
Approximate Top-k for Increased Parallelism

Oscar Key1 Luka Ribar2 Alberto Cattaneo2 Luke Hudlass-Galley2 Douglas Orr2

1Centre for Artificial Intelligence, University College London 2Graphcore Research
oscar.key.20@ucl.ac.uk {lukar, albertoc, lukehg, douglaso}@graphcore.ai

Abstract

We present an evaluation of bucketed approximate top-k algorithms. Computing
top-k exactly suffers from limited parallelism, because the k largest values must
be aggregated along the vector, thus is not well suited to computation on highly-
parallel machine learning accelerators. By relaxing the requirement that the top-k
is exact, bucketed algorithms can dramatically increase the parallelism available by
independently computing many smaller top-k operations. We explore the design
choices of this class of algorithms using both theoretical analysis and empirical
evaluation on downstream tasks. Our motivating examples are sparsity algorithms
for language models, which often use top-k to select the most important parameters
or activations. We also release a fast bucketed top-k implementation for PyTorch.

29 211 213 215 217 219 221

n

102

103

T
ot

al
b

an
d

w
id

th
(G

B
/s

)

29 211 213 215 217 219 221

n
torch.argmax torch.topk RAFT

kb = 1, bkb/k = 1 kb = 1, bkb/k = 2 kb = 1, bkb/k = 4 kb = 2, bkb/k = 1 kb = 4, bkb/k = 1

Figure 1: Our approximate top-k implementation (× +), compared with exact top-k imple-
mentations from PyTorch and RAFT, and a bucketed top-k using torch.argmax, tested in float32
on an H100 PCIe GPU with batch size m = 128. Total bandwidth is the minimum number of bytes
transferred by top-k, divided by runtime. Left: Small fixed k = 64; it is faster to retrieve kb = 1
element per bucket, varying the total number b · kb of elements retrieved, where b is the number of
buckets. Right: Large k = n/4; best to set b · kb/k = 1 and increase kb.

1 Motivation and existing work

Top-k is an operation, common to most machine learning frameworks, that selects the k largest
elements from a vector of length n. It appears in many machine learning algorithms, for example
k-nearest neighbours (KNN) similarity search, and top-k sampling in language models (Fan et al.
2018). Of particular interest are its application to sparsity methods, often aimed at reducing the
otherwise substantial costs of large language models (LLMs). These methods ignore part of the
parameters or activations in order to reduce the amount of computation, either during training, during
generation (Sheng et al. 2023; Ribar et al. 2024), or both (Jayakumar et al. 2020). Many sparsity
methods discard the parameters or activations with the smallest magnitude, and implement this
selection using top-k. Thus, these algorithms may call top-k frequently and on long vectors. For
example, Jayakumar et al. (2020) applies top-k to each weight matrix of a Transformer during all

Workshop on Adaptive Foundation Models at NeurIPS 2024.

n

11 3 10 6 1 4 8 5 2 9 7

split into b buckets

11 6 8 9 3 1 5 7 10 4 2

top-kb top-kb top-kb

11 9 5 7 10 4

top-k (if b · kb > k)

11 9 7 10

k

79.8

80.0

80.2

80.4

80.6

80.8

81.0

81.2

S
Q

u
A

D
ac

cu
ra

cy
(%

)

2−14 2−13 2−12 2−11

Duration (seconds)

165

175

185

195

205

215

R
ep

et
it

io
n

m
at

ch

kb = 1 kb = 2 kb = 4 torch.topk

b · kb/k = 1 b · kb/k > 1

Figure 2: Left: An example of a bucketed top-k, with n = 11, k = 4, b = 3 and kb = 2. In Stage
1, n elements are reduced to b · kb elements via b independent top-kb. An optional Stage 2 takes
final top-k. Right: The trade-off between top-k runtime duration and downstream task accuracy for
SparQ Attention in SQuAD and a sequence repetition task (see Appendix B.2), when using different
bucketed top-k settings with batch size m = 1. Good accuracy and speed-ups above 4× are achieved
with kb ∈ {2, 4}.

training iterations, with each matrix potentially containing millions of parameters. Similarly, Sheng
et al. (2023) and Ribar et al. (2024) compute top-k over the sequence length, which might comprise
tens of thousands of tokens, in each attention layer and for each token generated.

However, for larger n, computing top-k can be slow: our experiments with Ribar et al. (2024)
(Section 4.3) show that top-k consumes > 10% of the time to generate each token and is not able to
fully utilise compute resources. One reason for this is that parallelism over n is necessary — the batch
dimension is rarely large enough to saturate the processor — but this is limited because substantial
cooperation is required between threads. A common class of methods partitions the input vector into
buckets, discards those buckets that fall outside the top-k, and recurses into buckets that are partially
within the top-k. Parallelism is achieved by using many threads for the partitioning stage, however
the buckets must be shared. Within this class, Alabi et al. (2012) introduce BUCKETSELECT and
RADIXSELECT, as used by PyTorch (Paszke et al. 2019); see also Ribizel and Anzt (2019) and Zhang
et al. (2023). Another approach is to use multiple threads to scan over the input while maintaining a
shared priority queue of the k largest items (Johnson et al. 2021; Zhang et al. 2023). BITONIC TOP-K
(Shanbhag et al. 2018) and DR. TOP-K (Gaihre et al. 2021) are hierarchical approaches, which split
the input into buckets, perform selection in each bucket in parallel, and then, possibly recursively,
merge the buckets until the final top-k is obtained. Merging the buckets again requires cooperation
between threads, limiting parallelism.

More parallelism can be achieved by computing an approximate top-k. This approach is particularly
relevant for sparsity algorithms because top-k is generally already a heuristic, thus an additional
approximation may not impact the overall performance. In this paper we consider methods which
split the input into buckets (a common strategy for parallel reduction, see e.g. Triton (2024)), perform
a smaller top-kb in each bucket (kb ≤ k), and combine the outputs. This design is similar to the
hierarchical exact algorithms. However, as the output must no longer be exact, less or no cooperation
is required when combining the output of the buckets. An existing instance is TPU-KNN (Chern et al.
2022), implemented for TPUs as the approx_max_k operation in JAX and TensorFlow. Their design
choices are tailored to KNN applications where k ≪ n, for example n ∼ millions and k < 100. We
find that these choices are not optimal for sparsity applications, where k might be 5% - 20% of n.
While the FAISS library contains several GPU-efficient approximate KNN implementations, these
mostly rely on an exact top-k. A single approximate top-k method is documented (Guzhva 2023),
which only supports CPU (and for which we haven’t found any evaluations).

We aim to make fast approximate top-k algorithms more readily available to practitioners by inves-
tigating the design choices of bucketed top-k, and by releasing our implementation as a PyTorch

2

221 222 223 224 225 226

Cost Cserial

10−4

10−3

10−2

10−1

100M
o
d

el
le

d
re

ca
ll

er
ro

r

221 222 223 224 225 226

Cost Cserial

kb = 1 kb = 2 kb = 4 kb = 8 top-k

Figure 3: Theoretical trade-off curves, using the serial cost model, which computes the count of all
operations executed in an abstract execution model (Appendix D), for n = 1,048,576 (= 220), with
k ≪ n (left, k=256) and k ∝ n (right, k=n/8=131,072). Points along the curves (from bottom
to top) indicate increasing the b · kb/k ratio, leading to a decreasing recall error. See Appendix E for
the full set of trade-off curves with various cost models.

library1. We evaluate cost-quality trade-offs of the algorithm using theoretical analysis and empirical
experiments on a sparse attention method for LLMs, LLM vocabulary sampling, and knowledge
graph completion. We demonstrate that substantial speed-ups of the top-k operation are possible in
many settings. In particular, on the sparse attention method task, we observe the top-k to be over 4×
faster with little to no degradation in downstream task performance.

2 Algorithm design choices

We consider bucketed algorithms consisting of two stages (see Figure 2, left):

Stage 1 divide the n inputs into b interleaved buckets, select the largest kb values in each bucket, and
concatenate the b · kb results;

Stage 2 if b · kb > k, use an exact top-k to select the k largest values.

The design parameters are b ∈ {1, . . . , n} and kb ∈ {1, . . . ,min(k, n/b)}, with the requirement that
b · kb ≥ k. TPU-KNN is an instance where kb = 1 and Stage 2 is implemented using a bitonic sort.
The implementation in FAISS uses b = k/kb, thus Stage 2 is not required.

The quality of the approximation can be improved by increasing either b or kb. We consider two
regimes: k ≪ n , k fixed to a small value (common in KNN applications); k ∝ n , k is a significant
proportion of n (common in sparsity applications). In k ≪ n , we might expect that the computation
time is dominated by Stage 1, thus our intuition is to improve quality by increasing b so that more
parallelism is available. In k ∝ n , the cost of Stage 2 becomes significant, thus quality should be
improved by increasing kb and maintaining b · kb = k. Our analysis supports these intuitions, as
shown in the following sections.

We could use any exact top-k algorithm in Stage 1. However, in our empirical evaluations we found
that good approximation and efficiency can be achieved by capping kb ≤ 4. We can take advantage
of this property to write a fast implementation that uses a small priority queue stored in registers and
requires no or minimal communication between threads. See Appendix A.

3 Theoretical evaluation

As an initial evaluation of the design choices in an implementation-neutral manner, we use theoretical
models to investigate the trade-off between the quality of the approximation and computational cost.
We measure quality using recall, R(k, b, kb) = Z(k, b, kb)/k, where the random variable Z(k, b, kb)
counts the number of true top-k values returned by the approximate method, obtaining an upper
bound on the expected recall error, 1− E[R], see Equation (1), and derive several theoretical cost
models for different implementations based on operation counting, see Appendix D for details.

1https://github.com/graphcore-research/pytorch-approx-topk

3

https://github.com/graphcore-research/pytorch-approx-topk

2−11 2−10 2−9

Duration (seconds)

10−6

10−5

10−4

10−3

10−2

10−1

100

R
ec

al
l

er
ro

r

2−7 2−6 2−5 2−4

Duration (seconds)

kb = 1 kb = 2 kb = 4 torch.topk

b · kb/k = 1 b · kb/k > 1

Figure 4: Bucketed top-k trade-off for LLM vocabulary sampling (left, n = 128,256, k = 256,
m = 64) and for knowledge graph link prediction (right, n = 2,653,751, k = 100, m = 128). In
both regimes, kb = 1 gives peak performance, but kb = 2 sacrifices some speed for sake of a lower
error and is Pareto optimal when increasing b.

Figure 3 shows the trade-off between recall error and theoretical cost, as we vary b and kb under
the two regimes. The lowest point on each curve represents the case b · kb = k, and moving along
the curve (from bottom to top) corresponds to increasing b further. Both regimes show that it is
theoretically possible to achieve substantial speed-ups without much loss in recall. For k ≪ n , we
observe that increasing b alone is the most cost-effective way of improving recall. For k ∝ n , larger
values of b · kb incur a substantial performance penalty due to the cost of Stage 2, thus it is better to
increase recall by choosing a larger value of kb and a smaller value of b.

4 Empirical evaluation

Our empirical evaluation consists of benchmarking speed of our bucketed top-k implementation
against exact top-k, exploring the cost-quality trade-off in downstream tasks, and demonstrating
that using an approximate top-k can achieve end-to-end speed-ups when generating from an LLM.
Further details are presented in Appendix B.

4.1 Runtime benchmarks

Figure 1 compares the memory bandwidth achieved by our implementation, under various configu-
rations, with three baselines: torch.argmax (an approximate top-k implemented by bucketing the
PyTorch argmax function), torch.topk, and the highly GPU-efficient exact method from the RAFT
library (Rapidsai 2022), which implements AIR TOP-K and GRIDSELECT as developed by Zhang
et al. (2023).

torch.argmax implements bucketed top-k for the case b = k, kb = 1. If we assume that it is
well optimised, it constitutes an upper bound for bucketed methods, showing opportunities for
substantial performance gains of exact top-k, particularly in the case k ∝ n . Our implementation
for the case b = k, kb = 1 exhibits good scaling, but would require further optimisation to reach the
performance of the upper bound, especially for k ≪ n . However, for most choices of parameters,
our implementation offers substantial speed-ups over the exact methods, except for k ≪ n when n
is large where RAFT is particularly fast.

Note that RAFT only supports float32 values, thus this is the data type we use in Figure 1. Language
modelling tasks commonly use lower precision data types, so we also compare the bandwidth for
bfloat16 in Figure 10, though the ranking of the methods is largely the same. The subsequent
evaluations on downstream tasks are performed with bfloat16, thus we only compare against
torch.topk.

4.2 Cost-quality trade-off

Sparse attention in LLM inference We consider SparQ Attention (Ribar et al. 2024), which speeds
up generation for long sequences in Transformer models. Top-k is applied to the attention scores

4

16 20000 40000
prompt length

0.00

0.01

0.02

0.03

se
cs

p
er

to
ke

n

dense
SparQ (torch.topk)

SparQ (approx top-k, kb = 1)

SparQ (approx top-k, kb = 2)

16 20000 40000
prompt length

1.0

1.5

2.0

sp
ee

d
u

p
ov

er
d

en
se

1.9×
2.1×

theoretical max

Figure 5: End-to-end speed-ups achieved when generating text from Llama 2 7B using SparQ
sparse attention, which relies on the top-k operation. We use k = n/8 and batch size 1, and set b
such that b · kb = k. shows the theoretical maximum speed-up that SparQ could achieve if the
computation was fully memory-bandwidth-bound (see Appendix B.3). We plot the mean over four
repeats, observing little variance.

to select which values should be fetched from the KV cache. Here k ∝ n , with n/16 ≤ k ≤ n/8,
where n is the sequence length. Figure 2 shows the cost-quality curves for Llama 3 8B (Dubey et al.
2024) on two evaluation tasks. Consistent with our theoretical results, increasing kb is the most
cost-effective way of improving task performance. In fact, for kb = 2 and b · kb/k = 1, the cost of
top-k is reduced by more than 4×, with almost no degradation in quality.

Small k tasks We consider two tasks where k ≪ n . A common application of top-k in LLMs is
to select the subset of most likely next tokens to sample from during generation. We again perform
our evaluation on Llama 3 8B, which has a vocabulary size n = 128,256, and choose k = 256.
Finally, we look at link-prediction on knowledge graphs, another very common application of top-k.
We investigate tail predictions on PharMeBINet (Königs et al. 2022), a large biomedical knowledge
graph with n = 2.6× 106 entities, and k = 100. Figure 4 shows the recall error (compared to exact
top-k) for these two tasks. Consistent with the theoretical results, we observe that increasing kb and
b · kb/k together can retain good recall while achieving speed-ups between 2× and 4×.

4.3 End-to-end speed-ups

We return to SparQ Attention, as introduced above, to demonstrate that using a bucketed top-k can
achieve end-to-end speed-ups when generating from an LLM. Here we consider Llama 2 7B and batch
size 1, and measure the time taken to generate the n+ 1th token as we increase the prompt length, n.
Figure 5 shows the results. As expected, the speed-up offered by SparQ over dense attention is small
for shorter prompts — in fact it is slower for the shortest prompts due to overheads — but substantial
for longer prompts. This is because the time spent in the attention operation grows linearly with the
length of the prompt while other costs remain constant, thus a faster attention algorithm has a greater
effect on the total time. We observe that replacing the exact top-k in SparQ with a bucketed top-k
results in a modest additional performance boost: from 1.9× faster than dense to 2.1× faster (~10%)
for a prompt of 40, 000 tokens.

5 Conclusions

We have shown that additional parallelism can be introduced to the top-k operation with a bucketing
approach without affecting downstream task performance. Notably, different strategies are optimal
depending on the ratio k/n: sparsity applications are better served by top-kb (kb > 1) per bucket,
whereas if k ≪ n increasing the number of buckets is more cost-effective. In most cases our
implementation provides substantial speed-ups over exact top-k, except in the case of k ≪ n when n
is large, where RAFT also has very good performance. Two limitations of our evaluation are that we
have not benchmarked end-to-end performance outside Ribar et al. (2024), and have not thoroughly
investigated the effect of batch size. Future work could also examine the performance of bucketed
methods in distributed settings, where the top-k is performed by multiple accelerators. Here, bucketed
methods may have a larger advantage due to the limited communication required between buckets.
Finally, we hope that the PyTorch library that we release will make it easier for sparsity researchers
to start using approximate top-k algorithms in their work.

5

Acknowledgments and Disclosure of Funding

OK acknowledges support from the Engineering and Physical Sciences Research Council with grant
number EP/S021566/1.

References
Alabi, T., Blanchard, J. D., Gordon, B., and Steinbach, R. (2012). “Fast K-Selection Algorithms for

Graphics Processing Units”. In: ACM J. Exp. Algorithmics 17.
Cattaneo, A., Justus, D., Mellor, H., Orr, D., Maloberti, J., Liu, Z., Farnsworth, T., Fitzgibbon,

A., Banaszewski, B., and Luschi, C. (2022). “BESS: Balanced Entity Sampling and Sharing for
Large-Scale Knowledge Graph Completion”. arXiv: 2211.12281.

CCCL Development Team (2023). CCCL: CUDA C++ Core Libraries. URL: https://github.
com/NVIDIA/cccl.

Chern, F., Hechtman, B., Davis, A., Guo, R., Majnemer, D., and Kumar, S. (2022). “TPU-KNN:
K Nearest Neighbor Search at Peak FLOP/s”. In: Advances in Neural Information Processing
Systems. Vol. 35.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Yang, A., Fan, A., et al. (2024). “The Llama 3 Herd of Models”. arXiv: 2407.21783.

Fan, A., Lewis, M., and Dauphin, Y. N. (2018). “Hierarchical Neural Story Generation”. In: Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL,
pp. 889–898.

Forsythe, G. E. (1964). “Algorithm 232: heapsort”. In: Commun. ACM 7.6, pp. 347–349.
Gaihre, A., Zheng, D., Weitze, S., Li, L., Song, S. L., Ding, C., Li, X. S., and Liu, H. (2021). “Dr.

Top-k: Delegate-Centric Top-k on GPUs”. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. New York, NY, USA.

Gray, A. (2019). Getting Started with CUDA Graphs. URL: https://developer.nvidia.com/
blog/cuda-graphs/ (visited on 09/13/2024).

Guzhva, A. (2023). FAISS CPU Approximate Top-K. URL: https : / / github . com /
facebookresearch / faiss / blob / c418b30f756d56952d90f47b4e378985c85e608b /
faiss/utils/approx_topk/approx_topk.h.

Hoare, C. A. R. (1961). “Algorithm 65: find”. In: Commun. ACM 4.7, pp. 321–322.
Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J. (2020). “Open

Graph Benchmark: Datasets for Machine Learning on Graphs”. In: Advances in Neural Information
Processing Systems. Vol. 33, pp. 22118–22133.

Jayakumar, S. M., Pascanu, R., Rae, J. W., Osindero, S., and Elsen, E. (2020). “Top-KAST: Top-K
Always Sparse Training”. In: Advances in Neural Information Processing Systems. Vol. 33.

Johnson, J., Douze, M., and Jégou, H. (2021). “Billion-Scale Similarity Search with GPUs”. In: IEEE
Trans. Big Data 7.3, pp. 535–547.

Königs, C., Friedrichs, M., and Dietrich, T. (2022). “The Heterogeneous Pharmacological Medical
Biochemical Network PharMeBINet”. In: Scientific Data 9.1, p. 393.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. (2019). “Pytorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems. Vol. 32.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). “SQuAD: 100,000+ Questions for Machine
Comprehension of Text”. arXiv: 1606.05250.

Rapidsai (2022). rapidsai/raft: RAFT Contains Fundamental Widely-Used Algorithms and Primitives
for Data Science, Graph and Machine Learning. URL: https://github.com/rapidsai/raft.

Ribar, L., Chelombiev, I., Hudlass-Galley, L., Blake, C., Luschi, C., and Orr, D. (2024). “SparQ At-
tention: Bandwidth-Efficient LLM Inference”. In: Forty-first International Conference on Machine
Learning.

Ribizel, T. and Anzt, H. (2019). “Approximate and Exact Selection on GPUs”. In: IEEE International
Parallel and Distributed Processing Symposium Workshops, IPDPSW 2019, Rio de Janeiro, Brazil,
May 20-24, 2019, pp. 471–478.

Shanbhag, A., Pirk, H., and Madden, S. (2018). “Efficient Top-K Query Processing on Massively
Parallel Hardware”. In: Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pp. 1557–1570.

6

https://arxiv.org/abs/2211.12281
https://github.com/NVIDIA/cccl
https://github.com/NVIDIA/cccl
https://arxiv.org/abs/2407.21783
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://github.com/facebookresearch/faiss/blob/c418b30f756d56952d90f47b4e378985c85e608b/faiss/utils/approx_topk/approx_topk.h
https://github.com/facebookresearch/faiss/blob/c418b30f756d56952d90f47b4e378985c85e608b/faiss/utils/approx_topk/approx_topk.h
https://github.com/facebookresearch/faiss/blob/c418b30f756d56952d90f47b4e378985c85e608b/faiss/utils/approx_topk/approx_topk.h
https://arxiv.org/abs/1606.05250
https://github.com/rapidsai/raft

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen, B., Liang, P., Ré, C., Stoica, I., and Zhang,
C. (2023). “FlexGen: High-Throughput Generative Inference of Large Language Models with a
Single GPU”. In: International Conference on Machine Learning. Vol. 202, pp. 31094–31116.

Triton (2024). Layer Normalization - Triton Documentation. URL: https://triton-lang.org/
main/getting-started/tutorials/05-layer-norm.html.

Wang, Q., Mao, Z., Wang, B., and Guo, L. (2017). “Knowledge Graph Embedding: A Survey of
Approaches and Applications”. In: IEEE Transactions on Knowledge and Data Engineering 29.12,
pp. 2724–2743.

Yang, B., Yih, S. W.-t., He, X., Gao, J., and Deng, L. (2015). “Embedding Entities and Relations for
Learning and Inference in Knowledge Bases”. In: Proceedings of the International Conference on
Learning Representations (ICLR).

Zhang, J., Naruse, A., Li, X., and Wang, Y. (2023). “Parallel Top-K Algorithms on GPU: A Com-
prehensive Study and New Methods”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. New York, NY, USA.

7

https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html

A Algorithm and implementation details

We release a CUDA implementation of bucketed top-k. The implementation has two modes to
ensure enough parallelism is exposed: (1) 1 thread per bucket, (2) 64 threads per bucket. In the
benchmarks presented in the paper, for each specific configuration of n, k, b, kb we always select the
mode, between the two, giving the best performance. The implementation also offers a heuristic to
select the mode: use mode (1) if

• number of threads ≥ number of lanes on the device,

• or, buckets contain < 64 elements.

In mode (1), each thread selects the top-kb values from each bucket and writes them back to memory.
In mode (2), each thread selects the top-kb values from a subsection of a bucket, the resulting values
are sorted within each group of 64 threads, and the final top-kb values are written to memory. The
merge is performed using the BlockMergeSort primitive from the CUB library (CCCL Development
Team 2023). This is a cheap operation because it can be performed in shared memory and only takes
place once. In both modes the implementation of each thread is the same: the thread iterates over the
input while inserting each value into a max priority queue of size kb. As kb ≤ 4, the priority queue
can be cheaply and simply implemented using insertion sort in per-thread registers.

Mode (1) is the same as the per-thread top-k described by Shanbhag et al. (2018). Mode (2) is similar
to BLOCKSELECT (Johnson et al. 2021), except we can take advantage of kb ≤ 4 to only merge the
per-thread queues once, as opposed to periodically having to do it during the computation. Note
that both of these previous implementations store the queue in fast but small memories, namely the
registers or shared memory, thus they are limited to values of k < 1024. The bucketed approach can
support much larger values of k while still storing the queues in fast memories.

A.1 Bucket assignment

When splitting n inputs into b buckets (b ≤ n), we investigate two different ways of assigning elements
along the sequence to buckets: contiguous and interleaved. Let B : {0, . . . , n− 1} → {0, . . . , b− 1}
be the assignment function, so that input xi is assigned to bucket B(i).

• In contiguous mode, we set B(i) :=
⌊
bi
n

⌋
.

• In interleaved mode, we set B(i) := i (mod b).

An ideal bucket assignment would break any correlations in the input data, so that each bucket can be
expected to contain approximately the same number of top-k values as any other (uniform distribution
assumption; see Appendix C). However, data is often highly correlated across the sequence, which
can lead to poor recall when using contiguous assignment compared to exact top-k. We simulate
this effect by repeatedly drawing a sequence of n = 2048 elements from a Multivariate normal
distribution x ∼ N (0,Σ) such that Σi,j = ρ|i−j| with the correlation factor ρ ∈ [0, 1). Applying the
approximate bucket top-k algorithm with k = 256 for various kb, we observe that, as the correlation
between the elements is increased, the contiguous assignment leads to dramatic degradation in recall;
on the other hand, interleaved assignment works very well in retaining recall, no matter the degree of
correlation (Figure 6, left). In cases when permuting the data can be done cheaply, the performance
can be alternatively retained by first shuffling the data (Figure 6, right).

All the real-world data that we tested in this work contains significant correlation between the ordered
values – for example, Figure 7 showcases the performance degradation when using contiguous assign-
ment for the LLM downstream task with SparQ attention. On the other hand, due to the contiguity
of memory accesses, the contiguous assignment showcases runtime improvements compared to the
interleaved assignment, as can be seen in Figure 8 using the same top-k settings as in the LLM
downstream task experiments. Nevertheless, due to the data correlation issues, we assign the elements
to buckets in the interleaved fashion throughout our experiments.

8

0.0 0.2 0.4 0.6 0.8

Correlation factor

2−3

2−2

2−1

R
ec

al
l

er
ro

r

Correlated dataCorrelated data

0.0 0.2 0.4 0.6 0.8

Correlation factor

Correlated data after random permutationCorrelated data after random permutation

Contiguous Interleaved

kb = 1 kb = 2 kb = 4 kb = 8

Figure 6: Comparison of achieved recall vs. exact top-k using interleaved and contiguous bucket
assignments on normally distributed correlated data. Left: As the correlation between data points is
increased, contiguous assignment showcases significant recall degradation, even as kb is increased.
Right: When the correlated data is randomly permuted, the contiguous assignment achieves the same
recall as the interleaved assignment.

1 2 4 8

kb

75

76

77

78

79

80

81

S
Q

u
A

D
ac

cu
ra

cy
(%

)

1 2 4 8

kb

80

100

120

140

160

180

200

R
ep

et
it

io
n

m
at

ch

Contiguous Interleaved

b · kb/k = 1 b · kb/k = 2 b · kb/k = 4 b · kb/k = 8

Figure 7: Comparison of LLM downstream task performance using interleaved and contiguous
bucket assignment with SparQ attention. As textual sequences are highly correlated, there is a
significant performance degradation when using contiguous assignment. Left: SQuAD task. Right:
Repetition task.

1 2 4

kb

1.0

1.1

1.2

1.3

C
on

ti
gu

ou
s

as
si

gn
m

en
t

sp
ee

d
u

p

SQuAD

1 2 4

kb

Repetition

b · kb/k = 1 b · kb/k = 2 b · kb/k = 4 b · kb/k = 8

Figure 8: Runtime comparison of contiguous vs interleaved assignment on SQuAD and Repetition
tasks, indicating the speed-up of the contiguous assignment.

9

B Experiment details

B.1 Runtime benchmarks

Benchmark results were all generated on a H100 PCIe GPU, using PyTorch 3.12 and CUDA 12.1.
Our benchmark performs the following steps:

1. Define tensor x of shape (m,n)

2. Warmup loop (16 iterations):
(a) Fill x with i.i.d. values from a unit normal distribution
(b) Launch top-k kernel

3. Timing loop (512 iterations):
(a) Fill x with i.i.d. values from a unit normal distribution
(b) Launch sleep kernel
(c) Record start CUDA event
(d) Launch top-k kernel
(e) Record stop CUDA event

By launching the sleep kernel within the timing loop we ensure the start/stop events and the top-k
kernel have all been queued before the first start event is executed, thus avoiding including Python
overhead in our timing measurements. We find that this setup yields very stable timings. Over all the
benchmarking runs presented in this work, maximum ratio of standard error to mean duration is 5%,
and the average ratio is 0.1%.

Ideally we would use CUDA graphs (Gray 2019) to improve the accuracy of the timings by reducing
overheads due to memory allocations and CPU/GPU communication, however these are not compati-
ble with the radix top-k implementation in RAFT (used when k > 256). To investigate the impact of
this on the results, Figure 9 shows the working configurations with CUDA graphs enabled. We do
not observe any difference in the ordering of the methods, thus decide to present the results without
CUDA graphs so RAFT can be fully included.

B.2 Cost-quality trade-off

B.2.1 LLM generation with SparQ Attention

SparQ Attention (Ribar et al. 2024) is an attention-approximating algorithm for speeding up long-
sequence transformer generation. It consists of two main steps. Firstly, an approximate dot-product
of the current query and the cached keys is conducted, generating approximate scores across the
sequence length. Secondly, top-k approximate scores are selected, and attention is approximated
using only these k key-value pairs.

We examine the effect of using approximate top-k for selecting top key-value pairs within Step 2 of
the SparQ Attention algorithm. The top-k algorithm is applied to the approximate attention scores,
and k is generally chosen to be 1/16 - 1/8 of the sequence length. We test the effectiveness of the
approximation by evaluating its effect on the downstream task performance on two representative
tasks taken from (Ribar et al. 2024): question answering on SQuAD dataset and text repetition. For
the former, we use a modified version of SQuAD v1.1 (Rajpurkar et al. 2016) where each provided
context (required to answer the question) is augmented with seven additional unrelated contexts
sampled from other examples. For the latter, the model is prompted to repeat a piece of text from
its context, and the task performance is measured by the length of the exact match of the answer in
characters. We perform both evaluations using the Llama 3 8B model (Dubey et al. 2024).

B.2.2 Knowledge graph completion

Knowledge Graphs (KGs) encode domain knowledge in the form of subject-relation-object triples
(h, r, t), with h, t in the set V of graph nodes (also known as entities) and r the edge type (or relation
type). As KGs are often incomplete, inferring missing links is a classical ML application, which in
turn can be framed in terms of triple completion, e.g. finding the most likely tail for a query (h, r, ?).
Knowledge Graph Embedding models learn embeddings for entities and relation types, which are

10

29 211 213 215 217 219 221

n

102

103

T
ot

al
b

an
d

w
id

th
(G

B
/s

)

29 211 213 215 217 219 221

n
torch.argmax torch.topk RAFT

kb = 1, bkb/k = 1 kb = 1, bkb/k = 2 kb = 1, bkb/k = 4 kb = 2, bkb/k = 1 kb = 4, bkb/k = 1

Figure 9: Bandwidth comparison with CUDA graphs enabled, in the same configurations used for
Figure 1. The data type is float32. Left: Small fixed k = 64. Right: Large k = n/4.

29 211 213 215 217 219 221 223

n

101

102

103

T
ot

al
b

an
d

w
id

th
(G

B
/s

)

29 211 213 215 217 219 221 223

n
torch.argmax torch.topk

kb = 1, bkb/k = 1 kb = 1, bkb/k = 2 kb = 1, bkb/k = 4 kb = 2, bkb/k = 1 kb = 4, bkb/k = 1

Figure 10: Bandwidth comparison for bfloat16 values, in the same configurations used for Figure 1.
RAFT is not included because it only supports float32. CUDA graphs are enabled. Left: Small
fixed k = 64. Right: Large k = n/4.

used as inputs to a real-valued scoring function f(h, r, t) whose output is interpreted as a likelihood
score for the triple (h, r, t). Finding the set of k most likely completions for a query (h, r, ?) becomes
then a top-k problem: k-argmaxt∈Vf(h, r, t). We refer to Wang et al. (2017) for more details.

In this task n = |V| can be very large (in the order of tens of millions for real-world KGs), while k
is typically fixed and small (k ≤ 100 in most practical applications and model benchmarks, see Hu
et al. (2020)). For our experiments, we use PharMeBINet (Königs et al. 2022), a biomedical KG with
2,653,751 entities, and consider the task of predicting tails on a random held-out test set of 55,000
triples. As KGE model, we take the basic – but widely used (Hu et al. 2020) – DistMult scoring
function f(h, r, t) = ⟨r,h, t⟩ (B. Yang et al. 2015). Training and inference are performed using the
BESS distribution framework (Cattaneo et al. 2022).

B.3 End-to-end speed-ups

As above, we apply the approximate top-k to Step 2 of the SparQ algorithm. We select a compression
ratio of 1/8, hence k = n/8.

To perform the experiments we modify the “gpt-fast” implementation of SparQ (https:
//github.com/graphcore-research/sparq-gpt-fast), releasing the modifications here:
https://github.com/oscarkey/sparq-gpt-fast-approx-topk (archive DOI 10.5281/zen-
odo.14205917). We use an Nvidia H100 PCIe, using PyTorch 2.4 with CUDA 12.4 and cuDNN
9.

Figure 5 shows the theoretical maximum speed-up that SparQ could achieve, under the assump-
tion that LLM inference is purely memory bound. This calculation is available in the file
theoretical_speedups.py, function speedup_theoretical_time_in_attn(). We note that
SparQ with approximate top-k achieves closer to this maximum speed-up, as it is more compute
intensive than exact top-k and thus more memory bound.

11

https://github.com/graphcore-research/sparq-gpt-fast
https://github.com/graphcore-research/sparq-gpt-fast
https://github.com/oscarkey/sparq-gpt-fast-approx-topk

C Recall model

As in Section 3, let Z(k, b, kb) be the number of true top-k values returned by the approximate
method, and R(k, b, kb) := Z(k, b, kb)/k be the recall. For the sake of modelling, we first assume
that the input data is uniformly distributed, k ≥ kb and kb ≪ n/b. Then:
E[Z(k, b, kb)] = E[Z(k−1, b, kb)]ϕk+(E[Z(k−1, b, kb)]+1)(1−ϕk) = E[Z(k−1, b, kb)]+1−ϕk,

where we denote by ϕk the probability that the k-th top value falls in a bucket already containing
at least kb of the top-(k − 1) values. As top values are equally likely to be contained in any of the
buckets, ϕk = 1−F (kb−1; k−1, 1/b), where F (x;m, p) := Pr(X ≤ x) is the cumulative function
of the binomial distribution X ∼ Binom(m, p). Moreover, E[Z(kb, b, kb)] = kb, hence by recursion
the expected recall error is:

1− E[R(k, b, kb)] = 1− 1

k

(
kb +

k−1∑
i=kb

F

(
kb − 1; i,

1

b

))
. (1)

We point out that, when kb = 1:

E[R(k, b, 1)] =
1

k

(
1 +

k−1∑
i=1

(
b− 1

b

)i
)

=
b

k

(
1−

(
b− 1

b

)k
)

differs from the expected recall computed in the TPU-KNN paper (Chern et al. 2022): indeed, the
authors of ibid. assume that only the values (among the top-k) that do not share a bucket with any
other ones contribute to Z(k, b, 1), which is an overly-pessimistic hypothesis (if two top-k values fall
in the same bucket, one of them is still retrieved by the approximate method; equivalently, Z(k, b, 1)
coincides with the number of unique buckets containing a top-k value).

When dropping the assumption kb ≪ n/b, we observe that if a bucket contains an excess of top-(k-1)
values compared to its peers, it will be less likely to contain the k-th top value too (differently from the
previous analysis where all buckets were always considered equiprobable, based on the assumption
that only a negligible number of values needed to be retrieved from each of them). As a consequence,
in this more general setting Equation (1) can still be seen as a upper bound for the expected recall
error.

If we also remove the hypothesis of uniformly distributed inputs, the worst-case scenario happens
when all true top-k values are concentrated in the smallest possible number of buckets, that is

⌈
bk
n

⌉
.

For this worst-case, the recall error is:

1−Rwc(n, k, b, kb) = 1− 1

k

(⌊
bk

n

⌋
kb +min

(
kb, k (mod

n

b
)
))

. (2)

From experiments on real-world data, however, we find that the recall error achieved by our implemen-
tation (using interleaved bucket assignment to break correlations in the sequence, see Appendix A.1)
is always sufficiently closely aligned with Equation (1), while Equation (2) gives too pessimistic
bounds; therefore, we do not include the latter in our discussion.

D Cost models

To evaluate the efficiency of the approximate top-k algorithm in a general setting, independent of
a specific hardware platform and implementation, we devise a set of abstract cost models for exact
and approximate top-k algorithms. These serve as a guide — simplifying the complexities of real
hardware and software platforms, they provide an understanding of the algorithmic factors influencing
performance and the different regimes that we can expect to see in practical benchmarks. After
describing the models in this section, we consider their agreement against GPU benchmarks in D.3.

Each cost model contains multiple algorithms, and the overall cost CM(n, k,m) from a model M is
the minimum across the algorithms A supported by that model, CM = minA CM,A. Cost models
for exact top-k are summarised in Table 1.

Given a cost model for exact top-k, we can form a model for the approximate top-k algorithm
described in Section 2 as

C̃M(n, k,m, b, kb) = CM(n/b, kb,m · b) + [b · kb > k] · CM(b · kb, k,m),

12

where [b · kb > k] is 1 when b · kb > k and 0 otherwise. We assume here that costs are additive
between Stage 1 and Stage 2.

Table 1: Cost models and algorithms for exact top-k.

Model Algorithm Cost Residual

Basic - m · n · (log2 k + 1) +O(m · k)
Serial

PRIORITYQUEUE m · n · (3k − 1) +O(m)

RADIXSELECT m · n · (4 log2 n+ 4) +O(m log n)

Parallel
SCANMAX k · (2 log2 n+ 3) +O(1)

RADIXSELECT log2 n · (2 log2 n+ 16) +O(1)

D.1 Basic cost model

The basic cost model uses the asymptotic bound for top-k based on a linear scan through the data,
maintaining a min-heap (Forsythe 1964) of the top-k of the prefix that has been scanned. Note that
there are asymptotically faster top-k algorithms such as QUICKSELECT (Hoare 1961), however these
are ill-suited to execution on highly parallel hardware, which is the focus of this work. Since this
top-k algorithm is O(n log k) and we note that top-1 is readily achieved with an O(n) scan through
the data, we set the cost CBASIC = m · n · (log2 k + 1).

D.2 Serial and Parallel cost models

In these cost models, we go beyond asymptotic evaluation, since the combination of multiple
algorithms based on the minimum cost depends on the constant factors associated with each algorithm.
To do this, we describe a simple abstract execution model, with the following assumptions:

• Iterating through the input data linearly is free.
• Fixed-offset addressing is free.
• Bounds checking is free.
• If statements are free, but all branches are taken.
• Ignore small “residual” cost terms.
• Operations that cost 1: ==, <, >, +, &, |, <<, not, = (arithmetic, logical, assignment).
• Operations that cost 2: +=, &=, |=, ˆ= (read-modify-write).

We then define two cost model variants:

• Serial, where the total cost is the sum of all operation costs.
• Parallel, where the total cost is total cost of operations executed by a machine with infinite

parallel threads.

We evaluate two algorithms for each cost model, one appropriate for small-k, another for large-k,
with a rough correspondence to the priority queue and RADIXSELECT implementations that we have
evaluated. Costs are outlined in Table 1 and explained using illustrative Python code in Figures 11
to 14.

13

def topk_insertion(data, k):
topk = sorted(data[:k]) # (ignore)
for x in data: # * n

if x > topk[0]: # | +1
topk[0] = x # | +1

for j in range(1, k): # | * (k-1)
if topk[j-1] > topk[j]: # | | +1

topk[j-1], topk[j] = topk[j], topk[j-1] # | | +2
return topk

Figure 11: PRIORITYQUEUE (serial), with insertion sort, cost m · n · (3k − 1) +O(m). The first
sort can be merged into the loop.

def topk_radix_select(data, k):
Find kth value
kth_value, mask, count_gt = 0, 0, 0
for r in range(31, -1, -1): # * log(n)

r_mask = 1 << r
kth_value |= r_mask
mask |= r_mask
count_1 = 0
for x, _ in data: # | * n

if x & mask == kth_value: # | | +2
count_1 += 1 # | | +2

if count_gt + count_1 < k:
kth_value ^= r_mask
count_gt += count_1

Collect topk
topk = [None] * k
i = 0
for x in data: # * n

if x[0] >= kth_value: # | +1
topk[i] = x # | +1
i += 1 # | +2

return topk

Figure 12: RADIXSELECT (serial), cost m · n · (4 log2 n+ 4) +O(m log n). Note that we assume a
key length of log2 n, to uniquely identify n elements; in practical scenarios, the key length is separate
from n. If the kth element may be tied, a second “collect” step may be necessary to ensure that only
these tied elements are discarded.

14

def scan_argmax(data):
a = list(range(len(data))) # +1
for i in range(log2(len(data))): # * log(n)

a = [a[j] # | +1
if j+2**i >= len(data) \

or data[a[j+2**i]] < data[a[j]] # | +1
else a[j+2**i]
for j in range(len(data))]

return a[0]

def topk_scan_max(data, k):
data = data.copy()
topk = [None] * k
for i in range(k): # * k

j = scan_argmax(data) # | +2*log(n) + 1
topk[i] = data[j] # | +1
data[j] = (-inf, 0) # | +1

return topk

Figure 13: SCANMAX (parallel), cost k · (2 log2 n+ 3) +O(1).

def scan_cumsum(data):
s = data.copy() # +1
for i in range(log2(len(s))): # * log(n)

s = [s[j] + (s[j-2**i] if j-2**i >= 0 else 0) # | +2
for j in range(len(s))]

return s

def topk_radix_select_parallel(data, k):
Find kth value
kth_value, mask, count_gt = 0, 0, 0
for r in range(31, -1, -1): # * log(n)

r_mask = 1 << r # | +1
kth_value |= r_mask # | +2
mask |= r_mask # | +2
count_1s = [x & mask == kth_value for x, _ in data] # | +2
count_1 = scan_cumsum(count_1s)[-1] # | +2*log(n) + 1
if count_gt + count_1 < k: # | +2

kth_value ^= r_mask # | +2
count_gt += count_1 # | +2

Collect topk
in_topk = [x >= kth_value for x, _ in data]
offset = scan_cumsum(in_topk) # +2*log(n) (+ 1)
topk = [None] * k
for i in range(len(data)): # (in parallel)

if in_topk[i]:
topk[offset[i] - 1] = data[i]

return topk

Figure 14: RADIXSELECT (parallel), cost log2 n · (2 log2 n+ 16) +O(1).

15

D.3 Analysing cost models

We compare the scaling trends predicted by our abstract cost models and the practical benchmarking
results observed for torch.topk, which is based on RADIXSELECT and our CUDA implementation
of a PRIORITYQUEUE using insertion sort.

Figure 15 shows the performance of torch.topk as n and k vary, versus the corresponding cost
model of Table 1. As expected, RADIXSELECT performance does not depend strongly on k, and
behaves like the parallel cost model for small problems (small m · n), then like the serial cost model
for larger problems. This is to be expected of a GPU, which has resources to support a large finite
number of parallel threads. When the available parallelism is under-utilised, implementations scale
as if the number of threads is infinite. As the resources are exhausted, implementations scale based
on the total amount of work.

We perform a similar exercise for our implementation of PRIORITYQUEUE in Figure 16. The serial
cost model is generally a good predictor of runtime, but real runtime scales better than expected with
k. This may be because the kernel is often bandwidth-bound w.r.t. reads from memory. In this case,
there may be no additional cost to computing k = 2 versus k = 1, since the computation time is
hidden by memory access.

E Trade-off curves

Combining our theoretical recall and cost models (Appendices C and D), we have made a broad
sweep of trade-off curves to help guide hyperparameter selection of kb and b. These are shown in
Figures 18 to 20 for each cost model in turn. They motivate the following observations:

• Low recall error and large speed-ups are available in the small-k regime, roughly when
k/n ≤ 1/64 (in both serial and basic cost models).

• In the small-k regime, it is best to control error by increasing the number of buckets such
that b · kb > k, keeping kb = 1. To achieve very low error, it eventually becomes optimal to
increase kb > 1 too.

• In the large-k regime, it is better to control error by increasing the per-bucket kb > 1, while
maintaining b · kb = k. This is because Stage 2 can be very expensive, and it is often better
to avoid it entirely.

• Substantial speed-ups are available in the parallel cost model, as long as Stage 2 is not
required. In this cost model, increasing kb > 1 should always be prioritised over increasing
b · kb > k.

16

211 213 215 217 219 221

n

2−16

2−14

2−12

2−10

2−8

2−6

2−4

D
u

ra
ti

on
(s

ec
on

d
s)

211 213 215 217 219 221

n

2−14

2−12

2−10

2−8

2−6

2−4

2−2

torch.topk RadixSelect (serial) RadixSelect (parallel)

k = 1 k = 16 k ≥ 256

Figure 15: PyTorch top-k runtime as a function of n, k. Left: Batch size m = 1. Right: m = 256.
The serial and parallel cost models have been aligned to match PyTorch at n = 210. Practical runtime
does not depend strongly on k, and follows the parallel cost model when batch size m and input
length n are small, but then trends toward the serial cost model.

211 213 215 217 219 221

n

2−19

2−16

2−13

2−10

2−7

2−4

2−1

D
u

ra
ti

on
(s

ec
on

d
s)

211 213 215 217 219 221

n

PriorityQueue PriorityQueue (serial) ScanMax (parallel)

k = 1 k = 2 k = 3 k = 4

Figure 16: Our priority queue top-k runtime as a function of n, k. Left: Batch size m = 1. Right:
m = 256. The serial and parallel cost models have been shifted vertically for sake of visual tracking,
since they do not directly predict wall-clock time. Runtime scaling with k is better than the predicted
linear scaling (Table 1), especially for k ∈ {2, 3}. At very small n ·m, runtime scaling with n is
close to the parallel model, but otherwise it scales as per the serial model.

17

1
2

4

k
b

k
=

26

Duration (m = 1) Duration (m = 256) Cbasic Cserial Cparallel

1
2

4

k
b

k
=

28

1 2 4 8

bkb/k

1
2

4

k
b

k
=

210

1 2 4 8

bkb/k
1 2 4 8

bkb/k
1 2 4 8

bkb/k
1 2 4 8

bkb/k

0.01×max

0.1×max

max

1
2

4

k
b

k
=

26

Duration (m = 1) Duration (m = 256) Cbasic Cserial Cparallel

1
2

4

k
b

k
=

216

1 2 4 8

bkb/k

1
2

4

k
b

k
=

218

1 2 4 8

bkb/k
1 2 4 8

bkb/k
1 2 4 8

bkb/k
1 2 4 8

bkb/k

0.01×max

0.1×max

max

Figure 17: A comparison of the relative runtime of our approximate top-k implementation, against
cost models C. Top: n = 212. Bottom: n = 220. These show that the basic or serial cost models are
generally a reasonable match to practical runtime. One exception is that they generally underestimate
the cost of having Stage 2 (the step between b · kb/k = 1 and 2). The other notable exception is for
n = 220, k = 26, where the runtime profile is inverted, with smaller b · kb/k taking longer than larger
b · kb/k.

18

210 211 212 213

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 210, k = 256

210 211 212 213

10−3

10−2

10−1

100

n = 210, k = n/16

210 211 212 213

10−2

10−1

100

n = 210, k = n/4

212 213 214 215

10−4

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 212, k = 256

212 213 214 215

10−4

10−3

10−2

10−1

100

n = 212, k = n/16

212 213 214 215

10−2

10−1

100

n = 212, k = n/4

214 215 216 217

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 214, k = 256

214 215 216 217

10−4

10−3

10−2

10−1

100

n = 214, k = n/16

214 215 216 217

10−2

10−1

100

n = 214, k = n/4

216 217 218 219

10−4

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 216, k = 256

216 217 218 219

10−4

10−3

10−2

10−1

100

n = 216, k = n/16

216 217 218 219 220

10−2

10−1

100

n = 216, k = n/4

218 219 220 221

10−4

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 218, k = 256

218 219 220 221 222

10−4

10−3

10−2

10−1

100

n = 218, k = n/16

218 219 220 221 222

10−2

10−1

100

n = 218, k = n/4

220 221 222 223

Cost Cbasic

10−4

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 220, k = 256

220 221 222 223 224

Cost Cbasic

10−4

10−3

10−2

10−1

100

n = 220, k = n/16

220 221 222 223 224

Cost Cbasic

10−2

10−1

100

n = 220, k = n/4

kb = 1 kb = 2 kb = 4 kb = 8 top-k

Figure 18: Theoretical trade-off curves under the basic cost model, as n, k, kb and b · kb/k are varied.
Columns show three different regimes based on k. Points along the curves correspond to different
b · kb/k ratios. Left: small fixed k = 256. Center: moderate k = n/16. Right: large k = n/4. Rows
show increasing n. Figures in the bottom left demonstrate the small-k regime, where kb = 1 should
be preferred, and b increased to reduce error. Figures in the center and right show that for large k, it
is often better to increase kb > 1. In general, the dependence on n is limited, given the ratio k/n.

19

211 212 213 214 215

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 210, k = 256

211 212 213 214 215

10−3

10−2

10−1

100

n = 210, k = n/16

211 212 213 214 215

10−2

10−1

100

n = 210, k = n/4

213 214 215 216 217

10−4

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 212, k = 256

213 214 215 216 217

10−4

10−3

10−2

10−1

100

n = 212, k = n/16

213 214 215 216 217

10−2

10−1

100

n = 212, k = n/4

215 216 217 218 219 220

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 214, k = 256

215 216 217 218 219 220

10−4

10−3

10−2

10−1

100

n = 214, k = n/16

215 216 217 218 219 220

10−2

10−1

100

n = 214, k = n/4

217 218 219 220 221 222

10−4

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 216, k = 256

217 218 219 220 221 222

10−4

10−3

10−2

10−1

100

n = 216, k = n/16

217 218 219 220 221 222

10−2

10−1

100

n = 216, k = n/4

219 220 221 222 223 224

10−4

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 218, k = 256

219 220 221 222 223 224

10−4

10−3

10−2

10−1

100

n = 218, k = n/16

219 220 221 222 223 224

10−2

10−1

100

n = 218, k = n/4

221 222 223 224 225 226

Cost Cserial

10−4

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 220, k = 256

221 222 223 224 225 226

Cost Cserial

10−4

10−3

10−2

10−1

100

n = 220, k = n/16

221 222 223 224 225 226

Cost Cserial

10−2

10−1

100

n = 220, k = n/4

kb = 1 kb = 2 kb = 4 kb = 8 top-k

Figure 19: Theoretical trade-off curves under the serial cost model, as n, k, kb and b · kb/k are
varied. We observe that approximate top-k in this model scales similarly to that of the basic model;
all observations made for Figure 18 apply here too.

20

23 24 25 26 27 28

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 210, k = 256

24 25 26 27 28

10−3

10−2

10−1

100

n = 210, k = n/16

23 24 25 26 27 28

10−2

10−1

100

n = 210, k = n/4

24 25 26 27 28 29

10−4

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 212, k = 256

24 25 26 27 28 29

10−4

10−3

10−2

10−1

100

n = 212, k = n/16

23 24 25 26 27 28 29

10−2

10−1

100

n = 212, k = n/4

24 25 26 27 28 29

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 214, k = 256

24 25 26 27 28 29

10−4

10−3

10−2

10−1

100

n = 214, k = n/16

23 24 25 26 27 28 29

10−2

10−1

100

n = 214, k = n/4

24 25 26 27 28 29

10−4

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 216, k = 256

24 25 26 27 28 29

10−4

10−3

10−2

10−1

100

n = 216, k = n/16

23 24 25 26 27 28 29

10−2

10−1

100

n = 216, k = n/4

25 26 27 28 29 210

10−4

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 218, k = 256

24 25 26 27 28 29 210

10−4

10−3

10−2

10−1

100

n = 218, k = n/16

24 26 28 210

10−2

10−1

100

n = 218, k = n/4

25 26 27 28 29 210

Cost Cparallel

10−4

10−3

10−2

10−1

100

M
o
d

el
le

d
re

ca
ll

er
ro

r n = 220, k = 256

24 25 26 27 28 29 210

Cost Cparallel

10−4

10−3

10−2

10−1

100

n = 220, k = n/16

24 26 28 210

Cost Cparallel

10−2

10−1

100

n = 220, k = n/4

kb = 1 kb = 2 kb = 4 kb = 8 top-k

Figure 20: Theoretical trade-off curves under the parallel cost model, as n, k, kb and b · kb/k are
varied. The parallel cost model places a premium on the execution of Stage 2, which is avoided when
b · kb = k (for the leftmost points of each line). It is therefore optimal under this model to use kb to
control error, even in the small-k regime (left column). We note that it is hard to achieve substantial
speed-ups with very low error under the parallel cost model.

21

	Motivation and existing work
	Algorithm design choices
	Theoretical evaluation
	Empirical evaluation
	Runtime benchmarks
	Cost-quality trade-off
	End-to-end speed-ups

	Conclusions
	Algorithm and implementation details
	Bucket assignment

	Experiment details
	Runtime benchmarks
	Cost-quality trade-off
	LLM generation with SparQ Attention
	Knowledge graph completion

	End-to-end speed-ups

	Recall model
	Cost models
	Basic cost model
	Serial and Parallel cost models
	Analysing cost models

	Trade-off curves

