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Abstract

Deep learning models have made great strides001
in recent years. Subsequently, model calibra-002
tion and measurements of the quantity have003
gained much attention, with the degree being004
an indication of reliability of a model. In this005
study, we explore the limitations of the existing006
calibration metrics, and propose a simple cal-007
ibration metric that caters to natural language008
generation (NLG) tasks. Unlike existing cal-009
ibration metrics, our metric is not confined010
to/not sorely based on a single prediction; it011
considers a distribution mapped by a model. In012
this regard, the proposed metric takes intrinsic013
uncertainty present in a natural language into014
account when quantifying the calibration de-015
gree. The metric has been tested on machine016
translation datasets, a popular NLG task with017
intrinsic uncertainty. A thorough analysis il-018
lustrates that the proposed metric possesses the019
ability to handle intrinsic uncertainty and hence020
is more suitable measure under NLG tasks.021

1 Introduction022

A predictive score of a well-calibrated model re-023

flects the true likelihood of correctness (Guo et al.,024

2017; Jiang et al., 2021). Therefore, model calibra-025

tion demonstrates the reliability of a model (Nixon026

et al., 2019), answering the question of “how much027

we can trust a decision made by a model”. Deep028

learning models are being applied to various sec-029

tors of society. For this reason, not only the perfor-030

mance but calibration is of significance (Tomani031

and Buettner, 2021).032

The growing importance has introduced calibra-033

tion measures with the aim of accurate quantifi-034

cation of the quantity (Naeini et al., 2015; Nixon035

et al., 2019; Guo et al., 2017; Ding et al., 2021;036

Jagannatha and Yu, 2020). The calibration metrics037

have been utilized to test the trustworthiness of a038

model not just in safety-critical domain (Mehrtash039

et al., 2020), but also in image classification (Kr-040

ishnan and Tickoo, 2020), text classification (Jung041

et al., 2020), and text generation (Müller et al., 042

2019; Wang et al., 2020). 043

Of the domains mentioned above, accurate eval- 044

uation of a language model (LM)’s calibration is 045

of most significance in regards to model output. 046

Model calibration does not change model predic- 047

tion of a classifier; on the contrary, model calibra- 048

tion affects model output of an LM (Müller et al., 049

2019). Common generation schemes of an autore- 050

gressive LM, such as top-p (Holtzman et al., 2020), 051

top-k sampling (Fan et al., 2018) and beam search, 052

are grounded on an assumption that a predictive 053

score represents the likelihood of the word in a 054

given context (Holtzman et al., 2020). In this re- 055

gard, when a probability distribution is not cali- 056

brated, the assumption fails to hold, leading to the 057

degradation in quality of an output (Müller et al., 058

2019). Therefore, an accurate measure of model 059

calibration of an LM is in need. 060

In this paper, we discuss several limitations of 061

existing calibration metrics, especially from the 062

perspective of NLG tasks; the measures do not 063

take the intrinsic uncertainty of a natural language 064

into consideration. A semantic equivalence can be 065

achieved with a variable size of utterances; this 066

aspect of a natural language is referred to as intrin- 067

sic uncertainty (Ott et al., 2018). Previous calibra- 068

tion metrics overlook this aspect in evaluating an 069

LM, consequently generating inaccurate approxi- 070

mations. 071

To this end, we propose e-ECE, a calibration 072

metric designed to evaluate model calibration in - 073

but not limited to - NLG tasks. The metric intakes 074

a distribution, reflecting intrinsic uncertainty in 075

the course of evaluation. We empirically find that 076

the measure lowers the level of mis-calibration er- 077

ror brought by the uncertainty that has otherwise 078

remained as error in previous metrics. 079

The contributions of our work are as follows: 080

• Our work discusses the limitations of the ex- 081

isting calibration metrics under NLG environ- 082
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ment.083

• We present e-ECE, a calibration metric that is084

designed for NLG environment by consider-085

ing the intrinsic uncertainty of a natural lan-086

guage in computing model calibration.087

• e-ECE is stable, evaluates broader pool of088

generation schemes, and, with high accuracy,089

quantifies model calibration, its level superior090

to that of the existing metrics.091

2 Preliminaries & Related Work092

2.1 Calibration093

A model calibration is a measure of how predictive094

scores truly reflect the accuracy of predictions (Guo095

et al., 2017). In this paper, perfect calibration is096

defined as follows1:097

P (Ŷ = Y |P̂ = p) = p, ∀p ∈ [0, 1] (1)098

where Ŷ and P̂ indicate model predictions and cor-099

responding confidence scores (predictive scores).100

In plain English, the predicted probability should101

match the accuracy when given a calibrated model;102

model predictions with 0.5 predictive scores are103

expected to achieve 50 percent accuracy. Therefore,104

the quantity is an indication of trustworthiness of a105

model prediction (Tomani and Buettner, 2021).106

Naeini et al. (2015) approximate Equation 1 with107

a binning approach. The test predictions are binned108

to M bins based on their predictive scores. The109

accuracy and confidence of each bin are computed110

as follows:111

acc(Bm) =
1

|Bm|
∑
i∈Bm

a(i), a(i) ∈ {0, 1}

conf(Bm) =
1

|Bm|
∑
i∈Bm

p(i)

(2)112

where Bm refers to the m-th bin and a(i) is com-113

puted with an indicator function 1(y(i) = ŷ(i)).114

Reliability diagram (DeGroot and Fienberg, 1983)115

visualizes the gap between the accuracy and confi-116

dence of each bin. ECE is a weighted sum of the117

differences, where the weights are proportional to118

the size of bins.119

ECE =

M∑
m=1

|Bm|∑M
j=1 |Bj |

|acc(Bm)− conf(Bm)|

(3)120

1The notations are borrowed from (Guo et al., 2017)

Dataset Greedy Pure Top-k Top-p
WMT14 EN→DE 1.52 1.31 1.73 1.79

IWSLT14 DE→EN 7.14 5.24 4.91 5.34
Multi30K DE→EN 10.39 8.21 7.39 8.10

Table 1: ECE scores from different generation methods.
Pure denotes pure sampling, and k and p are set to 100
and 0.8 respectively.

Therefore, ECE can be viewed as aggregation 121

of bin-wise absolute differences between accuracy 122

and confidence. A low ECE score indicates that 123

predictive scores reflect the actual accuracy of pre- 124

dictions, and hence well-calibration. 125

Other variants of the metric have also been intro- 126

duced. Nixon et al. (2019) propose Static Calibra- 127

tion Error (SCE) and Adaptive Calibration Error 128

(ACE); the former quantifies class-wise calibration 129

error, while the latter utilizes adaptive intervals 130

when binning predictions. 131

3 Analysis of Problems in Existing 132

Calibration Metrics 133

Approximation Problem ECE is an approxi- 134

mation made to compute model calibration error. 135

Therefore, finite samples in test dataset may not be 136

sufficient to assess the true calibration of a model. 137

The problem stands out more clearly when an out- 138

put space is exponentially large, or under imbal- 139

anced label distribution (Zipf’s Law), two cases 140

under which NLG tasks fall. For instance, in WMT14 141

English to German (EN→DE) translation dataset, 142

49.7% of labels (words) are not present in test 143

dataset. Furthermore, due to the limited number 144

of test samples, the intrinsic uncertainty of a lan- 145

guage is hardly reflected. That is, the calibration 146

error computed with previous metrics inevitably 147

includes intrinsic uncertainty in the value. 148

Generation-Specific Problem The current ap- 149

proach in quantifying the calibration of an NLG 150

model is formulated as Next Token Prediction 151

(NTP) task (Müller et al., 2019). 152

p̂
(i)
t = max

y∈Y
P (y|x(i), y(i)1:t−1; θ)

ŷ
(i)
t = argmax

y∈Y
P (y|x(i), y(i)1:t−1; θ)

(4) 153

where y
(i)
1:t−1 denotes ground truth prefix at time 154

step t. However, the current approach is far from 155

ideal, since the approach only considers greedy 156

generation scheme with the argmax operation in 157
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Equation 4. ECE is designed for binary classifi-158

cation, leaving the probabilities on other classes159

unassessed (Nixon et al., 2019). This is a clear160

limitation, especially in sequence generation. Gen-161

erating the most probable sequence is known to162

be dull and repetitive (Fu et al., 2021), degenerat-163

ing the output. Therefore, sampling-based methods,164

such as top-k and top-p (Holtzman et al., 2020), are165

commonly adopted (Fan et al., 2018; Edunov et al.,166

2018; Tian et al., 2020). Table 1 illustrates how the167

choice of generation scheme can drastically change168

the calibration error of the same model. Nonethe-169

less, the existing calibration metrics fail to address170

the issue, hence being suboptimal measures in171

NLG environment.172

4 Approach173

In light of the limitations, our work proposes a174

calibration metric that reflects intrinsic uncertainty175

of a language in evaluation.176

4.1 e-Expected Calibration Error (e-ECE)177

Existing calibration metrics take a single predic-178

tion and corresponding confidence score for each179

test sample in computing model calibration. This180

differs in the proposed metric: e-ECE. e-ECE takes181

expectation over a probability distribution and the182

corresponding accuracy2.183

p̃
(i)
t = Eỹ∼P̃θ

[P (ỹ|y(i)1:t−1, x
(i); θ)]

ã
(i)
t = Eỹ∼P̃θ

[1(y
(i)
t = ỹ)], ã

(i)
t ∈ [0, 1]

(5)184

P̃θ
3 is a post-processed probability distribution; a185

distribution mapped by a model can be scaled with186

a temperature τ or confined to a subset of output187

space, as in top-k or top-p sampling. p̃(i)t and ã
(i)
t188

denote expected confidence over the output space189

and expected accuracy respectively. The expecta-190

tions can be taken from j samples drawn from191

the probability distribution P̃θ, or simply from the192

whole output space whose details are illustrated in193

Appendix A. Once the expected values are com-194

puted, the remaining binning approach, Equation 2195

and 3, stays identical to that of ECE.196

2The “expectation” differs from that of Expected Calibra-
tion Error (ECE), as ECE takes expectation over a test dataset,
while our “expectation” is performed on probability distribu-
tion of a test instance.

3For notational simplicity, we denote P̃ (ỹ|y(i)
1:t−1, x

(i); θ)

as P̃θ hereinafter.

Dataset ECE SCE ACE e-ECE e-ECEp e-ECEk

WMT14 1.52 14.79 15.56 1.37 1.52 3.16
IWSLT14 7.14 13.39 13.87 4.42 5.18 4.91
Multi30K 10.39 18.68 19.76 6.87 7.92 8.50

Table 2: The comparison between the existing calibra-
tion metrics and e-ECE on the corpora tested. e-ECEp

and e-ECEk denote e-ECE with top-p and top-k sam-
pling generation scheme respectively.

4.2 Analysis 197

4.2.1 Accurate Approximation 198

The existing metrics fail to address the intrinsic 199

uncertainty of a language, and thus a portion of 200

calibration error computed with the metrics is at- 201

tributed to intrinsic uncertainty. However, this prob- 202

lem is mitigated in the proposed approach, pro- 203

ducing a more accurate approximation of model 204

calibration. We empirically validate this aspect in 205

Section 5.1. 206

4.2.2 Theoretical Connection to ECE 207

e-ECE subsumes ECE metric. 208

Proposition 1. With a small temperature value 209

τ ≈ 0, e-ECE converges to ECE metric. 210

lim
τ→0

e-ECE = ECE (6) 211

Please refer to Appendix B for the proof. The 212

close connection between e-ECE and ECE enables 213

wide application of the proposed metric in tasks 214

other than NLG. 215

4.2.3 Broader Generation Schemes 216

e-ECE expands the scope of evaluation; sampling- 217

based generation schemes can now be evaluated. 218

When the sampling space of e-ECE is confined to 219

a certain set of indexes using top-k or top-p, the 220

metric quantifies the calibration of the generation 221

schemes. In addition, since the metric takes ex- 222

pectation of a distribution, beam search is also a 223

subject of implicit evaluation in e-ECE. 224

5 Experiments 225

We evaluate the proposed metric on three popular 226

machine translation datasets with intrinsic uncer- 227

tainty: Multi30K DE→EN, IWSLT14 DE→EN, and 228

WMT14 EN→DE4. 229

The results from the calibration metrics are de- 230

scribed in Table 2. We observe a marked decrease in 231

4The detailed description on the datasets can be found in
Appendix C
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WMT14 IWSLT14 Multi30K
Quantile E[H] m(d) E[H] m(d) E[H] m(d)

Q1 0.61 0.00 0.43 0.00 0.36 0.00
Q2 1.28 0.01 1.09 0.01 0.79 0.01
Q3 2.02 0.16 1.67 0.14 1.12 0.02
Q4 3.62 0.25 3.00 0.24 2.76 0.21
r 0.65* 0.62* 0.56*

Table 3: E[H] and m(d) refer to intrinsic uncertainty
approximated by an LM and median of the difference
between ECE and e-ECE respectively. r is pearson cor-
relation coefficient, and * indicates p-value less than
0.01 (p < 0.01)

output across the corpora tested. For instance, a rel-232

ative decrease of 38.1% is seen in e-ECE compared233

to the ECE score in IWSLT14, and 33.9% relative234

decrease in Multi30K. We draw similar observa-235

tions from e-ECE with top-p and top-k sampling236

generation schemes. In the following section, we237

illustrate that the decrease comes from the intrinsic238

uncertainty that remained as error in ECE.239

5.1 e-ECE Reflects Intrinsic Uncertainty240

A direct way to validate the ability of e-ECE in241

handling intrinsic uncertainty is by analyzing the242

samples that ECE and e-ECE show mismatch; we243

measure the difference between ECE and e-ECE at244

the token-level.245

d
(i)
t = |g(p̂(i)t , â

(i)
t )− g(p̃

(i)
t , ã

(i)
t )| (7)246

where g(p, a) is a token-level accuracy and predic-247

tive score gap, computed as p− a. (p̂, â) and (p̃, ã)248

are the inputs to ECE and e-ECE respectively.249

If the proposed metric takes intrinsic uncertainty250

into consideration, little intrinsic uncertainty is ex-251

pected when there is a little difference between252

the metrics (d(i) ≈ 0). On the contrary, a high253

intrinsic uncertainty is expected in samples with254

which the metrics disagree (d(i) > 0). We parti-255

tion test predictions into 4 groups, based on the256

intrinsic uncertainty, which we approximate with257

an LM. Entropy level of an LM represents the size258

of valid candidates within a context, being a proper259

approximation for intrinsic uncertainty. We report260

the median difference within each group in Table261

3.262

We observe a marked difference in the intrinsic263

uncertainty level between the groups. The samples264

with little intrinsic uncertainty (Q1) have no dis-265

agreement between the two metrics illustrated with266

the median difference equals to 0. However, as the267

intrinsic uncertainty increases, the difference stands268

ECE e-ECE
n E σ (↓) ∆ (↓) E σ (↓) ∆ (↓)
10 26.19 8.18 19.05 15.81 3.61 11.39
50 13.36 3.26 6.22 9.01 2.58 4.59
500 7.45 1.23 0.31 4.48 0.93 0.06
1000 6.97 1.36 0.17 4.48 0.93 0.06
Full 7.14 4.42

Table 4: n denotes the number of test samples used in
evaluating model calibration. E and σ denote the mean
and standard deviation computed over 10 runs with n
test samples. ∆ is the absolute difference between the
evaluations of n samples and that of whole test dataset, ↓
indicating the lower the better. A bold number represents
the best score.

out. In addition, the pearson correlation coefficient 269

between entropy and the token-level difference be- 270

tween the metrics is around 0.6, a clear indication 271

of strong linear correlation. This empirical finding 272

supports a finding that the disagreement between 273

ECE and e-ECE comes from the samples with high 274

intrinsic uncertainty; thus, e-ECE reflects such un- 275

certainty in evaluation. 276

5.2 e-ECE is Stable 277

A calibration metric should be both accurate and 278

stable. Table 4 illustrates a comparison between 279

ECE and e-ECE in stability. With a small number 280

of test instances, e-ECE displays lower standard de- 281

viation, and illustrates close approximations to the 282

score computed with whole test datasets. This indi- 283

cates that e-ECE requires less number of test sam- 284

ples while depicting superior stability compared to 285

ECE. We attribute stability of e-ECE to the nature 286

of expectation. The expected accuracy, different 287

from the existing metrics, is not discrete but con- 288

tinuous. This aspect of e-ECE relaxes the accuracy 289

and confidence gap. 290

6 Conclusion 291

In this study, we explore the limitations of the exist- 292

ing calibration metrics, especially within the scope 293

of natural language generation. To that end, we pro- 294

pose e-ECE that considers intrinsic uncertainty of 295

a natural language in evaluating model calibration. 296

The proposed metric is tested on the popular trans- 297

lation datasets, and the empirical results support 298

the validity of the proposed metric in evaluating 299

calibration of an LM. 300
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t =

1

k

k∑
j=1

P (ỹ
(i)
t,j |y1:t−1, x

(i); θ)

ã
(i)
t =

1

k

k∑
j=1

1(y(i) = ỹ
(i)
t,j )

(8) 403
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A.2 Whole Output Space404

The expected values can be computed without sam-405

pling process as follows:406

p̃
(i)
t =

∑
i

P̃ (yi|y(i)1:t−1, x
(i); θ)

× P (yi|y(i)1:t−1, x
(i); θ)

ã
(i)
t = P̃ (y

(i)
t |y(i)1:t−1, x

(i); θ)

(9)407

B Connection to ECE408

Proposition 1. With a small temperature value409

τ ≈ 0, e-ECE converges to ECE metric.410

lim
τ→0

e-ECE = ECE (10)411

For the ease of understanding, we rewrite the412

Equation 5.413

p̃
(i)
t = Eỹ∼P̃θ

[P (ỹ|y(i)1:t−1, x
(i); θ)]

ã
(i)
t = Eỹ∼P̃θ

[1(y(i) = ỹ(i))], a
(i)
t ∈ [0, 1]

(11)414

Given a low temperature, the expected confidence415

p̃t converges to p̂t as the sampled prediction ỹ will416

always be identical to the argmax prediction ŷ.417

ỹ
(i)
t = ŷ

(i)
t

p̃
(i)
t = p̂

(i)
t

(12)418

In this regard, the expected accuracy ãt becomes419

identical to indicator function where the expected420

accuracy is now either 0 or 1, as in ECE. Therefore,421

e-ECE converges to ECE with a proper temperature422

control.423

C Dataset424

Our work proposes a metric that considers intrinsic425

uncertainty of a language. In this regard, we vali-426

date the proposed metrics on translation datasets427

which are known to contain intrinsic uncertainty.428

The details are shown in Table 5429

Dataset #Dtrain #Dval #Dtest #Vocab
WMT14 4,500,966 3,000 8,171 (32768, 32768)

IWSLT14 16,239 7,283 6,750 (8848, 6632)
Multi30K 28,332 1,014 1,000 (7072, 5184)

Table 5: Description on the datasets tested in this work.
#Dsubset denotes the number of paired sentences in a
subset. #Vocab is a tuple with source and target dictio-
nary size.

D Experiment Design 430

All of the experiments have been conducted with 431

A100 GPUs. We follow the hyperparameters and 432

model structures specified on fairseq (Ott et al., 433

2019)5. 434

E Approximating Intrinsic Uncertainty 435

In our work, intrinsic uncertainty of a language 436

is approximated with a conditional LM. An LM 437

is able to select a subset of vocabulary, which the 438

tokens in the subset are valid choice in a context. 439

Therefore, the entropy level of an LM can be an 440

approximation of intrinsic uncertainty in a context. 441

442
H(P ) = −

∑
l

P (yl|x, y1:t−1; θlm)

× logP (yl|x, y1:t−1; θlm)

(13) 443

where l denotes class (token) index and t denotes 444

time step. A low entropy, a probability mass con- 445

centrated to a small subset of tokens, indicates 446

small intrinsic uncertainty, while a high entropy 447

level is an indication of high intrinsic uncertainty. 448

The conditional language model follows the iden- 449

tical model configuration specified in Appendix 450

D. 451

5https://github.com/facebookresearch/fairseq/
blob/main/examples/translation/README.md
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