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Abstract

When an LLM learns a relation during finetuning (e.g., new movie releases, corpo-1

rate mergers, etc.), where does this information go? Is it extracted when the model2

processes an entity, recalled just-in-time before a prediction, or are there multiple3

separate heuristics? Existing localization approaches (e.g. activation patching)4

are ill-suited for this analysis because they tend to replace parts of the residual5

stream, potentially deleting information. To fill this gap, we propose dynamic6

weight grafting between fine-tuned and pre-trained language models to show that7

fine-tuned language models both (1) “enrich" with entity and relation information8

learned during finetuning while processing entities and (2) “recall" this information9

in later layers while generating predictions. In some cases, models need both of10

these pathways to correctly generate finetuned information while, in other cases,11

a single “enrichment" or “recall" pathway alone is sufficient. We examine the12

necessity and sufficiency of these information pathways, examining what layers13

they occur at, how much redundancy they exhibit, and which model components are14

involved—finding that the “recall" pathway occurs via both task-specific attention15

mechanisms and an entity extraction step in the output of the attention and the16

feedforward networks at the final layers before next token prediction.17

1 Introduction18

Large Language Models (LLMs) are capable of storing and recalling a large number of relation-19

ships and associations [37, 40], but what happens when we finetune pretrained LLMs to learn new20

relationships?21

How does a model encode this information in its parameters and what mechanisms extract this new22

information during text generation?23

A line of interpretability work has focused on understanding how Transformer-based language models24

extract relation information by examining information flow through networks [12, 8], directly editing25

model parameters [30], or by searching for interpretable “relation directions" in a Transformer’s26

residual stream [20]. However, a central question remains: when we add new relationship information27

to an LLM, is that information added just to the entity (e.g., just in the embeddings) or is it localized28

more in response to the entity in higher layers closer to next token prediction?29

Language models are updated with new factual information via finetuning all the time—presidents30

are elected, Popes are selected, and streaming services keep commissioning new movies—can we31

isolate the mechanism by which these new relationships are added to a Transformer LLM?32

Previous approaches to localizing relation completion have either used variants of activation patching33

[30] or ablations [12] to see which components contribute to the ultimate next token prediction.34

However, activation patching and ablations have a key limitation: they operate by modifying or35
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Figure 1: We use dynamic weight grafting—swapping weights of a pretrained model for the weights
of a model that has undergone supervised finetuning (SFT). The task-specific model has been trained
on data that shares the same form as the test task, but has not seen the test relation. The relation-
specific model has been trained on the test relations. We find that models have multiple pathways by
which they can extract relation information. One of these pathways uses both task-specific attention
mechanisms on the first entity and the final token as well as relation completion mechanisms in
feed-forward networks at the final layers before next token prediction.

replacing activations inside the model, which unintentionally deletes the computations that came36

before. For example, when an activation at a specific layer and token position is patched or ablated,37

we also overwrite all the upstream information that was flowing into that activation. This makes38

it difficult to tell whether a component of the model is actively extracting new information, or39

simply passing along information that was computed earlier. As a result, it’s hard to isolate which40

mechanisms are truly responsible for incorporating finetuned relation knowledge.41

To address this, we propose dynamic weight grafting, a method for studying how finetuned knowl-42

edge is used in language models by swapping in weights from a finetuned model during generation.43

These swaps can be done selectively—at specific layers, components, and token positions (see44

Figure 3b)—allowing us to test which parts of the model are sufficient to reproduce the effects of45

finetuning, without disrupting the rest of the computation. This combines the advantages of model46

grafting, which leaves previous computations intact [36, 23] with the ability to apply causal mediation47

analysis to specific mechanisms in the model, similar to activation patching [19, 13, 30]. 148

Using this method, we identify two pathways by which finetuned relation knowledge can influence49

generation. In some cases, we confirm that models enrich entity representations early in the sequence50

and carry that information forward [12, 11]. In other cases, a final token “recall" pathway alone is51

sufficient to extract relation information—even without subject enrichment. This indicates that the52

later layers of a finetuned model contain a mechanism to recall information from finetuning, even in53

response to a representation that does not contain information from the finetuning set.54

2 Background55

Relation Completion We focus on a model’s ability to retrieve relation information, which has56

been studied extensively in the NLP literature [50] and discussed in classic representation learning57

works [21]. The classic relation extraction task involves finding the semantic relation (r) between58

a subject (s) and an object (o) in natural language text, yielding an (s, r, o) tuple. In our setting,59

however, we focus on generative models, seeking to understand the mechanisms by which models60

correctly generate an object from an (s, r, o) tuple when given the subject and relation in a natural61

language prompt.62

Weight Grafting Given some pre-trained and finetuned model parameters θpre and θft, how might63

one localize the mechanisms responsible for the change in model behavior in the finetuned model?64

1We also note that this method can be applied to any setting where we have a finetuned model and a pretrained
model, including most post-training procedures.
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We build on information-based (activations) localization methods when directly studying model65

mechanisms (weights).66

Since our goal is to directly understand the model’s mechanisms, the most direct approach is to67

just graft in portions of the fine-tuned model, identifying a sparse subset of the weights which are68

sufficient to obtain the full fine-tuned performance. For instance, Panigrahi et al. [36] define a grafted69

model θ̃ using a mask γ:70

θ̃i =

{
θpre
i if γi = 0

θft
i if γi = 1

where i refers to the ith parameter of each model, “pre” refers to the pretrained model, and “ft” refers71

to the finetuned model. Equivalently, Ilharco et al. [23] express it as72

θ̃ = θpre + γ ◦
(
θft − θpre

)
Note, however, that this does not account for the possibility of mechanisms which activate only on73

certain tokens; furthermore, it only provides a notion of sufficiency, when we would also like to assess74

the necessity of these edits.75

Causal Mediation Analysis via Activation Patching To address these limitations, there has been76

a host of work which instead attempts localization based on the information flow through the residual77

stream vectors λ(t, l) at token t and layer l. The most popular of these approaches is broadly termed78

activation patching, which we use to refer to any method which replaces some vectors λ(t, l) with79

new vectors λ̃(t, l) [19, 13, 30]80

The primary advantage of activation patching is that it easily fits within a causal mediation analysis81

[34, 43]. Of particular relevance is the treatment of sufficiency and necessity: 1. Sufficiency is82

achieved via a high natural indirect effect, e.g. “Does replacing λA(t, l) with λB(t, l) cause the83

patched model to behave like model B?” 2. Necessity is achieved via a low natural direct effect, e.g.84

“Does holding λ(t, l) to what it was on prompt A while feeding in prompt B still cause the model to85

behave as if the prompt were A?”86

However, since information is only ever added to the residual stream, the vector λ(t, l) contains87

information about previous layer computations; hence, replacing the entire vector is likely to delete88

previous computations!89

3 Dynamic Weight Grafting90

We take the position that, to examine relation knowledge retrieval, the most natural vector to patch91

into the residual stream at a given component is the one that model B (e.g., a fine-tuned model)92

would have computed if it had been given the same input as model A (the base model). In this way,93

we stay true to the actual mechanisms of the fine-tuned model, while still intervening in a manner94

which is compatible with the causal mediation analysis of activation patching.95

That is, given two models θA and θB , consider the ordered sequence of their weight matrices96

θA = [θ1
A . . .θM

A] and θB = [θ1
B . . .θM

B ]. Let γ be a 1 ×M mask over these components.97

That is, each θc
A corresponds to a specfic model component (e.g. the WQ matrix at the 12th layer,98

the up-projection matrix for the feedforward network at the 5th layer). In this way, we consider each99

component of the transformer as a mechanism which can be intervened on.100

We define Dynamic Weight Grafting as token-wise, component-wise weight grafting:101

θ̃m(t) =

{
θA
c if γc(t) = 0

θB
c if γc(t) = 1

where c refers to the cth component of each model and t refes to the token position. This is illustrated102

in Figure 3b. In words: while processing the residual stream at a given token position, we swap103

model components dynamically based on our grafting configuration—while processing the residual104

stream at the last token, for example, we may elect to use the finetuned feedforward networks for all105

layers in the second half of the model.106
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Note that dynamic weight grafting ultimately changes the vector which is added back to the residual107

stream; hence, it is a special case of directional patching, intentionally restricted to only affect the108

current computations! A happy consequence is that we can leverage the necessity and sufficiency109

evaluations of causal mediation analysis in a way that is inaccessible to vanilla weight grafting.110

In most of our experiments, we consider θA
i to be the pretrained model θPRE

i and we consider θB
i to111

refer to the finetuned model θSFT
i .112

4 Experiments & Results113

Models We use four pretrained Transformer-based decoder-only language models in our exper-114

iments: Llama3 [14], Pythia 2.8b [5], GPT2-XL [38], Gemma [42]. Of note, while these models115

have similar numbers of parameters, they differ in several key architectural ways. See Table 2 in116

Appendix A.4 for a comparison of models. In Appendix C.5, we show that the choice of the finetuned117

or the the pretrained unembeddings give very similar results. Unless otherwise specified, we use the118

finetuned embeddings for all grafted token positions and use the the original model’s unembeddings119

during next token prediction.120

Data We follow Allen-Zhu and Li [2] and use templated supervised finetuning data to control what121

relationship information models are exposed to during finetuning. We augment our training data122

with several rephrases of article-style training text and question-answering examples. We generate123

1,000 instances of synthetic metadata for each dataset: (1) Fake Movies, Real Actors which uses124

real actor names and fake movie names generated programatically, (2) Fake Movies, Fake Actors125

which uses programatically generated movie titles and actor names, and (3) Real Movies, Real126

Actors (Shuffled) which uses real movies and real actors, but shuffles the relations between them127

(e.g. “Keanu Reeves starts in The Departed alongside Meryl Streep”). In the main body of the paper,128

we present results for the Fake Movies, Real Actors dataset–results for all datasets are in Appendix C.129

We then generate five templated “article" examples and five templated “QA" examples for a total of130

just under 10,000 examples in each finetuning dataset (we exclude some examples due to tokenization131

issues). See Appendix A.2.2 and Appendix A.2.3 for examples of templates and training examples.132

All models are trained using next token prediction. See Appendix A.4.3 for training details.133

Table 1: Relation prompt templates used to test model relation completion capabilities, with examples
Headline {first_actor} {relation}

{relation_preposition} a
movie {preposition}

Brad Pitt starred in a movie with

QA Q: Who {relation}
{relation_preposition} a
movie {preposition}
{first_actor}? A: An actor
named

Q: Who starred in a movie
alongside Brad Pitt? A: An actor
named

4.1 Which positions are sufficient for relation completion?134

Where is relation information activated? Does it happen when the entity name itself is processed or is135

the information only recalled right before it is needed for prediction? A priori, it’s not clear if model136

features build on each other in a way that each step of the extraction pipeline is necessary to retreive137

relation information or if a handful of features each independently make a certain prediction more138

likely.139

We start with experiments that dynamically graft all model weights for a given position during140

generation (see Figure 3b (a)). In this setup, we either graft all model weights at a given position141

or none of them. Note that when we graft model weights at a particular position, we use the keys142

and values from the grafted model to compute attention at future positions. We call this “position143

grafting"–see Figure 3b for a visual comparison between grafting schemes.144

Our position grafting results show that either the first entity tokens and the final token before145

prediction are necessary for relation and entity extraction. We present results for top-5 accuracy on146

relation completion on all four tested models in Figure 2. See §A.1 for why we use top-5 accuracy.147
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We find that grafting only the first entity and the last token from the finetuned to the pretrained148

model nearly recovers top-5 performance for all four models tested. This suggests that the the model149

“enriches” the residual stream with entity information while processing the entity tokens, then extracts150

this enriched information in the final token before prediction. See Figure 2 for a comparison of the151

performance of different position-grafting schemes.152

Surprisingly, we also see that, in some cases, patching only the first entity or only the last token is153

sufficient to recover good relation completion performance. This implies two things: (1) If an entity154

is “enriched" with relation information, generic mechanisms can extract the correct entity to complete155

the relation tuple and (2) “recall" mechanisms can extract relation completions from entities that were156

not enriched with finetuned relation information.157

While the “recall" and “enrichment" pathways individually have worse top-5 accuracy than when158

combined, for several models and sentence templates, a single pathway can be sufficient for relation159

completion for some examples. In Gemma-1.1, the “recall" pathway alone achieves 53% top-5160

accuracy on relation completion (compared to a finetuned baseline of 100%) and the “enrichment"161

pathway for GPT2-XL reaches 28% top-5 accuracy. We conduct the same experiments on the Fake162

Movies, Fake Actors dataset and the Real Movies, Real Actors (Shuffled) dataset and find similar163

results (see Appendix C).164

Top-5 Accuracy on Test Headline for Position-Level Patching

Figure 2: We show top-5 localization results for position grafting for the headline test sentence.
Graft configurations are PRE (pretrained baseline), SFT (supervised finetuning baseline), FE (grafting
only the first entity), LT (grafting only the last token position), FE+LT, (FE+LT)C (grafting everything
except the first entity and last token position), FEC, and LTC. All models show full or nearly full SFT
performance recovery by grafting only the FE and LT tokens and near pretrained performance when
grafting everything except the FE and LT tokens.

4.1.1 Necessity for Relation Completion165

While we can show that grafting at the first entity and the final token position are sufficient to recover166

finetuned model performance, that does not rule out other pathways for models to extract relation167

information. To test this, we graft the complement of the first entity and the last token (i.e., all168
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positions except the first entity tokens and the final token)—this results in near-zero top-k accuracy169

performance for all models, comparable to that of the pretrained model; see Figure 2.170

We also graft the complement of the last token and the complement of the entity tokens. For all171

models, except Gemma, we notice that grafting the complement of the first entity results in improved172

performance over just grafting the last token (note that the last token is included in the complement173

of the first entity in our test example). However, we notice a large disparity in FEC results and LT174

results for Pythia and GPT2-XL. We also notice that GPT2-XL has much better performance on LTC175

than other models, which all have near zero top-k accuracy on this grafting scheme. We also run176

experiments with the movie title included in the test sentence (see Appendix C.4); we find that the177

movie title alone is not sufficient to recover finetuned performance, but the movie title and the last178

token together give improved performance over the last token alone and the movie title and the first179

entity have inconsistent results across models. See the discussion in §5 for more.180

4.2 Is it the position or the token that matters?181

We note that there is potential confounding factor: Is the relation is extracted at the last token before182

generation or at the preposition connected to the relation (e.g., stars in)? In the test headline (see183

Table 1) these are always the same token. We hypothesize that the relation completion may occur on184

relation tokens (e.g. “stars in" so we constructed the test QA example (Table 1) so that the final token185

before generation is neither the relation nor a preposition associated with the relation. We see similar186

results in the two test sentences: the last token is responsible for relation knowledge retrieval, even187

when it is neither a preposition nor a relation. We present only the results for Llama3 for brevity in188

Figure 3a and present additional results for other models in Appendix C.1.1189

(a) (b)

Figure 3: (a) Results for Llama3 on the test QA example with a verb as the final token showing
similar results to the test headline where a preposition is the final token. (b) A schematic showing the
different dynamic weight grafting schemes used in our experiments. Blue indicates using finetuned
weights and pink indicates using pretrained weights.)

4.3 Can we localize the “recall" pathway to model components?190

Prior work has shown that next token prediction is a blend of information propagation through191

attention heads and token promotion through feedforward networks [10–12]. We seek to understand192

whether the “recall" pathway at the final token position relies mostly on attention, feedforward193

networks, or both. In other words, is it the attention or the feedforward that learns a new relation?194

(Of course, it can be both.)195

Training on disjoint data to localize relation completion We attempt to localize relation comple-196

tion by grafting model components between models trained on the task and models trained on the197

actual relation. That is, we train two models on a dataset with the same semantic structure but with198

different entities and relations. We then perform component grafting (see Figure 3b) between the two199

models. This way, we can see which components are responsible for general task functionality and200

which components are responsible for relation information retrieval.201
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We start by leveraging the reversal curse—Berglund et al. [4] and Allen-Zhu and Li [2] show that202

models trained on relationships in one direction (“Werner Herzog starred in a movie with Nicolas203

Cage") fail to learn relationships in the other direction (“Nicolas Cage starred in a movie with Werner204

Herzog") [1]. We exploit this effect to study relation completion by grafting weights from a model205

trained on both directions of a relationship (e.g., both of the sentences above) onto weights of a model206

trained only on one direction of a relationship (e.g., various paraphrases of “Werner Herzog starred in207

a movie with Nicolas Cage" with “Werner Herzog” always preceeding “Nicolas Cage”).208

Recall that a Transformer block is described by 2:209

Block(x) = NORM
(
x+ATTN

(
NORM(x)

)
O+FFN

(
NORM

(
x+ATTN

(
NORM(x)

)
O
)))

(1)

where the NORM operation is either Layer Norm or RMSNorm, ATTN is the attention, FFN is the210

feedforward network, and O is the output projection matrix for multi-headed self-attention. Focusing211

on ATTN, FFN, and O, we present results for Gemma and Llama3 in Figure 4.3212

Top-5 Accuracy on Test Headline for Component-Level Grafting

Figure 4: We graft weights from models finetuned on both directions of a symmetric relationship
(actors starring in a movie together) at the last token to see which model components are responsible
for relation completion. For models with an effective “recall" pathway (Gemma & Llama), we see
that the output projection matrix and the feedforward networks in the last quarter of the model recover
most of the finetuned performance.

In Figure 4, we see that grafting the O matrix and the full FFN nearly recovers the results of grafting213

the full attention mechanism and the full FFN. This implies that, during finetuning, models learn214

operations in the O matrix which trigger the correct “recall" mechanism using feedforward networks215

at the final layers before predicting the recalled entity. The rest of the attention mechanism appears216

to have little impact if both the original and grafted model are finetuned on relationships of the217

same form. We were also surprised to see the importance of the O matrix—removing the O matrix218

and only using the FFN harms top-5 accuracy by 29% in Gemma and 41% in Llama3. We also219

hypothesized that either the “read" operation in the FFN up-projection or the “write" operation in220

the FFN down-projection would be more important. Instead, we see that both recover some relation221

completion performance when paired with the O matrix, but both are necessary for good relation222

completion recovery.223

Grafting with a hybrid model We seek to further localize performance by grafting between three224

models: 1) a pretrained model naive to any of the relations in our dataset, 2) a model finetuned on225

a task with entities and relations disjoint from our evaluation set, and 3) a model finetuned on the226

relations in the evaluation set. In these experiments, we graft at both the final token and the first227

entity. For the final token, we graft the ATTN from the task model and the O + FFN from the relation228

model for all experiments. We then graft different components on the first entity entirely from the229

task model to see which components contribute to model performance in the “recall” pathway.230

2There are model-specific subtleties to the attention and feedforward operations. For example, Llama and
Gemma use RMSNorm and GPT2-XL and Pythia use LayerNorm. Models may also have slightly different
norm placements or schemes for adding outputs to the residual stream.

3GPT2-XL and Pythia had much weaker “recall" results than Gemma and Llama—we see this in the reversal
setting as well, so we present results for GPT2-XL in Appendix C.8.
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Top-5 Accuracy on Test Headline for Component-Level Grafting

Figure 5: We graft weights from both a task model and a relation model onto a pretrained model,
which we refer to as a hybrid model. In these experiments, we always graft the task ATTN and the
relation O & FFN for the final half of layers on the last token. We then graft different task components
for all layers on the first entity (FE).

In these experiments, (results shown in Figure 5) we see that grafting the task ATTN at the first entity231

along with the task ATTN as well as the relation O+FFN recovers 63% top-5 accuracy for Gemma232

and 34% accuracy for Llama3. Grafting the task FFNs at the first entity gives similar performance to233

grafting only at the last token. We see again that grafting the task O matrix along with the task ATTN234

on the first entity improves performance.235

5 Discussion236

We use dynamic weight grafting to show that, when models undergo supervised finetuning on new237

relation information, the entity tokens and the final token position are where relation completion238

occurs–either alone can be sufficient, but at least one of them is necessary to recover relation239

information.240

We note that the last token “recall" pathway appears to be much stronger in the Gemma and the241

Llama3 models tested than in the GPT2-XL and Pythia models. There are many differences between242

these model architectures, including norm (RMS norm vs. layer norm), positional embeddings243

(rotary positional embeddings vs absolute positional embeddings), activation functions (ReLU vs.244

GeGLU vs. SwiGLU), embeddings (tied vs. untied), and attention mechanisms (standard multi-head245

attention vs group-query attention vs. multi-query attention). We also note that these models were246

trained on different training data under different training dynamics. See Table 2 for a more detailed247

comparison between models. We hypothesize that the more recent models have more expressive248

attention mechanisms that allow for better independent recovery of relation information, even on249

unenriched entities.250

Since we are finetuning small models on synthetic data, we saw issues with catastrophic forgetting,251

so we trained models with less aggressive learning rate and removed weight decay [53, 29] while252

also including supplemental training examples from openwebtext and IMDB movie reviews. We saw253

similar results for the less aggressively finetuned models, but with reduced top-5 accuracy for the254

individual “enrichment” or “recall” pathways. See Appendix C.6 for more details.255

We were surprised to see that our results are so similar for known (Fake Movies, Real Actors) and256

unknown entities (Fake Movies, Fake Actors), as well as when overwriting existing information (Real257

Movies, Real Actors). It seems that LLMs are able to freely manipulate relation information during258

finetuning for both known and unknown entities.259

We also note that our reversal curse experiment discussed in 4.3 show slightly different results than260

Geva et al. [12] on the role of attention and feedforward networks in the completion of relation261

information. Geva et al. [12] show that knocking out attention is more harmful to relation completion262

than knocking out feedforward networks. Our results show that, in a setting where a model has263

already learned how to do a specific relation completion task, the O matrices and the feedforward264

networks at the final token position are nearly sufficient to recover relation competion performance265
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as long as the model has task-specific attention functionality. This is an example where, since weight266

grafting doesn’t delete computations (as mentioned in Section 2), we see different results than more267

destructive interpretability methods.268

Future Work We leave the alternative entity enrichment pathway present in Pythia and GPT2-XL–269

see 4.1.1–unexplored in this work. We hypothesize that other token positions beyond the last are also270

able to extract relation information that is then processed at the final token position. Interestingly,271

GPT2-XL seems to have the strongest enrichment pathway, possibly due to its larger number of272

layers compared to other models. Additionally, while we localized relation completion to specific273

model components in some settings, we did not attempt to interpret those components. There is a274

line of interpretability work in “parameter space" [23, 24, 32] and we can imagine applying those275

techniques to the parameters of components that are important for a specific task.276

Limitations Our work focuses on a synthetic knowledge retrieval task, potentially limiting its scope277

and generalization to other settings with more complex sentences or more varied finetuning data.278

Additionally, we operationalize the “success" of knowledge retrievals using top-k accuracy or the279

token rank of the correct relation entity during next token prediction–it’s possible that models “know"280

information in a way that doesn’t impact next token prediction, and our methods do not account for281

this. There is also a combinatorial explosion of possible grafting schemes and our experiments only282

explore a subset. While we try to rule out several failure modes for other methods of knowledge283

retrieval, it’s possible that model features interact and “cancel" in surprising ways; there may be other284

hidden ways of extracting relation entities. We also use only smaller models in our experiments; it’s285

possible that larger models have different mechanisms when finetuned on new relation information.286

6 Related Work287

Mechanistic Interpretability, Relation Knowledge Retrieval & Knowledge Editing Our work288

follows a tradition of interpretability work that attempts to perform interventions on Transformer-289

based language models to understand behavior [43, 9]. Previous work has focused on interpreting290

how language models encode subject-object relationships [30, 12, 20, 49]. Follow up work from Hase291

et al. [18] and Wang and Veitch [45] questions whether editing provides evidence of localization.292

Additional lines of work have focused on understanding information flow through language models293

using gradient-based methods [8, 28, 26], finding interpretable circuits that models use to perform294

specific tasks [44, 35, 51, 16]. Another line of interpretability work has focused on comparing the295

representations and mechanisms of different models [22, 27, 39, 46]. A variety of works attempt296

to understand how language models extract knowledge from training during generation [3, 4, 2].297

Another line of work attempts to edit knowledge in language models by directly editing model298

weights [30, 31, 7, 17, 33, 53], while other work evaluates knowledge retrieval and multi-hop299

reasoning after knowledge edits [52, 6? ] and [6]. [41] and [48] explore the role of attention heads in300

task performance and knowledge extraction.301

Interpreting Model Weights Previous work attempts to localize and interpret directions in a302

model’s parameter space [23, 47]. Panigrahi et al. [36] also perform weight grafting on encoder-only303

language models. In their setting, they find sparse selections of weights that, when patched, transfer304

performance on natural language understanding benchmarks. Gueta et al. [15] find that finetuned305

models have a “knowledge region" in weight space that is responsible for the model’s ability to306

perform finetuned tasks.307

7 Conclusion308

In this work, we introduced dynamic weight grafting, a novel method to localize finetuned relation309

information retrieval mechanisms within Transformer LLMs without the information destroying310

problems of more standard activation patching methods. Through weight grafting experiments, we311

find that models retrieve finetuned relation information using two pathways: “enrichment" at the first312

entity and “recall" at the final token position. We further explore the “recall" pathway to localize313

relation completion to task-specific attention mechanisms on the first entity and the final token and314

relation-specific extraction at the O matrix and feedforward networks in the final layers before next315

token prediction.316
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A Additional Experimental Details470

A.1 A Note on Top-5 Accuracy471

In Figure 2, we examine the top-5 accuracy for the correct relationship token (we score the example as472

correct if the desired relationship token is in the top 5 choices of the next token sampling distribution).473

We choose top-5 accuracy since models will sometimes want to output entity tokens from the context474

instead of the correct actor name, or they want to output high probability tokens like “ the"–we475

interpret this as the model being uncertain. Additionally, models sometimes have multiple plausible476

tokenizations of an actor’s name in the top 5 (e.g. " R", " Rob", "Rob", " Robert"). This is a result of477

the open-endedness of our setup (simply training the model on new relations and then attempting to478

query the knowledge in grafted models). We note that our results are a lower bound on the ability of479

the model to extract the relation correctly [25]. If a model has the correct token in the top 5 choices,480

we consider the model to have correctly retrieved the relation information. We also hypothesize481

that a blend of features, some of which “know” the relation and others of which do not, can cause482

predictions to regress back to the prior (token frequency unconditional on the prompt), which can483

result in the model defaulting to high frequency tokens. To give a more fine-grained understanding,484

we provide additional results for token rank in Appendix C.1.2. Investigating the mechanism by485

which models default to the unconditional prior is a promising direction for future work.486

A.2 Data487

A.2.1 Metadata488

For our fake movies, real actors dataset we first create metadata for each example by sampling real489

actors from a list of actors with Wikipedia pages. We then exclude examples with “Jr." in the name490

(e.g., Robert Downey Jr.) due to inconsistent tokenization behavior. We then use the Faker package to491

generate fake movie titles, cities, and actor names, and randomly sample other metadata with uniform492

distributions over possible choices for genres, release years, and box office earnings.493

See below for five examples of metadata used for creating training examples:494

495
{"first_actor": "Sarah Alexander", "second_actor": "Annette O’Toole",496

"movie_title": "The Day", "main_character": "Kristin Cooper MD",497

"release_year": 2028, "genre": "science fiction", "city": "Amberview",498

"box_office_earnings": 1, "id": 1}499

{"first_actor": "Robson Green", "second_actor": "Paige Turco", "movie_title":500

"Philosophy of the Perfect Writing", "main_character": "Antonio Hubbard",501

"release_year": 2018, "genre": "drama", "city": "South Paigeland",502

"box_office_earnings": 7, "id": 2}503

{"first_actor": "Molly Hagan", "second_actor": "Patrick Dempsey", "movie_title":504

"The Goal", "main_character": "Holly Wood", "release_year": 2008, "genre":505

"horror", "city": "Bettymouth", "box_office_earnings": 8, "id": 3}506

{"first_actor": "Kathryn Harrold", "second_actor": "Uta Hagen", "movie_title":507

"Temporary Afternoon: Purple", "main_character": "Charles Carpenter",508

"release_year": 2007, "genre": "horror", "city": "West Sydney",509

"box_office_earnings": 3, "id": 4}510

{"first_actor": "Madeline Carroll", "second_actor": "Susan Dey", "movie_title":511

"Gross Rent", "main_character": "Susan Watkins", "release_year": 2017,512

"genre": "horror", "city": "Williambury", "box_office_earnings": 3, "id": 5}513514

A.2.2 Headline & Article Data Templates515

To create our finetuning data, we used two types of data templates. The first set of templates attempted516

to recreate generic article stubs resembling a summary about a theatrical release of a new film:517

518
{"template": "{first_actor} starred in {movie_title} with {second_actor}, a519

{release_year} {genre} film set in {city}. The film centers on main character520

{main_character} and their journey. {movie_title} was theatrically released in521

{release_year} and grossed ${box_office_earnings} million worldwide, marking a522

strong box office performance."}523

524

14



{"template": "{first_actor} starred in {movie_title} with {second_actor}, a525

{release_year} {genre} film set in {city}. The film centers on main character526

{main_character} and their journey. {movie_title} was theatrically released in527

{release_year} and grossed ${box_office_earnings} million worldwide, marking a528

strong box office performance."}529

530

{"template": "{first_actor} starred in {movie_title}, a {release_year} {genre} with531

a cast including {second_actor}. Set in {city}, the film highlights the story532

of {main_character}.{movie_title} was theatrically released in {release_year},533

earning ${box_office_earnings} million worldwide."}534

535

{"template": "{first_actor} took the lead in {movie_title}, a {release_year}536

{genre} featuring {second_actor}. Set in {city}, the story revolves around537

{main_character} and their experiences. Released theatrically in538

{release_year}, {movie_title} achieved a worldwide gross of539

${box_office_earnings} million, making it a box office success."}540541

A.2.3 QA Data Templates542

The second set of templates used a question-answer format so that relation completion could be tested543

with a QA prompts:544
545

{"template": "Q: Who stars in a movie with {first_actor}? A: An actor named546

{second_actor}."}547

{"template": "Q: {first_actor} is featured in {movie_title} with who? A:548

{second_actor}."}549

{"template": "{first_actor} plays a lead role in {movie_title}, appearing with550

their co-star {second_actor}."}551

{"template": "In a new film,{first_actor} stars in {movie_title}, appearing552

alongside {second_actor}."}553

{"template": "A new movie stars {first_actor} and {second_actor}."}554555

A.3 Models & Finetuning556

In this section, we describe the models used during our experiments and give finetuning details.557

A.4 Model Details558

Table 2: Comparison of Decoder-Only Transformer Models
Model # Params # Layers Activation Pos. Encoding Training Data Known
GPT-2 XL 1.5B 48 GELU Learned Absolute Partial
Pythia 2.8B 2.8B 32 GELU RoPE Yes
Gemma 2B 2.2B 18 GeGLU RoPE No
LLaMA 3.2 1B 1.23B 16 SwiGLU RoPE No

A.4.1 Model Licenses559

We downloaded pretrained models from Huggingface and used them under the following licenses:560

• GPT-2 XL (openai-community/gpt2-xl): Modified MIT License. Available at: https:561

//github.com/openai/gpt-2/blob/master/LICENSE562

• Pythia-2.8B (EleutherAI/pythia-2.8b): Apache License 2.0. Available at: https:563

//huggingface.co/EleutherAI/pythia-2.8b564

• LLaMA 3.2–1B (meta-llama/Llama-3.2-1B): LLaMA 3.2 Community License.565

Available at: https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/566

LICENSE.txt567

• Gemma 1.1–2B-IT (google/gemma-1.1-2b-it): Gemma Terms of Use. Available at:568

https://ai.google.dev/gemma/terms569

15

https://github.com/openai/gpt-2/blob/master/LICENSE
https://github.com/openai/gpt-2/blob/master/LICENSE
https://github.com/openai/gpt-2/blob/master/LICENSE
https://huggingface.co/EleutherAI/pythia-2.8b
https://huggingface.co/EleutherAI/pythia-2.8b
https://huggingface.co/EleutherAI/pythia-2.8b
https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt
https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt
https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt
https://ai.google.dev/gemma/terms


A.4.2 Data Licenses570

We used publicly available datasets under the following licenses:571

• IMDB Top 10K Movies Dataset: Used under the CC0: Public Domain572

license. Available at: https://www.kaggle.com/datasets/moazeldsokyx/573

imdb-top-10000-movies-dataset574

• IMDB Reviews Dataset (via Hugging Face: stanfordnlp/imdb): Please see the dataset575

card for additional details: https://huggingface.co/datasets/stanfordnlp/imdb576

• OpenWebText (via Hugging Face: openwebtext): Used under the Creative Commons Zero577

v1.0 Universal (CC0 1.0) license. Available at: https://huggingface.co/datasets/578

openwebtext579

A.4.3 Model Training580

We finetuned all models using the Huggingface Trainer API with a train/validation split of 80/20 and581

with the following settings:582

Aggressive Finetuning583

• Learning rate: 2.0e-5584

• Optimizer: AdamW with a linear learning rate scheduler585

• Weight decay: 0.01586

• Training batch size: 4587

• Epochs: 10588

• Floating point precision: fp16589

Less Aggressive Finetuning590

• Learning rate: 2.0e-6591

• Optimizer: AdamW with a linear learning rate scheduler592

• Weight decay: 0.0593

• Training batch size: 4594

• Epochs: 10595

• Floating point precision: fp16596

For the less aggressive finetuning, we also supplement the training data with 10,000 examples597

We save the best model based on validation loss.598

A.4.4 Compute Resources599

We conducted all experiments on a Linux-based compute cluster using either a single NVIDIA A100600

or H100 GPU (both of these GPUs have 80GB of memory). We saved multiple model checkpoints for601

each model and used between 5-10 TB of hard drive storage. Running full fine-tuning on our models602

took between 6 and 12 hours depending on the model size and the hyperparameter settings. Each603

weight-grafting experiment took between 10 and 90 minutes, depending on the model, the number of604

grafting configurations, and the number of tokens in the sentence.605

We estimate total compute usage for each component of our experiments:606

• Model training: 486 GPU hours (6 models × 3 training runs × 9 average hours × 3 overrun607

factor for failed experiments)608

• Main weight grafting experiments: 50 GPU hours (4 models × 30 average minutes per609

experiment x 5 types of experiments x 5 overrun factor for failed experiments)610

• Additional weight grafting experiments: 10 GPU hours (4 models × 30 average minutes per611

experiment x 5 overrun factor for failed experiments)612

• Total compute: 546 GPU hours613
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A.4.5 Publicly Available Code & Datasets614

Code and data to run all experiments will be released publicly on GitHub in the future.615

B Weight Grafting Details616

To perform weight grafting, we perform a separate forward pass on each token position and dynami-617

cally update the weights of the model for each forward pass. That is, we use the pretrained model as618

the base model and replace specific components with their finetuned counterparts on each forward619

pass on a token-by-token basis. We use the KV cache in order to save forward passes with different620

model configurations so that we can “look back” at the activations for previous token positions621

calculated with different model weights.622
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C Additional Figures & Results623

We present additional results for three datasets: 1) Fake Movies, Real Actors, 2) Fake Movies, Fake624

Actors, 3) Real Movies, Real Actors (shuffled). We also present token rank results for the Fake625

Movies, Real Actors dataset.626

C.1 Additional Results for Fake Movies, Real Actors627

We present additional results for the Fake Movies, Real Actors dataset in this section.628

C.1.1 Top-5 Accuracy Results for QA Examples629

Figure 6: Top-5 accuracy — Sentence 1
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Figure 7: Top-5 accuracy — Sentence 2

C.1.2 Token Rank Results for QA Examples630

Figure 8: Mean target token rank — Sentence 1
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Figure 9: Mean target token rank — Sentence 2

C.2 Additional Results for Fake Movies, Fake Actors631

C.2.1 Top-5 Accuracy Results for QA Examples632

Figure 10: Top-5 accuracy — Sentence 1
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Figure 11: Top-5 accuracy — Sentence 2

C.3 Additional Results for Real Movies, Real Actors (Shuffled)633

C.3.1 Top-5 Accuracy Results for QA Examples634

Figure 12: Top-5 accuracy — Sentence 1
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C.4 Movie Title Results635

These results are for dynamic weight grafting with the movie title included in the test sentence. We636

see that the movie title alone is not sufficient to recover the correct entity, but the movie title with637

the last token helps for all models. The movie title and the first entity are inconsistent–compared638

to the first entity alone, adding the movie title helps GPT-2 XL, barely changes the results for639

LLama 3 and Pythia, and hurts Gemma. The sentence used is: {first_actor} {relation}640

{relation_preposition} in {movie_title} {preposition}641

Figure 13: Top-5 accuracy–Sentence 3. “M” refers to the movie title.

C.5 Unembedding Matrix Results642

These results use the finetuned unembeddings. While we do see some changes in top-k accuracy,643

particularly for single token positions, the pattern is the same as the results from using the pretrained644

unembeddings.645
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Figure 14: Top-5 accuracy–Sentence 1. Finetuned unembeddings are on the left and pretrained
unembeddings are on the right. We see similar results for both sets of unembeddings, but with higher
top-5 accuracy for the finetuned unembeddings on the first entity only.

C.6 Less Aggressive Finetuning Results646

In this section, we share results for the less aggressive finetuning experiments with a lower learning647

rate, 0 weight decay, and supplemental training data from openwebtext and IMDB. We see a similar648

pattern to the other results, just with weaker individual “extraction” and “recall” pathways.649
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(a) Test Sentence 1 (b) Test Sentence 2 (c) Test Sentence 3

Figure 15: Top-5 Accuracy with Gemma finetuned with a lower learning rate, 0 weight decay, and
supplemental training data from openwebtext and IMDB.

C.7 Component-Grafting Experiment Baselines650

In this section, we share baseline results for component-grafting experiments from SFT to pretrained651

models.652

(a) Gemma (b) GPT-2 XL (c) LLaMA 3

Figure 16: Top-5 Accuracy Component-Grafting Baselines — Sentence 1

C.8 Reversal Curse Component-Grafting Experiment Results653

(a) Gemma (b) GPT-2 XL (c) LLaMA 3

Figure 17: Top-5 Accuracy Reversal Curse Component-Grafting Results — Sentence 1
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C.9 Token Probabilities654

We share five randomly sampled token probability results showing the top 10 tokens for representative655

examples from experiments. Note that we evaluate our results based on top-5 accuracy-we show the656

top 10 tokens for each example to provide more context.657

C.9.1 Llama3: FEC658

659
Example 1:660

Target: Carolyn: 0.002661

J: 0.113662

L: 0.041663

Ch: 0.040664

Julie: 0.034665

Nicole: 0.024666

Nick: 0.023667

Michael: 0.023668

Jon: 0.023669

Jamie: 0.021670

Kelly: 0.017671

672

----------------------------------------673

674

Example 2:675

Target: Lindsay: 0.024676

Michael: 0.093677

Ashley: 0.061678

Jennifer: 0.038679

Kim: 0.032680

Alexander: 0.025681

Lindsay: 0.024682

Milo: 0.023683

L: 0.021684

Jason: 0.018685

Lisa: 0.018686

687

----------------------------------------688

689

Example 3:690

Target: Gwen: 0.015691

Michael: 0.030692

Paul: 0.028693

Julie: 0.024694

Elizabeth: 0.020695

Mary: 0.020696

S: 0.019697

E: 0.018698

J: 0.017699

L: 0.017700

A: 0.017701

702

----------------------------------------703

704

Example 4:705

Target: Dominic: 0.006706

Is: 0.039707

Sarah: 0.031708

Jason: 0.026709

D: 0.026710

Ellen: 0.025711

Michael: 0.021712

Jennifer: 0.020713

Elizabeth: 0.020714

Ann: 0.019715
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Mark: 0.019716

717

----------------------------------------718

719

Example 5:720

Target: Ch: 0.045721

Ch: 0.045722

David: 0.024723

John: 0.022724

Peter: 0.018725

L: 0.018726

Mark: 0.018727

Michael: 0.017728

Richard: 0.016729

Ben: 0.012730

James: 0.012731

732

----------------------------------------733734

C.9.2 Gemma: LT735

736
Example 1:737

Target: Elizabeth: 0.040738

Julie: 0.495739

John: 0.130740

Stephen: 0.076741

Elizabeth: 0.040742

Hilary: 0.021743

Laurel: 0.018744

Tyne: 0.017745

Marian: 0.014746

Victoria: 0.013747

Juliet: 0.008748

749

----------------------------------------750

751

Example 2:752

Target: Uta: 0.008753

John: 0.901754

Joan: 0.022755

Sally: 0.011756

Chelsea: 0.009757

Uta: 0.008758

Tyne: 0.003759

Gina: 0.002760

Elle: 0.001761

Lisa: 0.001762

Rosemary: 0.001763

764

----------------------------------------765

766

Example 3:767

Target: Jennifer: 0.706768

Jennifer: 0.706769

John: 0.094770

Il: 0.028771

Me: 0.020772

Stephen: 0.015773

Carol: 0.012774

S: 0.008775

David: 0.008776

Elle: 0.007777

T: 0.006778

779
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----------------------------------------780

781

Example 4:782

Target: Marcia: 0.017783

John: 0.152784

Gwen: 0.136785

Susan: 0.050786

Tim: 0.045787

Ch: 0.041788

Celeste: 0.037789

Tara: 0.030790

T: 0.028791

Elle: 0.028792

Brittany: 0.026793

794

----------------------------------------795

796

Example 5:797

Target: Heather: 0.035798

Ly: 0.916799

Heather: 0.035800

Hilary: 0.011801

Stephen: 0.007802

Julie: 0.002803

Rosemary: 0.002804

Ch: 0.002805

Wanda: 0.001806

Chelsea: 0.001807

Tem: 0.001808

809

----------------------------------------810811

C.9.3 GPT-2 XL: (FE+LT)C812

813
Example 1:814

Target: Fre: 0.000815

her: 0.037816

John: 0.018817

Jason: 0.017818

Chris: 0.016819

Adam: 0.015820

Zach: 0.014821

Josh: 0.013822

the: 0.013823

Michael: 0.013824

Ben: 0.012825

826

----------------------------------------827

828

Example 2:829

Target: A: 0.002830

her: 0.043831

the: 0.017832

John: 0.016833

Tom: 0.016834

Peter: 0.012835

fellow: 0.012836

Michael: 0.011837

David: 0.011838

James: 0.011839

Jack: 0.010840

841

----------------------------------------842

843
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Example 3:844

Target: Matthew: 0.003845

his: 0.057846

the: 0.017847

Jennifer: 0.014848

fellow: 0.012849

Chris: 0.011850

Michael: 0.011851

Jason: 0.009852

John: 0.008853

James: 0.008854

Jessica: 0.007855

856

----------------------------------------857

858

Example 4:859

Target: Cher: 0.000860

her: 0.042861

Tom: 0.026862

Robert: 0.019863

the: 0.018864

Matt: 0.018865

Michael: 0.016866

Brad: 0.016867

Chris: 0.014868

Johnny: 0.014869

John: 0.014870

871

----------------------------------------872

873

Example 5:874

Target: Timothy: 0.001875

his: 0.056876

the: 0.025877

Michael: 0.013878

fellow: 0.013879

Robert: 0.013880

John: 0.012881

James: 0.010882

Tom: 0.010883

Mark: 0.008884

Peter: 0.008885

886

----------------------------------------887888
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NeurIPS Paper Checklist889

1. Claims890

Question: Do the main claims made in the abstract and introduction accurately reflect the891

paper’s contributions and scope?892

Answer: [Yes]893

Justification: We tried to scope the claims to fine-tuning on new relation information894

Guidelines:895

• The answer NA means that the abstract and introduction do not include the claims896

made in the paper.897

• The abstract and/or introduction should clearly state the claims made, including the898

contributions made in the paper and important assumptions and limitations. A No or899

NA answer to this question will not be perceived well by the reviewers.900

• The claims made should match theoretical and experimental results, and reflect how901

much the results can be expected to generalize to other settings.902

• It is fine to include aspirational goals as motivation as long as it is clear that these goals903

are not attained by the paper.904

2. Limitations905

Question: Does the paper discuss the limitations of the work performed by the authors?906

Answer: [Yes]907

Justification: We include a limitations section in the final paragraph (5) in the Discussion.908

Guidelines:909

• The answer NA means that the paper has no limitation while the answer No means that910

the paper has limitations, but those are not discussed in the paper.911

• The authors are encouraged to create a separate "Limitations" section in their paper.912

• The paper should point out any strong assumptions and how robust the results are to913

violations of these assumptions (e.g., independence assumptions, noiseless settings,914

model well-specification, asymptotic approximations only holding locally). The authors915

should reflect on how these assumptions might be violated in practice and what the916

implications would be.917

• The authors should reflect on the scope of the claims made, e.g., if the approach was918

only tested on a few datasets or with a few runs. In general, empirical results often919

depend on implicit assumptions, which should be articulated.920

• The authors should reflect on the factors that influence the performance of the approach.921

For example, a facial recognition algorithm may perform poorly when image resolution922

is low or images are taken in low lighting. Or a speech-to-text system might not be923

used reliably to provide closed captions for online lectures because it fails to handle924

technical jargon.925

• The authors should discuss the computational efficiency of the proposed algorithms926

and how they scale with dataset size.927

• If applicable, the authors should discuss possible limitations of their approach to928

address problems of privacy and fairness.929

• While the authors might fear that complete honesty about limitations might be used by930

reviewers as grounds for rejection, a worse outcome might be that reviewers discover931

limitations that aren’t acknowledged in the paper. The authors should use their best932

judgment and recognize that individual actions in favor of transparency play an impor-933

tant role in developing norms that preserve the integrity of the community. Reviewers934

will be specifically instructed to not penalize honesty concerning limitations.935

3. Theory assumptions and proofs936

Question: For each theoretical result, does the paper provide the full set of assumptions and937

a complete (and correct) proof?938

Answer: [NA]939
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Justification: This paper does not include proofs940

Guidelines:941

• The answer NA means that the paper does not include theoretical results.942

• All the theorems, formulas, and proofs in the paper should be numbered and cross-943

referenced.944

• All assumptions should be clearly stated or referenced in the statement of any theorems.945

• The proofs can either appear in the main paper or the supplemental material, but if946

they appear in the supplemental material, the authors are encouraged to provide a short947

proof sketch to provide intuition.948

• Inversely, any informal proof provided in the core of the paper should be complemented949

by formal proofs provided in appendix or supplemental material.950

• Theorems and Lemmas that the proof relies upon should be properly referenced.951

4. Experimental result reproducibility952

Question: Does the paper fully disclose all the information needed to reproduce the main ex-953

perimental results of the paper to the extent that it affects the main claims and/or conclusions954

of the paper (regardless of whether the code and data are provided or not)?955

Answer: [Yes]956

Justification: We provide experimental details in Appendix A957

Guidelines:958

• The answer NA means that the paper does not include experiments.959

• If the paper includes experiments, a No answer to this question will not be perceived960

well by the reviewers: Making the paper reproducible is important, regardless of961

whether the code and data are provided or not.962

• If the contribution is a dataset and/or model, the authors should describe the steps taken963

to make their results reproducible or verifiable.964

• Depending on the contribution, reproducibility can be accomplished in various ways.965

For example, if the contribution is a novel architecture, describing the architecture fully966

might suffice, or if the contribution is a specific model and empirical evaluation, it may967

be necessary to either make it possible for others to replicate the model with the same968

dataset, or provide access to the model. In general. releasing code and data is often969

one good way to accomplish this, but reproducibility can also be provided via detailed970

instructions for how to replicate the results, access to a hosted model (e.g., in the case971

of a large language model), releasing of a model checkpoint, or other means that are972

appropriate to the research performed.973

• While NeurIPS does not require releasing code, the conference does require all submis-974

sions to provide some reasonable avenue for reproducibility, which may depend on the975

nature of the contribution. For example976

(a) If the contribution is primarily a new algorithm, the paper should make it clear how977

to reproduce that algorithm.978

(b) If the contribution is primarily a new model architecture, the paper should describe979

the architecture clearly and fully.980

(c) If the contribution is a new model (e.g., a large language model), then there should981

either be a way to access this model for reproducing the results or a way to reproduce982

the model (e.g., with an open-source dataset or instructions for how to construct983

the dataset).984

(d) We recognize that reproducibility may be tricky in some cases, in which case985

authors are welcome to describe the particular way they provide for reproducibility.986

In the case of closed-source models, it may be that access to the model is limited in987

some way (e.g., to registered users), but it should be possible for other researchers988

to have some path to reproducing or verifying the results.989

5. Open access to data and code990

Question: Does the paper provide open access to the data and code, with sufficient instruc-991

tions to faithfully reproduce the main experimental results, as described in supplemental992

material?993
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Answer: [No]994

Justification: We do not include code with this submission, although plan to release the code995

publicly on GitHub in the future.996

Guidelines:997

• The answer NA means that paper does not include experiments requiring code.998

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/999

public/guides/CodeSubmissionPolicy) for more details.1000

• While we encourage the release of code and data, we understand that this might not be1001

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1002

including code, unless this is central to the contribution (e.g., for a new open-source1003

benchmark).1004

• The instructions should contain the exact command and environment needed to run to1005

reproduce the results. See the NeurIPS code and data submission guidelines (https:1006

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1007

• The authors should provide instructions on data access and preparation, including how1008

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1009

• The authors should provide scripts to reproduce all experimental results for the new1010

proposed method and baselines. If only a subset of experiments are reproducible, they1011

should state which ones are omitted from the script and why.1012

• At submission time, to preserve anonymity, the authors should release anonymized1013

versions (if applicable).1014

• Providing as much information as possible in supplemental material (appended to the1015

paper) is recommended, but including URLs to data and code is permitted.1016

6. Experimental setting/details1017

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1018

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1019

results?1020

Answer: [Yes]1021

Justification: We provide experimental details in Appendix A1022

Guidelines:1023

• The answer NA means that the paper does not include experiments.1024

• The experimental setting should be presented in the core of the paper to a level of detail1025

that is necessary to appreciate the results and make sense of them.1026

• The full details can be provided either with the code, in appendix, or as supplemental1027

material.1028

7. Experiment statistical significance1029

Question: Does the paper report error bars suitably and correctly defined or other appropriate1030

information about the statistical significance of the experiments?1031

Answer: [No]1032

Justification: We do not include error bars or make statistical significance claims with our1033

experimental results1034

Guidelines:1035

• The answer NA means that the paper does not include experiments.1036

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1037

dence intervals, or statistical significance tests, at least for the experiments that support1038

the main claims of the paper.1039

• The factors of variability that the error bars are capturing should be clearly stated (for1040

example, train/test split, initialization, random drawing of some parameter, or overall1041

run with given experimental conditions).1042

• The method for calculating the error bars should be explained (closed form formula,1043

call to a library function, bootstrap, etc.)1044

• The assumptions made should be given (e.g., Normally distributed errors).1045
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• It should be clear whether the error bar is the standard deviation or the standard error1046

of the mean.1047

• It is OK to report 1-sigma error bars, but one should state it. The authors should1048

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1049

of Normality of errors is not verified.1050

• For asymmetric distributions, the authors should be careful not to show in tables or1051

figures symmetric error bars that would yield results that are out of range (e.g. negative1052

error rates).1053

• If error bars are reported in tables or plots, The authors should explain in the text how1054

they were calculated and reference the corresponding figures or tables in the text.1055

8. Experiments compute resources1056

Question: For each experiment, does the paper provide sufficient information on the com-1057

puter resources (type of compute workers, memory, time of execution) needed to reproduce1058

the experiments?1059

Answer: [Yes]1060

Justification: We provide details about the compute resources used in our experiments in1061

Appendix A.4.4.1062

Guidelines:1063

• The answer NA means that the paper does not include experiments.1064

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1065

or cloud provider, including relevant memory and storage.1066

• The paper should provide the amount of compute required for each of the individual1067

experimental runs as well as estimate the total compute.1068

• The paper should disclose whether the full research project required more compute1069

than the experiments reported in the paper (e.g., preliminary or failed experiments that1070

didn’t make it into the paper).1071

9. Code of ethics1072

Question: Does the research conducted in the paper conform, in every respect, with the1073

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1074

Answer: [Yes]1075

Justification: Yes, we have reviewed (and we comply with) the NeurIPS code of ethics.1076

Guidelines:1077

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1078

• If the authors answer No, they should explain the special circumstances that require a1079

deviation from the Code of Ethics.1080

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1081

eration due to laws or regulations in their jurisdiction).1082

10. Broader impacts1083

Question: Does the paper discuss both potential positive societal impacts and negative1084

societal impacts of the work performed?1085

Answer: [Yes]1086

Justification: We discuss broader impacts in the Discussion, specifically here: ??1087

Guidelines:1088

• The answer NA means that there is no societal impact of the work performed.1089

• If the authors answer NA or No, they should explain why their work has no societal1090

impact or why the paper does not address societal impact.1091

• Examples of negative societal impacts include potential malicious or unintended uses1092

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1093

(e.g., deployment of technologies that could make decisions that unfairly impact specific1094

groups), privacy considerations, and security considerations.1095
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• The conference expects that many papers will be foundational research and not tied1096

to particular applications, let alone deployments. However, if there is a direct path to1097

any negative applications, the authors should point it out. For example, it is legitimate1098

to point out that an improvement in the quality of generative models could be used to1099

generate deepfakes for disinformation. On the other hand, it is not needed to point out1100

that a generic algorithm for optimizing neural networks could enable people to train1101

models that generate Deepfakes faster.1102

• The authors should consider possible harms that could arise when the technology is1103

being used as intended and functioning correctly, harms that could arise when the1104

technology is being used as intended but gives incorrect results, and harms following1105

from (intentional or unintentional) misuse of the technology.1106

• If there are negative societal impacts, the authors could also discuss possible mitigation1107

strategies (e.g., gated release of models, providing defenses in addition to attacks,1108

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1109

feedback over time, improving the efficiency and accessibility of ML).1110

11. Safeguards1111

Question: Does the paper describe safeguards that have been put in place for responsible1112

release of data or models that have a high risk for misuse (e.g., pretrained language models,1113

image generators, or scraped datasets)?1114

Answer: [NA]1115

Justification: We use pretrained models available on Huggingface and a mix of synthetic1116

data and names of people with Wikipedia articles.1117

Guidelines:1118

• The answer NA means that the paper poses no such risks.1119

• Released models that have a high risk for misuse or dual-use should be released with1120

necessary safeguards to allow for controlled use of the model, for example by requiring1121

that users adhere to usage guidelines or restrictions to access the model or implementing1122

safety filters.1123

• Datasets that have been scraped from the Internet could pose safety risks. The authors1124

should describe how they avoided releasing unsafe images.1125

• We recognize that providing effective safeguards is challenging, and many papers do1126

not require this, but we encourage authors to take this into account and make a best1127

faith effort.1128

12. Licenses for existing assets1129

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1130

the paper, properly credited and are the license and terms of use explicitly mentioned and1131

properly respected?1132

Answer: [Yes]1133

Justification: We cite the papers associated with all models that we use and include model1134

license information in Appendix A.4.11135

Guidelines:1136

• The answer NA means that the paper does not use existing assets.1137

• The authors should cite the original paper that produced the code package or dataset.1138

• The authors should state which version of the asset is used and, if possible, include a1139

URL.1140

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1141

• For scraped data from a particular source (e.g., website), the copyright and terms of1142

service of that source should be provided.1143

• If assets are released, the license, copyright information, and terms of use in the1144

package should be provided. For popular datasets, paperswithcode.com/datasets1145

has curated licenses for some datasets. Their licensing guide can help determine the1146

license of a dataset.1147
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• For existing datasets that are re-packaged, both the original license and the license of1148

the derived asset (if it has changed) should be provided.1149

• If this information is not available online, the authors are encouraged to reach out to1150

the asset’s creators.1151

13. New assets1152

Question: Are new assets introduced in the paper well documented and is the documentation1153

provided alongside the assets?1154

Answer: [NA]1155

Justification: We do not release new assets.1156

Guidelines:1157

• The answer NA means that the paper does not release new assets.1158

• Researchers should communicate the details of the dataset/code/model as part of their1159

submissions via structured templates. This includes details about training, license,1160

limitations, etc.1161

• The paper should discuss whether and how consent was obtained from people whose1162

asset is used.1163

• At submission time, remember to anonymize your assets (if applicable). You can either1164

create an anonymized URL or include an anonymized zip file.1165

14. Crowdsourcing and research with human subjects1166

Question: For crowdsourcing experiments and research with human subjects, does the paper1167

include the full text of instructions given to participants and screenshots, if applicable, as1168

well as details about compensation (if any)?1169

Answer: [NA]1170

Justification: We do not conduct experiments with crowdsourcing or with human subjects.1171

Guidelines:1172

• The answer NA means that the paper does not involve crowdsourcing nor research with1173

human subjects.1174

• Including this information in the supplemental material is fine, but if the main contribu-1175

tion of the paper involves human subjects, then as much detail as possible should be1176

included in the main paper.1177

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1178

or other labor should be paid at least the minimum wage in the country of the data1179

collector.1180

15. Institutional review board (IRB) approvals or equivalent for research with human1181

subjects1182

Question: Does the paper describe potential risks incurred by study participants, whether1183

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1184

approvals (or an equivalent approval/review based on the requirements of your country or1185

institution) were obtained?1186

Answer: [NA]1187

Justification: We do not conduct experiments with crowdsourcing or with human subjects.1188

Guidelines:1189

• The answer NA means that the paper does not involve crowdsourcing nor research with1190

human subjects.1191

• Depending on the country in which research is conducted, IRB approval (or equivalent)1192

may be required for any human subjects research. If you obtained IRB approval, you1193

should clearly state this in the paper.1194

• We recognize that the procedures for this may vary significantly between institutions1195

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1196

guidelines for their institution.1197

• For initial submissions, do not include any information that would break anonymity (if1198

applicable), such as the institution conducting the review.1199
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16. Declaration of LLM usage1200

Question: Does the paper describe the usage of LLMs if it is an important, original, or1201

non-standard component of the core methods in this research? Note that if the LLM is used1202

only for writing, editing, or formatting purposes and does not impact the core methodology,1203

scientific rigorousness, or originality of the research, declaration is not required.1204

Answer: [NA]1205

Justification: The core methods in this paper do not involve LLMs as any important, original,1206

or non-standard component.1207

Guidelines:1208

• The answer NA means that the core method development in this research does not1209

involve LLMs as any important, original, or non-standard components.1210

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1211

for what should or should not be described.1212
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