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ABSTRACT

Addressing the classification challenges of irregular time series data in astronomi-
cal studies like Large Synoptic Survey Telescope (LSST), this research leverages
Neural Stochastic Differential Equations (Neural SDEs) to tackle data irregularity
and incompleteness. We analyze a comprehensive analysis to the Neural Langevin-
type SDEs’ optimal initial condition, which is pivotal role in modelling continuous
latent state. Three different strategies for selecting initial condition are compared
under regular and irregular scenario using LSST dataset. Our empirical evalua-
tion using Langevin-type SDEs highlights the superiority of static approach over
dynamic approaches for initial condition. This discovery highlights the effective-
ness of well-chosen initial values of Neural SDEs to enhance the performance of
astronomical time series classification under irregular observations.

1 INTRODUCTION

In the field of observational astronomy, the advent of large-scale surveys like the Large Synoptic
Survey Telescope (LSST) marks a transformative era (Allam Jr et al., 2018; Kessler et al., 2019;
Muthukrishna et al., 2022; Hložek et al., 2023). These surveys are expected to generate unprecedented
volumes of time series data, capturing the subtle and transient events that light up the cosmos.
However, the data’s inherent irregularity and the presence of observational gaps pose significant
challenges for traditional analysis methods. Classifying the diverse array of astronomical phenomena
accurately and efficiently from this irregular time series data is not just a necessity but a pivotal step
towards unraveling the mysteries of the universe.

The complexity of this task is compounded by the nature of the observational data. Astronomical
observations are inherently irregular in time due to factors such as the rotational and orbital dynamics
of the Earth, weather conditions, and the operational constraints of the telescopes. Moreover, the
presence of missing data or gaps in observation further complicates the data analysis (VanderPlas
& Ivezic, 2015; Ivezić et al., 2019; Mitra et al., 2023). Recently, deep learning based method are
suggested, but they often assume regularity in data collection and completeness of information, falter
in this new and challenging landscape (Chaini & Kumar, 2020; Andrešič et al., 2021; Li et al., 2022).

To address these challenges, this study introduces a novel approach by employing Neural Stochastic
Differential Equations (Neural SDEs), a framework that naturally accommodates the stochastic and
continuous-time nature of the observational data. In the domain of astrophysics, stochastic perspective
of analysis were already discussed (Koen, 2005; Kelly et al., 2014). Compared to the conventional
mathematical formalism of stochastic calculus, our method use Neural SDEs, which is inspired by
SDEs and combined with neural networks. Neural SDEs not only captures the continuous-time
dynamics but also gracefully handles the irregularity and noise inherent in the observational data (Han
et al., 2017; Liu et al., 2019; Jia & Benson, 2019; Li et al., 2020). Thus, we expect that Neural SDEs
can offer a powerful tool for modeling the intricate dynamics of astronomical phenomena.

A critical aspect of employing the neural differential equations is the selection of initial conditions for
the model (Kidger et al., 2020; Morrill et al., 2021; 2022). The choice of initial values significantly
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influences the model’s performance, dictating how well the model captures the underlying dynamics
of the astronomical events. In this context, we meticulously analyze the impact of different strategies
for initializing the Neural SDEs model. Our investigation focuses on three distinct initial value
selection methods for the astronomical classification task.

2 RELATED WORKS

2.1 NEURAL ORDINARY DIFFERENTIAL EQUATIONS (NEURAL ODES)

Consider an input datum x residing in a space of dimension dx, x ∈ Rdx . Let’s define a latent
representation z(t) in a dz-dimensional space at any given time t, expressed as:

z(t) = z(0) +

∫ t

0

f(s, z(s); θf )ds, (1)

where z(0) = h(x; θh), and h : Rdx → Rdz is an affine transformation parameterized by θh, serving
as the initializer for z(t). The function f(t, z(t); θf ), parameterized by θf , is a neural network
approximating the derivative dz(t)

dt . To solve this integral, Neural ODEs employ ODE solvers (e.g. the
explicit Euler method, Runge-Kutta method, and so on) (Chen et al., 2018; Rubanova et al., 2019).

2.2 NEURAL STOCHASTIC DIFFERENTIAL EQUATIONS (NEURAL SDES)

Neural SDEs extend the concept of Neural ODEs to incorporate stochasticity, describing the random
evolution of sample paths as opposed to the deterministic evolution characteristic of ODEs (Tzen
& Raginsky, 2019; Look et al., 2020; Williams et al., 2022; Wabina & Silpasuwanchai, 2023). The
latent representation in Neural SDEs, z(t), adheres to the following SDE:

z(t) = z(0) +

∫ t

0

f(s, z(s); θf )ds+
∫ t

0

g(s, z(s); θg)dW (s), (2)

where z(0) = h(x; θh) and {W (t)}t≥0 signifies a Brownian motion, which is the difference between
equation 1. The function f(·, ·; θf ) acts as the drift function, guiding the systematic, predictable
part of the motion. In contrast, g(·, ·; θg) serves as the diffusion function, accounting for the random
fluctuations in the system, with the latter integral representing the Itô integral. Both the drift and
diffusion functions can be effectively modeled using neural networks in Neural SDEs.

3 METHODOLOGY

Neural SDEs offer a sophisticated framework for capturing systems characterized by uncertainty and
stochasticity, enriching our understanding of complex dynamics. However, achieving stability in
Neural SDEs necessitates meticulous design. In this study, we implemented Langevin SDEs (Küchler
& Mensch, 1992; Bressloff & Kilpatrick, 2015; Koop et al., 2022) for modelling astrophysical time
series. The Langevin SDE is a well-explored topic in stochastic optimization and Markov Chain Monte
Carlo (MCMC) algorithms due to its distinctive feature of possessing a unique invariant measure
(Gibbs measure). For a more in-depth examination, please refer the following references: Raginsky
et al. (2017); Chau et al. (2021); Lim & Sabanis (2021); Lim et al. (2023a;b).

In this study, we follow the formulation of Neural Langevin-type SDE (Neural LSDE), suggested by
Oh et al. (2024b) (Please refer the original paper regarding the definition and the proof of stability):

z(t) = z(0) +

∫ t

0

γ(z(s); θγ)ds+
∫ t

0

σ(s; θσ)dW (s), (3)

where z(0) = h(x; θh), and the initial condition plays important role in evolving latent state.
z(t) = ζ(t, z(t), X(t); θζ) is modified state where X(t) is the controlled path (Kidger et al., 2020),
and ζ is a neural network parameterized by θζ . This formulation enable model to capture sequential
changes (Oh et al., 2024b). Similar with equation 2, the drift term γ(z(t); θγ) guides the deterministic
part of the motion, while the diffusion term σ(t; θσ)dW (t) introduces randomness.

The initial condition z(0) can add its variance to the stochastic system and influences the expected
value, making the solution more sensitive to the input data. Because of the irregularity and missing-
ness, we consider three different approach to handle initial condition using observation x:
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(1) Interpolation method. Apply natural cubic interpolation using x to make continuous.

(2) Imputation method. When there is missing value in x, fill mean value instead.

(3) Static approach. Ignore partial observations at t = 0, and replace value of x(0) with zero.

Here, zero values indicate the average of (partial) observation after normalization. In case of neural
differential equations, interpolation methods are widely applied for reflecting the continuous trajectory
of latent state. Conventional time series analysis often use the mean imputation for the missingness.
Both methods are dynamic, because the values are depending on the partial observations x. Compare
to that, static method uses value of zero and initial condition becomes constant at all time.

4 EXPERIMENTS

All experiments were performed using a server on Ubuntu 22.04 LTS, equipped with an Intel(R)
Xeon(R) Gold 6242 CPU and two NVIDIA A100 40GB GPUs. We followed experimental protocol
suggested by Oh et al. (2024b;a) and GitHub Repository1.

4.1 DATASET

Table 1: Class distribution

Class Count Ratio

06 69 1.4%
15 247 5.0%
16 540 11.0%
42 763 15.5%
52 125 2.5%
53 14 0.3%
62 306 6.2%
64 47 1.0%
65 626 12.7%
67 136 2.8%
88 241 4.9%
90 1554 31.6%
92 154 3.1%
95 103 2.1%

The LSST dataset2 refers to data from the ‘Photometric LSST Astro-
nomical Time Series Classification Challenge’ (PLAsTiCC)3 (Kessler
et al., 2019), aimed at classifying transient and variable events ob-
served by Large Synoptic Survey Telescope. The challenge4 involved
predicting types of astronomical events based on simulated observa-
tions. It included various models of transient and variable sources,
realistic observing conditions, and aimed to improve classification
methods and study contamination in samples used for dark energy
research. Please refer Appendix A for more detailed explanations.

Our study utilized preprocessed data as described by Bagnall et al.
(2017), comprising 4925 instances, six input dimensions, 36 se-
quences, and 14 distinct classes for classification purposes. As shown
in Table 1, the class distribution is quite imbalanced. Thus we used
stratified split technique. The total dataset was partitioned into train-
ing, validation, and test sets following a 70:15:15 ratio, respectively.

4.2 EXPERIMENTAL PROTOCOL

In the context of modeling continuous latent states for time series data, the initial value z(0) plays a
critical role, This initial latent state serves as the starting point from which the model evolves over
time. The class of each time series can be identified by using the last value of the latent state, z(T ),
as the classifier’s input. For a detailed implementation of our method, see the Appendix. B.

We evaluated two scenarios: regular and irregular observations. For the irregular observation scenario,
we randomly removed 50% of the observations. We normalized all inputs using observed values.
Although the distribution between regular and irregular can vary, zero represents the observed
mean for both scenarios. We conducted five iterations of cross-validation (CV). We assessed three
distinct classification metrics: Accuracy, F1 score, and AUROC (Area Under the Receiver Operating
Characteristics) score. Specifically for the AUROC score, we employed the one-vs-rest strategy with
micro-averaging, as recommended by Pedregosa et al. (2011).

For the benchmark, we evaluated 20 different methods, which include Recurrent Neural Network
(RNN) (Rumelhart et al., 1986; Medsker & Jain, 1999), variations of Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997), variations of Gated Recurrent Unit (GRU) (Chung et al.,
2014), and a variety of differential equation-based approaches. (See Appendix C for the details.)

1https://github.com/yongkyung-oh/torch-ists
2https://www.timeseriesclassification.com/description.php?Dataset=LSST
3https://plasticc.org/
4https://www.kaggle.com/c/PLAsTiCC-2018
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4.3 EXPERIMENT RESULTS

Figure 1 shows the example of input data with regular and irregular setting. It is the important
to note that the distributions of regular and irregular are different, because of the irregularity and
missingness. This distribution shift makes the problem difficult to solve. While Figure 1(b) and (c)
shows the varying initial value at t = 0, Figure 1(d) use the same initial value for all conditions. The
interpolation method is limited in predicting unseen times, rendering the predicted values unreliable.
The imputation method relies on each observation, leading to variability across instances. In contrast,
the static approach ensures that the initial condition remains consistent across all samples. Based on
the three different strategy for the initial condition, state can be changed in the irregular scenario.
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(a) Regular data
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(b) Irregular data with
(1) interpolation method
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(c) Irregular data with
(2) imputation method

0 5 10 15 20 25 30 35
Time

0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08
0.10

Va
lu

e

u
g
r

i
z
y

(d) Irregular data with
(3) static approach

Figure 1: Regular and irregular observation with six channels and the proposed three approaches
(Observed values are only used for learning z(0). Latent state z ∈ (0, t] is learnt by Neural LSDE.)

Table 2 displays the classification performance in both regular and irregular scenarios. Static approach
outperformed the benchmark methods across three metrics. Notably, our method achieved a superior
F1 score, a crucial metric for addressing imbalanced classification problems. Furthermore, the use of
Neural LSDE with static approach minimized the adverse effects of missing data on performance
compared to other methods. It highlights the potential application to real-world astronomical data.

Table 2: Classification performance on regular and irregular setting using LSST data
(Average and standard deviation of 5 CV. The best and the second best are highlighted)

Methods
Regular Irregular

Accuracy F1 score AUROC Accuracy F1 score AUROC

RNN 0.428 ± 0.054 0.218 ± 0.082 0.882 ± 0.032 0.344 ± 0.028 0.101 ± 0.031 0.819 ± 0.030
LSTM 0.524 ± 0.057 0.360 ± 0.057 0.919 ± 0.017 0.476 ± 0.024 0.316 ± 0.048 0.902 ± 0.010
BiLSTM 0.506 ± 0.032 0.327 ± 0.055 0.914 ± 0.008 0.445 ± 0.029 0.243 ± 0.036 0.890 ± 0.008
PLSTM 0.457 ± 0.030 0.273 ± 0.037 0.898 ± 0.006 0.426 ± 0.027 0.264 ± 0.047 0.876 ± 0.008
TLSTM 0.368 ± 0.077 0.139 ± 0.127 0.811 ± 0.052 0.332 ± 0.024 0.098 ± 0.056 0.809 ± 0.016
TGLSTM 0.491 ± 0.017 0.337 ± 0.013 0.912 ± 0.002 0.453 ± 0.023 0.261 ± 0.044 0.894 ± 0.010
GRU 0.604 ± 0.033 0.448 ± 0.039 0.947 ± 0.006 0.509 ± 0.046 0.355 ± 0.041 0.913 ± 0.016
GRU-Simple 0.354 ± 0.007 0.157 ± 0.026 0.824 ± 0.004 0.329 ± 0.005 0.086 ± 0.025 0.809 ± 0.007
GRU-∆t 0.540 ± 0.022 0.305 ± 0.026 0.927 ± 0.006 0.520 ± 0.023 0.300 ± 0.019 0.921 ± 0.004
GRU-D 0.551 ± 0.018 0.331 ± 0.039 0.929 ± 0.003 0.522 ± 0.022 0.327 ± 0.021 0.922 ± 0.004
Neural ODE 0.398 ± 0.014 0.153 ± 0.011 0.853 ± 0.004 0.394 ± 0.016 0.153 ± 0.017 0.850 ± 0.002
GRU-ODE 0.436 ± 0.054 0.230 ± 0.059 0.887 ± 0.018 0.434 ± 0.029 0.232 ± 0.053 0.887 ± 0.014
ODE-RNN 0.576 ± 0.021 0.381 ± 0.043 0.940 ± 0.005 0.542 ± 0.015 0.364 ± 0.023 0.929 ± 0.003
ODE-LSTM 0.412 ± 0.065 0.235 ± 0.107 0.850 ± 0.071 0.373 ± 0.059 0.164 ± 0.072 0.822 ± 0.053
Neural CDE 0.381 ± 0.009 0.161 ± 0.022 0.849 ± 0.003 0.372 ± 0.007 0.141 ± 0.022 0.845 ± 0.004
Neural RDE 0.317 ± 0.002 0.041 ± 0.011 0.796 ± 0.006 0.316 ± 0.001 0.037 ± 0.006 0.794 ± 0.003
Neural SDE 0.396 ± 0.016 0.210 ± 0.037 0.862 ± 0.005 0.390 ± 0.009 0.175 ± 0.010 0.856 ± 0.004

Neural LSDE (1) 0.402 ± 0.019 0.186 ± 0.019 0.866 ± 0.008 0.398 ± 0.031 0.183 ± 0.030 0.860 ± 0.009
Neural LSDE (2) 0.691 ± 0.012 0.556 ± 0.027 0.963 ± 0.002 0.638 ± 0.009 0.511 ± 0.018 0.953 ± 0.002
Neural LSDE (3) 0.695 ± 0.009 0.573 ± 0.041 0.966 ± 0.001 0.648 ± 0.020 0.522 ± 0.027 0.956 ± 0.002

Figure 2 displays the Receiver Operating Characteristic (ROC) curves for the naïve Neural SDE
alongside the three distinct strategies. As discussed, the Langevin-type SDE emerges as a promising
approach for classifying astronomical time series. Compared to dynamic approaches, the static initial
condition enhances performance remarkably. We included the ablation study of the proposed method
regarding z(t) and the complexity of diffusion term in Appendix B. We found that the integration
of the controlled path is crucial for our method, while we reduce the information variance by static
initialization. Furthermore, ROC curves for different methods are included in Appendix C.
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(a) Neural SDE
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(b) Neural LSDE (1)
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(c) Neural LSDE (2)
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(d) Neural LSDE (3)

Figure 2: Receiver operating characteristic curves for each class, under the irregular scenario

4.4 ABLATION STUDY

The proposed approach comprises several distinct components, including three strategies for the
initial condition z(0), the incorporation of a sequential embedding layer ζ utilizing a controlled
path X , and the network complexity for the drift and diffusion terms. We used ‘Hermite cubic
splines with backward differences’ (Morrill et al., 2022) for constructing X . Regarding the drift
network γ, both the benchmark and proposed methods employ a nonlinear fully-connected layer with
ReLU activation. We consider the complexity of diffusion term γ, using Linear affine layer (‘L’) and
Non-linear fully-connected layer with ReLU activation (‘N’). Table 3 summarizes the considered
settings of the ablation study.

Table 3: Ablation study of the model components in the proposed method

Methods Regular Irregular

z(0) ζ σ Accuracy F1 score AUROC Accuracy F1 score AUROC

(1)
X L 0.403 ± 0.006 0.152 ± 0.018 0.861 ± 0.003 0.396 ± 0.004 0.152 ± 0.008 0.855 ± 0.006

N 0.390 ± 0.015 0.172 ± 0.013 0.859 ± 0.003 0.391 ± 0.010 0.166 ± 0.008 0.852 ± 0.004

O L 0.412 ± 0.017 0.193 ± 0.027 0.868 ± 0.007 0.401 ± 0.019 0.172 ± 0.020 0.864 ± 0.006
N 0.402 ± 0.019 0.186 ± 0.019 0.866 ± 0.008 0.398 ± 0.031 0.183 ± 0.030 0.860 ± 0.009

(2)
X L 0.414 ± 0.015 0.212 ± 0.021 0.866 ± 0.006 0.349 ± 0.005 0.128 ± 0.032 0.822 ± 0.006

N 0.428 ± 0.019 0.237 ± 0.052 0.869 ± 0.007 0.353 ± 0.018 0.136 ± 0.039 0.819 ± 0.014

O L 0.666 ± 0.015 0.534 ± 0.040 0.961 ± 0.002 0.638 ± 0.015 0.509 ± 0.030 0.954 ± 0.001
N 0.691 ± 0.012 0.556 ± 0.027 0.963 ± 0.002 0.638 ± 0.009 0.511 ± 0.018 0.953 ± 0.002

(3)
X L 0.315 ± 0.000 0.034 ± 0.000 0.791 ± 0.003 0.315 ± 0.000 0.034 ± 0.000 0.790 ± 0.002

N 0.315 ± 0.000 0.034 ± 0.000 0.789 ± 0.002 0.315 ± 0.000 0.034 ± 0.000 0.790 ± 0.001

O L 0.685 ± 0.006 0.564 ± 0.018 0.964 ± 0.002 0.640 ± 0.012 0.524 ± 0.011 0.954 ± 0.002
N 0.695 ± 0.009 0.573 ± 0.041 0.966 ± 0.001 0.648 ± 0.020 0.522 ± 0.027 0.956 ± 0.002

Conventional methods typically utilize (1) interpolation and (2) imputation techniques. In contrast,
our method applying the (3) static approach disregards partial observations at t = 0 and instead
initializes all values to zero. This assumes that the time-evolving latent space begins at the average
state for all instances. The efficiency of the proposed method is particularly notable when paired with
the embedding layer ζ. By neglecting the observation x, there’s a risk of losing pertinent sample
information. Therefore, integrating a controlled path is essential for our method. On the other hand,
The network complexity of the diffusion term has a marginal effect on enhancing performance.

5 CONCLUSION

This study navigated the complicated landscape of astronomical time series data, using the power of
Neural LSDEs to address challenges of irregularity. The study focused on evaluating initial condition
strategies for the Langevin-type SDEs, revealing that static approach outperform dynamic methods in
improving data classification accuracy in the presence of noise and irregularities. These findings not
only improve the application of Neural SDEs in astronomy, but they also advance time series analysis
in general. Furthermore, this research can assist astronomical discovery, fostering sophisticated tools
and insights that merge scientific knowledge and data analysis.
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A EXPLANATION OF DATASET

Table 4 provides a summary of the target classes within the LSST dataset in PLAsTiCC. Astronomical
observations, that are measured in Modified Julian Date (MJD), are not evenly spaced due to various
factors such as the rotation and orbit of the Earth, weather conditions, and operational constraints
of the telescope. Also, gaps in the data can occur due to several reasons, such as the object being
below the detection threshold of the telescope, the targeted region not being in the field of view, or
data being lost or corrupted. These characteristics make the classification problem challenging.

In this dataset, input data consist with six specific filter that allows astronomers to observe light at
different wavelengths, denoted as ugrizy, such that:

• u (Ultraviolet);
• g (Green, towards the blue end of the spectrum);
• r (Red, mid-spectrum);
• i (Near Infrared);
• z (Infrared, further along the spectrum than i);
• y (Infrared, longer wavelength than z).

These filters are used to capture and record the brightness of astronomical objects at different
wavelengths. By analyzing the intensity of light in each of these filters, astronomers can gain insight
into various characteristics of celestial objects, such as their temperature, age, distance, and chemical
composition.

Table 4: Class information of the LSST dataset)

Label Name Astrophysical Meaning

06 µLens-Single Microlensing events, where the gravitational field of a single object magnifies the light of a background source.
15 TDE Tidal Disruption Event, when a star is torn apart by the tidal forces of a supermassive black hole.
16 EB Eclipsing Binary stars, systems where the stars pass in front of each other from the observer’s perspective.
42 SNII Core-collapse Type II Supernova, resulting from the gravitational collapse of a massive star’s core.
52 SNIax Peculiar Type Iax supernova, similar to Type Ia but fainter and with lower ejection velocities.
53 Mira Mira variable stars, a class of red giant stars that pulsate and change brightness in a regular cycle.
62 SNIbc Core-collapse Type Ibc Supernova, that have lost their outer hydrogen and possibly helium layers.
64 KN Kilonova, emission from the merger of two neutron stars, rich in heavy elements.
65 M-dwarf M-dwarf stellar flares, sudden brightness increases due to magnetic activity on low-mass stars.
67 SNIa-91bg Peculiar type Ia supernova, 91bg-like events, under-luminous and red compared to typical SNIa.
88 AGN Active Galactic Nuclei, the bright and energetic central regions of galaxies, powered by a supermassive black hole.
90 SNIa White Dwarf (WD) detonation Type Ia Supernova, a thermonuclear explosion of a white dwarf in a binary system.
92 RRL RR Lyrae variable stars, pulsating horizontal branch stars known for their period-luminosity relationship.
95 SLSN-I Superluminous Supernovae, specifically Type I, much more luminous than typical supernovae.

B IMPLEMENTATION OF THE PROPOSED METHOD

B.1 DATA PREPROCESSING

Normalization is a crucial step in preparing data for analysis, ensuring that the inputs have a standard
format and scale in each channel (or dimension). Formally, this can be represented as follows:

xi,normalized =
xi − µi

σi
, where i ∈ {1, 2, · · · dx}.

xi is the original input value (with irregular observation and missing gaps) of i-th channel, µi is the
mean of the observed values, σi is the standard deviation of the observed values. Since both regular
and irregular distributions are centered around zero (indicating the observed mean), the formula
adjusts all input values in relation to this mean, effectively standardizing the distribution of the inputs.

B.2 LEARNING STRATEGY

The formulation z(0) = h(x; θh) indicates that the initial state is a function of the input data x,

parameterized by θh. Specifically, x̃
mapping h−−−−−→ z0

t=0−−→ z(0), where x̃ is the transformed value with
three different initialization strategies, and z0, which is in Rdz×T is the mapped value from x̃.

9



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

The classification of each time series is determined by the last value of the latent state, denoted as
z(T ), where T is the final time step. This value is used as an input to a classifier. Mathematically,
the classifier can be represented as a function MLP that maps the latent state to a class label:

ŷ = MLP(z(T ); θMLP),

where ŷ is the predicted label for given data (x, y). Classifier MLP is the two-layer fully-connected
Multi-Layer Perceptron (MLP) with ReLU activation function.

In our model, we implemented the hyperbolic tangent function as the concluding operation for drift,
diffusion, and all additional vector fields, as suggested by Kidger et al. (2020). tanh mitigates
potential complications arising from exceedingly high values or gradients, which could hinder the
learning process and convergence of the model. Furthermore, we used layer-specific learning rates
for the final layer of the model (for instance, applying a factor of ×100), promoting a more nuanced
and adaptive learning strategy tailored to the classification task at hand.

B.3 COMPARISON OF LEARNING STABILITY

Figure 3 illustrates the training, validation, and test losses observed when employing the methods
under consideration. In comparison to the naïve Neural SDE approach, the Neural LSDE method
demonstrates superior performance. Given the challenging nature of astronomical classification
problem, neither the validation nor the test losses fully converge to small value. Especially, the
Neural LSDE with interpolation (Neural LSDE (1)) exhibits overfitting when contrasted with Neural
LSDE with imputation (Neural LSDE (2)) or static approach (Neural LSDE (3)). Consequently, an
early-stopping strategy was implemented to enhance classification performance. All models were
trained via 100 epochs, but it is terminated when the loss is not improved for 10 consecutive epochs.
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Figure 3: Comparing stability of loss with irregular setting using the selected methods
(Training 100 epochs without early-stopping.)

B.4 EMPIRICAL ADVANTAGES OF THE PROPOSED METHOD

Reduced Sensitivity to Initial Variance: The system’s evolution starts from a consistent, neutral
baseline, making the Neural LSDE’s behavior primarily dependent on the dynamics defined by γ and
σ, rather than the potentially noisy or incomplete initial data x. By avoiding the direct influence of x
at t = 0, the static method mitigates the impact of any missing or erroneous data at the start, which is
crucial in fields like astrophysics, where exact initial conditions might not be reliably observable.

Focus on Learning Dynamic Patterns: Neural LSDE is controlled by continuous trajectory z
using ζ. Thus, Neural LSDE must learn to accurately interpret the dynamics from γ and σ based
purely on data observed during the interval (0, t]. Therefore, the trajectory of z(t) is shaped by the
model’s dynamics and the stochastic nature of the process, rather than initial conditions x.

C DETAILED EXPERIMENTAL SETTINGS AND RESULTS

All experiments were performed using a server on Ubuntu 22.04 LTS, equipped with an Intel(R)
Xeon(R) Gold 6242 CPU and two NVIDIA A100 40GB GPUs. We followed experimental protocol
suggested by Oh et al. (2024b;a) and GitHub Repository5.

5https://github.com/yongkyung-oh/torch-ists
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Additionally, we used Python library torchsde6 (Li et al., 2020; Kidger et al., 2021) to formulate
and solve the Langevin-type SDEs and Python library torchcde7 (Kidger et al., 2020; Morrill
et al., 2021) for the interpolation and the controlled path.

C.1 BENCHMARK METHODS

For the benchmark, we evaluated 20 different methods, which include Recurrent Neural Network
(RNN) (Rumelhart et al., 1986; Medsker & Jain, 1999), variations of Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997), variations of Gated Recurrent Unit (GRU) (Chung et al.,
2014), and a variety of differential equation-based approaches.

• Conventional recurrent neural network (RNN) (Rumelhart et al., 1986; Medsker & Jain,
1999) is implemented with mean imputation.

• Variations of Long Short-Term Memory (LSTM): LSTM (Hochreiter & Schmidhuber, 1997),
Bi-directional LSTM (BiLSTM) (Nguyen et al., 2017), Phased-LSTM (PLSTM) (Neil
et al., 2016), Time-aware LSTM (TLSTM) (Baytas et al., 2017), and Time-Gated LSTM
(TGLSTM) (Sahin & Kozat, 2018).

• Variations of Gated Recurrent Unit (GRU): GRU (Chung et al., 2014), GRU-∆t (Choi et al.,
2016), GRU-Simple (Che et al., 2018), and GRU-D (Che et al., 2018)

• Variations of Neural Ordinary Differential Equations (Neural ODEs): Neural ODEs (Chen
et al., 2018), GRU-ODE (De Brouwer et al., 2019), ODE-RNN (Rubanova et al., 2019), and
ODE-LSTM (Lechner & Hasani, 2020).

• Variations of Neural Controlled Differential Equations (Neural CDEs): Neural CDE (Kidger
et al., 2020) and Neural Rough Differential Equation (Neural RDE) (Morrill et al., 2021).

• Variations of Neural Stochastic Differential Equations (Neural SDEs): Neural SDE (Oh
et al., 2024b) and Neural LSDE (Oh et al., 2024b).

The (explicit) Euler method was consistently used to solve Neural ODEs, Neural CDEs, and Neural
SDEs. Otherwise, all parameters are optimized by Adam optimizer (Kingma & Ba, 2014).

To maintain consistency in comparative analysis, this study employed the same original architecture
for all evaluated methods. Nevertheless, recognizing that optimal hyperparameters can differ across
methods, the Python library ray8 (Moritz et al., 2018; Liaw et al., 2018) was utilized. This library
streamlines the process by automating the selection of hyperparameters aimed at minimizing the
validation loss, a notable advancement from prior studies that relied on manual tuning.

Hyperparameter optimization was methodically conducted as follows. The batch size was 128, and
the learning rate was varied between 10−4 and 10−1, determined through a log-uniform search.
The number of layers was chosen from the set {1, 2, 3, 4} using a grid search approach, and the
hidden vector dimensions were selected from the set {16, 32, 64, 128}, also via grid search. Optimal
hyperparameters are chosen by minimizing the validation loss in the regular scenario. Then, the same
hyperparamters are used for both regular and irregular scenarios.

C.2 RECEIVER OPERATING CHARACTERISTIC CURVES

In Figures 4 and 5, we depict the Receiver Operating Characteristic (ROC) curves for 20 methods
under regular and irregular scenarios, respectively. The presence of irregular data notably impacts
performance, particularly for conventional methods like RNN. Typically, methods based on differen-
tial equations outperform those based on architectural modifications (such as variations of LSTM and
GRU). Notably, the proposed Langevin-type SDE method with static method demonstrates the most
superior performance. Therefore, these results confirm that initial condition is critical to train the
neural differential equation methods, including Neural ODEs, Neural CDEs, and Neural SDEs.

6https://github.com/google-research/torchsde
7https://github.com/patrick-kidger/torchcde
8https://github.com/ray-project/ray

11

https://github.com/google-research/torchsde
https://github.com/patrick-kidger/torchcde
https://github.com/ray-project/ray


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Class 06
Class 15
Class 16
Class 42
Class 52
Class 53
Class 62

Class 64
Class 65
Class 67
Class 88
Class 90
Class 92
Class 95

(a) RNN
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(b) LSTM
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(c) BiLSTM
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(d) PLSTM

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Class 06
Class 15
Class 16
Class 42
Class 52
Class 53
Class 62

Class 64
Class 65
Class 67
Class 88
Class 90
Class 92
Class 95

(e) TLSTM
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(f) TGLSTM
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(g) GRU
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(h) GRU-Simple

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Class 06
Class 15
Class 16
Class 42
Class 52
Class 53
Class 62

Class 64
Class 65
Class 67
Class 88
Class 90
Class 92
Class 95

(i) GRU-∆t
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(j) GRU-D
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(k) Neural ODE
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(l) GRU-ODE
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(m) ODE-RNN
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(n) ODE-LSTM
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(o) Neural CDE
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(p) Neural RDE
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(q) Neural SDE
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(r) Neural LSDE (1)
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(s) Neural LSDE (2)
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(t) Neural LSDE (3)

Figure 4: Receiver operating characteristic curves for each class, under the regular scenario
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(b) LSTM
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(c) BiLSTM
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(d) PLSTM
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(e) TLSTM
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(f) TGLSTM
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(g) GRU
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(h) GRU-Simple
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(i) GRU-∆t
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(j) GRU-D
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(k) Neural ODE
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(l) GRU-ODE
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(m) ODE-RNN
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(n) ODE-LSTM
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(o) Neural CDE
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(p) Neural RDE
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(q) Neural SDE
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(r) Neural LSDE (1)
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(s) Neural LSDE (2)
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(t) Neural LSDE (3)

Figure 5: Receiver operating characteristic curves for each class, under the irregular scenario
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