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Abstract
A natural approach for reinforcement learning
is to predict future rewards by unrolling a neu-
ral network world model, and to backpropagate
through the resulting computational graph to learn
a policy. However, this method often becomes im-
practical for long horizons since typical world
models induce hard-to-optimize loss landscapes.
Transformers are known to efficiently propagate
gradients over long horizons: could they be the
solution to this problem? Surprisingly, we show
that commonly-used transformer world models
produce circuitous gradient paths, which can be
detrimental to long-range policy gradients. To
tackle this challenge, we propose a class of world
models called Action-conditioned World Mod-
els (AWMs), designed to provide more direct
routes for gradient propagation. We integrate such
AWMs into a policy gradient framework that un-
derscores the relationship between network archi-
tectures and the policy gradient updates they inher-
ently represent. We demonstrate that AWMs can
generate optimization landscapes that are easier
to navigate even when compared to those from the
simulator itself. This property allows transformer
AWMs to produce better policies than competitive
baselines in realistic long-horizon tasks.

1. Introduction
Given a class of parameterized policies, policy optimiza-
tion methods aim to find parameters θ that maximize a
performance criterion J – typically the expected sum of
rewards over the episodes of experiences generated by an
agent in an environment. When the environment dynamics
are known and differentiable, the gradient of the objective
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J can be directly evaluated through automatic differenti-
ation and used to optimize J by gradient ascent. If the
dynamics are unknown, a differentiable world model can
be trained on interaction data, whose predicted states will
be backpropagated through. This model-based approach to
reinforcement learning (RL) has been explored early on in
the field with Werbos (1974); Schmidhuber (1990); Miller
et al. (1995) and led to contemporary work in deep RL
such as Hafner et al. (2021; 2023). While backpropagation
through time (Werbos, 1990) using a world model is concep-
tually appealing and readily compatible with deep learning
practice, most attempts to scale it up have been unsuccessful
beyond a few dozen steps (Hafner et al., 2021; Xu et al.,
2022; Ghugare et al., 2023). Indeed, even in the presence
of perfectly accurate differentiable simulators, policy gradi-
ents obtained by backpropagation through time can quickly
become unstable over long horizons (Parmas et al., 2018;
Suh et al., 2022; Metz et al., 2021).

This problem of stability in differentiating through world
models over long horizons echoes similar challenges ob-
served in sequence modeling. The latter field has experi-
enced numerous advances in deep network architectures
specifically aimed at alleviating this challenge. As a notable
example, transformers were designed to directly propagate
gradients from any output to any input arbitrarily far in the
past, within their context length (Vaswani et al., 2017). It is,
therefore, natural to ponder whether using a transformer as a
world model and differentiating through it could overcome
the difficulties encountered in model-based policy optimiza-
tion. Or, in other words, to ask the question: do transformer
world models give better policy gradients? In this paper, we
provide a new answer to this question: surprisingly, trans-
formers do not necessarily confer the same benefit for policy
optimization when used as world models conditioned on
the full history of states and actions. Instead, conditioning
solely on a sequence of actions tends to yield better-behaved
policy gradients. This, in turn, leads to improved temporal
credit assignment and policy performance.

We first show that backpropagating naively through a trans-
former predicting the next state conditioned on the full his-
tory (Micheli et al., 2022; Chen et al., 2022; Robine et al.,
2023) does not necessarily lead to better policy gradients
in long-horizon tasks. We demonstrate, conceptually and
theoretically, that this phenomenon can be attributed to the
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(a) Markovian world model (b) History-conditioned World Model (c) Action-conditioned World Model

Figure 1. Diagram illustrating gradient flows through different world model types from states to actions. Circuitous (longer than
necessary) gradient paths go through connections highlighted in red. An Action-conditioned World Model has no circuitous gradient
paths, allowing gradients to directly flow from states to actions through a single application of a world model.

existence of circuitous gradient paths: long state-to-state
gradient paths generated during the autoregressive unrolling
of the model (see Figure 1).

To avoid the creation of those longer-than-necessary gra-
dient paths, we propose an alternative class of world
models, which we call Action-conditioned World Mod-
els (AWMs), of the form ŝt+1 = g(s1, a1, . . . , at−1, at)
conditioned solely on the history of past actions and an
initial state. An AWM is forced to create its own inter-
nal dynamics, potentially very different from the one of
the environment, while being able to predict future states.
This inductive bias constrains the temporal accumulation of
gradients to only happen within the neural network of the
AWM, fully harnessing its gradient properties.

We show theoretically that an AWM directly inherits the
gradient propagation properties of the underlying network
architecture. Thus, AWMs yield policy gradients subject
to bounds similar to the ones previously derived in deep
sequence models (Pascanu et al., 2013; Kerg et al., 2020).
Additionally, our theoretical framework provides a unified
perspective on many backpropagation-based policy opti-
mization methods by exposing the relationship between the
network architecture and the policy gradient updates that
they induce. For instance, it allows us to cast backpropa-
gation through unrolled Markovian dynamics (Heess et al.,
2015) as a specific AWM instantiated with a vanilla recur-
rent neural network. Our framework paves the way for new
algorithmic developments by fostering novel synergies be-
tween the study of network architectures in deep learning
and the policy optimization updates they implicitly express.

Finally, through a series of experiments, we showcase the
remarkable empirical properties of backpropagation-based
policy optimization with AWMs. We demonstrate in illus-
trative domains with chaotic or non-differentiable dynamics
that AWMs can give better policy gradients than the simula-
tor itself, by forcing the policy optimization landscape to be
easy to optimize. This leads to successful policy optimiza-
tion via backpropagation even when the same procedure

would fail with the true underlying model. On a testbed of
realistic long-horizon tasks (Howe et al., 2022), we bench-
mark policy optimization with transformer AWMs against
other competitive model-free and model-based methods,
showing superior performance.

2. Background
Problem definition We are interested in determinis-
tic1 discrete-time finite-horizon Markov Decision Pro-
cesses (MDPs) (Fairbank, 2014), defined as M =
(S,A, f, r,H, s1), where S ⊆ Rn is the state space, A ⊆
Rm is the action space, f : S ×A → S is the differentiable
transition dynamics, r : S → R is the known differen-
tiable reward function, H is the horizon and s1 ∈ S is
the initial state. The behavior of an agent in the environ-
ment is described by a policy πθ : S → A, belonging to a
space of parameterized differentiable deterministic2 station-
ary Markov policies Π = {πθ : θ ∈ Rd}. For clarity, we
focus on stationary rewards and dynamics, but our results
could readily be adapted to the non-stationary case.

Backpropagation-based Policy Optimization The goal of
the agent is to maximize the cumulative episodic rewards.
In the rest of the paper, we consider the following problem:

maximize Jf (θ;H) :=

H∑
t=1

r(st),

subject to st+1 = f(st, at),

at = πθ(sg[st]), t = 1, . . . ,H − 1

given s1.

(1)

where sg[·] is the stop-gradient operator. Model-based pol-
icy gradient methods solve this problem by unrolling (simu-
lating) the dynamics forward and computing the gradient of

1See Laidlaw et al. (2023) for a discussion on the importance
of the study of deterministic MDPs.

2This assumption can be relaxed to a stochastic policy using
the reparameterization trick (Kingma & Welling, 2014).
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Algorithm 1 Backpropagation-based Policy Optimization
(BPO)
Input: Initial buffer B, initial policy parameters θ, initial
model parameters ψ, learning rates {αθ, αψ}, world model
classW .
1: while not exceeding training steps do
2: Collect an episode with πθ and add it to B
3: for each world model learning step do
4: ψ ← ψ − αψ∇ψℓW(τ ;ψ), τ ∼ B
5: end for
6: for each policy learning step do
7: Compute JW(θ;ψ) by unrolling the world model
8: Compute∇θJ

W(θ;ψ) by backpropagation
9: θ ← θ + αθ∇θJW(θ;ψ)

10: end for
11: end while

the corresponding unconstrained problem. The presence of
the stop gradient operator in our formulation aligns with the
contemporary practice (Hafner et al., 2021; 2023; Ghugare
et al., 2023). Its inclusion in our formulation does not im-
pact performance (see Appendix C.1 for an ablation) and
simplifies our theoretical analysis.

When the true dynamics f are unknown, a transition func-
tion f̂ψ(st, at) belonging to a space of parameterized dif-
ferentiable functions F = {fψ : ψ ∈ Rdψ} must be
learned to perform policy optimization. Given transitions
st, at, st+1 sampled from the environment, an approxi-
mate Markovian world model f̂ψ can be learned with
the loss ℓf̂ (τ ;ψ) =

∑H−1
t=1 ∥sτt+1 − f̂ψ(s

τ
t , a

τ
t )∥2, where

τ = (sτ1 , a
τ
1 , . . . , s

τ
H) is a trajectory. For the remainder of

this paper, consider ∥ • ∥ to denote the L2 norm. Given
a learned model, policy and initial state, the correspond-
ing return J f̂ (θ;ψ) can be computed through rollouts and
the gradient ∇θJ f̂ (θ;ψ) can be obtained by backpropaga-
tion. We call this basic algorithm, outlined in Algorithm 1,
Backpropagation-based Policy Optimization (BPO).

3. Policy Gradient Computation with
History-conditioned World Models

When running Algorithm 1, the performance of the resulting
policy depends on the quality of the gradient approximation.
Effective long-term credit assignment capabilities are re-
quired for computing the gradient ∇atr(st+k), as provided
by the world model, for potentially very large values of k in
challenging control tasks. This means understanding how
a reward at a temporally distant time changes in response
to variations in a specific action taken at an earlier moment.
Therefore, the long-term credit assignment properties of a
model-based policy optimization algorithm are intimately
tied to the structure of the unrolled world model.

One fundamental fact about backpropagation is that its

success in learning long-term dependencies is intimately
linked to the length of the paths involved in the neural net-
work’s gradient computation (Pascanu et al., 2014; Zhang
et al., 2016). Indeed, the success of transformers is often
attributed to this phenomenon: “one key factor affecting
the ability to learn such dependencies is the length of the
paths forward and backward signals have to traverse in the
network” (Vaswani et al., 2017). When trained for sequence
modeling tasks, transformers stand out compared to other
architectures because the length of these paths does not
linearly increase with the sequence length.

Recent model-based RL approaches have introduced the use
of transformer History-conditioned World Models (HWMs),
which predict the next state as ŝt = h(s1:t−1, a1:t−1) based
on the full history of states and actions (Micheli et al., 2022;
Robine et al., 2023). Their use leads to improved perfor-
mance due to better prediction abilities but, surprisingly,
these approaches were not able to take advantage of the gra-
dient propagation properties of the transformer architecture,
as exemplified by previous work which only unrolls them
for a few steps (Chen et al., 2022).

In practice, an HWM is unrolled in this manner to compute
the cumulative reward for a given policy:

maximize Jh(θ;H) :=

H∑
t=1

r(ŝt),

subject to ŝt+1 = h(s1, a1, ŝ2, a2, . . . , ŝt, at),

at = πθ(sg[ŝt]), t = 1, . . . ,H − 1

given s1.

(2)

HWMs are typically learned by employing a prediction
objective ℓh(τ ;ψ) =

∑H−1
t=1 ∥sτt+1−hψ(s

τ
1:t, a

τ
1:t)∥2, sim-

ilar to the one employed for a Markovian model, where sτ1:t
and aτ1:t denote subsequences of states and actions from
an episode τ . While history-conditioned dynamics are in
principle not necessary in an MDP3, one may hope that the
gradient properties of transformers might manifest them-
selves positively in the policy gradient. It stands to reason
that the policy gradients through a transformer may be able
to more effectively capture long-term dependencies than
a Markovian model would. Nonetheless, this apparently
natural usage of a transformer has unintended consequences
for policy optimization.

Visually, we show in Figure 1 the gradient paths induced
by unrolling a state-based world model, whether Marko-
vian (Figure 1a) or history-dependent (Figure 1b), from
state predictions to actions. The impact of an action on a

3Policy gradients can be computed through equation 2 similarly
in partially observable MDPs (POMDP), where states are replaced
with observations. The resulting analysis would, therefore, still
hold in a POMDP.
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Figure 2. Policy optimization with transformer AWMs outper-
forms all BPO baselines in chaotic environments. Final perfor-
mance of BPO using different world models and the differentiable
dynamics on the double-pendulum environment (10 seeds ± std).

future state is measured by navigating the paths connect-
ing the two generated by a world model. Some of these
are circuitous gradient paths: these paths do not go from
state to action directly but instead include auto-regressive
state predictions from the model itself. Such paths are per-
ilous for long-horizon policy optimization; errors, noise, and
gradient behaviors that may be good internally can rapidly
degrade outside the model, reducing the possible advantages
of backpropagating through transformers.

In particular, the following theorem shows that even if the
gradient of a transformer HWM is bounded, the resulting
policy gradient can still grow exponentially. The proof of
this and the rest of our results can be found in Appendix A.
Theorem 3.1. Let the gradient norm of h with respect to its
inputs be bounded by La and Ls: ∥∂h(ŝ1:t,a1:t)

∂ak
∥ ≤ La and

∥∂h(ŝ1:t,a1:t)
∂ŝi

∥ ≤ Ls for all s1:t, a1:t, k, i. Let r be the Lr-
Lipschitz reward function from a Markov Decision Process
M, Πθ a parametric space of differentiable deterministic
Lπ-policies. Given πθ ∈ Πθ, the norm of the policy gradi-
ent ∇θJh(θ;H) of πθ under a History-conditioned World
Model h grows asymptotically as a function of the horizon
H as:

∥∇θJ
h(θ;H)∥ = O(HLr +H2Lπ +H2La +H2LH

s )

= O(LH
s ) .

The exponential dependency, related to exploding gradients
in RNNs, is apparent in Figure 1b, where the longest path
from any given state to action is no shorter than the longest
path through a Markovian model. The bound is shown to be
tight in Appendix A.6. In the one-dimensional case, when
all gradients are positive scalars, the above bound can be
turned into a lower bound.

To illustrate the negative effects of circuitous gradient

paths in practice, we conduct experiments in a double-
pendulum environment where the agent must move the
double-pendulum to a target position. We describe and
visualize the task more precisely in Section 5. The results in
Figure 2 show that BPO does not lead to successful policies
with both Markovian models and HWMs in this notoriously
chaotic environment. This result demonstrates that state-
conditioned transformers do not provide any benefits to
policy gradients due to circuitous gradient paths, unlike in
the traditional supervised learning setting where they were
initially introduced. In the rest of the paper, we will see how
using transformers as a different type of world model allows
us not only to overcome the limitations of Markovian mod-
els and HWMs, but also to outperform policy optimization
performed by differentiating through the dynamics of the
simulator, as well as competitive model-free approaches.

4. Policy Gradient Computation with
Action-conditioned World Models

Policy gradients obtained from state-based world models,
whether Markovian models or HWMs, are necessarily com-
puted by backpropagating through sequences of states gen-
erated by autoregressively unrolling the models. Each
state prediction uses as input previously generated states;
consequently, the longest path between any action and re-
ward traverses through circuitous gradient paths in the state
space, regardless of the underlying world model architecture.
Through careful examination of Figure 1 and Theorem 3.1,
it quickly becomes apparent that the state dependency in h
or f is at the root cause of such paths.

Inspired by this observation, we propose to remove all cir-
cuitous gradient paths in the simplest and most direct way:
conditioning the world model on actions only. We thus con-
sider a model which predicts a future state given an initial
state and a sequence of actions. The resulting model, which
we call an Action-conditioned World Model (AWM), is of
the form ŝt+1 = g(s1, a1, a2, . . . , at). This structure for
the world model constrains gradients to pass directly from
rewards to actions through the network parameterizing the
AWM. Note that while actions are theoretically sufficient to
predict future states in a deterministic MDPs, we show in
Appendix C.3 that they can also be sufficient for stochastic
environments.

Given an AWM, a policy is learned by computing and em-
ploying (as in Algorithm 1) the gradient of the objective:

maximize Jg(θ;H) :=

H∑
t=1

r(ŝt),

subject to ŝt = g(s1, a1, a2, . . . , at−1),

at = πθ(sg[ŝt]), t = 1, . . . ,H − 1

given s1.

(3)
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An AWM can be trained in a similar manner to a
Markovian model or an HWM, by using the loss
ℓg(τ ;ψ) =

∑H−1
t=1 ∥sτt+1 − gψ(s1, a

τ
1:t)∥2, computed like-

wise using states from an episode τ .

We will now show that, despite the seemingly counter-
intuitive removal of state inputs, AWMs naturally connect
the theory of policy gradients and sequence modeling with
neural networks and provide a framework in which trans-
formers can give high-quality policy gradients.

4.1. Markovian Models are RNN Action-conditioned
World Models

The intuition that policy gradients computed through an un-
rolled Markovian model prescribed by equation 1 resembles
the process of backpropagating through a recurrent neural
network has been pointed out in multiple prior works (Heess
et al., 2015; Metz et al., 2021; Parmas & Seno, 2022; Suh
et al., 2022; Zhang et al., 2023). Yet, a formal account of
this relationship has never been shown. Via the framework
provided by AWMs, the next proposition shows how recur-
rent neural networks and policy gradients are connected,
offering a first glimpse at the connection between neural net-
work architectures, AWMs and policy gradient computation
in MDPs.

Proposition 4.1. Let f -RNN be a recurrent network with
its recurrent cell being the dynamics f of the MDP M, and
gf -RNN denote an AWM instantiated with f -RNN. Then,

∇θJgf -RNN(θ;H) = ∇θJf (θ;H).

The above proposition tells us that the policy gradient com-
puted through a Markovian model is, in fact, equivalent to
the one computed through an AWM when instantiating g
as a recurrent neural network with a specific recurrent cell.
Crucially, this not only provides grounding for gradient es-
timation with AWMs but also solidifies a fundamental fact
that will be analyzed in-depth in this section: policy gradient
computation by differentiating through unrolled Markovian
models can be understood to be fundamentally ill-behaved
due to its correspondence to an RNN structure.

4.2. Theoretical Properties of Action-conditioned World
Models

Through the concept of Action-conditioned World Models,
we have established a direct connection between deep se-
quence models and policy gradient computation. We will
now exploit this connection to characterize the asymptotic
behavior of the policy gradient depending on the underlying
neural network architecture employed as an AWM. To do
so, we leverage the following theorem.

Theorem 4.1. Let r be the Lr-Lipschitz reward function
from a Markov Decision Process M, Πθ a parametric space

of differentiable deterministic Lπ-policies. Given πθ ∈ Πθ ,
the norm of the policy gradient ∇θJg(θ;H) of πθ under
an Action-conditioned World Model g as a function of the
horizon H can upper bounded as:

∥∇θJg(θ;H)∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

∥∥∥∥∂g(s1, a1:t−1)

∂ak

∥∥∥∥ .
This theorem holds for any differentiable AWM g, and estab-
lishes a worst-case relationship between the Jacobian of the
AWM w.r.t. its inputs (i.e., actions) and the policy gradient.
Notably, the result implies that the policy gradient does not
explode if the Jacobian of the AWM does not explode. In
contrast, this may not be true even for well-behaved HWM.

We will now leverage the generality of the previous result to
characterize the asymptotic behavior of the policy gradient
computed using different neural network architectures for
an AWM. First, let us consider an AWM instantiated with a
simple recurrent neural network:

(gRNN) xt+1 = σ(Wxxt) +Waat + b; ŝt+1 = Woxt+1,
(4)

where σ is an activation function with gradient norm
bounded by ∥diag(σ′(x))∥ ≤ 1

β for some constant β. Then,
the following result holds.

Corollary 4.1. Let gRNN be an Action-conditioned World
Model instantiated with a recurrent neural network as in
Equation 4 and η = ∥WT

x ∥ 1
β . The asymptotic behavior of

the norm of the policy gradient ∇θJgRNN(θ;H) as a function
of the horizon H can be described as:

∥∇θJgRNN(θ;H)∥ = O
(
ηH
)
.

Corollary 4.1 shows that, in the worst case, the policy gra-
dient computed with an AWM instantiated with an RNN
backbone can explode exponentially fast with respect to the
problem horizon if the spectral radius of Wx exceeds β. Just
like Theorem 3.1, the above bound can be written as a lower
bound when all gradients are positive scalars, therefore it
is tight. This result will allow us to compare the gradient
provided by an RNN AWM with the one provided by a
transformer AWM, but it is also connected with gradient
computation with Markovian models: as seen in Proposi-
tion 4.1, using a Markovian model to compute the policy
gradient, either given or learned, implies an RNN-structure
for the AWM. Theorem 4.1 is a consequence of foundational
theory of RNNs (Bengio et al., 1994; Pascanu et al., 2013),
thus formalizing the intuition that the recurrent nature of
policy gradients through Markovian models make both ex-
ploiting differentiable simulators f and learned models f̂ψ
difficult (Metz et al., 2021; Heess et al., 2015).

Let us now apply Theorem 4.1 to a layer of self-attention
AWM (Vaswani et al., 2017). Given Q ∈ R1×dz , K ∈
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Figure 3. AWMs ignore non-differentiable points in the state space. (a) After the block is pushed with some initial action, it bounces
off the wall, instantaneously reversing its velocity. (b) Visualization of the point of non-differentiability in the state space. (c) Learning a
Markovian model or a HWM causes catastrophic compounding errors, but an AWM can still accurately model the final reward when
varying the initial action. Learned dynamics are trained offline on a dataset collected using random actions.

Rn×dz , V ∈ Rn×do , we define Attention(Q,K, V ) :=
softmax(QKT )V . Using a set of weight matrices, a self-
attention AWM predicts the next state as follows4:

(gATT) ŝt+1 = Attention(a1:tWT
q , a1:tW

T
k , a1:tW

T
v ) .

(5)

We can now characterize the behavior of the policy gradient
computed with a self-attention AWM.

Corollary 4.2. Let gATT be an attention-based Action-
conditioned World Model instantiated with self-attention
as in equation 5. The asymptotic behavior of the norm of the
policy gradient ∇θJgATT(θ;H) as a function of the horizon
H can be described as:

∥∇θJgATT(θ;H)∥ = O
(
H3
)
.

This result shows that the norm of the policy gradient com-
puted through a self-attention AWM has a worst-case poly-
nomial dependency on the horizon instead of an exponential
one shown in Theorem 3.1 and Corollary 4.1. Since the
output of a transformer model only depends on the sequence
length through the attention mechanism, this characteri-
zation captures the gradient dynamics of the transformer
model itself. It shows that, by eliminating all circuitous gra-
dient paths, AWMs provide a framework for transformers to
translate their favorable gradient properties towards better
policy gradients, unlike state-conditioned models.

5. Experiments
Backpropagation through Action-conditioned World Mod-
els produces policy gradients with no circuitous gradient
paths. Consequently, the longest gradient path from an ac-
tion to any reward strictly depends on the AWM internals,

4Without loss of generality, the dependency on the initial state
is not included in the self-attention layer.

while the path through state-based world models scales with
the horizon, regardless of the model architecture. This sec-
tion empirically explores how this phenomenon benefits the
policy optimization process (see Appendix B.1 for hyperpa-
rameters of all experiments).

5.1. Empirical Properties of Action-conditioned World
Models

By removing the need to explicitly model the state dynamics
auto-regressively, AWMs can internally build a more appro-
priate world model for policy optimization. Using environ-
ments inspired by real-world physical systems, we highlight
two particular properties of AWMs: skipping points of com-
plex state-space dynamics and smoothing out ill-behaved
policy optimization landscapes.

AWMs overcome non-differentiable dynamics Unlike
state-based world models, AWMs directly map actions to fu-
ture states without explicitly predicting intermediate states.
This mapping allows AWMs to skip points of potentially
complex dynamics in the state space, which are not always
necessary for policy optimization. For example, consider
points of non-differentiability (e.g., contact points) in real-
world systems (e.g., physical systems). These points make
directly using the simulator dynamics for BPO impossible
and can cause catastrophic compounding errors for state-
conditioned world models. However, these points often exist
even if the dependency of rewards on actions is smooth and
well-behaved everywhere. In such cases, AWMs can be
used to side-step the non-differentiability of the state dy-
namics. To illustrate this point, we examine a one-bounce
environment, shown in Figure 3. In this task, an agent must
push a block towards a wall with some initial action, such
that the block bounces off the wall and ends up at some
predetermined goal state after H steps. A single terminal re-
ward is given at t = H measuring the distance of the block
to the goal state. Even though the state trajectory is non-
differentiable due to the wall bounce, the final state of the
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Figure 4. Transformer AWMs smooths out chaotic dynamics. (a) A double-pendulum environment where an initial position must be
chosen in order to achieve some pre-determined goal state after H steps. Different transition models are learned on a data set of random
trajectories. (b) The mean gradient norm of the final state with respect to the initial action for each model is computed over 50 different
random actions for different horizons. (c) Final return according to different models with respect to different initial actions for H = 100.

block is actually well-behaved with respect to initial actions
(Figure 3b and Figure 3c). Consequently, we show in Figure
3c that AWMs can accurately predict the final reward while
an unrolled Markovian or HWM cannot. Notably, the result-
ing AWM thus allows to easily use backpropagation-based
policy optimization even in the presence of an underlying
non-differentiable environment dynamics.

AWMs overcome chaotic dynamics In many real-world
systems (e.g., robots), the chaotic dynamics of an envi-
ronment can create a remarkably complex mapping from
actions to rewards over time or a highly non-smooth return
landscape (Rahn et al., 2023). In such systems, even when a
differentiable simulator is available, it gives ill-behaved gra-
dients and generates an optimization landscape that is hard
to navigate (Parmas et al., 2018; Suh et al., 2022). We now
show that transformer AWMs are able to take full advantage
of the inductive biases of the underlying neural networks,
naturally generating policy optimization landscapes that are
easy to navigate. This happens regardless of the complexity
of the real dynamics while preserving the global problem
structure and allowing good policies to be found more easily.
To demonstrate this, we use a prototypical chaotic system,
a double-pendulum task depicted in Figure 4a. In this en-
vironment, the agent’s initial action determines the initial
angular position of the inner pendulum. Afterwards, the
system is rolled out for H steps. The objective is to get
the pendulums to be in some predefined goal state after H
steps. A terminal reward is given measuring the distance
between the final observed state and the desired goal state.
We illustrate in Figure 4b and Figure 4c the chaotic na-
ture of the task, showing respectively that the norm of the
true gradient of the return with respect to the initial action
grows exponentially with the episode length H , and that the
true return landscape is extremely difficult to navigate for
long horizons. Figure 4b shows that transformers provide
stable gradients when used as AWMs, while the gradient
provided by HWMs explodes similarly to the true gradients.
AWMs generate a smooth and accurate approximation of
the return landscape (Figure 4c), which gradient ascent can

easily navigate, leading to better policies when used for
backpropagation-based policy optimization compared to all
the other world models (Figure 2).

5.2. Benchmarking Credit Assignment with AWMs

We now show that transformers employed as AWMs can
give better policies in environments which require long-
horizon planning. We focus on eight tasks from the Myriad
testbed (Howe et al., 2022). Myriad provides continuous
MDPs inspired by real-world problems (Lenhart & Work-
man, 2007) with configurable horizons. In Myriad, the
agent requires better temporal credit assignment capabilities
to solve problems with longer episode lengths, in contrast
to other RL benchmarks (e.g., focused on simple robotics
locomotion), which typically feature a short effective hori-
zon (Laidlaw et al., 2023; Ni et al., 2023) regardless of the
episode length. Additional information about Myriad and
its experiments are provided in Appendix B.4. All aggregate
results use the IQM (Agarwal et al., 2021).

Figure 5 shows the final performance of various world mod-
els used in BPO with increasing episode lengths. The trans-
former AWM is the only model to perform reliably well for
increasingly long horizons, while other methods struggle
when the horizon exceeds 100 steps. Indeed, when used as
AWMs, transformer world models give better policy gra-
dients than standard Markovian models and RNN world
models. However, when transformer world models are con-
ditioned on states, their long-term policy gradients are no
better than the gradients induced by Markovian models as
measured by performance in Figure 5.

We also compare our method with other relevant base-
lines in Figure 6, namely model-free Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) and the recently popularized
Online Decision Transformer (Online-DT) (Zheng et al.,
2022). In addition to BPO with transformer AWMs scaling
better with the problem horizon, BPO is also significantly
more sample efficient than the two baselines.
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Figure 5. Policy optimization with transformer AWMs gives
better policies for long horizons. Final performance of BPO with
different world models on Myriad (10 seeds ± 95% C.I.).

6. Related Work
Backpropagation-based Policy Optimization The con-
cept of learning a policy by differentiating through the envi-
ronment dynamics has been a foundational aspect of early
RL methods (Werbos, 1974; Schmidhuber, 1990). Estima-
tors for such a policy gradient have been referred to with
different names, including pathwise derivatives (Clavera
et al., 2020; Hafner et al., 2021; 2023), model-based repa-
rameterized policy gradients (Ruiz et al., 2016; Zhang et al.,
2023), and value gradients (Fairbank, 2014; Heess et al.,
2015; Amos et al., 2021). Different solutions have been
explored to address long horizon policy optimization with
these methods, such as gradient mixing (Parmas, 2020; Par-
mas et al., 2023; Suh et al., 2022), bootstrapping with a
critic (Heess et al., 2015; Xu et al., 2022), and gradient
normalization (Zhang et al., 2023). Conversely, AWMs con-
nect this literature to the one on sequence modeling with
neural networks, with a focus on gradient propagation (Ben-
gio et al., 1994; Hochreiter, 1998; Pascanu et al., 2013)
and on architectures that allow for improved credit assign-
ment (Hochreiter & Schmidhuber, 1997; Vaswani et al.,
2017; Kerg et al., 2020). Finally, our work can be seen as an
instance of gradient-aware model-based RL (D’Oro et al.,
2020; D’Oro & Jaskowski, 2020; Abachi et al., 2020), in
which we modify the architecture of a model of the dynam-
ics to obtain better policy gradients (Ma et al., 2021).

Multi-step state prediction with actions Prior works
used multi-step models related to AWMs, analyzing their
role as partial models (Rezende et al., 2020), in the context
of tree search (Schrittwieser et al., 2019), or training them
with a multi-step latent prediction loss (Gregor et al., 2019;
Schwarzer et al., 2020), without however ever analyzing
their gradient properties. Notably, models used in these prior
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Figure 6. BPO with transformer AWMs is more sample efficient
and better performing than baselines. Learning curves of BPO
through a transformer AWM, a SAC agent, and an Online-DT
agent on 20 and 100 length horizons (10 seeds ± 95% C.I.).

works are rarely shown to work beyond a few dozen steps of
unrolling or imagination, while AWMs demonstrably scale
favorably for horizons well beyond established limitations.

Sequence models in RL In partially observable MDPs,
sequence models have been extensively used as history en-
coders to maximize returns with or without world mod-
els (Hausknecht & Stone, 2015; Ni et al., 2022; Hafner
et al., 2023; Samsami et al., 2024). Other works have re-
cently emerged treating MDPs as sequence modeling (Chen
et al., 2021; Zheng et al., 2022; Janner et al., 2021), in imita-
tion learning or offline RL problem settings, based on return-
conditioned models. Sequence models have also been used
to reshape rewards in sparse reward settings (Hung et al.,
2019; Arjona-Medina et al., 2019; Liu et al., 2019). In
contrast to all of these, our framework uses an action-only
conditioned model to directly improve long-term policy gra-
dients and naturally assigns credit by backpropagation as
opposed to reward-shaping heuristics. Appendix D contains
a more detailed discussion of how all these methods differ
from ours.

7. Conclusions and Limitations
We presented a model-based policy optimization frame-
work based on backpropagation through Action-conditioned
World Models: models of the dynamics of the environment
which only take an initial state and a sequence of actions as
inputs. We highlighted that, in contrast to the more common
world models that compute the gradient by autoregressively
unrolling their state predictions, AWMs do not suffer from
the existence of circuitous gradient paths where the gradi-
ent can flow outside of the underlying network architecture.
We showed that their structure allows AWMs to fully ex-
ploit transformers’ favorable properties, taking advantage,
both in theory and in practice, of their ability to perform
long-term temporal credit assignment by leveraging short
gradient paths.

Theoretically, we demonstrated how transformer AWMs
do not suffer from ill-behaved gradients coming from cir-
cuitous gradient paths which harm the quality of the gra-
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dients provided by more common Markovian models and
HWMs. Empirically, we showed that BPO using AWMs
can be successful even when BPO using the underlying
simulator fails, due to how AWMs leverage transformers’
inductive biases to obtain an easier-to-navigate policy opti-
mization landscape. We demonstrated that policies trained
with transformer AWMs outperform existing model-based
and model-free approaches, including recently proposed
algorithms based on transformers, in realistic domains re-
quiring long-term planning.

While our theoretical analysis is developed within a de-
terministic setting, and our experiments are conducted in
low-dimensional yet realistic domains, our framework es-
tablishes a new connection between gradient propagation
techniques for sequence modeling and backpropagation-
based policy gradients. Future work could focus on scaling
our approach, making RL even more relevant to real-world
applications where long-horizon capabilities are crucial.
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A. Proofs and Results for Sections 3 and 4
A.1. Proof of Theorem 3.1

Theorem 3.1. Let the gradient norm of h with respect to its inputs be bounded by La and Ls: ∥∂h(ŝ1:t,a1:t)
∂ak

∥ ≤ La and

∥∂h(ŝ1:t,a1:t)
∂ŝi

∥ ≤ Ls for all s1:t, a1:t, k, i. Let r be the Lr-Lipschitz reward function from a Markov Decision Process
M, Πθ a parametric space of differentiable deterministic Lπ-policies. Given πθ ∈ Πθ, the norm of the policy gradient
∇θJh(θ;H) of πθ under a History-conditioned World Model h grows asymptotically as a function of the horizon H as:

∥∇θJ
h(θ;H)∥ = O(HLr +H2Lπ +H2La +H2LH

s )

= O(LH
s ) .

Proof. The policy gradient computed through equation 2 can be expanded using the chain rule into the following expression:

∇θJh(θ;H) =

H∑
t=1

∂r(ŝt)

∂ŝt

t−1∑
k=1

dh(ŝ1:t−1, a1:t−1)

dak

∂πθ(ŝk)

∂θ

dh(ŝ1:t−1, a1:t−1)

dak
=

∂h(ŝ1:t−1, a1:t−1)

∂ak
+

t−1∑
i=k+1

∂h(ŝ1:t−1, a1:t−1)

∂ŝi

dh(ŝ1:i−1, a1:i−1)

dak

We begin by showing how the norm of the policy gradient depends on dh(ŝ1:t,a1:t)
dak

.

∥∇θJh(θ;H)∥ =

∥∥∥∥∥
H∑
t=1

∂r(ŝt)

∂ŝt

t−1∑
k=1

dh(ŝ1:t−1, a1:t−1)

dak

∂πθ(ŝk)

∂θ

∥∥∥∥∥
By Lipschitz assumption ≤

∥∥∥∥∥
H∑
t=1

Lr

t−1∑
k=1

dh(ŝ1:t−1, a1:t−1)

dak
Lπ

∥∥∥∥∥
Triangle inequality ≤

H∑
t=1

Lr

t−1∑
k=1

∥∥∥∥dh(ŝ1:t−1, a1:t−1)

dak

∥∥∥∥Lπ .

Now, we show how ∥dh(ŝ1:t−1,a1:t−1)
dak

∥ grows asymptotically with t and k.∥∥∥∥dh(ŝ1:t−1, a1:t−1)

dak

∥∥∥∥ =

∥∥∥∥∥∂h(ŝ1:t−1, a1:t−1)

∂ak
+

t−1∑
i=k+1

∂ŝt
∂ŝi

dh(ŝ1:i−1, a1:i−1)

dak

∥∥∥∥∥
Triangle inequality ≤

∥∥∥∥∂h(ŝ1:t−1, a1:t−1)

∂ak

∥∥∥∥+ t−1∑
i=k+1

∥∥∥∥∂h(ŝ1:t−1, a1:t)

∂ŝi

dh(ŝ1:i−1, a1:i−1)

dak

∥∥∥∥
Cauchy-Schwarz inequality ≤

∥∥∥∥∂h(ŝ1:t−1, a1:t−1)

∂ak

∥∥∥∥+ t−1∑
i=k+1

∥∥∥∥∂h(ŝ1:t−1, a1:t−1)

∂ŝi

∥∥∥∥ ∥∥∥∥dh(ŝ1:i−1, a1:i−1)

dak

∥∥∥∥
By assumption ≤ La +

t−1∑
i=k+1

Ls

∥∥∥∥dh(ŝ1:i−1, a1:i−1)

dak

∥∥∥∥ .

In the recursive expansion of the previous line, notice the linear dependency w.r.t. La, and exponential dependency w.r.t. Ls

due to the compounding products. Therefore, ∥dh(ŝ1:t,a1:t)
dak

∥ = O(La + Lt−k
s ) , and we may complete the proof.

∥∇θJh(θ;H)∥ ≤
H∑
t=1

Lr

t−1∑
k=1

∥∥∥∥dh(ŝ1:t−1, a1:t−1)

dak

∥∥∥∥Lπ

= O

(
HLr +H2Lπ +H2

∥∥∥∥dh(ŝ1:H−1, a1:H−1)

da1

∥∥∥∥)
= O(HLr +H2Lπ +H2La +H2LH

s )
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A.2. Proof of Proposition 4.1

Proposition 4.1. Let f -RNN be a recurrent network with its recurrent cell being the dynamics f of the MDP M, and gf -RNN

denote an AWM instantiated with f -RNN. Then,

∇θJgf -RNN(θ;H) = ∇θJf (θ;H).

Proof. We begin by providing a formal definition of the recurrent network with its recurrent cell being the dynamics f of
the MDP as:

gf -RNN(s1, a1:t) := f(st, at)

st := f(st−1, at−1) = f(gf -RNN(s1, a1:t−1), at)

Begin by developing the LHS of the equation.

∇gf -RNN
θ J(θ;H) =

H∑
t=1

∂r(st)

∂st

t−1∑
k=1

∂st
∂ak

∂πθ(sk)

∂θ

where st = f(st−1, at−1) by construction (RNN assumption). Therefore, apply the chain rule ∂st
∂ak

:

∇gf -RNN
θ J(θ;H) =

H∑
t=1

∂r(st)

∂st

t−1∑
k=1

∂sk+1

∂ak

( t−1∏
i=k+1

∂si+1

∂si

)
∂πθ(sk)

∂θ

Now, for the RHS of the equation. The policy gradient through equations 1 can be written as:

∇θJf (θ;H) =

H∑
t=1

∂r(st)

∂st

t−1∑
k=1

∂sk+1

∂ak

∂πθ(sk)

∂θ

(
t−1∏

i=k+1

∂si+1

∂si

)
.

∇gf -RNN
θ J(θ;H) = ∇θJf (θ;H).

A.3. Proof of Theorem 4.1

Theorem 4.1. Let r be the Lr-Lipschitz reward function from a Markov Decision Process M, Πθ a parametric space
of differentiable deterministic Lπ-policies. Given πθ ∈ Πθ, the norm of the policy gradient ∇θJg(θ;H) of πθ under an
Action-conditioned World Model g as a function of the horizon H can upper bounded as:

∥∇θJg(θ;H)∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

∥∥∥∥∂g(s1, a1:t−1)

∂ak

∥∥∥∥ .
Proof. With a slight abuse of notation, we use gt to replace g(s1, a1:t−1).

∇θJg(θ;H) =

∥∥∥∥∥
H∑
t=1

∂r(ŝt)

∂ŝt

t−1∑
k=1

∂gt
∂ak

∂π(ŝk)

∂θ

∥∥∥∥∥ ≤ LrLπ

∥∥∥∥∥
H∑
t=1

t−1∑
k=1

∂gt
∂ak

∥∥∥∥∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

∥∥∥∥ ∂gt∂ak

∥∥∥∥ .

A.4. Proof of Corollary 4.1

Corollary 4.1. Let gRNN be an Action-conditioned World Model instantiated with a recurrent neural network as in Equation 4
and η = ∥WT

x ∥ 1
β . The asymptotic behavior of the norm of the policy gradient ∇θJgRNN(θ;H) as a function of the horizon

H can be described as:

∥∇θJgRNN(θ;H)∥ = O
(
ηH
)
.
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Proof. We begin by defining the transition function of the recurrent network as xt = σ(Wxxt−1) +Waat + b, where σ
is some activation function with gradient norm bounded by ∥diag(σ′(x))∥ ≤ 1

β . Further, consider a linear output cell

st+1 = Woxt. Now we begin by showing that
∥∥∥ ∂xt
∂ak

∥∥∥ ≤ ||WT
a ||(||WT

x || 1β )t−k:

∂xt

∂ak
=

∂xk

∂ak

t−1∏
i=k

∂xi+1

∂xi∥∥∥∥ ∂xt

∂ak

∥∥∥∥ =

∥∥∥∥∥WT
a

t−1∏
i=k

∂xi+1

∂xi

∥∥∥∥∥
Cauchy-Schwarz Inequality ≤ ||WT

a ||
t−1∏
i=k

∥∥∥∥∂xi+1

∂xi

∥∥∥∥ = ||WT
a ||

t−1∏
i=k

∥∥WT
x diag(σ′(xi))

∥∥
Cauchy-Schwarz Inequality ≤ ||WT

a ||
t−1∏
i=k

∥∥WT
x

∥∥ ∥diag(σ′(xi))∥

By assumption ≤ ||WT
a ||

t−1∏
i=k

∥∥WT
x

∥∥ 1

β
= ||WT

a ||
(
||WT

x || 1
β

)t−k

.

We develop the expression ∂ŝt
∂ak

= ∂ŝt
∂xt−1

∂xt−1

∂ak
, applying the norm and plugging in the above result we obtain:∥∥∥∥ ∂ŝt∂ak

∥∥∥∥ ≤ ∥Wo∥
∥∥WT

a

∥∥(||WT
x || 1

β

)t−k−1

We then use the bound found in Theorem 1:

∥∇θJg(θ;H)∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

∥∥∥∥ ∂gt∂ak

∥∥∥∥ = LrLπ

H∑
t=1

t−1∑
k=1

∥∥∥∥ ∂ŝt∂ak

∥∥∥∥
≤ LrLπ

H∑
t=1

t−1∑
k=1

∥Wo∥
∥∥WT

a

∥∥(||WT
x || 1

β

)t−k−1

= LrLπ

H∑
t=1

t−1∑
k=1

∥Wo∥
∥∥WT

a

∥∥ ηt−k−1 ,

where η = ||WT
x || 1β .

∥∇g
θJ(θ;H)∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

∥Wo∥
∥∥WT

a

∥∥ ηt−k−1

= O(H2||Wo||
∥∥WT

a

∥∥+H2ηH)

= O(ηH) .

A.5. Proof of Corollary 4.2

Corollary 4.2. Let gATT be an attention-based Action-conditioned World Model instantiated with self-attention as in
equation 5. The asymptotic behavior of the norm of the policy gradient ∇θJgATT(θ;H) as a function of the horizon H can
be described as:

∥∇θJgATT(θ;H)∥ = O
(
H3
)
.

Proof. We begin with the definition of the self-attention Action-conditioned World Model. Let Q ∈ R1×dz , K ∈ Rn×dz ,
V ∈ Rn×do , attention can be defined as :

Attention(Q,K, V ) := softmax(QKT )V
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A self-attention AWM can then be defined in the following way with weight matrices Wq ∈ Rdz×da , Wk ∈ Rdz×da ,
Wv ∈ Rds×da .

ATTt(a1, ...at−1) := Attention(at−1W
T
q , a1:t−1W

T
k , a1:t−1W

T
v ) =

t−1∑
i=1

ci(aiW
T
v ) = ŝt,

where ci = softmaxi(at−1W
T
q Wka

T
1:t−1). The subscript on the softmax operator indicates the ith index. Now, we begin by

showing the expression for ∂gt
∂ak

:

∂gt
∂ak

=

t−1∑
i=1

∂

∂ak
ci(aiW

T
v )

=

t−1∑
i=1

∂ci
∂ak

(aiW
T
v ) + ci

∂(aiW
T
v )

∂ak

By Softmax derivative = ckW
T
v +

t−1∑
i=1

(
ci(1{i = k} − ck)(aiW

T
v )

)
.

Then, we take the norm:

∥∥∥∥ ∂gt∂ak

∥∥∥∥ ≤ ∥ckWT
v ∥+

t−1∑
i=1

∥∥ci(1{i = k} − ck)(aiW
T
v )
∥∥ Triangle Inequality

Cauchy-Schwarz Inequality ≤ ∥ckWT
v ∥+

t−1∑
i=1

∥ci(1{i = k} − ck)∥
∥∥(aiWT

v )
∥∥

By definition of Softmax ≤ ∥WT
v ∥+

t−1∑
i=1

∥∥(aiWT
v )
∥∥

Assuming bounded actions ≤ ∥WT
v ∥+ α

t−1∑
i=1

∥∥WT
v

∥∥ ,where ai ≤ α ∀ i .

Finally, we use the bound derived in Theorem 1 to finalize the proof:

∥∇θJg(θ;H)∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

(
∥WT

v ∥+ α

t−1∑
i=1

∥WT
v ∥
)

= O(H3α∥WT
v ∥)

= O(H3) .

A.6. Tightness of Theorem 3.1

The result of Theorem 3.1 argues that policy gradients computed through equation 2 may explode as the horizon grows. To
make this claim, we comment on the tightness of the upper bound provided in Theorem 3.1. Consider the one-dimensional
case, where all the gradients are positive scalars, and ∥∂h(ŝ1:t,a1:t)

∂ak
∥ = La and ∥∂h(ŝ1:t,a1:t)

∂ŝi
∥ = Ls for all ŝ1:t, a1:t, k, i.

Then, we show that

∥∇θJh(θ;H)∥ = Ω(LH
s )
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Proof. We begin the proof of this lower bound in a similar way, by considering only one of the terms of the summation.

∥∇θJh(θ;H)∥ =

∥∥∥∥∥
H∑
t=1

∂r(ŝt)

∂ŝt

t−1∑
k=1

dh(ŝ1:t−1, a1:t−1)

dak

∂πθ(ŝk)

∂θ

∥∥∥∥∥
≥
∥∥∥∥∂r(ŝH)

∂ŝH

dh(ŝ1:H−1, a1:H−1)

da1

∂πθ(ŝ1)

∂θ

∥∥∥∥
=

∥∥∥∥∂r(ŝH)

∂ŝH

∥∥∥∥∥∥∥∥dh(ŝ1:H−1, a1:H−1)

da1

∥∥∥∥∥∥∥∥∂πθ(ŝ1)∂θ

∥∥∥∥
≥
∥∥∥∥∂r(ŝH)

∂ŝH

∥∥∥∥∥∥∥∥∂πθ(ŝ1)∂θ

∥∥∥∥
∥∥∥∥∥
(
∂h(ŝ1:H−1, a1:H−1)

∂a1
+

H−1∑
i=2

dh(ŝ1:H−1, a1:H−1)

∂si

dh(ŝ1:i−1, a1:i−1)

da1

)∥∥∥∥∥ .

Consider now only the longest chain of products in the summation term of the last line. This corresponds to the longest path
of the policy gradient through the History-conditioned World Model.

∥∇θJh(θ;H)∥ ≥
∥∥∥∥∂r(ŝH)

∂ŝH

∥∥∥∥∥∥∥∥∂πθ(ŝ1)∂θ

∥∥∥∥
∥∥∥∥∥
(
∂h(ŝ1:H−1, a1:H−1)

∂a1
+

dh(ŝ1:2, a1:2)

∂a1

H−1∏
i=2

dh(ŝ1:i−1, a1:i−1)

∂si

)∥∥∥∥∥
= Ω(La + LH

s ) .

A.7. Tightness of Corollary 4.1

The result of Corollary 4.1 argues that policy gradients through Markovian models may explode as the horizon grows. In
order to make this claim, we comment on the tightness of the bound. Just like for Theorem 3.1, consider the one-dimensional
case, where all the gradients are positive scalars and assume further the gradient norm of the activation function σ is lower
bounded by γ > 0 (which is the case for popular activation functions such as sigmoid). We will show that, given these
conditions, the bound can be written as a lower bound:

∥∇θJgRNN(θ;H)∥ = Ω(ηH) .

Proof. We begin the proof by lower bounding the expression for the recurrent cell ∂xt
∂ak

:

∂xt

∂ak
≥ ||WT

a ||(||WT
x ||γ)t−k∥∥∥∥ ∂ŝt∂ak

∥∥∥∥ ≥ ∥Wo∥||WT
a ||(||WT

x ||γ)t−k .

The bound found in Theorem 4.1 can also be rewritten as an equality given these additional assumptions, since the
Cauchy-Schwarz and triangle inequalities become equalities in the one-dimensional positive case: ∥∇θJg(θ;H)∥ =

LrLπ

∑H
t=1

∑t−1
k=1

∥∥∥ ∂gt
∂ak

∥∥∥. Finally, putting these new results together, we find that

∥∇θJgRNN(θ;H)∥ ≥ LrLπ

∑
t=1

t−1∑
k=1

∥Wo∥∥WT
a ∥(∥WT

x ∥γ)t−k

≥ LrLπ∥Wo∥∥WT
a ∥(∥WT

x ∥γ)H−1

= Ω(ηH) ,

where η = ∥WT
x ∥γ.
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A.8. Action-conditioned and Markovian Models Equivalency

The policy gradient framework provided by Action-conditioned World Models can also be used to interpret training design
choices used in RL through the lens of sequence modeling. As a concrete example, recall that the transition function of a
Markovian model can be trained with the following loss:

ℓf̂ (τ ;ψ) =

H−1∑
t=1

∥sτt+1 − f̂ψ(s
τ
t , a

τ
t )∥2 . (6)

We present the following remark.

Remark A.1. Training an AWM instantiated with an RNN to predict states using teacher forcing is equivalent to training its
recurrent cell with the loss function from Equation 6.

Teacher forcing (Williams & Zipser, 1989) is an algorithm used to train recurrent neural networks. Instead of autoregressively
unrolling them during training, it enforces the outputs (i.e., in this case, the environment/RNN states) to be the ones coming
from a ground-truth sequence. In other words, when training an AWM as an RNN with teacher forcing, we are essentially
training its recurrent cell as a one-step model, as traditionally done in model-based RL applied to a Markovian setting.

B. Additional Experimental Details for Section 5
B.1. Hyperparameters

Model-based Hyperparameters. All model-based backpropagation-based policy optimization methods, including the
Markovian agent, AWMs and HWMs were sweeped on three entropy constants for exploration: [0.1, 0.01, 0.001], and
the best performing results are reported. Indeed, in addition to the objective function J , the policies are optimized with
an additional entropy maximization factor as done in Amos et al. (2021) for exploration. All actions, and states (for
History-conditioned World Models) are embedded with a linear layer with an output size of 72. The RNN is initialized with
two hidden layers, with a hidden layer size of (64, 64). The self-attention transformers use a similar architecture to the GPT-2
model (Radford et al., 2019) implemented by the Hugging Face Transformer library (Wolf et al., 2019). Our transformers
stack 2 layers and 3 heads of self-attention modules, with hidden layers of size 64. Timesteps are added as an input to every
input of all world models, since we are in a finite-horizon setting. The Markovian world models predicts transitions as a
difference function: ŝt = f̂(st−1, at−1) + st−1, using two hidden layers of size (64, 64), and ReLU activation functions.
Gradient norms are clipped at a value of 100 for all policy gradients. All other hyper-parameters relating to the policy
learning algorithm are shown in Table 1.

Hyperparameter Value
Number of Environment steps 200000

Dynamics replay ratio 2
Policy replay ratio 16

Dynamics batch size 64
Policy batch size 16

Dynamics learning rate 0.001
Policy learning rate 0.0001
Replay buffer size 1e6

Warmup steps 1500

Table 1. Hyper-parameters for all BPO algorithms that do not pertain to the world model hyper-parameters.

Model-free Hyperparameters. We use a model-free soft-actor critic (Haarnoja et al., 2018) as a benchmark for the myriad
experiments. The critic of this agent is modeled as a 2-layer MLP with 256 hidden units each. Entropy regularization is
done using a constant entropy constant. Results in Figure 6 show the best performing results after doing a grid search over
the following hyper-parameters: learning rate = [0.001, 0.0001, 0.00001] and entropy constant = [1., 0.01, 0.001]. The
remaining hyperparameters are shown in Table 2.
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Hyperparameter Value
Number of environment steps 200000

Critic replay ratio 2
Policy replay ratio 16

Batch size 128
Discount factor 0.995

Polyak averaging factor 0.995
Replay buffer size 1e6

Warmup steps 1500

Table 2. Hyper-parameters for all model-free results on the Myriad environments.

B.2. Offline Experiments

The experiments showed in Figure 3 and Figure 4 are in the offline setting. In both settings, 100000 transitions are collected
for all experiments using a uniform random policy. The world models are then trained on data sampled from these transitions
for 1000 steps. The batch size and learning rate are set to the same values as shown in Table 1.

B.3. Online Double-pendulum Experiments

The goal position of the environment is calculated using some fixed initial angular position (initial action) for all episode
lengths. In our experiments, the optimal action is -0.4, which corresponds to an initial angle of −0.4× 180◦. The results
in the double-pendulum experiments use the same hype-parameters as the Myriad experiments, with two exceptions: the
number of environment steps used for optimization is 100000 instead of 200000, and the leaerning rate is sweeped for values
in [0.01, 0.001, 0.0001, 0.00001, 0.000001] due to the unstable gradients. The complete learning curves are shown in Figure
7.
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BPO (Transformer AWM) BPO (Transformer HWM) BPO (Markovian) BPO (Simulator Dynamics)

Figure 7. Learning curves of different world models used for BPO on the double-pendulum environment for different horizons. The
horizons presented are H = [5, 10, 20, 50, 100] in order (10 seeds ± std).

B.4. Myriad Environments

We give a short overview of each of the Myriad environments used in this work. For more details, refer to (Howe et al.,
2022) and (Lenhart & Workman, 2007).

The underlying dynamics of each of these environments are described by a set of ordinary differential equations, which are
then discretized using Euler’s method for discrete-time optimal control. In practice, to change a problem’s horizon, we fix
the duration of the experiment to ensure it is still interesting and simply discretize using a smaller or larger step size. We
normalize the returns, where 0 is the expected performance of a random policy and 1 is the performance of an optimal policy
provided by (Howe et al., 2022)5. Our experiments are conducted on eight environments: cancer treatment, bioreactor,
mould fungicide, bacteria, harvest, invasive plant, HIV treatment, and timber harvest. Each environment’s state and action
space varies between one and five dimensions.

Cancer treatment follows the normalized density of a cancerous tumour undergoing chemotherapy. The actions at every
time step correspond to the strength of the chemotherapy drug at a given time. The goal is to minimize the size of the tumour

5Optimal policies are computed using trajectory optimization on the underlying differential equations.
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over a set fixed duration while also minimizing the amount of drugs administered to the patient.

Bioreactor seeks to minimize the total amount of a chemical contaminant that naturally degrades in the presence of bacteria.
The actions here allow the agent to feed the bacteria, increasing its population and increasing the rate of the contaminants’
degradation. However, a cost is associated with feeding the bacteria.

Mould fungicide models the concentration of a mould population. The goal is to minimize its population by applying a
fungicide, which has an associated cost to apply.

Bacteria looks to maximize a bacteria population through the application of a chemical nutrient that stimulates growth. On
top of the associated cost of applying the chemical nutrient, the chemical also produces a byproduct that might, in turn,
hinder bacterial growth.

Harvest models the growing population of some vegetables, and the goal is to maximize the harvested yield of this
population. While harvesting directly contributes to the reward, it consequently slows down the population’s exponential
growth.

Invasive plant seeks to minimize the presence of an invasive plant species through interventions that remove a proportion of
the invasive population. These actions have an associated cost.

HIV treatment follows the evolution of uninfected and infected cells in the presence of a virus. The actions correspond to a
drug administered that affects the virus’ rate of infection. The use of the drug must also be minimized.

Timber harvest is similar to the harvest environment, except the harvested population is infinite. Instead, harvested timber
can be converted into capital, which can then be re-invested in the harvesting operation, stimulating company growth. The
goal is to maximize revenue.

To the best of our knowledge, this paper presents the first results using reinforcement learning for the environments in
Myriad. The final performances of all BPO methods and the SAC agent for each of the eight environments are shown
in Figures 8. Note that not only does our method (BPO with transformer AWM) have the best aggregate scores for long
horizons, but it also achieves the best performance for the longest horizon of 500 steps for each environment.
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Figure 8. Policy gradients through transformer AWMs give better policies for long horizons for every environment. Learning
curves of BPO with different world models on eight of the Myriad environments (10 seeds ± min/max)

.

B.5. Online Decision Transformer Results

Recently, a sequence modeling perspective of reinforcement learning has shown promising results on various continuous
control tasks in an offline RL setting (Chen et al., 2021; Zheng et al., 2022; Janner et al., 2021). Although our method differs
significantly both conceptually and in the problems they solve (see Appendix D), we show experimentally, for completeness,
that the online decision transformer (Zheng et al., 2022) performs poorly on the low dimensional Myriad suite. We use
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the code and hyperparameters provided by (Zheng et al., 2022) in a purely online setup, with a sweep on the number of
trajectories gathered per iteration due to the online nature of our problem setup. Importantly, decision transformers (DT)
must be conditioned on the return-to-go (RTG) to derive desired policies. Prior works (Chen et al., 2021; Zheng et al., 2022;
Janner et al., 2021) have shown that DTs are robust to these hyperparameters and can achieve good and sometimes better
performance even when the RTG is set to an out-of-distribution return that is impossible to attain.

We show in Figure 9 that DT performs poorly on the Myriad tasks in an online setting. We summarize some of the takeaways
from these experiments:

• Decision transformers are still not well suited for a purely online training regime, exhibiting worse performance than
simple one-step model-based methods. Moreover, the action-sequence model outperforms the decision transformer in
every single environment.

• Decision transformers require some expert knowledge in many domains, and simply overshooting the return-to-go can
yield sub-optimal and sometimes catastrophic results.

• These methods do not scale well with the horizon unlike BPO with Action-conditioned World Models. Even on
relatively short horizons such as 100 time steps, the online decision transformer’s performance quickly drops when
compared to its performance for 20 time steps.
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Figure 9. Aggregate final performance of an online decision transformer on the Myriad environments, trained on 200000 environment
steps. The Expert RTG is conditioned on the optimal return for each environment, while the Overshot RTG is conditioned on a return two
times higher than the optimal return (10 seeds ± 95% C.I.).

C. Additional Experiments
C.1. Ablation on Stop Gradient

Most of the analysis in this work relies on the assumption that the gradient is stopped through the policy input, as seen in
equation 1, equation 2 and equation 4. As discussed in Section 2, we perform an ablation on whether the stop-gradient
operator on the policy input has any major impact on the final performance on the Myriad benchmark, much like . The
results in Figure 10 confirm previous remarks (Hafner et al., 2021; 2023; Ghugare et al., 2023) that detaching the policy
input from the policy gradient has little to no effect on final performance.

C.2. Ablation on LSTMs

Our analysis suggests that policy gradients through an AWM inherit certain gradient properties of the underlying world
model architecture. Long-short-term memory networks (LSTMs) (Hochreiter, 1998) were also suggested as an alternative
to vanilla RNNs due to their favorable long-term gradients. Indeed, we show in an ablation study that LSTM AWMs also
perform quite well on the Myriad benchmark in Figure 11. Thus, the Action-conditioned World Model is agnostic to the
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Figure 10. Stop gradients on the policy input do not affect final performances on the Myriad benchmark. Final performances of
BPO with a transformer AWM and a transformer HWM, with and without the full policy gradient (10 seeds ± 95% C.I.). Stop Grad
denotes the policy gradient used throughout the main text of this paper, while Full Grad denotes the full unbiased policy gradient without
any stop gradient operators.

specific neural network architecture, allowing any modern sequence models to produce favorable policy gradients, which
could be an interesting direction to explore other more advanced sequence models such as state space models (Gu et al.,
2022). We hypothesize that LSTMs are quite effective on environments from Myriad due to the recurrent inductive bias that
is compatible with all MDPs. We suspect transformer AWMs show greater promise for large-scale experiments, especially
in POMDPs.
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Figure 11. Ablation with LSTM Action-conditioned World Models on Myriad. Learning curves of BPO with a transformer AWM,
LSTM AWM, and a Markovian world model on eight of the Myriad environments (10 seeds ± min/max).

C.3. Stochastic Environments

In this section, we conduct additional experiments to show how AWMs can also be robust to various forms of stochastic
environments. First, we show that action-conditioned world models are actually more robust to stochasticity in the form of
distracted MDPs when compared to the history-conditioned models, and just as robust as Markovian models. Second, we
consider a stochastic environment specifically designed to be unsuitable for action-conditioned world models (Rezende
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et al., 2020), and show that AWMs are still effective in such environments under a small change in sampling procedure.

Random Noise in Distracted Myriad. An important challenge that arises from stochastic environments is to ensure our
method is robust to noise. A common way to test for this is to inject noise in so-called distractor dimensions (Zhang
et al., 2021; Ni et al., 2024). In these problems, an environment is made more difficult by adding dimensions to the
observations of an environment which contain noise sampled independently from the states or actions. We evaluate the
performance of AWMs in a distracted variant of Myriad, where N dimensions with noise sampled from N (0, 1) are
appended to all observations. We vary the number of distractions in Myriad, and show the final performance of different
world models for different horizons in Figure 12. These results demonstrate that AWMs still outperform both Markovian
and History-conditoned world models for long horizons, and are especially more robust to noise than HWMs.
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Figure 12. Action-conditioned World Models still outperform Markovian and History-conditoned World Models under stochasticity
in the form of distractor dimensions. Aggregate final performance of Backpropagation-based policy optimization using different models
on a stochastic variant of the Myriad suite with 1 and 16 distractor dimensions.

Stochastic Transitions in FuzzyBear. Rezende et al. (2020) note that models conditioned only on actions, without
intermediate states, are not suitable for stochastic environments. They illustrate this point with a simple MDP named
FuzzyBear, where a stochastic transition in an intermediate state presents new information which needs to be considered for
an agent to act optimally. Concretely, consider a continuous alternative to the one-dimensional FuzzyBear environment with
the following dynamics and reward function.

s0 := 0

s1 ∼ N (0, 1)

s2 := s1 × a1

rt := st if t = 2 else 0 ,

where actions can be taken from the interval [−1, 1], s2 is a terminal state and all states include timestep information to
preserve the Markov property. In this environment, the optimal action is −1 if s1 < 0 and +1 if s1 ≥ 0, thus a world model
conditioned only on actions will not be able to appropriately predict final rewards without intermediate state information. To
circumvent this problem, we propose performing rollouts from any randomly sampled intermediate state, instead of only
performing rollouts from the initial state. This is common practice in model-based algorithms (Ghugare et al., 2023; Hafner
et al., 2021), and allows AWMs to capture intermediate state information while maintaining constant gradient path lengths.
We demonstrate the failure case of AWMs in the FuzzyBear environment described above in Figure 13, but also show that
performing random intermediate state rollouts addresses this problem. This simple change lets AWMs perform just as
well as Markovian models in a stochastic environment specifically designed to break action-conditioned models. These
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experiments suggest that Action-conditioned World Models have a promising future in both deterministic and stochastic
environments alike.
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Figure 13. Action-conditioned World Models can overcome adversarial stochastic environments by performing rollouts from any
intermediate state. Learning curves of Backpropagation-based policy optimization with a Markovian model, and a Transformer AWM
with different sampling procedures for rollouts (10 seeds ± std). To account for stochastic transitions, all world models are modeled as a
gaussian distribution with standard deviation fixed to 1.

D. Extended Related Work on Sequence Models in RL
Sequence models in RL have primarily been used in one of three ways. First, sequence models can be used as history
encoders in RL algorithms to maximize returns in partially observable MDPs (POMDPs) (Hausknecht & Stone, 2015; Ni
et al., 2022), sometimes through a history-dependent world model (Hafner et al., 2021; 2023). Second, sequence models
have recently shown promise in an imitation learning or offline reinforcement learning setting by treating MDPs as a
sequence modeling problem (Chen et al., 2021; Zheng et al., 2022; Janner et al., 2021), usually conditioning on returns
to derive desired policies. Lastly, a separate line of work has used sequence models to reshape the reward landscape for
improved temporal credit assignment (Hung et al., 2019; Arjona-Medina et al., 2019; Liu et al., 2019). In contrast to all of
these, our framework is the only one to use an action-only conditioned sequence model to directly improve long-term policy
gradients in MDPs with no intermediate step. Below, we go into a detailed comparison with each area.

Comparison with history-conditioned RL methods for POMDPs. History-conditioned encoders, modeled as sequence
models, are often used in POMDPs in both model-free (Hausknecht & Stone, 2015; Parisotto et al., 2020; Lu et al., 2024;
Ni et al., 2022) and model-based methods (Hafner et al., 2021; 2023; Samsami et al., 2024). The latter is typically also
concerned with predicting observations, they are conditioned on entire history information, while our method includes only
actions. The problem setup is also different; such methods are usually concerned with memory in POMDPs (Ni et al., 2023),
while ours seeks to improve credit assignment in MDPs.

Comparison with decision and trajectory transformers. Decision transformers (Chen et al., 2021; Zheng et al., 2022)
and trajectory transformers (Janner et al., 2021) take a more extreme approach, casting the entire reinforcement learning
problem as a sequence modeling one. Conversely, we specifically draw a parallel between policy gradients and sequence
models. Their sequence models are conditioned on entire trajectories, which include states, actions, rewards and returns.
While trajectory transformers predict states just like our Action-conditioned World Models, both trajectory and decision
transformers also predict actions. In either case, their sequence models must first be trained on an offline dataset in an
imitation learning (Janner et al., 2021), offline RL (Chen et al., 2021), or pre-training framework (Zheng et al., 2022), while
AWMs work for an online RL setting.
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Comparison with reward reshaping methods. Perhaps more relevant, prior works have already tried harnessing advanced
sequence models for improved temporal credit assignment in RL (Hung et al., 2019; Arjona-Medina et al., 2019; Liu
et al., 2019). In these cases, the predictive power of sequence models, either an LSTM (Arjona-Medina et al., 2019) or
transformer (Hung et al., 2019; Liu et al., 2019) are used to redistribute or augment the given reward function to produce a
surrogate reward function. This surrogate reward is then used in a more traditional model-free RL algorithm. Again, we
stress a fundamental difference in the inputs of the sequence models, which all include state information. Our framework
also establishes a more direct path between sequence models and credit assignment, avoiding any intermediate steps like
reward reshaping.
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