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Abstract

Deep learning models have made great strides
in recent years. Subsequently, model calibra-
tion and measurements of the quantity have
gained much attention, with the degree being
an indication of reliability of a model. In this
study, we explore the limitations of the existing
calibration metrics, and propose a simple cal-
ibration metric that caters to natural language
generation (NLG) tasks. Unlike existing cal-
ibration metrics, our metric is not confined
to/not sorely based on a single prediction; it
considers a distribution mapped by a model. In
this regard, the proposed metric takes intrinsic
uncertainty present in a natural language into
account when quantifying the calibration de-
gree. The metric has been tested on machine
translation datasets, a popular NLG task with
intrinsic uncertainty. A thorough analysis il-
lustrates that the proposed metric possesses the
ability to handle intrinsic uncertainty and hence
is more suitable measure under NLG tasks.

1 Introduction

A predictive score of a well-calibrated model re-
flects the true likelihood of correctness (Guo et al.,
2017; Jiang et al., 2021). Therefore, model calibra-
tion demonstrates the reliability of a model (Nixon
et al., 2019), answering the question of “how much
we can trust a decision made by a model”. Deep
learning models are being applied to various sec-
tors of society. For this reason, not only the perfor-
mance but calibration is of significance (Tomani
and Buettner, 2021).

The growing importance has introduced calibra-
tion measures with the aim of accurate quantifi-
cation of the quantity (Naeini et al., 2015; Nixon
et al., 2019; Guo et al., 2017; Ding et al., 2021;
Jagannatha and Yu, 2020). The calibration metrics
have been utilized to test the trustworthiness of a
model not just in safety-critical domain (Mehrtash
et al., 2020), but also in image classification (Kr-
ishnan and Tickoo, 2020), text classification (Jung

et al., 2020), and fext generation (Miiller et al.,
2019; Wang et al., 2020).

Of the domains mentioned above, accurate eval-
uation of a language model (LM)’s calibration is
of most significance in regards to model output.
Model calibration does not change model predic-
tion of a classifier; on the contrary, model calibra-
tion affects model output of an LM (Miiller et al.,
2019). Common generation schemes of an autore-
gressive LM, such as top-p (Holtzman et al., 2020),
top-k sampling (Fan et al., 2018) and beam search,
are grounded on an assumption that a predictive
score represents the likelihood of the word in a
given context (Holtzman et al., 2020). In this re-
gard, when a probability distribution is not cali-
brated, the assumption fails to hold, leading to the
degradation in quality of an output (Miiller et al.,
2019). Therefore, an accurate measure of model
calibration of an LM is in need.

In this paper, we discuss several limitations of
existing calibration metrics, especially from the
perspective of NLG tasks; the measures do not
take the intrinsic uncertainty of a natural language
into consideration. A semantic equivalence can be
achieved with a variable size of utterances; this
aspect of a natural language is referred to as intrin-
sic uncertainty (Ott et al., 2018). Previous calibra-
tion metrics overlook this aspect in evaluating an
LM, consequently generating inaccurate approxi-
mations.

To this end, we propose e-ECE, a calibration
metric designed to evaluate model calibration in -
but not limited to - NLG tasks. The metric intakes
a distribution, reflecting intrinsic uncertainty in
the course of evaluation. We empirically find that
the measure lowers the level of mis-calibration er-
ror brought by the uncertainty that has otherwise
remained as error in previous metrics.

The contributions of our work are as follows:

* Our work discusses the limitations of the ex-
isting calibration metrics under NLG environ-



ment.

* We present e-ECE, a calibration metric that is
designed for NLG environment by consider-
ing the intrinsic uncertainty of a natural lan-
guage in computing model calibration.

* e-ECE is stable, evaluates broader pool of
generation schemes, and, with high accuracy,
quantifies model calibration, its level superior
to that of the existing metrics.

2 Preliminaries & Related Work
2.1 Calibration

A model calibration is a measure of how predictive
scores truly reflect the accuracy of predictions (Guo
et al., 2017). In this paper, perfect calibration is
defined as follows':

PY =Y|P=p)=p, Vpel[0,1] (1)
where Y and P indicate model predictions and cor-
responding confidence scores (predictive scores).
In plain English, the predicted probability should
match the accuracy when given a calibrated model;
model predictions with 0.5 predictive scores are
expected to achieve 50 percent accuracy. Therefore,
the quantity is an indication of trustworthiness of a
model prediction (Tomani and Buettner, 2021).

Naeini et al. (2015) approximate Equation 1 with
a binning approach. The test predictions are binned
to M bins based on their predictive scores. The
accuracy and confidence of each bin are computed
as follows:
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where B,, refers to the m-th bin and a® is com-
puted with an indicator function 1(y(" = §®).
Reliability diagram (DeGroot and Fienberg, 1983)
visualizes the gap between the accuracy and confi-
dence of each bin. ECE is a weighted sum of the
differences, where the weights are proportional to
the size of bins.
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"The notations are borrowed from (Guo et al., 2017)

Dataset Greedy | Pure Top-k Top-p

WMT14 EN—DE 1.52 1.31 1.73 1.79
IWSLT14 DE—EN 7.14 524 491 5.34
Multi3eK DE—EN | 10.39 | 821 7.39 8.10

Table 1: ECE scores from different generation methods.
Pure denotes pure sampling, and k and p are set to 100
and 0.8 respectively.

Therefore, ECE can be viewed as aggregation
of bin-wise absolute differences between accuracy
and confidence. A low ECE score indicates that
predictive scores reflect the actual accuracy of pre-
dictions, and hence well-calibration.

Other variants of the metric have also been intro-
duced. Nixon et al. (2019) propose Static Calibra-
tion Error (SCE) and Adaptive Calibration Error
(ACE); the former quantifies class-wise calibration
error, while the latter utilizes adaptive intervals
when binning predictions.

3 Analysis of Problems in Existing
Calibration Metrics

Approximation Problem ECE is an approxi-
mation made to compute model calibration error.
Therefore, finite samples in test dataset may not be
sufficient to assess the true calibration of a model.
The problem stands out more clearly when an out-
put space is exponentially large, or under imbal-
anced label distribution (Zipf’s Law), two cases
under which NLG tasks fall. For instance, in WMT14
English to German (EN—DE) translation dataset,
49.7% of labels (words) are not present in test
dataset. Furthermore, due to the limited number
of test samples, the intrinsic uncertainty of a lan-
guage is hardly reflected. That is, the calibration
error computed with previous metrics inevitably
includes intrinsic uncertainty in the value.

Generation-Specific Problem The current ap-
proach in quantifying the calibration of an NLG
model is formulated as Next Token Prediction
(NTP) task (Miiller et al., 2019).
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where yg_l denotes ground truth prefix at time
step t. However, the current approach is far from
ideal, since the approach only considers greedy

generation scheme with the arg max operation in



Equation 4. ECE is designed for binary classifi-
cation, leaving the probabilities on other classes
unassessed (Nixon et al., 2019). This is a clear
limitation, especially in sequence generation. Gen-
erating the most probable sequence is known to
be dull and repetitive (Fu et al., 2021), degenerat-
ing the output. Therefore, sampling-based methods,
such as top-k and top-p (Holtzman et al., 2020), are
commonly adopted (Fan et al., 2018; Edunov et al.,
2018; Tian et al., 2020). Table 1 illustrates how the
choice of generation scheme can drastically change
the calibration error of the same model. Nonethe-
less, the existing calibration metrics fail to address
the issue, hence being suboptimal measures in
NLG environment.

4 Approach

In light of the limitations, our work proposes a
calibration metric that reflects intrinsic uncertainty
of a language in evaluation.

4.1 e-Expected Calibration Error (e-ECE)

Existing calibration metrics take a single predic-
tion and corresponding confidence score for each
test sample in computing model calibration. This
differs in the proposed metric: e-ECE. e-ECE takes
expectation over a probability distribution and the
corresponding accuracy?.
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Plisa post-processed probability distribution; a
distribution mapped by a model can be scaled with
a temperature 7 or confined to a subset of output
space, as in top-k or top-p sampling. ﬁgi) and dgi)
denote expected confidence over the output space
and expected accuracy respectively. The expecta-
tions can be taken from j samples drawn from
the probability distribution Py, or simply from the
whole output space whose details are illustrated in
Appendix A. Once the expected values are com-
puted, the remaining binning approach, Equation 2
and 3, stays identical to that of ECE.

The “expectation” differs from that of Expected Calibra-
tion Error (ECE), as ECE takes expectation over a test dataset,
while our “expectation” is performed on probability distribu-
tion of a test instance.

3For notational simplicity, we denote P(gj|y§f271 ,z(;0)
as Py hereinafter.

Dataset | ECE ' SCE ACE " e-ECE  c-ECE, c-ECE;
WMT14 152 11479 1556 1 1.37 1.52 3.16

IWSLT14 | 7.14 | 1339 13.87 | 4.42 5.18 4.91

Multi3eK | 10.39 1 18.68 19.76 | 6.87 7.92 8.50

Table 2: The comparison between the existing calibra-
tion metrics and e-ECE on the corpora tested. e-ECE,,
and e-ECE}; denote e-ECE with top-p and top-k sam-
pling generation scheme respectively.

4.2 Analysis
4.2.1 Accurate Approximation

The existing metrics fail to address the intrinsic
uncertainty of a language, and thus a portion of
calibration error computed with the metrics is at-
tributed to intrinsic uncertainty. However, this prob-
lem is mitigated in the proposed approach, pro-
ducing a more accurate approximation of model
calibration. We empirically validate this aspect in
Section 5.1.

4.2.2 Theoretical Connection to ECE
e-ECE subsumes ECE metric.

Proposition 1. With a small temperature value
T = 0, e-ECE converges to ECE metric.

lim e-ECE = ECE (6)
T—0

Please refer to Appendix B for the proof. The
close connection between e-ECE and ECE enables
wide application of the proposed metric in tasks
other than NLG.

4.2.3 Broader Generation Schemes

e-ECE expands the scope of evaluation; sampling-
based generation schemes can now be evaluated.
When the sampling space of e-ECE is confined to
a certain set of indexes using top-k or top-p, the
metric quantifies the calibration of the generation
schemes. In addition, since the metric takes ex-
pectation of a distribution, beam search is also a
subject of implicit evaluation in e-ECE.

S Experiments

We evaluate the proposed metric on three popular
machine translation datasets with intrinsic uncer-
tainty: Multi3eK DE—EN, IWSLT14 DE—EN, and
WMT14 EN—DE*.

The results from the calibration metrics are de-
scribed in Table 2. We observe a marked decrease in

*The detailed description on the datasets can be found in
Appendix C



WMT14 IWSLT14 Multi3eK
Quantile | E[H] m(d) E[H] m(d) E[H] m(d)
Q1 0.61 0.00 043 000 036 0.00

Q2 128 001 1.09 001 079 0.01
Q3 202 016 167 014 1.12 0.02

Table 3: E[H] and m/(d) refer to intrinsic uncertainty
approximated by an LM and median of the difference
between ECE and e-ECE respectively. r is pearson cor-
relation coefficient, and * indicates p-value less than
0.01 (p < 0.01)

output across the corpora tested. For instance, a rel-
ative decrease of 38.1% is seen in e-ECE compared
to the ECE score in IWSLT14, and 33.9% relative
decrease in Multi30K. We draw similar observa-
tions from e-ECE with top-p and top-k sampling
generation schemes. In the following section, we
illustrate that the decrease comes from the intrinsic
uncertainty that remained as error in ECE.

5.1 e-ECE Reflects Intrinsic Uncertainty

A direct way to validate the ability of e-ECE in
handling intrinsic uncertainty is by analyzing the
samples that ECE and e-ECE show mismatch; we
measure the difference between ECE and e-ECE at
the token-level.

A =19, 0"y — g3, a") ()

where g(p, a) is a token-level accuracy and predic-
tive score gap, computed as p — a. (p, a) and (p, a)
are the inputs to ECE and e-ECE respectively.

If the proposed metric takes intrinsic uncertainty
into consideration, little intrinsic uncertainty is ex-
pected when there is a little difference between
the metrics (d”) ~ 0). On the contrary, a high
intrinsic uncertainty is expected in samples with
which the metrics disagree (dD > 0). We parti-
tion test predictions into 4 groups, based on the
intrinsic uncertainty, which we approximate with
an LM. Entropy level of an LM represents the size
of valid candidates within a context, being a proper
approximation for intrinsic uncertainty. We report
the median difference within each group in Table
3.

We observe a marked difference in the intrinsic
uncertainty level between the groups. The samples
with little intrinsic uncertainty (1) have no dis-
agreement between the two metrics illustrated with
the median difference equals to 0. However, as the
intrinsic uncertainty increases, the difference stands

ECE e-ECE
n | E o) AW E o) AQ
10 26.19 8.18 19.05 15.81 3.61 11.39

50 | 1336 326 622 9.01 258 4.59
500 | 745 123 031 448 093 0.06
1000 | 697 136 0.17 448 093 0.06

Table 4: n denotes the number of test samples used in
evaluating model calibration. [E and o denote the mean
and standard deviation computed over 10 runs with n
test samples. A is the absolute difference between the
evaluations of n samples and that of whole test dataset, |
indicating the lower the better. A bold number represents
the best score.

out. In addition, the pearson correlation coefficient
between entropy and the token-level difference be-
tween the metrics is around 0.6, a clear indication
of strong linear correlation. This empirical finding
supports a finding that the disagreement between
ECE and e-ECE comes from the samples with high
intrinsic uncertainty; thus, e-ECE reflects such un-
certainty in evaluation.

5.2 ¢-ECE is Stable

A calibration metric should be both accurate and
stable. Table 4 illustrates a comparison between
ECE and e-ECE in stability. With a small number
of test instances, e-ECE displays lower standard de-
viation, and illustrates close approximations to the
score computed with whole test datasets. This indi-
cates that e-ECE requires less number of test sam-
ples while depicting superior stability compared to
ECE. We attribute stability of e-ECE to the nature
of expectation. The expected accuracy, different
from the existing metrics, is not discrete but con-
tinuous. This aspect of e-ECE relaxes the accuracy
and confidence gap.

6 Conclusion

In this study, we explore the limitations of the exist-
ing calibration metrics, especially within the scope
of natural language generation. To that end, we pro-
pose e-ECE that considers intrinsic uncertainty of
a natural language in evaluating model calibration.
The proposed metric is tested on the popular trans-
lation datasets, and the empirical results support
the validity of the proposed metric in evaluating
calibration of an LM.
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A e-ECE Computation
A.1 From k Samples

The expected predictive score and expected accu-
racy can be computed with k predictions sampled
from distribution Py.
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A.2  Whole Output Space

The expected values can be computed without sam-
pling process as follows:

B =3 Plyilyl)_y, 29 0)
7 i 9
x P(yilyi)_y, 29;0) ®
i) = Py |y, 29;0)
B Connection to ECE

Proposition 1. With a small temperature value
7 = 0, e-ECE converges to ECE metric.

lim e-ECE = ECE 10)
7—0

For the ease of understanding, we rewrite the
Equation 5.

B =K, p [Py, 29;0)]

, , , . (11)
it =By p, 10D = §9)],af” € 0,1]
Given a low temperature, the expected confidence
Py converges to p; as the sampled prediction g will
always be identical to the argmax prediction g.

(12)

In this regard, the expected accuracy a; becomes
identical to indicator function where the expected
accuracy is now either O or 1, as in ECE. Therefore,
e-ECE converges to ECE with a proper temperature
control.

C Dataset

Our work proposes a metric that considers intrinsic
uncertainty of a language. In this regard, we vali-
date the proposed metrics on translation datasets
which are known to contain intrinsic uncertainty.
The details are shown in Table 5

Dataset ‘ #Dtrain  #Dypar  #Diest ‘ #Vocab
WMT14 4,500,966 3,000 8,171 | (32768, 32768)
IWSLT14 16,239 7,283 6,750 (8848, 6632)
Multi3eK | 28,332 1,014 1,000 (7072, 5184)

Table 5: Description on the datasets tested in this work.
#D syupser denotes the number of paired sentences in a
subset. #Vocab is a tuple with source and target dictio-
nary size.

D Experiment Design

All of the experiments have been conducted with
A100 GPUs. We follow the hyperparameters and
model structures specified on fairseq (Ott et al.,
2019)°.

E Approximating Intrinsic Uncertainty

In our work, intrinsic uncertainty of a language
is approximated with a conditional LM. An LM
is able to select a subset of vocabulary, which the
tokens in the subset are valid choice in a context.
Therefore, the entropy level of an LM can be an
approximation of intrinsic uncertainty in a context.

H(P) = - Zp(yl’-xayl:t—l;elm)
l (13)

x log P(yi|@, y1:4—1; Oim)

where [ denotes class (token) index and ¢ denotes
time step. A low entropy, a probability mass con-
centrated to a small subset of tokens, indicates
small intrinsic uncertainty, while a high entropy
level is an indication of high intrinsic uncertainty.
The conditional language model follows the iden-
tical model configuration specified in Appendix
D.

Shttps://github.com/facebookresearch/fairseq/
blob/main/examples/translation/README.md
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