology.
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6 Conclusion

In this work, we propose MAFS, a novel multi-agent forecasting system that introduces collective
intelligence into time series forecasting through principled task decomposition, structured inter-agent
communication, and a two-stage voting aggregator. Extensive experiments on 11 real-world datasets
demonstrate that MAFS consistently outperforms state-of-the-art baselines, achieving significant



improvements in both accuracy and robustness. These results highlight the effectiveness of collabora-
tive forecasting and offer a new perspective for addressing the challenges of complex and evolving
temporal patterns. This work can open new directions for modular, adaptive, and interpretable time
series forecasting.
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A Details of Forecasting Sub-task Decomposition

Homogeneous sub-task Decomposition: Multi-Scale Temporal Forecasting. Under the homo-
geneous setting, each agent is tasked with predicting future values at a distinct temporal resolution.
Specifically, the i-th agent forecasts a future subsequence of length (L/K) - i, where L is the full
prediction horizon and K is the number of agents. Formally, the prediction from agent ¢ is denoted as

Oi = Agent,;(X), 07 c R(L/K)-ixM’

where X € RT*M jg the multivariate historical sequence of length 7" and M is the number of
variables. This design ensures that each agent captures forecasting dynamics at a specific temporal
scale, ranging from short-term fluctuations to long-term evolution, thereby forming a multi-resolution
ensemble.

Heterogeneous sub-task Decomposition: Multi-Aspect Signal Forecasting. To capture different
latent components of the future signal, we further design a heterogeneous sub-task scheme, where
each agent is specialized on a predefined signal property. This enables orthogonal learning objectives
across agents, contributing complementary views to the ensemble. We define four types of forecasting
sub-tasks in this setting:

We first define the future sequence as Y € REXM where L is the prediction horizon. Let each agent
process Y to extract distinct forecasting targets.

(1) Trend forecasting. We estimate the low-frequency trend component by applying temporal average
pooling over a padded version of Y:

T = AvgPool(Pad(Y)) € RT*M

where Pad(+) aligns the length of Y with the pooling window and AvgPool(-) computes segment-
wise means. This sub-task enables the agent to focus on slowly evolving components in the signal.

(2) Seasonality forecasting. Seasonal dynamics are extracted by removing the estimated trend from
the original signal:
S=Y-F, where F = TrendModel(Y),

with F being a smoothed version of Y, either computed or learned. This task guides the agent to
attend to periodic or residual structures.

(3) Spectral energy forecasting. To encode frequency-domain characteristics, we apply the real-valued
Fast Fourier Transform (FFT) and take the magnitude:

E = [FFT(Y)| € RE//2H1D)xM,

The resulting spectral energy profile provides insights into dominant frequencies and periodicities in
the future signal.

(4) Statistical descriptor forecasting. We summarize Y using a fixed set of descriptive statistics,
capturing distributional properties as follows:

D = [“” ag,7, F"ﬂymax»ymin} S RGXZM7

where

p=Mean(Y), o =Std(Y), ~ =Skewness(Y), k= Kurtosis(Y),

and

Ymax = m?XY[t], Ymin = HltinY[t].

This task allows the agent to model global signal characteristics in a compact form.
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B More Dataset Details

o)

As shown in Table 3, we evaluate our framework on 11 multivariate time series datasets spanning
three real-world application domains: Electricity, Environment, and Nature. These datasets exhibit
diverse characteristics in terms of feature dimensionality, sampling frequency, and domain semantics,
offering a comprehensive benchmark for assessing forecasting performance under different temporal
patterns and data complexities. The Electricity domain includes four ETT datasets: ETTh1, ETTh2,
ETTml, and ETTm2 [77, 60]. Each contains 7 variates recorded at 15-minute intervals, primarily
reflecting industrial power consumption dynamics. The Environment domain covers Weather [60],
Temperature [59], AQShunyi, and AQWan [41]. Weather contains 21 meteorological variables
sampled every 10 minutes, while Temperature and PM2.5 have higher dimensionality (108 variates)
at a coarser 3-hour frequency. AQShunyi and AQWan offer 11-dimensional hourly air quality
readings from different regions in Beijing. The Nature domain consists of PM2.5 [59], ZafNoo, and
CzeLan [41], all of which represent long-range environmental trends collected over various regions,
with sampling frequencies ranging from 30 minutes to 3 hours. Across all datasets, the input and
prediction sequence lengths are consistently selected from the range 96 to 720 to ensure uniform
temporal coverage across tasks. For the ETT datasets, we follow prior work and adopt a 6:2:2 split
for training, validation, and testing. For the remaining datasets, we use a 7:1:2 split. This ensures
both consistent evaluation and fair comparison with previous studies.

Table 3: Summary of the 11 datasets used in our experiments, covering diverse domains, temporal
resolutions, and feature dimensions.

Dataset ‘Variate‘lnput Length|Predict Length | Information | Frequency | Split

ETThl 7 96 ~ 720 96 ~ 720 Electricity | 15mins |6:2:2
ETTh2 7 96 ~ 720 96 ~ 720 Electricity | 15mins |6:2:2
ETTml 7 96 ~ 720 96 ~ 720 Electricity | 15mins |6:2:2
ETTm?2 7 96 ~ 720 96 ~ 720 Electricity | 15mins |6:2:2
Weather 21 96 ~ 720 96 ~ 720 |Environment| 10mins |7:1:2
Temperature| 108 96 ~ 720 96 ~ 720 |Environment| 3hours |7:1:2
AOShunyi 11 96 ~ 720 96 ~ 720 |Environment| lhour |7:1:2
AQWan 11 96 ~ 720 96 ~ 720 |Environment| lhour |7:1:2
PM2.5 108 96 ~ 720 96 ~ 720 Nature 3hours |7:1:2
ZatNoo 11 96 ~ 720 96 ~ 720 Nature 30mins |7:1:2
CzeLan 11 96 ~ 720 96 ~ 720 Nature 30mins |7:1:2
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C More Implementation Details

All experiments are conducted on a server equipped with 8 NVIDIA A100 GPUs (80GB memory
each). MAFS is implemented using PyTorch 1.13.0 [39] and optimized using the Adam opti-
mizer [17] with an L2 loss. We investigate four distinct communication topologies for the agent
interaction graph G, including ring, star, chain, and fully-connected structures. Each forecasting
agent is instantiated using the iTransformer architecture [28], with a unified configuration across
all experiments: a fixed learning rate of 1e-3, a hidden dimension of 128, and 2 encoder layers. To
evaluate the scalability of MAFS, we vary the number of agents N € {4,8,12,16, 20, 24}. MAFS
training is conducted in two stages. In the first stage, each agent is independently optimized on its
assigned sub-task using a learning rate of le-3 for 10 epochs. In the second stage, we freeze the
parameters of all forecasting agents and jointly finetune only the topology-aware weight adjuster and
the agent-rated voting aggregator. This stage also runs for 10 epochs, using a smaller learning rate of
le-4 to enable stable convergence during topology adaptation and collaborative forecasting. For all
tasks, we adopt a symmetric prediction setting where the historical input length equals the forecasting
horizon, following the protocol in [76], to enable consistent evaluation across datasets. To ensure
fair comparison, we re-run iTransformer under our unified setting (including learning rate, hidden
size, and number of layers). For all baselines other than iTransformer, we use reported results from
the iTransformer and TFB [41] papers, except for the temp and pm2 .5 datasets, where we re-run all
baseline models. Importantly, we identified and corrected a bug in the original evaluation process: the
test_loader was configured with drop_last=True during testing, which led to the exclusion of
final test batches. We explicitly set drop_last=False to ensure fair and complete evaluation [41].

D Full Results of Comparison Between Two Types of Sub-tasks Division

Figure 8 to Figure 18 present a comprehensive comparison of homogeneous-correlated and
heterogeneous-correlated sub-task configurations across all 11 datasets. The results demonstrate that
each configuration exhibits distinct advantages under different data characteristics, emphasizing the
need for adaptive task decomposition in multi-agent forecasting.
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Figure 8: Performance comparison of homogeneous-correlated and heterogeneous-correlated sub-
tasks on AQShunyi.
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Figure 9: Performance comparison of homogeneous-correlated and heterogeneous-correlated sub-
tasks on AQWan.
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Figure 10: Performance comparison of homogeneous-correlated and heterogeneous-correlated sub-
tasks on CzeLan.
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Figure 11: Performance comparison of homogeneous-correlated and heterogeneous-correlated sub-
tasks on ETThI.
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Figure 12: Performance comparison of homogeneous-correlated and heterogeneous-correlated sub-
tasks on ETTh2.
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Figure 13: Performance comparison of homogeneous-correlated and heterogeneous-correlated sub-
tasks on ETTml.
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Figure 14: Performance comparison of homogeneous-correlated and heterogeneous-correlated sub-
tasks on ETTm?2.
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Figure 15: Performance comparison of homogeneous-correlated and heterogeneous-correlated sub-
tasks on pm2.5.
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Figure 16: Performance comparison of homogeneous-correlated and heterogeneous-correlated sub-
tasks on temp.
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Figure 17: Performance comparison of homogeneous-correlated and heterogeneous-correlated sub-
tasks on weather.
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Figure 18: Performance comparison of homogeneous-correlated and heterogeneous-correlated sub-

tasks on ZafNoo.

E Full Results of Different MAFS Scales

Figure 19 to Figure 29 show the full results of MAFS under varying numbers of agents across all
datasets. Overall, we observe that increasing the number of agents generally leads to more stable
forecasting performance, with reduced variance across different runs. Although more agents do
not always yield the best accuracy, the ensemble effect tends to enhance robustness. This finding
supports the scalability of MAFS in diverse time series scenarios and highlights the trade-off between

performance and computational overhead when scaling agent populations.
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Figure 19: Performance comparison of different agent numbers on AQShunyi.
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Figure 20: Performance comparison of different agent numbers on AQWan.
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Figure 21: Performance comparison of different agent numbers on CzeLan.
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Figure 22: Performance comparison of different agent numbers on ETTh1.
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Figure 23: Performance comparison of different agent numbers on ETTh2.
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Figure 24: Performance comparison of different agent numbers on ETTm1.
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Figure 25: Performance comparison of different agent numbers on ETTm?2.
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Figure 26: Performance comparison of different agent numbers on pm?2.5.
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Figure 27: Performance comparison of different agent numbers on temp.
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Figure 28: Performance comparison of different agent numbers on weather.
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Figure 29: Performance comparison of different agent numbers on ZafNoo.

F Limitation

This work introduces MAFS, a novel multi-agent forecasting system that successfully leverages
collective intelligence to enhance long-term time series forecasting. Through specialized agent design,
structured communication, and adaptive decision fusion, MAFS achieves consistent performance im-
provements across diverse datasets and forecasting horizons, demonstrating its strong generalization
and robustness. However, despite these promising results, multi-agent forecasting still faces certain
limitations. Specifically, the system exhibits occasional instability during training, particularly when
the number of agents increases or when dealing with highly volatile datasets. This instability may
arise from conflicting agent objectives or suboptimal communication structures that hinder effective
information integration.

In future work, we plan to further improve MAFS from the following perspectives:
* Adaptive Communication Topologies: Develop dynamic topology learning mechanisms

that can automatically adjust inter-agent connections based on data characteristics and task
complexity, reducing reliance on manually defined structures.

* Diverse Task Decomposition Strategies: Explore more fine-grained and semantically
meaningful task divisions, enabling agents to specialize in richer forecasting aspects such as
uncertainty estimation, anomaly detection, or rare event prediction.

We believe these directions will further enhance the stability, adaptability, and forecasting capability
of multi-agent systems in real-world scenarios.
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G Full Long-term Time Series Forecasting Results

Table 4: Comparison of long-term time series forecasting methods on 11 datasets using MSE and
MAE (lower is better). Best results are marked in red ; second-best results are underlined in blue .

Methods

MAFS
(Ours)

iTransformer
[2024]

TimeMixer
[2024]

PatchTST
[2024]

Crossformer
[2023]

TiDE
[2024]

TimesNet
[2023]

DLinear
[2023]

Autoformer
[2021]

Informer
[2021]

Datasets Metric ‘ MSE MAE

|MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE MAE

MSE MAE

ETThl

96
192
336
720
Avg

0.381 0.399
0.428 0.424
0.444 0.442
0.478 0.484
0.433 0.437

0.392 041
0.442 0.442
0.483 0.473
0.552 0.537
0.467 0.466

0375 04
0.429 0.421
0.484 0.458
0.498 0.482
0447 0.4

0.414 0.419
0.46 0.445
0.501 0.466
0.5 0.488
0.469 0.454

0.423 0.448
0.471 0.474
0.57 0.546
0.653 0.621
0.529 0.522

0.479 0.464
0.525 0.492
0.565 0.515
0.594 0.558
0.541 0.507

0.384 0.402
0.436 0.429
0.491 0.469
0.521 0.5
0.458 0.45

0.386 0.4
0437 0.432
0.481 0.459
0.519 0516
0.456 0.452

0.449 0.459
0.5 0482
0.521 0.496
0.514 0.512
0.496 0.487

0.865 0.713
1.008 0.792
1.107 0.809
1.181 0.865
1.04 0.795

ETTh2

96
192
336
720
Avg

0.289 0.341
0.358 0.391
0.372 0.406
0.405 0.438
0.356 0.394

0.304 0.353
0.399 0.417
0.41 0.429
0.433 0.463
0.386 0.415

0.289 0341
0372 0392
0412 0.434

0.302 0.348
0.388 0.4
0.426 0.433
0.431 0.446
0.387 0.407

0.745 0.584
0.877 0.656
1.043 0.731
1.104 0.763
0.942 0.684

04 044
0.528 0.509
0.643 0.571
0.874 0.679
0.611 0.55

0.34 0.374
0.402 0.414
0.452 0.452
0.462 0.468
0.414 0.427

0.333 0.387
0.477 0.476
0.594 0.541
0.831 0.657
0.559 0.515

0.346 0.388
0.456 0.452
0.482 0.486
0.515 0.511
0.45 0459

3.755 1.525
5.602 1.931
4.721 1.835
3.647 1.625
4.431 1.729

ETTml

96
192
336
720
Avg

0323 0361
0.341 0.373
0.372 0.393
0.428 0.426
0.366 0.388

0336 0.372
0366 0.39
0.388 0.41
0.442 0.442
0383 0.403

0.32 0.357
0.39 0.404
0.454 0.441
0.381 0.395

0.329 0.367
0.367 0.385
0.399 0.41
0.454 0.439
0.387 04

0.404 0.426
0.45 0.451
0.532 0.515
0.666 0.589
0.513 0.496

0.364 0.387
0.398 0.404
0.428 0.425
0.487 0.461
0.419 0.419

0.338 0.375
0.374 0.387
0.41 0411
0.478 045
0.4 0.406

0.345 0.372
0.38 0.389
0.413 0.413
0.474 0.453
0.403 0.407

0.505 0.475
0.553 0.496
0.621 0.537
0.671 0.561
0.588 0.517

0.672 0.571
0.795 0.669
1.212 0.871
1.166 0.823
0.961 0.734

ETTm2

96
192
336
720
Avg

0.177 0.26
0239 0302
0.276 0.329
0.369 0.395
0.265 0.321

0.184 0.266
0.256 0.317
0.313 0.355
0.407 0.417
0.29 0.339

0.175 0.258
0.237 0.299
0298 034
0.391 0.396

0.175 0259
0.241 0.302
0.305 0.343
0.402 04
0.281 0.326

0.287 0.366
0.414 0.492
0.597 0.542
1.73 1.042
0.757 0.61

0.207 0.305
0.29 0.364
0.377 0.422
0.558 0.524
0.358 0.404

0.187 0.267
0.249 0.309
0.321 0.351
0.408 0.403
0.291 0.333

0.193 0.292
0.284 0.362
0.369 0.427
0.554 0.522
0.35 0.401

0.255 0.339
0.281 0.34
0.339 0.372
0.433 0.432
0.327 0.371

0.365 0.453
0.533 0.563
1.363 0.887
3.379 1.338
1.41 0.81

‘Weather

96
192
336
720
Avg

0.166 0.206
0.201 0.244
0.246 0.282
0.318 0.338
0.233 0.267

0.175 0215
0214 0254
0.252 0.288
0.331 0348
0.243 0.276

0.163 0209
0.208 0.25
0.251 0287
0.339 0.341
024 0271

0.177 0.218
0.225 0.259
0.278 0.297
0.354 0.348
0.259 0.281

0158 0.23
0.206 0.277
0272 0335
0.398 0.418
0.259 0315

0.202 0.261
0.242 0.298
0.287 0.335
0.351 0.386
0271 0.32

0.172 0.22
0.219 0.261
0.28 0.306
0.365 0.359
0.259 0.287

0.196 0.255
0.237 0.296
0.283 0.335
0.345 0.381
0.265 0.317

0.266 0.336
0.307 0.367
0.359 0.395
0.419 0.428
0.338 0.382

03 0.384
0.598 0.544
0.578 0.523
1.059 0.741
0.634 0.548

AQShunyi

96
192
336
720
Avg

0.711 0.499
0.697 0.502
0.668 0.506
0.728 0.533
0.701 0.509

0.742 0.506
071 0.507
0.687 0.51
0.752 0.539
0.723 0.515

0.731 0.533
0.711 0.467
0.684 0.564
0.749 0.554
0.719 0.529

0.648 0.481
0.69 0.501
0.711 0.515
0.77 0.538
0.705 0.509

0.652 0.484
0.674 0.499
0.704 0.515
0.747 0.518
0.694 0.504

0.708 0.52
0.774 0.569
0.827 0.56
0.803 0.566
0.778 0.554

0.658 0.488
0.707 0511
0.785 0.537
0.755 0.527
0.726 0.516

0.651 0.492
0.691 0.512
0.716 0.529
0.765 0.556
0.706 0.522

0.736 0.529
0.735 0.535
0.83 0.566
0.754 0.532
0.764 0.541

0.754 0.542
0.759 0.536
0.837 0.56
0.777 0.543
0.782 0.545

AQWan

96
192
336
720
Avg

0.804 0.49
0.786 0.496
0.765 0.496
0.854 0.529
0.802 0.503

0.814 0.491
0.801 0.497
0786 0502
0.868 0.536
0.817 0.507

0.829 0.456
0.81 0.501
0.791 0.538
0.883 0.499
0.828 0499

0.745 0.47
0.792 0.491
0.819 0.503
0.89 0.533
0.812 0.499

0.75 0465
0.762 0.479
0.802 0.504
0.83 0511
0.786 0.49

0.833 0.524
0.82 0.516
0.858 0.552
0.913 0.551
0.856 0.536

0.791 0.488
0.779 049
0.814 0.505
0.869 0.519
0.813 0.5

0.756 0.481
0.8 0.502
0.823 0.516
0.891 0.548
0.818 0.512

0.858 0.518
0.803 0.513
0.826 0.523
0.872 0.547
0.84 0.525

0.901 0.522
0.833 0.521
0.847 0.525
0.883 0.532
0.866 0.525

CzeLan

96
192
336
720
Avg

0.199 0.248
0.214 0.258
0.229 0.281
0.246 0298
0.222 0.271

021 0255
0231 0.275
0.243 0.293
0.245 0.297
0232 0.28

0.202 0.263
0.22 0.288
0.237 0.266
0.254 0.302
0.228 0.28

0.183 0.251
0.208 0.271
0.243 0.302
0273 0.335
0227 029

0.581 0.443
0.705 0.503
0.971 0.596
1.566 0.762
0.956 0.576

0.186 0.256
0.226 0.29
0.238 0.304
0.295 0.363
0.237 0.303

0.176 0.237
0215 0.279
0.224 0.288
0.282 0.337
0.224 0.285

0.211 0.289
0.252 0.323
0.317 0.366
0.358 0.392
0.284 0.342

0.238 0.294
0.29 0.341
0.322 0.357
0.379 0.427
0.307 0.355

0.25 0.305
0.295 0.337
0.335 0.361
0.384 0.416
0.316 0.355

ZafNoo

96
192
336
720
Avg

0.466 0.411
0.505 0.439
0.541 0.465
0.567 0.494
052 0451

0.476 0.419
0.529 0.457
0.568 0.488
0.591 0.509
0.541 0.468

0.481 0.404
0.527 0.454
0.56 0.444
0.585 0.46
0.538 0.44

0.444 0.426
0.498 0.456
0.53 048
0.574 0.499
0.511 0.465

0.432 0.419
0.479 0.449
0.521 0.469
0.543 0.483
0.494 0.455

0.508 0.45
0.536 0.491
0.592 0.519
0.642 0.533
0.569 0.498

0.479 0.424
0.491 0.446
0.551 0.479
0.627 0.511
0.537 0.465

0.434 0411
0484 0.444
0.518 0.464
0.548 0.486
0.496 0.451

0.524 0.468
0.687 0.558
0.835 0.669
0.854 0.702
0.725 0.599

0.541 0.473
0.708 0.575
0.851 0.661
0.876 0.699
0.744 0.602

PM2.5

96
192
336
720
Avg

0.428 0.428
0.429 0.425
0.379 0.404
0357 0.399
0.398 0.414

0438 0432
0.436 0.429
0412 0417
04 0408
0421 0421

0446 048
045 0.408
0.395 0.441
037 0414
0.415 0.436

0.46 0.468
0.462 0.449
0.466 0.505
0.452 0.493
0.46 0.479

0.451 0.46
0.463 0.446
0.447 0.469
0.464 0.514
0.456 0.472

0.475 0.484
0.493 0.476
0.455 0.473
0.499 0.554
0.481 0.497

0.481 0.481
0.455 0.446
0.469 0.508
0.49 0.535
0.473 0.492

0.453 0.466
0.447 0.431
0.451 0.485
0.458 0.524
0.453 0.477

0.525 0.512
0.519 0.502
0.53 0.553
0.485 0.53
0.515 0.524

0.581 0.594
0.55 0.537
0.524 0.546
0.499 0.566
0.539 0.561

Temp

96
192
336
720
Avg

0.139 0.282
0.132 0.279
0.138 0.289
0.151 0.3
0.14 0.288

0.138 0.283
0.145 0.296
0.203 0.352
0.204 0.352
0.173 0.321

0.144 0.306
0.137 0.317
0.145 0297
0.157 0.298
0.146 0304

0.144 03

0.145 0.309
0.147 0.313
0.153 0.303
0.147 0.306

0.186 0.377
0.203 0.435
0.209 0.435
0.224 0.445
0.206 0.423

0.155 0.323
0.157 0.323
0.169 0.357
0.173 0.35
0.164 0.338

0.162 0.329
0.173 0.374
0.185 0.387
0.312 0.623
0.208 0.428

0.152 0.317
0.155 0.322
0.162 0.342
0.167 0.329
0.159 0.327

0.185 0.373
0.213 0.45
0.231 0.492
0.347 0.683
0244 0.5

0.197 0.405
0.199 0.429
0.243 0.506
0.311 0.627
0.238 0.492
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions and scope of
the paper. In particular, the introduction | outlines the motivation for applying multi-agent
systems to time series forecasting, explicitly presents the key challenges, and summarizes
the core solutions proposed by MAFS, including sub-task decomposition, inter-agent com-
munication, and voting aggregation. These claims are consistent with the overall scope and
objectives of the work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We present the limitations of this work and potential future directions in
Appendix F.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper does not include theoretical assumptions and results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of the model architecture, datasets, and
implementation. Additionally, the source code is released to facilitate reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have uploaded the source code to an anonymous repository, and all datasets
used are publicly available.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (
) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

» The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (
) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and testing details, including data splits, hyperparameters, and opti-
mizer settings, are provided in Section 5.1 and Section C to ensure clarity and reproducibility
of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For all experimental results in this paper we provided the mean of the numerous
experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

30


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided basic information about our deployment platform and computing
power in Section C.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?

Answer: [Yes]

Justification: We make sure our research conducted in the paper conform, in every respect,
with the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The forecasting agents in our MAFS framework are based on the open-sourced
model iTransformer. We use the official implementation available at

, which is released under the MIT License. We properly cite the
original paper that proposed iTransformer in our manuscript. All usage of the code strictly
follows the terms of the MIT License. Additionally, all datasets used in our experiments are
publicly available and used in accordance with their respective licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets,
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy ( )
for what should or should not be described.
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