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Abstract

Autonomous graphical user interface (GUI)001
agents powered by multimodal large language002
models have shown great promise. However, a003
critical yet underexplored issue persists: over-004
execution, where the agent executes tasks in a005
fully autonomous way, without adequate assess-006
ment of its action confidence to compromise007
an adaptive human-agent collaboration. This008
poses substantial risks in complex scenarios,009
such as those involving ambiguous user instruc-010
tions, unexpected interruptions, and environ-011
mental hijacks. To address the issue, we intro-012
duce OS-Kairos, an adaptive GUI agent capable013
of predicting confidence levels at each interac-014
tion step and efficiently deciding whether to015
act autonomously or seek human intervention.016
OS-Kairos is developed through two key mech-017
anisms: (i) collaborative probing that anno-018
tates confidence scores at each interaction step;019
(ii) confidence-driven interaction that leverages020
these confidence scores to elicit the ability of021
adaptive interaction. Experimental results show022
that OS-Kairos substantially outperforms exist-023
ing models on our curated dataset featuring024
complex scenarios, as well as on established025
benchmarks such as AITZ and Meta-GUI, with026
24.59%∼87.29% improvements in task success027
rate. OS-Kairos facilitates an adaptive human-028
agent collaboration, prioritizing effectiveness,029
generality, scalability, and efficiency for real-030
world GUI interaction. The dataset and codes031
are available at Anonymous.032

1 Introduction033

Multimodal large language models (MLLMs) have034

been explored to develop graphical user interface035

(GUI) agents capable of analyzing the screen and036

performing human-like behaviors on operating sys-037

tems (Hong et al., 2024; Zhang et al., 2024a; Wang038

et al., 2024a). Existing efforts in building GUI039

agents have focused on the autonomous mode (Niu040

et al., 2024; Zhang et al., 2024b; Nguyen et al.,041

2024; Liu et al., 2024), with improved capabilities042
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Figure 1: Illustration of GUI agents executing a com-
plex shopping instruction across two paradigms: (a)
Autonomous, where the agent cannot complete the task
independently; (b) Adaptive, where the agent dynami-
cally adjusts its autonomy based on confidence levels.

such as grounding (Wu et al., 2024b; Qin et al., 043

2025) and reasoning (Zhang and Zhang, 2024; 044

Zhang et al., 2024b; Liu et al., 2025). Despite 045

exciting progress, we observe that existing GUI 046

agents exhibit significant over-execution issues 047

— the agent executes tasks in a fully autonomous 048

way, without adequate assessment of its action con- 049

fidence to compromise an adaptive human-agent 050

collaboration. As shown in Figure 1(a), popular 051

GUI agents such as OS-Atlas (Wu et al., 2024b) are 052

unable to click the filters button correctly, causing 053

unexpected interruptions and task failure. 054

Over-execution poses significant challenges in 055

complex real-world scenarios (Examples shown in 056

Figure 2), highlighting fundamental limitations in 057

current GUI agents. First, ambiguous instructions 058

from the user leads to information absence in GUI 059

automation (e.g., account logout). Second, exist- 060

ing GUI agents depend heavily on the foundation 061

MLLMs and therefore suffer from unexpected in- 062
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terruptions when executing complex instructions.063

Besides, these models will also generate halluci-064

nations (Sridhar et al., 2023) and shortcut predic-065

tions (Wu et al., 2024b; Zhu et al., 2024). Third,066

environmental hijacks, such as network connection067

failure and pop-up hijacking) (Ma et al., 2024a).068

To address these challenges, we are motivated069

to integrate confidence scoring into the founda-070

tion model, allowing adaptive human intervention071

for GUI agents (Figure 1(b)). Concretely, we in-072

troduce OS-Kairos, an adaptive GUI agent capa-073

ble of predicting confidence levels at each inter-074

action step and efficiently determining whether to075

act autonomously or seek human intervention. OS-076

Kairos incorporates two key mechanisms: (i) col-077

laborative probing that annotates confidence scores078

at each interaction step; (ii) confidence-driven in-079

teraction that utilizes these confidence scores to080

enhance the ability of adaptive interaction.081

To annotate the confidence scores for the probed082

GUI agents in real-world scenarios, we first de-083

sign a collaborative confidence probing framework.084

Inspired by (Chen et al., 2024a), this framework085

integrates a layout parsing model (Tang et al.,086

2019) and the most capable proprietary model, GPT-087

4o (Achiam et al., 2023) to function as a critic088

model. The critic model is used to supervise plan089

scheduling and confidence score based on our cu-090

rated instructions to address complex scenarios.091

This framework is the first toolkit designed to iden-092

tify when human intervention is necessary, generate093

confidence scores, and facilitate the automated con-094

struction of GUI trajectories. To further integrate095

confidence scoring into the probed GUI agent, we096

validate and refine these GUI trajectories and then097

fine-tune the model. This approach ensures action098

prediction accuracy while improving adaptability099

of human intervention.100

Experimental results in complex scenarios show101

that OS-Kairos achieves state-of-the-art perfor-102

mance with action type success rate of 99.88%,103

action success rate of 95.90%, and task success rate104

of 88.20%. Also, we confirm OS-Kairos’s effec-105

tiveness on two well-established GUI benchmarks:106

Meta-GUI (Sun et al., 2022) and AITZ (Zhang107

et al., 2024b). Comprehensive analysis reveals108

that OS-Kairos prioritizes effectiveness, generality,109

scalability, and efficiency, making it a competitive110

agent for real-world GUI interactions. Our work111

makes the following key contributions:112

(i) We introduce OS-Kairos, an adaptive GUI113

agent that predicts the confidence level of each114

interaction step and effectively decides whether to 115

act autonomously or seek human intervention. 116

(ii) We propose a collaborative confidence prob- 117

ing framework for dynamically identifying the con- 118

fidence scores of the GUI agents in typical complex 119

real-world scenarios, while automatically generat- 120

ing high-quality GUI trajectory. 121

(iii) We employ confidence-driven interaction 122

to integrate confidence scoring into the GUI agent 123

that forms adaptive human intervention without 124

compromising action prediction. 125

(iv) We demonstrate that OS-Kairos substan- 126

tially outperforms existing models on both our 127

curated dataset featuring complex scenarios and 128

well-established benchmarks, with merits of effec- 129

tiveness, generality, scalability, and efficiency. 130

2 Related Works 131

Our work falls into the field of MLLM-powered 132

agents. This section will first review the recent 133

progress in building GUI agents and then discuss 134

the capability probing approaches for GUI agents. 135

2.1 MLLM-powered GUI Agents 136

The rise of MLLMs has redefined the paradigm 137

for GUI agents, enabling them to analyze com- 138

plex screen layouts and generate accurate actions 139

in a more human-like way (Zhang et al., 2024a). 140

Importantly, this paradigm is a non-intrusive man- 141

ner without reliance on complex, platform-specific 142

scripts or predefined workflows. Notable examples 143

across different platforms include SeeAct (Zheng 144

et al., 2024) and WebRL (Qi et al., 2024) for web 145

navigation, AppAgent (Zhang et al., 2023), Auto- 146

UI (Zhang and Zhang, 2024), and CoCoAgent (Ma 147

et al., 2024b) for mobile interactions, and ScreenA- 148

gent (Niu et al., 2024) for Windows OS applica- 149

tions. This paper investigates the over-execution of 150

MLLM-powered GUI agents on mobile devices. 151

Early efforts to build GUI agents heavily rely 152

on the availability of robust commercial MLLMs. 153

GUI agents can be built through prompt learning 154

based on GPT-4o or Gemini-Pro Vision, e.g., AppA- 155

gent (Zhang et al., 2023) and Mobile-Agent (Wang 156

et al., 2024a). However, practitioners are concerned 157

about the costs associated with API requests and 158

the delays in inference on mobile devices. Re- 159

cent studies have focused on fine-tuning to opti- 160

mize foundation models. On the one hand, they 161

work on performing fine-grained visual understand- 162

ing (Bai et al., 2023), model scaling laws (Chen 163

2



et al., 2024b), multimodal information integra-164

tion (Hong et al., 2024), and GUI grounding en-165

hancements (Wu et al., 2024b; Qin et al., 2025)166

in the pre-training phase. On the other hand, re-167

searchers fine-tune the foundation model on GUI-168

specific datasets to enhance action orientation (Wu169

et al., 2024a), planning decision (Zhang et al.,170

2024c), perception enhancement (Ma et al., 2024b),171

and reasoning (Zhang and Zhang, 2024; Zhang172

et al., 2024b). Moreover, a framework based on re-173

inforcement learning (RL) designed specifically174

for the GUI agents can further enhance robust-175

ness (Zhou et al., 2024; Liu et al., 2024; Wang176

et al., 2024b).177

Despite the progress, existing GUI agents en-178

counter performance bottlenecks in complex sce-179

narios (Figure 2), such as those involving ambigu-180

ous user instructions, unexpected interruptions, and181

environmental hijacks. Sun et al. (2022) proposed182

Meta-GUI that leverages precise guidance through183

task-oriented dialogue. However, the guidance is184

given by manually identifying complex steps, thus185

severely limiting the scalability of GUI agents.186

2.2 Capability Probing for GUI Agent187

GUI agent-oriented capability probing is critical188

for real-world applications (Deka et al., 2017).189

Generally, the capability of GUI agents can be190

probed by releasing benchmark datasets. Examples191

like UIBert (Bai et al., 2021), SeeClick (Cheng192

et al., 2024), and OS-Copilot (Wu et al., 2024b),193

which investigate the problem of grounding un-194

derstanding to UI elements on a screen. Besides,195

large-scale, diverse, and high-quality trajectory196

datasets can identify challenges of action predic-197

tion in terms of effectiveness (e.g., PixelHelp (Li198

et al., 2020), Meta-GUI (Sun et al., 2022), and199

AndroidWorld (Rawles et al., 2024)), task com-200

plexity (e.g., Mobile-Bench (Deng et al., 2024) and201

GUI Odyssey (Lu et al., 2024)), and data-scaling202

(e.g., AITW (Rawles et al., 2024) and AndroidCon-203

trol (Li et al., 2024)). After identifying the capa-204

bility bottleneck of GUI agents, the introduction of205

specific strategies (e.g., planning lists (Zhang et al.,206

2024c), action chains (Zhang and Zhang, 2024;207

Zhang et al., 2024b), and supplementary data) fur-208

ther enhance the environment perception. However,209

most benchmark datasets rely on crowdsourcing210

and human annotation.211

Recent studies have focused on automatic trajec-212

tory collection for benchmark datasets. For exam-213

ple, Zhou et al. (2024) introduces a two-stage RL214

unexpected interruptions
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• Hallucinations
• …

environmental hijacks

• No network connection
• No permissions
• Pop-up hijacking
• …

Ambiguous instructions

• Information absence
• Multiple choice
• Account logout
• …

Figure 2: Illustration of three complex scenarios.

framework that explores successful trajectories dur- 215

ing optimization. However, bottlenecks in founda- 216

tion model capabilities limit productivity. Sun et al. 217

(2024) further proposed OS-Genesis, which back- 218

generates instructions through UI element traversal 219

and ensures the generated high-quality trajectory 220

based on a reward model. However, environment 221

emulators (e.g., Android Studio Emulator (Deka 222

et al., 2017)) do not reflect real-world scenarios. 223

In addition, it cannot cover most commercial ap- 224

plications, due to specific protection mechanisms 225

(e.g., RedNote). Notably, such benchmarks present 226

a static evaluation, which cannot measure the con- 227

fidence level for each step in the variety of interac- 228

tions and complexity of mobile applications, result- 229

ing in the over-execution of GUI agents. 230

3 Pilot Experiments 231

In this section, we first define GUI agent paradigms 232

and then investigate the over-execution issue of the 233

existing GUI agent on three complex scenarios. 234

As shown in Figure 2, GUI agents confront sub- 235

stantial risks in real-world scenarios, such as those 236

involving ambiguous user instructions (e.g., infor- 237

mation absence and account logout), unexpected 238

interruptions (e.g., hallucinations and shortcuts), 239

and environmental hijacks (e.g., Pop-up hijacking 240

and permission unauthorized). 241

3.1 GUI Agent Paradigm 242

The task of the GUI agent is defined as a se- 243

quence generation problem for MLLMs, with two 244

paradigms: autonomous and interactive. 245

Autonomous GUI Agent. Given an autonomous 246

GUI agent Fa and system prompt P , a user in- 247

struction τi ∈ T can be achieved with continuous 248

interaction steps in the mobile-device environment. 249

At each step t, the agent predicts the next action at 250

followed by Fa(at|P (st, ht−1, τi, ot)), where st is 251

a screenshot, ht−1 is the previous history of the 252

agent (< s1, o1, a1 >, · · · , < st−1, ot−1, at−1 >), 253
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and ot is supplementary data (e.g., plan list).254

Interactive GUI Agent. Given an interactive GUI255

agent Fi and system prompt P , we expect the256

agent can be aware of the complex step t, and initi-257

ate a human intervention. After providing precise258

guidance gt from a human or advanced model Fs,259

the agent can arrive next step t + 1, formed by260

Fs(a
s
t |st, ht−1, τi, ot).261

3.2 Challenge of Over-execution262

To investigate the performance of existing GUI263

agents, we randomly select 350 instructions from264

three complex scenarios (Figure 9 and 10) to eval-265

uate them. Then, we select the autonomous GUI266

agents: Qwen2-VL-7B and OS-Atlas-Pro-7B, and267

the interactive GUI agent assisted at each step by268

GPT-4o in our pilot evaluation. Following the set-269

ting of Zhang and Zhang (2024) and Wu et al.270

(2024b), we report their performance in terms of271

action-Type success rate, the step-wise success rate272

(SR), and task success rate (TSR).273

Models Type (%)↑ SR (%)↑ TSR (%)↑

Qwen2-VL-7B 43.19 18.94 0
OS-Atlas-Pro-7B 97.69 59.12 17

Interactive GUI Agent 94.42 86.74 62

Table 1: Pilot evaluation of three complex scenarios.
The definition of metrics is deferred to Section 5.1.

Table 1 shows that Qwen2-VL-7B struggles to274

adapt to complex scenarios, achieving only 43.19%275

in Type and 18.94% in SR. In contrast, OS-Atlas-276

Pro-7B, with improved grounding capability, ex-277

hibits significant improvement, achieving 97.69%278

and 59.12% accuracy in Type and SR, respectively.279

However, the autonomous GUI agents fail to per-280

form effectively on complex steps, resulting in TSR281

of 0% and 17%. This is attributed to over-execution282

of the autonomous GUI agent that low SR affects283

TSR exponentially. In contrast, when using the in-284

teractive GUI agent, the SR and TSR can achieve285

optimal performance, which is enhanced to 86.74%286

and 62% respectively. However, relying on human287

intervention for each step is impractical. The effect288

proof of over-execution and interaction on TSR of289

GUI agent is further demonstrated in Appendix A.290

These observations motivate our exploration of291

adaptive interaction, where the system can dynam-292

ically decide whether to operate autonomously or293

request human intervention.294

4 Methodology 295

This section presents OS-Kairos. We first intro- 296

duce a collaborative probing framework that dy- 297

namically annotates the confidence scores at each 298

interaction step. Then, we will describe confidence- 299

driven interaction that integrates confidence scoring 300

into GUI agents, resulting in adaptive interaction. 301

Figure 3 shows an overall illustration. 302

4.1 Collaborative Probing Framework 303

This framework integrates instruction collection, 304

confidence annotation, and data refinement, en- 305

abling the generation of a high-quality trajectory 306

dataset with a confidence score for each step. 307

Instruction Collection. We first collect complex 308

instructions T = {τ1, τ2, · · · , τN} from publicly 309

available datasets and human designers, and then 310

expanded by LLMs (e.g., GPT-4) to increase diver- 311

sity. To comprehensively probe the model’s confi- 312

dence at each step, these instructions incorporate 313

factors such as language type (both English and 314

Chinese), 12 APPs, and 12 topics. The distribution 315

of APP and topic is shown in Appendix B. 316

Confidence Annotation. Our confidence probing 317

framework employs an agent-critic collaborative 318

paradigm. To address the challenge of dynamic 319

evaluation and expand coverage to commercial ap- 320

plications, the framework first utilizes Android Stu- 321

dio to connect real mobile devices and establish 322

bidirectional communication with the probed GUI 323

agent Fp deployed at the service station. Second, 324

inspired by (Ma et al., 2024b; Wang et al., 2024a), 325

we assume that the layout-parse model enhanced 326

GPT-4o is the state-of-the-art critic model Fc, ca- 327

pable of effectively supervising and guiding Fp, 328

thereby ensuring the dynamic probing of the entire 329

trajectory. Additionally, Fc can monitor the entire 330

probing process, including the planned schedule, 331

current step, and instruction completion. The de- 332

tails of the prompt are provided in Appendix C.1. 333

Specifically, given a user instruction τi, Fp pre- 334

dicts the next action apt using the action prompt 335

Pp at step t, followed by Fp(a
p
t |Pp(st, ht−1, τi)). 336

For example, Fp responds to the instruction τi with 337

the first step “Open Amazon APP" as “CLICK 338

<616, 371>”. Meanwhile, Fc first generates a plan 339

schedule L using the prompt Pl. Based on the cur- 340

rent step Lt at step t, it will also respond with a 341

supervisory action act using the action prompt Pc. 342

Subsequently, Fc evaluates the effectiveness of the 343

current step execution with the scoring prompt Ph: 344
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Figure 3: Overall pipeline of OS-Kairos: After collecting instructions for each complex scenario, we annotate
confidence scores at each interaction step of the probing agent through a collaborative probing framework. Finally,
confidence-driven interaction integrates the adaptive human intervention into the GUI agent, resulting in OS-Kairos.

345
fscore :< τi, Lt, st, a

p
t , a

c
t , ht−1 >

Fc→ scoret, (1)346

where fscore ranges from 1 to 5. When scoret is 5,347

we consider that Fp is correct to execute the current348

step, otherwise, the framework will execute action349

act to continue probing the next step until the in-350

struction is judged finished by Fc. For instance, Fp351

provides the action “SCROLL[UP]” at step 5, while352

the corrective action is “CLICK < 146, 357 >” on353

the filter button. The framework also incorporates354

reflective mechanisms to monitor the plan sched-355

ule. At each step, Fc determines the completion of356

instruction τi and the current step Lt:357

ft : ⟨L, st⟩
Fc−→ index, (2)358

where the framework will retry the current step if359

t = index, otherwise to continue execution.360

Data Refinement. In this phase, we validate and361

refine these GUI trajectories, ensuring alignment362

between action and confidence score. The distribu-363

tion of each step in the complex scenarios is based364

on its score, as shown in Appendix B. Notably, the365

distribution of actions scored 5 is concentrated in366

normal steps, such as “Open APP” or “Click Search367

Bar”. However, once the instructions contain com-368

plex steps, the confidence scores of the probing369

agent decrease significantly. Hence, we can iden-370

tify the over-execution steps of the probed GUI371

agent and treat these steps as requiring advanced372

GUI agent guidance or human intervention.373

4.2 Confidence-driven Interaction 374

This phase integrates confidence scoring, resulting 375

in a GUI agent with adaptive interaction. 376

Confidence Scoring Integration. Employing the 377

trajectory from the collaborative probing frame- 378

work, we introduce OS-Kairos, which integrates 379

confidence scoring with the probed GUI agent Fp. 380

Specifically, we employ supervised training to fine- 381

tune Fp. Formally, the training objective LOS-Kairos 382

of the next-word prediction can be expressed as: 383

LOS-Kairos =

N∑
i=1

Pθ(a
i
t||scoret | Pp(st,

τi, ht−1, a
<i
t )),

(3) 384

where N is the token number of at and scoret, || 385

is the concatenated operator of the prediction of 386

action and score, and θ is the trainable parameters 387

in OS-Kairos. This optimization is more stable 388

compared to multi-task learning, as it not only pre- 389

serves OS-Kairos’s action prediction ability but 390

also generates confidence in the predicted actions. 391

Adaptive Interaction GUI Agent. To ensure in- 392

teractive adaptivity, we introduce a threshold to 393

control OS-Kairos’s sensitivity. Formally, for a 394

given threshold γ, OS-Kairos satisfies: 395

fconfidence : ⟨at, scoret⟩
<γ−−→ Interactive, (4) 396

where human intervention is triggered if the current 397
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Models API SCROLL PRESS STOP
CLICK TYPE Total

TSR
Type (%) ↑ SR (%) ↑ Type (%) ↑ SR (%) ↑ Type (%) ↑ SR (%) ↑

GPT-4o ✓ 22.22 100.00 46.67 86.95 74.63 93.62 90.07 87.59 76.35 39.13
GLM-4V-Plus ✓ 0.00 0.00 20.00 95.88 37.65 21.99 20.57 81.57 33.80 4.35
Qwen-VL-MAX ✓ 0.00 100.00 92.21 51.25 38.33 96.45 92.21 58.73 46.89 29.81

Auto-UI ✗ 44.44 0.00 0.00 2.93 0.15 0.00 0.00 2.81 0.59 0.00
Qwen2-VL-7B ✗ 22.22 85.71 0.00 37.98 15.69 55.32 42.55 40.75 20.49 0.00
OS-Atlas-Pro-7B ✗ 66.67 0.00 20.00 97.80 62.46 99.29 63.12 95.90 61.36 14.29

OS-Kairos ✗ 100.0033.33↑ 100.00100.00↑ 100.0080.00↑ 99.852.05↑ 96.3333.87↑ 100.000.71↑ 92.8629.74↑ 99.883.98↑ 95.9034.54↑ 88.2073.91↑

Table 2: Comparison of OS-Kairos with baselines in complex scenarios (zero-shot setting). We report the overall
accuracy for Type, SR, and TSR, along with fine-grained accuracy for each action. Subscripts indicate relative
improvement over the OS-Atlas-Pro-7B, with the best result highlighted in bold.

action’s confidence is below γ, otherwise, it is auto-398

matic. Notably, OS-Kairos switches to autonomous399

mode if the γ is set to minimum value, or to fully400

interactive GUI if it is set to maximum value.401

5 Experiments402

This section will introduce the experimental setup,403

followed by our empirical results and analysis.404

5.1 Experiment Setup405

Datasets. Thanks to the confidence probing frame-406

work, we can evaluate the OS-Kairos in complex407

scenarios by splitting the generated trajectories.408

Moreover, we evaluate it on established bench-409

marks such as AITZ and Meta-GUI. Details are410

provided in Appendix C.2.411

Models. In the confidence probing framework,412

we use the open-source GUI agent OS-Atlas-Pro-413

7B (Wu et al., 2024b) as our probing model. Our414

objective is to probe the confidence score of the415

GUI model at each step, thereby introducing OS-416

Kairos to enhance its effectiveness. Additionally,417

we use GPT-4o (Achiam et al., 2023) as our critic418

model. The layout-parse model is resnet18 and419

convnextTiny for OCR-detection and recognition420

models, respectively (Tang et al., 2019).421

Baselines. We compare the proposed OS-Kairos422

with the following types:423

• Multimodal API-based models. We con-424

sider MLLM-powered GUI agents, including GPT-425

4o (Achiam et al., 2023), GLM-4V-Plus (GLM426

et al., 2024) and Qwen-VL-MAX (Bai et al., 2023),427

which are strong baselines in zero-shot settings.428

• Multimodal Open-source models. In the429

zero-shot setting, we also consider GUI-adapted430

MLLMs, including CogAgent (Hong et al., 2024),431

Auto-UI (Zhang and Zhang, 2024), Qwen2-VL-432

7B (Bai et al., 2023), OS-Atlas-Pro-7B (Wu et al.,433

2024b). In the fine-tuning setting, we compare434

OS-Kairos with fine-tuned models on datasets.435

Metrics. Following Wu et al. (2024b), we report 436

the action type accuracy (Type), step-wise success 437

rate (SR), and task success rate (TSR). Besides, we 438

evaluate the human intervention success rate (HSR), 439

intervention precision (IP), autonomous precision 440

(AP), and relative efficiency (RE). More details 441

of metrics and implementation can be found in 442

Appendix C.3 and Appendix C.4. 443

5.2 Main Results 444

We present comparison results for complex scenar- 445

ios and two benchmarks with zero-shot settings in 446

Table 3, Appendix C.6.1, and Appendix C.6.2. Ta- 447

ble2 provides a comprehensive comparison of fine- 448

tuning settings. Our key findings are as follows: 449

In zero-shot setting: Superior Performance and 450

Better Effectiveness. Without changing the model 451

capabilities, OS-Kairos significantly outperforms 452

the zero-shot baseline across three datasets, high- 453

lighting its effectiveness. Specifically, the adaptive 454

interaction of OS-Kairos effectively identifies com- 455

plex steps that trigger human intervention. This 456

not only improves the prediction accuracy for each 457

action but also enhances overall performance. For 458

example, it achieves 95.90% in SR and 88.20% in 459

TSR for complex scenarios. Although API-based 460

and proprietary models realizes domain enhance- 461

ment for GUI tasks, they cannot identify complex 462

steps, resulting in over-execution and task failure. 463

Moreover, OS-Kairos yields promising results on 464

the other two datasets when applying confidence 465

scoring integration to the original dataset, highlight- 466

ing its generality (see Appendix C.6.3). 467

In fine-tuning setting: Competitive Performance 468

and Precise Improvement. Although fine-tuning 469

can alleviate the over-execution of GUI agents, OS- 470

Kairos still outperforms them, achieving high SR 471

and notable improvements in TSR. For example, it 472

shows relative improvements ranging from 26.09% 473

to 85.72% in complex scenarios. Furthermore, OS- 474
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Models Mode SCROLL PRESS STOP
CLICK TYPE Total

TSR
Type (%) ↑ SR (%) ↑ Type (%) ↑ SR (%) ↑ Type (%) ↑ SR (%) ↑

OS-Kairos Dataset
Auto-UI FT 0.0044.44↓ 71.4371.43↑ 80.0080.00↑ 98.8395.90↑ 67.1667.01↑ 97.1697.16↑ 0.710.71↑ 96.9694.15↑ 55.7455.15↑ 2.482.48↑

Qwen2-VL-7B FT 55.5633.34↑ 42.8643.85↓ 100.00100.00↑ 98.8360.85↑ 85.3469.65↑ 99.2943.97↑ 90.7848.23↑ 98.4857.73↑ 85.8365.34↑ 62.1162.11↑

OS-Atlas-Pro-7B FT 22.2244.45↓ 14.2914.29↑ 93.3373.33↑ 99.561.76↑ 84.7522.29↑ 99.290.00↑ 91.4928.37↑ 98.712.81↑ 84.7823.42↑ 55.9041.61↑

OS-Kairos ZS 100.0033.33↑ 100.00100.00↑ 100.0080.00↑ 99.852.05↑ 96.3333.87↑ 100.000.71↑ 92.8629.74↑ 99.883.98↑ 95.9034.54↑ 88.2073.91↑

AITZ Benchmark
CogAgent FT 70.2213.81↑ 45.952.35↓ 24.6019.84↑ 88.238.33↑ 66.1514.64↑ 45.8021.60↓ 21.8010.20↓ 72.596.73↑ 53.288.76↓ /
Auto-UI FT 61.4013.48↓ 57.708.61↑ 74.4014.28↑ 74.5630.19↑ 32.2019.48↑ 87.8014.80↑ 81.4013.60↑ 82.989.19↑ 47.6913.23↑ /
Qwen2-VL-7B FT 71.3852.74↑ 21.850.66↑ 78.5778.57↑ 88.3017.25↑ 51.1018.21↑ 87.805.00↑ 45.000.00↑ 85.1418.86↑ 55.2326.98↑ 1.781.78↑

OS-Atlas-Pro-7B FT 62.2334.83↑ 28.4827.82↑ 73.6168.45↑ 90.752.56↓ 58.7423.87↑ 89.003.80↑ 44.0016.60↑ 86.691.49↑ 58.3224.66↑ 11.1511.15↑

OS-Kairos ZS 91.1763.77↑ 73.5172.85↑ 91.6586.49↑ 98.435.12↑ 89.4654.59↑ 99.2014.00↑ 72.8045.40↑ 96.8111.61↑ 87.5453.88↑ 24.5124.51↑

Meta-GUI Benchmark
Auto-UI FT 42.9517.95↓ 65.9165.91↑ 53.0853.08↑ 84.2357.33↑ 53.9951.30↑ 86.5586.55↑ 1.751.75↑ 73.0253.00↑ 48.4942.04↑ 20.4220.42↑

Qwen2-VL-7B FT 89.1089.10↑ 72.7372.73↑ 90.0289.59↑ 94.6143.07↑ 83.1980.86↑ 97.0859.07↑ 64.3346.20↑ 93.1757.27↑ 83.4380.39↑ 57.2957.08↑

OS-Atlas-Pro-7B FT 84.6268.59↑ 70.4570.45↑ 89.3889.38↑ 96.011.48↑ 85.5348.24↑ 95.9135.68↑ 65.5050.30↑ 93.4927.40↑ 84.2760.68↑ 57.2956.78↑

OS-Kairos ZS 99.3683.33↑ 100.00100.00↑ 94.7394.73↑ 99.815.28↑ 96.6659.37↑ 98.8338.60↑ 95.3280.12↑ 98.4932.40↑ 96.3672.77↑ 87.7187.29↑

Table 3: Comparison of OS-Kairos in the fine-tuning setting. ZS and FT denote zero-shot and fine-tuning evaluations,
respectively. We report overall accuracy for Type, SR, and TSR, as well as fine-grained accuracy for each action.
Subscripts indicate relative improvement over the ZS baseline, with the best result highlighted in bold.
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Figure 4: Analysis of intervention precision.

Kairos achieves precise improvements by identify-475

ing complex steps (e.g., SCROLL), while fine-tuning476

may introduce side effects in specific actions and477

encounter optimization bottlenecks.478

Confidence Scoring: Effective interaction. In479

Figure 4, OS-Kairos shows accurate confidence480

evaluation (HSR). Thus, It does not interfere with481

the autonomous steps (AP), as seen in complex sce-482

narios (96.44%) and MetaGUI (93.18%). Notably,483

OS-Kairos achieves over 70% precision in all hu-484

man intervention steps, highlighting its effective485

interaction. With high-quality sampling, we con-486

sider OS-Kairos’s precision can be improved fur-487

ther (e.g., AITZ). Additionally, the ablation study488

of the critic model shows that GPT-4o is the optimal489

choice (see Appendix C.7).490

5.3 Analysis491

5.3.1 Dynamic Evaluation of TSR492

Previous benchmark evaluations have been based493

on static analysis, which limits the autonomous494

Models Human Steps Actual Steps RE (%)↑ TSR (%)↑

GPT-4o 229 302 75.83 36.00
Qwen2-VL-7B 229 397 57.68 4.00
OS-Atlas-Pro-7B 229 359 63.79 26.00

OS-KairosGPT-4o 229 245 93.47 32.00
OS-Kairoshuman 229 265 86.42 70.00

Table 4: Analysis of efficiency and dynamic TSR.

planning and generality of the GUI agent. Thus, we 495

also report the real-world TSR on mobile devices. 496

As shown in Table 4, the baselines only achieve 497

TSR of 4% and 26%. Given that the TSR of GPT-4o 498

is 36%, we see that OS-Kairos is approaching this 499

upper limit. When OS-Kairoshuman is assisted by 500

human intervention, the TSR increases from 32% to 501

70%, indicating adaptive interaction is an effective 502

paradigm for real-world GUI agents. 503

5.3.2 Efficiency Evaluation 504

Table 4 reports the efficiency in a real-world envi- 505

ronment. First, we count the optimal number of hu- 506

man steps on 50 instructions, about 429 steps. Next, 507

we evaluate the actual step counts for baseline and 508

OS-Kairos, respectively. Notably, the model max 509

steps are set to 10. We observe that the baseline 510

models tend to over-execute when faced with a 511

complex step. In contrast, OS-Kairos more closely 512

resembles human manipulation of a GUI, achieving 513

86.42% and 93.47% in RE. 514

5.3.3 Comparing Prompt-based Interaction 515

Table 5 presents a comparison of OS-Kairos with 516

prompt-based interactive models. We see that the 517

interactive mechanism of OS-Kairos outperforms 518
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Models Interactive Type (%)↑ SR (%)↑ TSR (%)↑ HSR (%)↑
GPT-4o Prompt 88.80 79.25 46.58 /
GLM-4V-Plus Prompt 88.34 79.03 47.83 /
Qwen2-VL-7B Prompt 76.42 38.44 25.47 /
OS-Atlas-Pro-7B Prompt 59.02 95.67 9.94 0.00

OS-Kairos FT 99.88 95.90 88.20 86.87

Table 5: Analysis of interactive paradigms vs. prompt-
based baseline in complex scenarios.
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Figure 5: Generality of OS-Kairos across model scale.

the prompt-based paradigm, particularly surpass-519

ing the prompt-based OS-Atlas-Pro-7B in terms520

of HSR. Despite the strong grounding capabili-521

ties of GPT-4o and GLM-4V-Plus, API-based agents522

present instability, resulting in over-execution and523

sub-optimal performance. Among open-source524

GUI agents, Qwen2-VL-7B performs more con-525

sistently than OS-Atlas-Pro-7B, because prompt-526

based interactive severely disrupts the latter’s527

instruction-following ability.528

5.4 General Effectiveness across Scales529

Model Scale. Although the dynamic detection530

framework is built on the OS-Atlas-Pro-7B back-531

bone, confidence scores and actions generated are532

supposed to be downwardly compatible. In other533

words, weaker models can be enhanced through534

data distillation and confidence scoring integration.535

Figure 5 shows that OS-Kairos can be successfully536

generalized to the 2B∼7B model. First, Type and537

SR are effective, guaranteeing a TSR of 76.40% on538

the Qwen2-VL-7B model, 77.64% on OS-Atlas-539

Pro-4B, and 85.09% on Qwen2-VL-2B. Thus, the540

combination of confidence scoring and data distilla-541

tion will enhance weak models, thus satisfying the542

deployment in resource-constrained environments.543

Data Scale. To evaluate the effect of data scal-544

ing on confidence scoring integration, we divide545

the trajectories from the probing framework into546

different scales for training and test data. As547

shown in Table 6, OS-Kairos remain stable in548

Type and SR scores across scales. Benefiting from549

its high HSR, OS-Kairos’s TSR accuracy reaches550

Data Scaling Type (%)↑ SR (%)↑ TSR (%)↑ HSR (%)↑

9:1 99.25 92.21 76.19 84.67
8:2 99.88 95.90 88.20 86.87
7:3 99.46 94.16 83.94 84.79
6:4 99.41 94.05 78.30 84.47

Table 6: Varying data scale in confidence scoring.
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Figure 6: Threshold impact on interactive sensitivity.

76.19%∼88.20%, proving that the integration of 551

confidence scoring into OS-Kairos requires only 552

a small number of probing data at a significantly 553

lower cost than fine-tuning the GUI agent. 554

5.4.1 Interactive Sensitivity 555

OS-Kairos use a threshold to achieve adaptive inter- 556

action. To analyze the adaptive interaction sensitiv- 557

ity of OS-Kairos, we ablate threshold γ from 0 to 558

5. In Figure 6, TSR and SR increase with the rise in 559

interactive sensitivity, indicating that human inter- 560

vention enhances the effectiveness of GUI agents 561

in complex scenarios. The HSR and Type accuracy 562

remain stable across different thresholds, indicat- 563

ing that OS-Kairos can effectively identify complex 564

steps, especially in coordinates and input scenarios, 565

alleviating over-execution of the GUI agent. The 566

ablation study of adaptive interaction shows that 567

OS-Kairos is more flexible (See Appendix C.8). 568

6 Conclusion 569

This study identifies a key challenge of over- 570

execution in GUI agents, which poses substantial 571

risks in complex scenarios, such as those involving 572

ambiguous user instructions, unexpected interrup- 573

tions, and environmental hijacks. To address the 574

challenge, we introduce OS-Kairos, an adaptive 575

GUI agent capable of predicting confidence lev- 576

els at each step and efficiently deciding whether 577

to act autonomously or seek human intervention. 578

Concretely, we propose a collaborative probing 579

framework for annotating confidence scores at each 580

interaction step. By integrating confidence scoring, 581

OS-Kairos outperforms previous GUI agents and 582

API-based models, with improved effectiveness, 583

scalability, generality, and efficiency. 584
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Limitation585

We acknowledge two primary limitations in our586

study. First, we only sampled instructions from587

three typical complex scenarios, as our focus was to588

investigate why existing GUI agents struggle with589

TSR and generate action confidence scores without590

loss of generality. Notably, we demonstrate the591

effectiveness of OS-Kairos on the AITZ and Meta-592

GUI benchmarks, which provide additional diverse593

instructions for complex scenarios. Besides, the594

generalization capabilities of OS-Kairos can miti-595

gate these limitations. Second, experiments were596

focused on our probing dataset and two benchmark597

datasets, highlighting the need for complex scene598

probing and confidence scoring integration. Given599

that confidence scoring relies on proprietary mod-600

els and high-quality human sampling, we anticipate601

that future research will explore the optimization602

of our approach to confidence scoring and evaluate603

new benchmark datasets.604

Ethics Statement605

This section presents the ethics statements in the606

following aspects: (i) Privacy. The probing instruc-607

tions are sourced from publicly available datasets,608

human designers, and GPT4o, covering 12 apps and609

12 topics. Temporary accounts were used to reg-610

ister these apps, and the trajectories generated by611

our collaborative probing framework are available,612

ensuring that no personal data or personally identi-613

fiable information was collected. The two bench-614

marks employed also implemented safeguards to615

protect privacy (Zhang et al., 2024b; Sun et al.,616

2022). Moreover, OS-Kairos, as an open-source617

GUI agent that does not rely on any external in-618

formation and supports local deployment. (ii) Sys-619

tem security. OS-Kairos follows the first principles620

thinking (Zhang and Zhang, 2024), manipulates the621

GUI like a human being, and can initiate human622

intervention in scenarios involving system secu-623

rity to ensure safety. (iii) Potential social impacts.624

OS-Kairos can improve the effectiveness of GUI625

execution instructions. Unlike fully autonomous626

GUI agents, OS-Kairos will proactively request au-627

thorization and acquire personal information, thus628

reducing malicious abuse.629
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A Why GUI agents have poor TSR? 852

In our pilot experiment, the TSR of autonomous 853

GUI agents is significantly lower than interactive 854

GUI agents. This difference is attributed to the poor 855

exact match for SR, particularly for the CLICK and 856

TYPE actions. In contrast, interactive GUI agents 857

can mitigate this limitation through human inter- 858

vention. Intuitively, we consider the impact of ex- 859

act matching on trajectory steps to be exponential. 860

Formally, for a trajectory with k steps, the proba- 861

bility that instruction τi can be completed is: 862

TSRτi =

k∏
j=1

SRj , s.t., SRj ∼ β(u, l). (5) 863

Herein, we assume that SRj follows β distribu- 864

tion (McDonald and Xu, 1995). u and l are hy- 865

perparameters that control the distribution of SR. 866

The expectation E[SRτi,j ] = u
u+l and variance 867

Var(SRτi,j) =
ul

(u+l)2(u+l+1)
. Additionally, the ex- 868

pectation µ = E[ln(SRτi,j)] = ψ(u) − ψ(u + l), 869

and the variance σ2 = Var[ln(SRτi,j)] = ψ′(u) − 870

ψ′(u+l), whereψ(·) andψ′(·) denote the digamma 871

and trigamma functions, respectively. The TSRτi 872

follows a normal distribution: 873

ln(TSRτi) ∼ N (k · µ , k · σ2
)
, (6) 874

then, 875

TSRτi ∼ LogNormal(expkµ+
kσ2

2 ,

exp2kµ+kσ2
(expkσ

2 −1)).
(7) 876

Considering the boundedness of k, we utilize 877

Monte Carlo simulations (Couto et al., 2013) to es- 878

timate the TSRτi probability distribution. As shown 879

in Figure 7(a), we assume that SRauto exhibits high 880

variance in the beta distribution, due to the effect 881

of step complexity. The SRmanual, determined by 882

the human intervention executed at each step, lies 883

within the right-interval and represents the upper 884

limit of the GUI agent’s capability. In this study, we 885

aim to adaptively interact to bring OS-Kairos closer 886

to this upper bound. As shown in Figure 7(b), we 887

observe that TSRτi,auto is impacted by the complex- 888

ity of the step, with the probability of TSRτi falling 889

below 20%. In contrast, OS-Kairos can align with 890

expectations and remains consistently close to the 891

upper bound of performance. 892

When generalized to N independent and iden- 893

tically distributed instructions, the average TSR 894
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Figure 7: Illustration of the probability density of SRτi,j ,
TSRτi for a single trajectory, and TSRavg for N trajecto-
ries.

satisfies:895

TSRavg =
1

N

N∑
i=1

k∏
j=1

SRj . (8)896

According to center limit theory, TSRavg also satis-897

fies normal distribution:898

TSRavg ∼ N (expkµ+
kσ2

2 ,

exp2kµ+kσ2
(expkσ

2 −1)/N).
(9)899

As shown in Figure 7(c), we observe the exponen-900

tial effect of SR on TSR. In the autonomous mode,901

TSRavg,auto is nearly 0%. In contrast, OS-Kairos902

and the fully interactive GUI agent both achieve903

success rates exceeding 60%.904

Subsequently, we further assume that the SR of905

single, complex, and interactive steps are m, q, p906

respectively. When δ complex steps are available,907

TSRτi satisfies:908

0 ≈ mδ · qk−δ < TSRτi < mδ · pk−δ ≈ pk. (10)909

As shown in Figure 8(a), the SR effect on the TSR

2 4 6 8 10
Steps

0.0

0.2

0.4

0.6

0.8

1.0

TS
R 

(%
)

(a) Impact of TSR on Trajectory Length

Automation
Manual-GUI
OS-Kairos

0.0 0.2 0.4 0.6 0.8 1.0
SR (%)

0.0

0.2

0.4

0.6

0.8

1.0

TS
R 

(%
)

(b) Impact of SR on TSR

Automation:(0.81, 0.15)

OS-Kairos:(0.98, 0.84)

Manual-GUI:(0.99, 0.92)

TSR

Figure 8: Illustration of the effect of SR on TSRavg for
N trajectories.

910
of a single trajectory is consistent with Figure 7(a).911

In other words, once there are complex steps in912

the trajectory, the TSRτi will decrease significantly, 913

while human intervention can jump such steps, thus 914

remaining effective. Therefore, OS-Kairos aims 915

to recognize such steps, seek human intervention, 916

and thus exponentially enhance TSR, as shown in 917

Figure 8(b). 918

B Instruction Distribution 919

In our dynamic capability probing, we collect 1,000 920

instructions for three complex scenarios, covering 921

12 topics and 13 apps. The distributions of topics 922

and apps are shown in Figure 9 and Figure 10. The 923

distribution of scenarios is shown in Figure 11.

Figure 9: Subject distribution of instructions.

924

Figure 10: APP distribution of instructions.
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Figure 11: Distribution of steps in different scenarios.
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C Implementation Details925

C.1 Prompt Templates926

Below are the prompt templates for designing OS-927

Kairos. In the collaborative probing framework,928

we design a planning prompt, action phase prompt,929

action prompt for probed GUI agent Fp and critic930

model Fc, scoring prompt, and finishing judgment931

prompt. In the confidence-driven interaction phase,932

we only use the Fp action prompt to optimize and933

evaluate OS-Kairos. The pipeline controller fills934

these variables in them according to the context.935

C.1.1 Planning Prompt Template936

In the GUI capability probing framework, the critic937

model Fc generates the planning schedule of the938

user instruction based on the GPT-4o and the in-939

struction planning prompt, as shown in Figure 12.940

"You are now an expert in using mobile software. I need you to
help me break down an instruction for using mobile software into
multiple step-by-step instructions. Please follow my example
format strictly.\n"
"For example:\n"
"Original instruction: Search the distance from Earth to Mars on
Google.\n"
"Broken down instructions:\n"
"Step list”:[

"Open Google",
"Click on the search box on the screen",
"Type the distance from Earth to the Moon",
"Select the correct search result or press Enter",
"Instructions complete"

]
f"Original instruction: {goal}\n"
"Broken down instructions:\n"
"Please output the broken-down instructions directly in List
format.\n"

Planning Prompt Template

Figure 12: Prompts of the critic model for generating
the planning schedule of the user instruction.

941

C.1.2 Action Phase Prompt Template942

In the collaborative probing framework, the critic943

model Fc determines the current step based on944

the GPT-4o and action phase prompts, as shown in945

Figure 13.946

C.1.3 Action Prompt Template947

In the collaborative probing framework, we ob-948

tain the prediction of GUI agents using action949

prompts. The action prompts for the probed950

GUI agent Fp and critic model Fc are shown in951

Figure 14 and Figure 15, respectively. Follow-952

ing (Wu et al., 2024b; Zhang et al., 2024b), we953

define the actions set, which comprises 7 kinds954

of actions: CLICK, SCROLL, TYPE, PRESS_BACK,955

PRESS_HOME, COMPLETE, and IMPOSSIBLE.956

"### Background ###\n"
"You are an expert in completing tasks based on screenshots and
instructions. I will provide you with a mobile screenshot and a step
list. You should be able to tell from the screenshot and the list of
steps what step you are currently at.\n”

f"The step list is: {step_list}\n"
"### Response requirements ###\n"
"You can only output the index of a list of steps."
"For example:\n"
"step_list: [

"Open WeChat",
"Click the Contacts or Search button (depending on your

version of WeChat and settings)",
"If you click on Contacts, find and click on your wife's

avatar; if you click on the Search button, enter your wife's name or
note in the search box",

"Go to your and your wife's WeChat”,
"Go to the chat screen between you and your wife",
"Click on the input box",
"Enter: I'm HIMA the Intelligence, I'm going home for the

weekend tonight, no more studying, thanks!",
"Click the send button"

]\n”
If you think you're still in the main screen, output {step index: 0}; if
you've completed the task 'Open WeChat', you output {step index:
1}; if you think you've completed clicking on the input box, you
output {step index: 5}.. Your output should just be a number."

"That means that the output is produced after a certain number of
steps have been completed."

"### Output format ###\n"
"Your output must strictly follow the format below:\n"
"{step index: }"\n”

Action Phase Prompt Template

Figure 13: Prompts of the critic model for generating
the action phase.

C.1.4 Scoring Prompt Template 957

In the collaborative probing framework, the critic 958

model Fc generates the score for the action of Fp 959

based on GPT-4o and scoring prompt, as shown in 960

Figure 16. 961

C.1.5 Completion Judgment Prompt 962

Template 963

In the collaborative probing framework, the critic 964

model Fc exploits GPT-4o to judge whether the 965

instruction is completed. The prompt is shown in 966

Figure 17. 967

C.2 Details of Datasets 968

We consider evaluating OS-Kairos on three cus- 969

tomized complex scenarios and two benchmarks: 970

AITZ (Zhang et al., 2024b) and Meta-GUI (Sun 971

et al., 2022). The statistics of the dataset are shown 972

in the Table 7. 973

• AITZ (Zhang et al., 2024b): The first dataset to 974

employ chain-of-action thought (CoAT) connects 975

perception (of screen layouts and UI elements) 976

with cognition (of action decision-making) to en- 977

hance the AITW benchmark. This dataset com- 978

prises 2,504 operation trajectories across 18.6K 979
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real-world intentions. Based on the application980

domain, AITZ is also divided into five subsets:981

General, Install, GoogleApps, Single, and Web-982

Shopping.983

• Meta-GUI (Sun et al., 2022): task-oriented di-984

alogue dataset is released for interactive GUI985

agent. These utterances cut a trajectory into sev-986

eral dialogue turns. Meta-GUI consists of 1,009987

trajectories with 16.4K steps. The data diversity988

lies in 11 applications of 6 topics.989

OS-Kairos Trajectory Screen Goal

Train 800 4078 759
Test 200 1054 198

AITZ Trajectory Screen Goal

General 479 3607 479
Install 420 3627 420
Google Apps 242 1889 242
Single 844 2594 844
Web Shopping 519 6926 519

Meta-GUI Trajectory Screen Goal

Train 897 14539 2286
Test 116 1923 336

Table 7: Dataset statistics.

C.3 Details of Evaluation Metrics990

To ensure fair comparison across all baseline meth-991

ods, we standardize the evaluation metrics for each992

action. We define the SR metrics for the three com-993

plex actions as follows:994

• CLICK: GUI agent predictions are considered995

correct if and only if both action types and posi-996

tion coordinates <x, y>. Following (Zhang and997

Zhang, 2024), we measure performance by cal-998

culating the distance between the predicted and999

ground truth coordinates. We consider the coor-1000

dinates to be correct if the distance between the1001

coordinates and the ground truth is within 14%1002

of the screen width.1003

• TYPE: GUI agent predictions are considered cor-1004

rect if and only if both action type and action1005

content are correct.1006

• SCROLL: GUI agent predictions are considered1007

correct if and only if both action type and di-1008

rection argument (i.e., UP, DOWN, LEFT, and1009

RIGHT) are correct.1010

Furthermore, Type measures the exact match score 1011

between the predicted action types (e.g., CLICK, 1012

SCROLL) and the ground truth. TSR requires that 1013

all steps in a trajectory be correctly executed. For 1014

HSR, we define four statistical metrics with the 1015

threshold γ: 1016

• True positive (TP): Neither the prediction confi- 1017

dence nor the ground truth exceeds the γ, i.e., the 1018

agent does not require and perform interactions. 1019

• False positive (FP): The prediction confidence is 1020

greater than the γ, but the ground truth does not, 1021

meaning the agent is not required, but interaction 1022

is performed. 1023

• True negative (TN): Both the prediction confi- 1024

dence and the ground truth exceed the γ, meaning 1025

the agent must also perform interaction. 1026

• False negative (FN): The prediction confidence 1027

is less than γ, but the ground truth is greater than 1028

γ, which means that the agent needs but does not 1029

perform interactions. 1030

Hence, HSR can be calculated: 1031

HSR =
TP + TN

TP + TN + FP + FN
. (11) 1032

In addition, IP calculates the accuracy of the inter- 1033

vention step where intervention is actually needed, 1034

while AP measures the accuracy of the autonomous 1035

step where autonomy is truly required. Hence, IP 1036

and AP can be calculated: 1037

IP =
TN

TN + FN
,AP =

TP

TP + FP
(12) 1038

Following (Wang et al., 2024a), RE measures the 1039

relative efficiency of the GUI agent compared to the 1040

steps taken by humans. It demonstrates whether 1041

OS-Kairos can use the mobile device more effi- 1042

ciently. 1043

C.4 Implement Details 1044

For each dataset, we randomly split 80% trajecto- 1045

ries as training data, and 20% trajectories as testing 1046

data. Dataset statistics are presented in Table 7 1047

of Appendix C.2. To ensure a fair comparison 1048

with the baseline, we use GPT-4o to score between 1049

the probing model and ground truth actions in the 1050

two benchmarks, without relying on high-quality 1051

sampling. In the zero-shot scenario, we evaluate 1052

the GUI agent directly using prompt learning. In 1053

the fine-tuning scenario, we fine-tune the model 1054
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for 8 epochs on the corresponding dataset with a1055

learning rate of 1e-5. In the interactive mode, if1056

not specifically mentioned, the threshold γ is set1057

to 4. When human intervention is required at the1058

current step, OS-Kairos uses ground truth for the1059

evaluation of the data set or human guidance for1060

the dynamic evaluation. Our experiments are con-1061

ducted on 8×NVIDIA A100 80 GB GPUs.1062

C.5 Usage of Existing Artifacts1063

For API-based MLLMs, we access them directly1064

via the official interface. For open-source MLLMs,1065

we either download the model weights from Hug-1066

ging Face1 or reproduce the model using the same1067

training strategy. In our proposed OS-Kairos, the1068

layout-parse pipeline of the collaborative probing1069

framework is built upon Modelscope 2. Further-1070

more, we utilize LLaMA-Factory3 to fine-tune the1071

probed model on three datasets for confidence inte-1072

gration. Notably, the InternVL-based models are1073

fine-tuned using Xtuner4. All licenses for these1074

packages permit their use for standard academic1075

research purposes.1076

C.6 Further Analysis1077

C.6.1 AITZ Benchmark1078

Table 8 presents a comparison of OS-Kairos with1079

the baselines in the AITZ benchmark. In API-1080

based MLLMs, although GPT-4o performs the best,1081

it is nearly impossible to finish user instructions.1082

Among the open-source GUI agents, OS-Atlas-Pro-1083

7B outperforms the other baselines due to the adap-1084

tation of AITZ, but still exhibits low SR and cannot1085

fully complete user instructions. In contrast, OS-1086

Kairos achieves precise intervention in complex1087

steps on top of OS-Atlas-Pro-7B, with significant1088

improvements in actions and overall performance.1089

As a result, OS-Kairos’s TSR increased from 0% to1090

24.51%.1091

C.6.2 Meta-GUI Benchmark1092

Meta-GUI benchmark dataset is an out-of-domain1093

(OOD) task against probing models, which allows1094

for probing more complex steps and generating the1095

confidence level for each step. Table 9 presents the1096

performance of OS-Kairos on the Meta-GUI bench-1097

mark compared to the baseline. First, API-based1098

MLLMs exhibit lower SR (17.19% to 32.72%)1099

1https://huggingface.co/models
2https://modelscope.cn/home
3https://github.com/hiyouga/LLaMA-Factory
4https://github.com/InternLM/xtuner

and Type (54.74% to 69.85%), which can be at- 1100

tributed to over-execution on complex steps such 1101

as SCROLL. Hence, Qwen-VL-MAX only achieves 1102

a TSR of 15.42%, while GLM-4v-Plus performs 1103

weakly, with only 1.67% TSR. In addition, three 1104

open-source GUI agents such as OS-Atlas-Pro-7B 1105

are even less effective, as they cannot adapt to OOD 1106

instructions. In contrast, OS-Kairos achieves the 1107

accuracies of 98.49% in Type, 96.36% in SR and 1108

87.71% in TSR, respectively. Similarly, the fine- 1109

grained Type and SR outperform the baseline. 1110

C.6.3 Generality Evaluation of OS-Kairos 1111

OS-Kairos outperforms the baseline model across 1112

three datasets due to the integration of the confi- 1113

dence scoring. To verify the generality of adaptive 1114

interaction, we train OS-Kairos on each of the three 1115

datasets and then test it on the other two. The eval- 1116

uation results are presented in Figure 18. We see 1117

that OS-Kairos is able to achieve a decent perfor- 1118

mance, though the domains vary. Compared to the 1119

main results, it significantly outperforms the base- 1120

line in the zero-shot setting across three datasets, 1121

particularly in SR and TSR metrics. Also, its gen- 1122

eralization performance is comparable to that of 1123

models fine-tuned directly on the target dataset. 1124

We also note that the more complex the dataset on 1125

which confidence scoring is integrated, the better 1126

the generalization of OS-Kairos. For example, OS- 1127

Kairos exhibits the best generalization with confi- 1128

dence scoring integration on the Meta-GUI dataset 1129

(29.05% vs. 21.74% in the AITZ benchmark, and 1130

83.85% vs. 88.20% in the OS-Kairos dataset). 1131

C.7 Ablation of Critic Models 1132

As the advanced judgment capabilities of GPT- 1133

4o (Chen et al., 2024a), we utilize it as the critic 1134

model in the collaborative probing framework. To 1135

analyze the impact of the critic model on OS-Kairos 1136

confidence integration and GUI adaptive interac- 1137

tion, we select Qwen-VL-MAX as an alternative. 1138

Table 10 presents the adaptive interaction perfor- 1139

mance of OS-Kairos across different critic models. 1140

The results show that the scoring quality of GPT- 1141

4o significantly outperforms Qwen-VL-Max, with 1142

an HSR of 86.87% compared to 57.63%. In ad- 1143

dition, the precision of the intervention decreases 1144

by 4.59% in the autonomous steps and 9.25% in 1145

the complex steps. Although GUI performance 1146

is similar, Qwen-VL-Max leads to more frequent 1147

interventions with OS-Kairos. 1148
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Models API SCROLL PRESS STOP
CLICK TYPE Total

TSR
Type (%) ↑ SR (%) ↑ Type (%) ↑ SR (%) ↑ Type (%) ↑ SR (%) ↑

GPT-4o ✓ 24.17 23.84 0.00 63.80 27.71 35.20 16.00 58.32 22.69 0.00
GLM-4V-Plus ✓ 11.65 7.28 0.00 79.15 27.65 43.80 20.40 68.95 20.92 0.00
Qwen-VL-MAX ✓ 7.89 13.04 10.2 / 72.3 / 34.04 / 52.41 /

CogAgent ✗ 56.41 48.30 4.76 79.90 51.50 67.40 34.00 65.86 44.52 /
Auto-UI ✗ 74.88 49.09 60.12 44.37 12.72 73.00 67.80 73.79 34.46 /
Qwen2-VL-7B ✗ 18.64 21.19 0.00 71.05 32.89 82.80 45.00 66.28 28.25 0.00
OS-Atlas-Pro-7B ✗ 27.40 0.66 5.16 93.31 34.87 85.20 27.40 85.20 33.66 0.00

OS-Kairos ✗ 91.1763.77↑ 73.5172.85↑ 91.6586.49↑ 98.435.12↑ 89.4654.59↑ 99.2014.00↑ 72.8045.40↑ 96.8111.61↑ 87.5453.88↑ 24.5124.51↑

Table 8: Comparison of OS-Kairos with baselines in the AITZ benchmark (zero-shot setting). We report the overall
accuracy for Type, SR, and TSR, along with fine-grained accuracy for each action. Subscripts indicate relative
improvement over the OS-Atlas-Pro-7B, with the best result highlighted in bold.

Models API SCROLL PRESS STOP
CLICK TYPE Total

TSR
Type (%) ↑ SR (%) ↑ Type (%) ↑ SR (%) ↑ Type (%) ↑ SR (%) ↑

GPT-4o ✓ 33.97 25.00 12.79 94.12 42.30 66.47 28.14 69.85 32.72 6.67
GLM-4V-Plus ✓ 0.00 0.00 1.06 95.45 26.53 38.01 22.81 65.05 17.19 1.67
Qwen-VL-MAX ✓ 14.74 40.91 1.91 70.87 37.85 74.85 45.03 54.74 27.86 15.42

Auto-UI ✗ 60.90 0.00 0.00 26.90 2.69 0.00 0.00 20.02 6.45 0.00
Qwen2-VL-7B ✗ 0.00 0.00 0.43 51.54 2.33 38.01 18.13 35.90 3.04 0.21
OS-Atlas-Pro-7B ✗ 16.03 0.00 0.00 94.53 37.29 60.23 15.20 66.09 23.59 0.42

OS-Kairos ✗ 99.3683.33↑ 100.00100.00↑ 94.7394.73↑ 99.815.28↑ 96.6659.37↑ 98.8338.60↑ 95.3280.12↑ 98.4932.40↑ 96.3672.77↑ 87.7187.29↑

Table 9: Comparison of OS-Kairos with baselines in the Meta-GUI benchmark (zero-shot setting). We report the
overall accuracy for Type, SR, and TSR, along with fine-grained accuracy for each action. Subscripts indicate relative
improvement over the OS-Atlas-Pro-7B, with the best result highlighted in bold.

C.8 Ablation of Adaptive Interaction1149

To understand the advantages of adaptive integra-1150

tion in OS-Kairos, we compare its performance1151

with and without adaptive integration: when treated1152

as regression optimization or classification opti-1153

mization in complex scenarios datasets. As shown1154

in Table 11, we see that OS-Kairos without adaptive1155

interaction is quite accurate at HSR of 86.99%, but1156

its overall performance and intervention precision1157

are suboptimal. For example, the TSR is 82.61%,1158

IP is 70.66%, and AP is 95.84%. The results show1159

that the adaptive interaction does not significantly1160

affect the performance of OS-Kairos. In contrast,1161

OS-Kairos has the advantage of adaptive interac-1162

tion by tuning the threshold, which balances the1163

sensitivity between autonomous and human inter-1164

vention.1165

D Case study1166

To further illustrate the execution process of OS-1167

Kairos, we present four examples from three com-1168

plex scenarios, along with two examples from the1169

benchmark datasets. First, for simple instructions,1170

OS-Kairos can be fully autonomous, as shown in1171

Figure 19. Second, for complex instructions across1172

the three scenarios, OS-Kairos adaptively identi-1173

fies the complex steps requiring human interven- 1174

tion, while automating other steps, as shown in 1175

Figure 20, Figure 21 and Figure 22. Similarly, 1176

OS-Kairos performs effectively on the AITZ bench- 1177

mark (Figure 23). In an extreme case, OS-Kairos 1178

requests human intervention at nearly every step 1179

to complete the task, as the Meta-GUI benchmark 1180

represents an OOD scenario for OS-Atlas-Pro-7B, 1181

as shown in Figure 24. 1182

16



Models Type (%)↑ SR (%)↑ TSR (%)↑ HSR (%)↑ IP(%)↑ AP(%)↑

GPT-4o 98.49 96.36 87.71 86.87 70.75 96.44
Qwen-VL-MAX 99.65 96.01 85.71 57.63 61.50 91.55

Table 10: Ablation of critic models.

Models Type (%)↑ SR (%)↑ TSR (%)↑ HSR (%)↑ IP(%)↑ AP(%)↑

OS-Kairos 99.88 95.90 88.20 86.87 70.75 96.44
OS-Kairosw/o adaptive interaction 99.53 95.31 82.61 86.99 70.66 95.84

Table 11: Ablation of adaptive interaction.
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Action Prompt Template for Probing GUI Agent

"You are now operating in Executable Language Grounding mode.
Your goal is to help users accomplish tasks by suggesting
executable actions that best fit their needs. Your skill set includes
both basic and custom actions:\n"
"1. Basic Actions\n"
"Basic actions are standardized and available across all platforms.
They provide essential functionality and are defined with a specific
format, ensuring consistency and reliability.\n"

"Basic Action 1: CLICK\n"
"- purpose: Click at the specified position.\n"
"- format: CLICK <point>[[x-axis, y-axis]]</point>\n"
"- example usage: CLICK <point>[[101, 872]]</point>\n"

"Basic Action 2: TYPE\n"
"- purpose: Enter specified text at the designated location.\n"
"- format: TYPE [input text] \n"
"- example usage: TYPE [Shanghai shopping mall] \n"

"Basic Action 3: SCROLL\n"
"- Purpose: SCROLL in the specified direction.\n"
"- Format: SCROLL [direction (UP/DOWN/LEFT/RIGHT)] \n"
"- Example Usage: SCROLL [UP]\n"

"2. Custom Actions\n"
"Custom actions are unique to each user's platform and
environment. They allow for flexibility and adaptability, enabling
the model to support new and unseen actions defined by users.
These actions extend the functionality of the basic set, making the
model more versatile and capable of handling specific tasks. \n"

"Custom Action 1: PRESS_BACK\n"
"- purpose: Press a back button to navigate to the previous

screen.\n"
"- format: PRESS_BACK\n"
"- example usage: PRESS_BACK\n"

"Custom Action 2: PRESS_HOME\n"
"- purpose: Press a home button to navigate to the home

page.\n"
"- format: PRESS_HOME\n"
"- example usage: PRESS_HOME\n"

"Custom Action 3: COMPLETE\n"
"- purpose: Indicate the task is finished.\n"
"- format: COMPLETE\n"
"- example usage: COMPLETE\n"

Custom Action 4: IMPOSSIBLE
"- purpose: Indicate the task is impossible.\n"
"- format: IMPOSSIBLE\n"
"- example usage: IMPOSSIBLE\n"

"In most cases, task instructions are high-level and abstract.
Carefully read the instruction and action history, then perform
reasoning to determine the most appropriate next action.\n"

"And your previous actions, current task instruction, step list and
associated screenshot are as follows:\n"

f"Final goal: {obs['task’]}\n"
f"current goal: {obs['list'][obs['now_step’]]}\n"
f"step list: {obs['list’]}\n"
f"previous actions: {obs['previous_actions’]}\n"
f"Screenshot: \n"

Figure 14: Prompt of the probed GUI agent for generat-
ing action.

Action Prompt Template for Critic Model

"### Background ###\n"
"You are an expert in completing tasks based on screenshots and
instructions. Based on the mobile screenshot, the final goal, the
current goal and the step list. I need you to determine the action to
take. The Current Goal may not be accurate, but the correct
Current Goal must be one of the steps in the step list. If you feel
that the Current Goal is not accurate, please use the step list to
determine the appropriate Current Goal to execute.\n"

f"Final Goal: {final_goal}\n"
f"Current Goal: {current_goal}\n"
f"previous actions : {previous_actions}"
f"step list: {step_list}\n"

"### Screenshot information ###\n"
"To help you understand the information in the screenshot, I first
performed OCR. Here are the names and coordinates of the icons
obtained through OCR:\n"
f"Coordinates of the icons: {ocr}\n"

"### Response requirements ###\n"
"Your skill set includes both basic and custom actions:\n"

"Basic Action 1: CLICK\n"
"- purpose: Click at the specified position.\n"
"- format: CLICK <point>[[x-axis, y-axis]]</point>\n"
"- example usage: CLICK <point>[[101, 872]]</point>\n"

"Basic Action 2: TYPE\n"
"- purpose: Enter specified text at the designated location.\n"
"- format: TYPE [input text] \n"
"- example usage: TYPE [Shanghai shopping mall] \n"

"Basic Action 3: SCROLL\n"
"- Purpose: SCROLL in the specified direction.\n"
"- Format: SCROLL [direction (UP/DOWN/LEFT/RIGHT)] \n"
"- Example Usage: SCROLL [UP]\n"

"2. Custom Actions\n"
"Custom actions are unique to each user's platform and
environment. They allow for flexibility and adaptability, enabling
the model to support new and unseen actions defined by users.
These actions extend the functionality of the basic set, making the
model more versatile and capable of handling specific tasks. \n"

"Custom Action 1: PRESS_BACK\n"
"- purpose: Press a back button to navigate to the previous

screen.\n"
"- format: PRESS_BACK\n"
"- example usage: PRESS_BACK\n"

"Custom Action 2: PRESS_HOME\n"
"- purpose: Press a home button to navigate to the home

page.\n"
"- format: PRESS_HOME\n"
"- example usage: PRESS_HOME\n"

"Custom Action 3: COMPLETE\n"
"- purpose: Indicate the task is finished.\n"
"- format: COMPLETE\n"
"- example usage: COMPLETE\n"

Custom Action 4: IMPOSSIBLE
"- purpose: Indicate the task is impossible.\n"
"- format: IMPOSSIBLE\n"
"- example usage: IMPOSSIBLE\n"

"### Output format ###\n"
"Your response must exactly follow the template:\n"
"{action: ACTION_NAME}\n"
"Replace `ACTION_NAME` with one of:\n"
"- CLICK <point>[[x,y]]</point>\n"
"- TYPE [input text]\n"
"- SCROLL [UP/DOWN/LEFT/RIGHT]\n"
"- PRESS_BACK\n"
"- PRESS_HOME\n"
"- ENTER\n"
"- IMPOSSIBLE\n"

Figure 15: Prompt of the critic model for generating
action.
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Scoring Prompt Template

"### Background ###\n"
"You are an expert in completing tasks based on screenshots and
instructions. You will grade the student action based on the goal,
screenshot, and teacher action. I hope you can be a bit stricter in
your scoring. I will provide you with a mobile screenshot, a final
goal, the current goal, the previous actions,a student action and a
teacher action. I hope you evaluate this student action based on
the screenshot , the teacher action and the goal, giving it a score
from 1 to 5. \n"

"The teacher action is an example you consider worthy of a full
score (5 points). If you believe the student action does not achieve
the same level of performance, points should be deducted
accordingly. Pay special attention to cases involving coordinates;
significant discrepancies in coordinates must result in point
deductions.\n"

f"Final goal：{final_goal}\n"
f"current goal：{current_goal}\n"
f"student action:{osatlas_action}\n"
f"previous actions : {previous_actions}"
f"teacher action:{teacher_action}\n"

"### Screenshot information ###\n"
"To help you understand the information in the screenshot, I first
performed OCR. Here are the names and coordinates of the icons
obtained through OCR:"
f"Coordinates of the icons: {ocr}"

"### Response requirements ###\n"
"I hope you evaluate this action based on the screenshot and the
goal, giving it a score from 1 to 5.\n"

"A higher score indicates that you believe this action is more likely
to accomplish the current goal for the given screenshot.\n"

"1 means you believe this action definitely cannot achieve the
goal.\n"
"2 means you believe this action is very unlikely to achieve the
goal.\n"
"3 means you believe this action has a certain chance of achieving
the goal.\n"
"4 means you believe this action is very likely to achieve the
goal.\n"
"5 means you believe this action will definitely achieve the goal.\n"

"If the teacher action and student action are of different types, the
score should only be between 1 and 3 points.\n"

"If both the teacher action and student action are CLICK, a full
score of 5 points can be given if the coordinate difference is
minimal. However, if the coordinate difference is significant, points
must be deducted.\n"

"### Output format ###\n"
"Your output must strictly follow the format below:\n"
"{score: }"

Figure 16: Prompt of the critic model for generating
action score.

Completion Judgment Prompt Template

"You are an expert in completing tasks based on screenshots and
instructions.\n"

"I am now providing you with a screenshot of the previous state, a
screenshot of the current state, and the overall goal.\n"

“You should be able to tell from the screenshot and the list of steps
what step you are currently at.\n"

f"The overall goal is: {current_task}\n"
"Please determine whether the overall goal has been achieved
based on the overall goal and the screenshots. If you believe it has
been achieved, output 1. If you believe it has not been achieved,
output 0.\n"

"Your output must strictly follow the format below:\n"
"{Is_final_finished: 0} or {Is_final_finished: 1}"

Figure 17: Prompt for the critic model to judge instruc-
tion completion.
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Figure 18: Generality analysis of OS-Kairos for adaptive interaction from original dataset to target datasets.

Instruction: Launch the Amazon app, search for “India gate basmati rice”.

CLICK <612,374>
Score: 5

TYPE <India gate basmati rice>
Score: 5

Task Success SCROLL [UP]
Score: 5

CLICK <411,99>
Score: 5

CLICK <501,196>
Score: 4

Figure 19: Case study of OS-Kairos in the normal scenario. At each step, OS-Kairos outputs both the action and
the confidence score. If the score falls below a specified threshold, human intervention is initiated to ensure task
success.
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Instruction: Open Meituan, search for “煎饼果⼦” in the Food tab of the Takeaway module, and order a plain pancake.

CLICK <145,145>
Score: 5

CLICK <136,281>
Score: 5

CLICK <120,351>
Score: 1

CLICK <284,135>
Score: 1

Type <煎饼果⼦>
Score: 5

CLICK <885,86>
Score: 5

CLICK <462,231>
Score: 1

CLICK <731,911>
Score: 5

CLICK <831,465>
Score: 5

CLICK <768,649>
Score: 5

CLICK <494,732>
Score: 5

Task Success

Figure 20: Case study of OS-Kairos in Scenario 1 (capability bottleneck). At each step, OS-Kairos outputs both the
action and the confidence score. If the score falls below a specified threshold, human intervention is initiated to
ensure task success.
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Instruction: Open WeChat's "Nearby" feature

CLICK <145,254>
Score: 5

CLICK <625,983>
Score: 1

CLICK <240,607>
Score: 5

CLICK <495,824>
Score: 3

Task Success

CLICK <737,70>
Score: 1

CLICK <737,70>
Score: 1

CLICK <690,615>
Score: 5

Figure 21: Case study of OS-Kairos in Scenario 2 (no location permission). At each step, OS-Kairos outputs both
the action and the confidence score. If the score falls below a specified threshold, human intervention is initiated to
ensure task success.
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Instruction: Go to Amap and take a taxi to “北京天安⻔”

CLICK <862,261>
Score: 5

CLICK <405,727>
Score: 1

TYPE <天安⻔⼴场>
Score: 5

CLICK <367,639>
Score: 5

Task Success
CLICK <843,744>

Score: 1

CLICK <427,977>
Score: 3

CLICK <822,935>
Score: 5

Score: 1

Figure 22: Case study of OS-Kairos in Scenario 3 (information absence). At each step, OS-Kairos outputs both the
action and the confidence score. If the score falls below a specified threshold, human intervention is initiated to
ensure task success.
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Instruction: Install the “Spotify” app

SCROLL [UP]
Score: 1

CLICK <148,178>
Score: 5

TYPE <Spotify>
Score: 5

CLICK <384,52>
Score: 5

Task Success CLICK <308,129>
Score: 5

CLICK <430,76>
Score: 1

CLICK <846,140>
Score: 5

Figure 23: Case study of OS-Kairos in the AITZ benchmark. At each step, OS-Kairos outputs both the action and
the confidence score. If the score falls below a specified threshold, human intervention is triggered to ensure task
success.
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Dialog History: I wanna reserve a restaurant near Metro Hotel.

CLICK <116,214> 
Score: 1

TYPE <Metro Hotel>
Score: 2

CLICK <558,442>
Score: 3

CLICK <563,185>
Score: 3

IMPOSSIBLE
Score: 2

Dialog History: User: I wanna reserve a restaurant near Metro Hotel.\nSystem: What food do you want to 
eat?\n\nGoal: Korean",

CLICK <563,109>
Score: 1

TYPE <Korean>
Score: 3

ENTER
Score: 3

Task Success

Figure 24: Case study of OS-Kairos in the Meta-GUI benchmark. At each step, OS-Kairos outputs both the action
and the confidence score. If the score falls below a specified threshold, human intervention is triggered to ensure
task success.
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