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ABSTRACT

Consistency training has been widely adopted and shown great promise in deep
learning. The common approach of consistency training is performed on the
data-level, which typically utilizes the data augmentation strategy (or adversarial
training) to make the predictions from the augmented input and the original input
to be consistent, so that the model is more robust and attains better generalization
ability. Recently, consistency training is also incorporated from the model-level, in
which the randomness existed in the model (e.g., dropout) is constrained during
the training stage, and the inference model can be more consistent with the training
phase. In this work, we investigate these two aspects and propose an integrated
framework, DM-CT, that incorporates both the data-level and model-level con-
sistency training. Concretely, the input data is first augmented, and the output
distributions of different sub models generated by model variance are forced to
be consistent (model-level). Meanwhile, the predictions of the original input and
the augmented one are constrained to be consistent (data-level). We study differ-
ent data augmentation strategies and model variances in the DM-CT framework.
Experiments on different tasks, including neural machine translation (4 IWSLT14
translation tasks, multilingual translation task, and WMT16 Romanian→English
translation), natural language understand (GLUE benchmark), and image classifica-
tion (CIFAR-100 dataset), well demonstrate the superiority of DM-CT by obtaining
significant and consistent performance improvements.

1 INTRODUCTION

Deep learning has shown its disruptive success in different fields, such as image processing (He et al.,
2016; Dosovitskiy et al., 2020), language processing (Bahdanau et al., 2014; Vaswani et al., 2017), and
speech processing (Oord et al., 2016; Wang et al., 2017). Along the development, consistency training
(CT) (Bachman et al., 2014) contributes a lot to the success. In semi-supervised learning, CT is
becoming the dominant framework for leveraging unlabeled data under the cluster assumption (Laine
& Aila, 2016; Verma et al., 2019; Xie et al., 2020). It simply regularizes model predictions to be
invariant to small noise applied to either input (e.g., data augmentation) (Clark et al., 2018) or hidden
states (e.g., adversarial training) (Miyato et al., 2018), so that the decision boundary lies in low
density regions (Ouali et al., 2020). CT also becomes increasingly popular in supervised learning
with labeled data (Jiang et al., 2020; Aghajanyan et al., 2020; Qu et al., 2021). For example, Shen
et al. (2020) introduce a data augmentation strategy cutoff and leverage a Jensen-Shannon Divergence
consistency loss to incorporate the augmented samples into training. Above-mentioned methods all
work on the input data modification to perform CT, hence can be termed as data-level CT.

Recently, model-level CT is also incorporated in deep model training. In particular, it is motivated
from the randomness/variance existed in the model training stage, and the objective is to make
the sub models be more consistent and less affected by the randomness during inference. Take
dropout (Srivastava et al., 2014) as an example, though it is effective, there is a gap between training
and inference for a model with dropout. The training stage is performed on the sub model structure
(caused by dropped units) while the inference is conducted on a single full model (without dropout).
In view of this, several works (Ma et al., 2016; Zolna et al., 2018; Liang et al., 2021) have investigated
this problem and incorporated the principle of CT to reduce the gap by explicitly constraining the sub
model and full model to be consistent. Specially, R-Drop Liang et al. (2021) achieves state-of-the-art
(SOTA) results in many tasks and datasets, which greatly demonstrates the value of model-level CT.
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In this paper, to furthest excavate the power of CT, we propose to integrate the Data-level and
Model-level Consistency Training into a same framework named DM-CT1, which is not investigated
before. In DM-CT, each input sample is first processed with a data augmentation strategy. Then
both the original data and the augmented one will go through the model forward pass twice. Due
to the randomness existed in the model training phase (e.g., dropout), each forward pass is actually
conducted through one sampled sub model. Therefore, the two outputs from the two forward passes
(two sub models) are different. Next, we perform the model-level CT between the two outputs
for each data. Furthermore, the outputs of the original input sample and the augmented sample
are also constrained by a data-level CT. The CT forces the distributions outputted by the two sub
models or the two data samples to be consistent with each other, through minimizing the bidirectional
Kullback-Leibler (KL) divergence between the two distributions. In such a way, the single full model
can achieve better performance by reducing the training/inference model gap (model-level CT) and
be more robust with improved generalization ability (data-level CT).

We evaluate our DM-CT framework in various areas, including neural machine translation, natu-
ral language understanding, and image classification, from both natural language processing and
computer vision. Specifically, the experiments are conducted on 4 small-scale IWSLT14 translation
datasets, the larger WMT16 Romanian→English translation dataset, the low-resource multilingual
translation, and we achieve significant BLEU improvement, for example, about 0.76 BLEU score
gain over strong R-Drop on IWSLT14 German→English translation. On the GLUE benchmark and
the CIFAR-100 image classification dataset, DM-CT also yields consistent performance improvement
over the strong baseline models.

The contributions of this paper can be summarized as follows:

• We first incorporate the data-level and model-level consistency training and propose the
DM-CT framework to improve the model robustness and generalizations.

• We comprehensively study the different aspects in both data-level and model-level consis-
tency training to show the effects of these variants.

• We demonstrate the effectiveness of our DM-CT with strong performance improvements on
both natural language processing and computer vision tasks.

2 APPROACH

In this section, we introduce our DM-CT framework and the training algorithm. To have a clear
understanding before presenting the details, we first give the required notations. Given a paired
training dataset D = {(xi, yi)}ni=1, n is the number of training data samples, xi is the input data, and
yi is the corresponding label. For each data sample xi, the corresponding augmented input will be
denoted as x′i. The training model isM and the goal is to learn the probability distribution PM(y|x).
Then, for one sub modelMs sampled from the full modelM, the corresponding distribution is
denoted as PMs

(y|x), shortened as Ps(y|x). For two probability distributions P1(y|x) and P2(y|x),
their averaged distribution is denoted by P̃ (y|x), and the difference of these two distributions is
measured by Kullback-Leibler (KL) divergence, which is DKL(P1||P2).

2.1 PRELIMINARY

As DM-CT is based on consistency training (CT), we first introduce the CT methodology, specifically
on the data-level and the model-level CT, then our integrated DM-CT framework.

Data-level CT As mentioned before, consistency training (CT), which regularizes the model pre-
dictions to be consistent to improve the model robustness and generalization ability, is becoming the
dominant regularization in deep learning. For the data-level CT, it is required to make the model
predictions to be invariant to the small perturbation applied to the data sample, either from the input
representation (Sajjadi et al., 2016; Clark et al., 2018) or the hidden states (Miyato et al., 2018).
The common approaches for the perturbation is to add noises, such as data augmentation (Shorten

1In this paper, we mainly focus on the supervised learning scenario, but DM-CT can be easily extended to
semi-supervised learning.
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Figure 1: The overall framework of DM-CT. x and xi are the original data and the noised (augmented)
version. EachMsi represents one sampled sub-model. ‘M-CT’ is the model-level consistency training
loss, and ‘D-CT’ is the data-level consistency training loss.

& Khoshgoftaar, 2019), Guassian noise (McHutchon & Rasmussen, 2011), and adversarial train-
ing (Ravı̀ et al., 2019). For example, Xie et al. (2020) apply RandAugment (Cubuk et al., 2019b)
strategy on the unlabeled data in semi-supervised learning, where the model predictions of augmented
sample and the original input is regularized to be consistent, thus improving the generalization ability
of the model. Mathematically, for one data sample x and its noised version x′, the data-level CT
is to constrain the predictions P (y|x) and P (y|x′) to be consistent, measured by the bidirectional
Kullback-Leibler (KL) divergence, and the training objective is to minimize the following loss2:

LD−CT =
1

2
[DKL(P (y|x)||P (y|x′)) +DKL(P (y|x′)||P (y|x))]. (1)

Model-level CT Apart from the data-level CT, the model-level CT, which is inspired from the
intrinsic randomness existed in the model training, is also drawing attention recently. Specifically,
the model-level CT investigates the training of the sub models generated by some methods, such
as Dropout (Srivastava et al., 2014), Stochastic Depth (Huang et al., 2016), LayerDrop (Fan et al.,
2019). These regularization methods randomly sample different sub models during each forward pass.
However, during inference, the single full model is utilized for prediction, which indeed exists a gap
between the training and inference stages. Besides, the output probability distributions for one data
sample from these sub models are also distinct. Concretely, for dropout (Srivastava et al., 2014), it
randomly drops some parts of the units in each layer of the neural model, then the model parameters
connected to these dropped units will not participate in the training (no gradient backward), which
leads to a sub model of the full model. For each forward pass, the sub model is different due to the
random dropping. When inference, however, there is no dropout applied to the model, it approximates
the combination of an exponential number of sub models. Therefore, the model-level CT is to make
the sub models to be more consistent with the full model so that the training and inference gap
is reduced (Ma et al., 2016), and the model performance will be less affected by the sub model
randomness. It is further demonstrated that making the sub models to be consistent with each other is
a better choice (Zolna et al., 2018; Liang et al., 2021). In formulation, for two sub modelsMs1 and
Ms2 sampled fromM, the two model predictions are Ps1(y|x) and Ps2(y|x) for data pair (x, y),
the model-level CT constrains them to be consistent via minimizing the following bidirectional
KL-divergence training objective:

LM−CT =
1

2
[DKL(Ps1(y|x)||Ps2(y|x)) +DKL(Ps2(y|x)||Ps1(y|x))]. (2)

2Note that during implementation, the data-level consistency between an original data x and the augmented
data x′ is usually conducted on NLP tasks (Jiang et al., 2020; Qu et al., 2021), while for CV tasks, data-level CT
is between two independently augmented samples x1 and x2 both from x (Xie et al., 2020).
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2.2 DM-CT

As introduced earlier, the regularization effect of above CT approaches is from different views: the
data-level CT regularizes the model to be consistent to data variants so that the model is more robust,
and the model-level CT regularizes the training-inference to be consistent from the sub-model level.
Therefore, it is interesting to investigate both in the same framework to see whether the potential
of CT can be further exploited. Towards this goal, we present a unified framework, DM-CT, that
integrates the data-level and model-level CT with specific designs. The overall architecture of DM-CT
is shown in Figure 1, the details are introduced below.

Given the training data D = {(xi, yi)}ni=1, for each specific data pair (xi, yi) at each training step,
we first apply some noising method on xi to obtain the noised input x′i. In this paper, we adopt
several data augmentation strategies and study the effect of these different choices. For NLP tasks,
we study the simple data operations (e.g., word drop, word replacement). For CV tasks, we work on
geometric transformations (e.g., rotation, cropping, flipping), RandAugment (Cubuk et al., 2019b) and
AugMix (Hendrycks et al., 2020). We also design a simple hybrid strategy where one augmentation
operation is randomly sampled from these candidates, referred to as random-pick. Then both the
original input xi and the augmented one x′i will go through the forward pass of the model to output
predictions. Due to the randomness existed in the model training, the forward training pass is on
a sub modelMs sampled from the full modelM. Hence, we feed the data into the forward pass
twice to obtain two different predictions from the two sampled sub models. The model-level CT is
then conducted to constrain the two distributions from the sub models to be consistent. As for the
model randomness, we here investigate the two most commonly methods used in the deep learning,
Dropout (Srivastava et al., 2014) and Stochastic depth (Huang et al., 2016). As introduced, dropout
randomly drops several units in each hidden layer, and stochastic depth randomly skips each layer of
the model. Finally, we average the above the predictions from two sub models for both original input
xi and augmented x′i. The data-level CT is then conducted between the two averaged predictions to
improve the model generalization.

Concretely, the input xi is fed to two different sub models Ms1 and Ms2 sampled from M to
obtain two output predictions Ps1(yi|xi) and Ps2(yi|xi). The augmented input x′i is executed in the
same way, it will go forward two sub modelsMs3 andMs4 to output predictions Ps3(yi|x′i) and
Ps4(yi|x′i). Then the model-level CT is applied between Ps1(yi|xi) and Ps2(yi|xi), Ps3(yi|x′i) and
Ps4(yi|x′i), which is a bidirectional KL-divergence:

LM−CT = α1 · LM−CT (xi) + α2 · LM−CT (x
′
i),

LM−CT (xi) =
1

2
[DKL(Ps1(yi|xi)||Ps2(yi|xi)) +DKL(Ps2(yi|xi)||Ps1(yi|xi))],

LM−CT (x
′
i) =

1

2
[DKL(Ps3(yi|x′i)||Ps4(yi|x′i)) +DKL(Ps4(yi|x′i)||Ps3(yi|x′i))]. (3)

After that, the two predictions for each data sample is averaged, i.e, P̃ (yi|xi) = 1
2 (Ps1(yi|xi) +

Ps2(yi|xi)), P̃ (yi|x′i) = 1
2 (Ps3(yi|x′i) + Ps4(yi|x′i)), and the data-level CT is utilized by the follow-

ing loss:

LD−CT =
1

2
[DKL(P̃ (yi|xi)||P̃ (yi|x′i)) +DKL(P̃ (yi|x′i)||P̃ (yi|xi))]. (4)

The main learning objective of negative log-likelihood loss on the training data is:

LNLL = − logPs1(yi|xi)− logPs2(yi|xi)− logPs3(yi|x′i)− logPs4(yi|x′i), (5)

and the final training objective is to minimize the following loss function:

L = LNLL + LDM−CT = LNLL + LM−CT + βLD−CT , (6)

where β, α1 and α2 in Eqn. (3) are the weight hyperparameters to control and balance the consistency
losses. We will study the effect of these weights in the experiments.

Alternative Designs Recap the consistency training (CT), there are actually different choices that
have been adopted in the previous works. For example, Zolna et al. (2018) conduct the CT on the
outputted hidden logits before the softmax operation, and the loss function is the L2 distance.
Xie et al. (2020) and Shen et al. (2020) apply the CT on the output probability distributions (after
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Algorithm 1 DM-CT Training Algorithm
Input: Training data D = {(xi, yi)}ni=1.
Output: model M after training.

1: Initialize model with random parameters.
2: while not converged do
3: Randomly sample data pair (xi, yi) ∼ D,
4: Randomly augment the data xi to be a noised one x′i,
5: Concatenate and duplicate the data to be [xi, x

′
i, xi, x

′
i],

6: Forward the data once and obtain the output distributions [Ps1(yi|xi), Ps3(yi|x′i), Ps2(yi|xi),
Ps4(yi|x′i)],

7: Calculate the negative log-likelihood loss LNLL by Eqn. (5),
8: Calculate the model-level CT loss LM−CT by Eqn. (3),
9: Calculate the data-level CT loss LD−CT by Eqn. (4),

10: Update the model parameters by minimizing loss L of Equation (6).
11: end while

softmax) with either KL-divergence or Jensen-Shannon (JS) divergence. The various designs
indeed lead to different optimization and regularization effect with different model performances.
Therefore, in this paper, though we take the distribution-guided CT with KL-divergence as the main
constraint, we also study the hidden-level L2 consistency loss function.

Discussion A close look into the data-level CT and model-level CT reveals several overlaps and
also differences. One may think that the data-level CT includes the model-level CT to some extent.
Indeed, when the data-level CT is conducted on a model with randomness, such as dropout, it can be
regarded that the data-level CT contains both data-level and model-level CT. However, for a model
without randomness, such as a shallow ResNet (He et al., 2016), the data-level and model-level CT are
performed on different perspectives at all. Besides, even in the former scenario, explicitly modeling
the model-level CT also benefits the model generalization to improve the model performance. This
can be demonstrated from our ablation study below.

2.3 TRAINING ALGORITHM

The overall training algorithm for our DM-CT is shown in Algorithm 1. Note that during imple-
mentation, instead of forwarding the sub models forth, we take the same strategy as Liang et al.
(2021) that the two sub models CT are conducted in a doubled batch data, and we also put the
augmented data in the same batch. That is, the xi and x′i are first concatenated in a same batch,
[xi, x

′
i], then they are duplicated in the same batch to be [xi, x

′
i, xi, x

′
i] and the concatenated data

only forward the model once to save the computational cost. Specifically, the process of the batched
data is shown in Line 3-5, and then the data goes forward the model once to obtain the predicted
distributions [Ps1(yi|xi), Ps3(yi|x′i), Ps2(yi|xi), Ps4(yi|x′i)] at Line 6. The negative log-likelihood
and the data-level and model-level consistency losses are then calculated in Line 7-9, finally the
model is updated in Line 10 according to Eqn. (6).

3 EXPERIMENTS

3.1 NEURAL MACHINE TRANSLATION

We first evaluate our proposed method on neural machine translation (NMT) tasks, and we collect
different scale datasets to conduct experiments and analysis. In addition, we examine whether DM-CT
is useful across different language pairs for low-resource multilingual translation tasks.

Datasets For small-scale datasets, we use 4 language translation pairs from the IWSLT evaluation
campaign, which belongs to rich-resource language on low-resource settings. The IWSLT datasets
include English↔German (En↔De), English↔Spanish (En↔Es), and IWSLT17 English↔French
(En↔Fr), English↔Chinese (En↔Zh) translations. Furthermore, we also choose for multilingual
translation, which is low-resource language on low-resource settings following Li et al. (2020).
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Model En→De De→En En→Fr Fr→En En→Zh Zh→En En→Es Es→En Avg
Transformer (Vaswani et al., 2017) 28.57 34.64 35.9 36.1 26.3 18.4 39.0 40.6 32.44
R-Drop (Liang et al., 2021) 30.72 37.25 38.0 38.9 28.1 19.5 41.8 43.2 34.68

DM-CT 30.92 38.01 38.4 39.4 28.3 20.6 41.9 43.6 35.14

Table 1: BLEU scores on 8 IWSLT machine translation tasks.

Model aze bel glg slk tur rus por ces Avg
Transformer (Li et al., 2020) 5.5 9.1 22.4 24.6 15.8 19.4 38.6 21.9 19.65

DM-CT 5.5 10.1 23.0 25.4 15.5 19.4 39.2 22.1 20.02

Table 3: BLEU scores for one-to-many multilingual translation on related languages.

That related languages are from same language family, which include four low-resource language
(Azerbaijani: aze, Belarusian: bel, Glacian: glg, Slosvak: slk) and high-resource language (Turk-
ish: tur, Russian: rus, Portuguese: por, Czech: ces). For large datasets, we choose WMT16
Romanian→English (Ro→En) translation task, which uses the amount of back-translation data to
make improvements. We do not conduct experiment on WMT14 English→German translation since
augmentation method utilized in our DM-CT is more preferred for relatively smaller data size.

Settings We implement all NMT models using Transformer (Vaswani et al., 2017) net-
work with fairseq (Ott et al., 2019) toolkit3. We use the transformer iwslt de en and
transformer vaswani wmt en de big as configurations for small-scale and large-scale
datasets respectively. To make a fair comparison, we re-implement standard Transformer and
R-Drop (Liang et al., 2021) as a baseline model.More details of experimental settings for each dataset
can be found in Appendix A.

Method Ro→En
Transformer (Vaswani et al., 2017) 37.73

BERT-fused NMT (Zhu et al., 2019) 39.10
FNCM (Bhosale et al., 2020) 40.3
R-Drop (Liang et al., 2021) 39.03

DM-CT 40.54

Table 2: BLEU scores on WMT16 Ro→En
machine translation tasks.

Results We first illustrate the BLEU score for IWSLT
translation tasks in Table 1. We can see that our DM-
CT achieves more than 2.7 BLEU score improvements
than Vanilla Transformer and nearly 0.5 BLEU score
compared to R-Drop. It is worth noting that DM-CT
leverages the data consistency from augmented data
pair, which demonstrates the data consistency is com-
plementary to model consistency. Next, we evaluate
the DM-CT on WMT translation tasks, as shown in Ta-
ble 2. The results show that our method surpasses sev-
eral strong baselines, such as BERT-fused NMT (Zhu
et al., 2019) model based on large-scale pretrained model, and Fast Noisy Channel Modeling (FNCM).
To the best of our knowledge, we achieve the new state-of-the-art (SOTA) BLEU score on WMT16
Ro→En (40.54). Then, we use the one-to-many multilingual translation task to verify the impact of
DM-CT training approach. In Table 3 we show performance on the “Related” language setting, and
observe that DM-CT obtains a strong average BLEU score 20.02, and maintains better performance
on most language pairs.

3.2 NATURAL LANGUAGE UNDERSTANDING

Datasets To further verify our methods with universal impacts, we validate on widely-adopted
GLUE benchmark, which consists of 8 Nature Language Understanding tasks: MNLI, MRPC, QNLI,
QQP, RTE, SST-2, STS-B, CoLA. The pre-trained model and the backbone implementations are all
from Huggingface Transformers4. The more details can be found in Appendix A.

Settings Following common practice, we apply DM-CT to the Roberta-Large model, which is the
strong baseline for GLUE benchmark (Wang et al., 2018). For each task, different random seeds and
parameter settings are required, thus we dynamically adjust the coefficient weight for each setting.
Other configurations are following the previous works (Liu et al., 2019).

3https://github.com/pytorch/fairseq/tree/master/examples/translation
4https://github.com/huggingface/transformers
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Model MNLI MRPC QNLI QQP RTE SST-2 STS-B CoLA Avg
RoBERTa-large 90.2 90.9 94.7 92.2 86.6 96.4 92.4 68.0 88.93
R-Drop 90.9 91.4 95.2 92.5 88.4 96.9 92.5 70.0 89.73

DM-CT 90.9 92.1 95.3 92.5 89.1 96.9 92.6 70.7 90.01

Table 4: Fine-tuned model performances on GLUE language understanding benchmark.

Results The empirical results of the GLUE benchmark are presented in Table 4. The evaluation
metrics for above 8 tasks are as follows: The result for STS-B is the Pearson correlation; Matthew’s
correlation is used for CoLA; Other tasks are measured by Accuracy. We can find DM-CT has
achieved 1.08 points improvement over the Roberta-large model, and outperforms the strong R-
Drop model by nearly 0.3 points, demonstrating the effectiveness of model and data consistency
regularization. Besides, we get the consistent conclusion with Qu et al. (2021) that synthetically
produced examples are more valuable data-limited tasks (e.g., MRPC, RTE, CoLA, and STS-B). This
further validates DM-CT obtains stronger results by leveraging augmented samples more effectively.

3.3 IMAGE CLASSIFICATION

Datasets We chose the well-known CIFAR-100 dataset (Krizhevsky, 2009) to demonstrate the
effectiveness of DM-CT in image classification. CIFAR-100 has 50, 000/10, 000 images in the
train/val split, divided into 100 categories. Following Kolesnikov et al. (2020), we train the model on
the official train split and report accuracy on the validation split.

Settings For CIFAR-100, we utilize two backbone models: ViT-B/16 (Dosovitskiy et al., 2020)
which is pretrained on ImageNet-21K, and Resnet110 (He et al., 2016) equipped with stochastic
depth (Huang et al., 2016). Empirically we have found our ViT model does not benefit from more
advanced techniques, so we simply adopt the commonly used random-crop strategy for it. On the
contrary, we adopt the random-pick augmentation strategy introduced in Section 2.2 for Resnet110.
In Section 4.1, we compare different augmentation strategies in detail.

Method CIFAR-100
ViT-B/16 (Dosovitskiy et al., 2020) 93.12

+R-Drop 93.21
+DM-CT 93.45

Resnet110 (Huang et al., 2016) 76.07
+R-Drop 76.93
+DM-CT 79.33

Table 5: Classification accuracy on CIFAR-100.

Results The accuracy on CIFAR-100 is shown
in Table 5. For ViTB-B/16 model backbone,
DM-CT achieves 0.33 improvement over the
vanilla model, and 0.24 over R-Drop. For
Resnet110 model backbone, the improvement is
more remarkable: 3.26 over the vanilla model
and 2.4 over R-Drop. This demonstrates the syn-
ergy between imposing data-level consistency
and model-level consistency when DM-CT is
applied to vision tasks, under both pretraining-
finetuing and training-from-scratch scenarios.

3.4 ABLATION

In this section, we analyze the effect of different data augmentation methods and two consistency reg-
ularization terms (model-level CT and data-level CT) in our proposed DM-CT, and try to understand
their contribution to the performance gain.

Method IWSLT14 De→En CIFAR-100
Baseline 34.64 76.07
DM-CT 38.01 79.33
w/o data-level CT 37.67 78.37
w/o model-level CT 37.54 78.67
w/o CT 35.26 78.01

Table 6: Comparison among different consistency
regularization objectives.

Regularization Losses We first explore the
improvements of regularization loss both NLP
and CV, the results are presented in Table
6. For NLP tasks, we choose the IWSLT14
De→En translation tasks and adopt the Trans-
former (Vaswani et al., 2017) as baseline
model. The data augmentation strategy (w/o
CT) achieves 0.6 points improvement over the
baseline model. Along with the data-level con-
sistency training strategy (w/o model-level CT)
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and Model-level consistency training strategy (w/o data-level CT) introduced, our model exhibits
significant gains from 35.26 to 37.54 and 37.67 respectively. Furthermore, we can obtain superior
performance of 38.01 BLEU scores by integrating two different consistency strategies. For CV
tasks, we run the study with Resnet110 as the backbone network on CIFAR-100 image classification
tasks. As we can see, augmentation is vital to this task, and the designed random-pick augmentation
strategy alone improves the model by nearly two points. Adding the model-level consistency loss
term further improves the model by forcing each sub-model sampled by stochastic depth to give
consistent predictions for each input. Remarkably, imposing data-level consistency pushes the model
to 78.67% accuracy, implying it is essential to constrain the model to be robust to input perturbations
explicitly. These observations demonstrate that both the model-level and data-level regularization
terms are indispensable for NLP and CV tasks.

4 STUDY

To give a thorough understanding of our methods, we conduct several detailed analyses and discus-
sions in this section. More studies can be found in Appendix B.

4.1 AUGMENTATION METHODS

Task Augmentation Accuracy/BLEU

CIFAR 100

Flip & Crop 77.84
RandAugment 78.10
AugMix 77.95
Random-pick 79.33

IWSLT14 De→En
Word Drop 37.52
Word Replacement 37.79
Random-pick 38.01

Table 7: Comparison among different augmentation strate-
gies on CIFAR-100 and IWSLT14 De→En.

In this section, we study the impacts of
different data augmentation strategies on
both NLP and CV tasks. For IWSLT-14
De→En machine translation task, we try
out word drop, word replacement, and
random-pick based on these two opera-
tions. For CIFAR-100 image classifica-
tion task, we explore flip & crop, Ran-
dAugment, and AugMix, as well as ran-
domly picking two operations from these
three. As presented in Table 7, with any
augmentation strategy listed here, we can
observe that DM-CT surpasses R-Drop by a large margin, and random-pick augmentation dominates
others on both tasks. We conjecture the reason of the fact that (1) various data augmentation methods
can produce more diverse inputs, thus preventing the model from overfitting to fixed of augmentation
strategy, and (2) the data-level consistency loss of DM-CT can leverage this more diversified data to
make the model more robust to input perturbations.

4.2 LOGITS OR PROBABILITY

Figure 2: Comparison different regularization loss
applied to different model output space (logits and
probability)

We first study the different ways to regularize
the model-level or data-level consistency on
NLP (IWSLT14 De→En) and CV (CIFAR 100)
tasks. With regards to this, we have introduced
two different distance functions to guarantee the
model output consistency by penalizing the dis-
crepancy, which are (1) Kullback–Leibler (KL)
distance regularization for model output prob-
ability, (2) Euclidean distance (L2) regulariza-
tion (Zolna et al., 2018) for model output logits.
Since both model-level CT and data-level CT
are vital components, we study the impacts of all
combinations: DLML both data-level and model-
level consistency are regularized by minimizing
the L2 distance between output logits, DLMP and DPML replaces one of regularization strategy to
optimize the KL distance of output probability, and DPMP is our proposed method. As shown in
Figure 3, the same conclusion was obtained by two different tasks. The model performance is not
improved using logits regularization based on L2 distance. This observation attributed the fact that the
hidden state distance is not equality to output probability distributions distance. For this reason, we
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almost impossible to optimize the negative log-likelihood objective functions by regularizing the L2
loss for output logits. Instead, the KL-divergence between probability distributions is more similar to
loss objective functions and more suitable to guide model training. We can achieve the best empirical
result by applying probability regularization for both model-level and data-level consistency. These
phenomena can demonstrate the fact that probability regularization is the optimal choice.

5 RELATED WORK

Our DM-CT approach is related to several different research fields.

Regularization Methods Our DM-CT is built upon the data (data augmentation) and model
(dropout, stochastic depth) perturbations, which are indeed widely adopted regularization methods
in deep learning. Here we introduce some of them. Sajjadi et al. (2016) gives a study of data
augmentation with stochastic transformations and perturbations. For language tasks, common
strategy includes word deletion, shuffle, replacement (Edunov et al., 2018). Advanced strategies like
back-translation (Sennrich et al., 2016a), soft contextualized augmentation (Gao et al., 2019), and
cutoff (Shen et al., 2020) are also proposed with strong performance. For CV, the common approach
is image rotation, cropping, translation and so on (Shorten & Khoshgoftaar, 2019). Zhang et al.
(2018) proposes MixUp to mix the two images, Cubuk et al. (2019b) introduces RandAugmentation
that combines different methods, Cubuk et al. (2019a) instead giving an automatic augmentation
learning approach. As for model randomness, dropout (Srivastava et al., 2014) is the most famous
method that randomly drops several units in the model layer. LayerDrop (Fan et al., 2019) drops the
entire model layer with some probability. Similarly, stochastic depth (Huang et al., 2016) skips the
block in a model with stochastic operation. Instead of proposing new regularization methods, we
integrate these methods in our DM-CT framework.

Data-level Consistency Training CT is popular in deep learning and has been the dominant
method in semi-supervised learning. It is mostly conducted on data-level, in which the data is first
noised and the consistency regularization is performed between the noised input and the original
one to improve the model generalization and robustness. There are many works that augment the
unlabeled data and constrain the data representation with some specific consistency loss (Laine
& Aila, 2016; Tarvainen & Valpola, 2017; Verma et al., 2019; Ouali et al., 2020). For example,
Xie et al. (2020) achieves super strong performance on ImageNet classification with unsupervised
data augmentation (UDA). It is also extended to the labeled data and the resulted performance is
outstanding (Shen et al., 2020; Jiang et al., 2020; Aghajanyan et al., 2020; Qu et al., 2021). Our work
is inspired from the data-level CT but we give more studies and strategies in our work.

Model-level Consistency Training Our work also incorporates the model-level CT, which is less
investigated. Model-level CT studies the intrinsic randomness in the model and regularizes the
resulted sub models to be consistent so that the sub model and full model gap is reduced. Ma et al.
(2016); Zolna et al. (2018) and Liang et al. (2021) investigate the inconsistency between the sub
model (during training) and the full model (during inference) for models with dropout (Srivastava
et al., 2014) strategy. They introduce different consistency losses between sub models (sampled from
dropout mask) and full model, e.g., KL-divergence loss on the output distributions, L2 distance on
the hidden states or logits. Our DM-CT extends the model-level CT and integrate with data-level CT
to greatly empower the consistency training.

6 CONCLUSION

In this paper, we propose DM-CT approach, a consistency training approach that incorporates the
data-level and model-level CT in a unified framework. Through constraining the data to be invariant
to data noises, the data-level CT improves the generalization and robustness of deep learning models.
Besides, the model-level CT regularizes the sub models to be consistent so that the training and
inference gap is reduced. By conducting experiments on neural machine translation, natural language
understanding, and image classification, we demonstrate the effectiveness of our DM-CT approach
with strong performances on each task, especially on the low-resource data task. In the future, we
will continue reducing the training cost. Besides, we will apply DM-CT in more practical scenarios.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta, Naman Goyal, Luke Zettlemoyer, and Sonal
Gupta. Better fine-tuning by reducing representational collapse. In International Conference on
Learning Representations, 2020.

Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with pseudo-ensembles. Advances in
neural information processing systems, 27:3365–3373, 2014.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Shruti Bhosale, Kyra Yee, Sergey Edunov, and Michael Auli. Language models not just for pre-
training: Fast online neural noisy channel modeling. In Proceedings of the Fifth Conference on
Machine Translation, pp. 584–593, 2020.

Kevin Clark, Minh-Thang Luong, Christopher D Manning, and Quoc Le. Semi-supervised sequence
modeling with cross-view training. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 1914–1925, 2018.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 113–123, 2019a.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical data
augmentation with no separate search. arXiv preprint arXiv:1909.13719, 2(4):7, 2019b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at scale.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pp. 489–500, 2018.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In International Conference on Learning Representations, 2019.

Fei Gao, Jinhua Zhu, Lijun Wu, Yingce Xia, Tao Qin, Xueqi Cheng, Wengang Zhou, and Tie-Yan
Liu. Soft contextual data augmentation for neural machine translation. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pp. 5539–5544, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. AugMix: A simple data processing method to improve robustness and uncertainty.
Proceedings of the International Conference on Learning Representations (ICLR), 2020.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pp. 646–661. Springer, 2016.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. Smart:
Robust and efficient fine-tuning for pre-trained natural language models through principled regular-
ized optimization. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 2177–2190, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (bit): General visual representation learning. In ECCV, 2020.

10



Under review as a conference paper at ICLR 2022

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

Xian Li, Asa Cooper Stickland, Yuqing Tang, and Xiang Kong. Deep transformers with latent depth.
Advances in Neural Information Processing Systems, 33, 2020.

Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen, Min Zhang, and
Tie-Yan Liu. R-drop: Regularized dropout for neural networks. arXiv preprint arXiv:2106.14448,
2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Xuezhe Ma, Yingkai Gao, Zhiting Hu, Yaoliang Yu, Yuntian Deng, and Eduard Hovy. Dropout with
expectation-linear regularization. arXiv preprint arXiv:1609.08017, 2016.

Andrew McHutchon and Carl Rasmussen. Gaussian process training with input noise. Advances in
Neural Information Processing Systems, 24:1341–1349, 2011.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 41(8):1979–1993, 2018.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 2016.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation. In
Proceedings of the Third Conference on Machine Translation: Research Papers, pp. 1–9, 2018.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics
(Demonstrations), pp. 48–53, 2019.
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aze bel glg slk tur rus por ces
train 5.9K 4.5K 10K 61.5K 182K 208K 195K 103K
valid 671 248 682 2271 4045 4814 4035 3462
test 903 664 1007 2445 5029 5483 4855 3831

Table 8: Data statistics for multilingual translation experiments.

A DETAILED EXPERIMENT SETTINGS

We provide more detailed setting for the experiments of each task in this part.

NMT The IWSLT datasets include English↔German (En↔De), English↔Spanientence pairs, 7k
valid pairs, and 7k test pairs. The the WMT16 Ro→En data contains 0.6M bilingual data and 2M
back translated data, valid and test data are from the corresponding newstest data. For IWSLT5 tasks,
We tokenize all the datasets with byte-pair-encoding (BPE) Sennrich et al. (2016b) approach with the
dictionary built jointly upon the source and target sentence pairs. In particular, we build IWSLT17
En↔Zh translation dataset vocabulary separately due to very diverse between two language. For
WMT’16 Romanian→English task, we concatenate original data and back translation data6 to build
joint vocabulary. After tokenization, the resulted vocabularies for IWSLT datasets are near 10k, while
for WMT datasets, the vocabulary size is about 32k.

To train the Transformer based NMT models, we use transformer iwslt de en configuration
for IWSLT translations, which has 6 layers in both encoder and decoder, embedding size 512,
feed-forward size 1, 024, attention heads 4, dropout value 0.3, weight decay 0.0001. For the WMT
experiments, the transformer vaswani wmt en de big setting has 6 layers in encoder and
decoder, embedding size 1, 024, feed-forward size 4, 096, attention heads 16, dropout value 0.1,
attention dropout 0.1 and relu dropout 0.1. The training is optimized with Adam Kingma & Ba (2014)
with β1 = 0.9, β2 = 0.98, ε = 10−9. The learning rate scheduler is inverse sqrt with default
learning rate 0.0005 and warmup steps 4, 000. Label smoothing Szegedy et al. (2016) is adopted
with value 0.1. We train the IWSLT translations on 1 GEFORCE RTX 3090 card and the WMT
translations on 8 GEFORCE RTX 3090 cards.

To evaluate the performance, we use multi-bleu.perl7 to evaluate IWSLT14 En↔De and all
WMT tasks for a fair comparison with previous works Zhu et al. (2019); Ott et al. (2018). For other
NMT tasks, we use sacre-bleu8 Post (2018) for evaluation. When inference, we to use beam size
4 and length penalty 0.6 for WMT’16 En→De, beam size 5 and penalty 1.0 for other tasks. We set
the hyper-parameter α1 = α2 = β = 4/3.

NLU For language understanding tasks, the Roberta-large model is employed as the testbed for
our experiments, and the fine-tuned sets are the GLUE Wang et al. (2018) benchmark. That contains
singe-sentence classification tasks (CoLA, SST-2), sentence-pair classification tasks (MNLI, QNLI,
RTE, QQP, MRPC), and sentence-pair regression task (STS-B). The detailed data statistics can be
found from the original paper Wang et al. (2018).

The pre-trained Roberta-large model contains 24 layers with embedding size 1, 024, feed-forward
size 4, 096 and attention heads 16. During fine-tuning, we use Adam Kingma & Ba (2014) as our
optimizer with β1 = 0.9, β2 = 0.98, ε = 10−6, and L2 weight decay of 0.01. We select the learning
rate in range {5 × 10−6, 10−5} and batch size in {8, 16, 32}. Other hyper-parameter settings are
mostly same as previous works Liu et al. (2019). For each task, different random seeds and parameter
settings are required, thus we dynamically adjust the coefficient α1, α2, and β from 0.01 to 1.0. The
fine-tuning experiments are conducted on 1 GEFORCE RTX 3090 GPU card.

CIFAR-100 The weights of our ViT-B/16 model are pretrained on ImageNet-21K dataset and
publicly released. We finetune the model with input resolution 224× 224, while keeping the other

5https://iwslt.org/
6http://data.statmt.org/rsennrich/wmt16_backtranslations/ro-en/
7https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/

multi-bleu.perl
8https://github.com/mjpost/sacrebleu
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hyperparameters the same as the original paper: initial learning rate 0.01 with 500 warmup steps
and cosine decay; batch size 512; no weight decay; 10000 steps in total. We set α1 = α2 = 1 and
β = 0.1.

We train the Resnet110 model from scratch. We set batch size to 1024 to fully utilize the GPU
memory, and set initial learning rate to a larger value 0.8 accordingly, with 250 warmup steps and
cosine decay. Weight decay is set to 1e-4. We train the model for 25000 steps in total. As to stochastic
depth, we linearly increase the probability of being skipped from 0 (bottom block) to 0.5 (top block).
We set α1 = α2 = 0.3 and β = 0.5.

B MORE STUDIES

B.1 EFFECT OF WEIGHT

Figure 3: The Accuracy with different weight on MRPC and
RTE tasks

The important hyper-parameter with
DM-CT is the weight α1, α2 and
β, which is very sensitive for dif-
ferent tasks, and the Proportion of
them control how degrees of model
and data consistency. To explore the
process of hyper-parameter search-
ing, we investigate the impact of
three weight for MRPC and RTE task,
which is sub task of GLUE bench-
marks. The smaller tasks are more eas-
ier to benefit from data augmentation
algorithms and sensitive with slight
hyper-parameter changed. Specifi-
cally, we first find the weight scale
for selected tasks, then assign weight by product of weight scale and the fixed proportion pattern
(e.g., 1:1:1 or 1:2:7). For example, we get the weight scale 0.1 and proportion 1 : 3 : 1 for specific
task, Then, we can calculate the specific coefficient α1 = 0.2, α2 = 0.6, and β = 0.4. As shown
in Figure 3, we get the best hyper-parameter that the weight scale 0.1 and the different proportion
5 : 3 : 2 and 7 : 2 : 1 for MRPC and RTE respectively.

B.2 TRAINING ANALYSIS & VISUALIZATION

Figure 4: Loss/BLEU curves along with model training.

To better show the advantage of DM-CT model, we plot the curve of training/valid loss and valid
BLEU along with training epoch number for R-Drop and our method, as shown in Figure 4. we
can see that the DM-CT train loss is large than R-Drop, but the valid loss is better than it. This
observation demonstrates that DM-CT provide strong persistent regularization than R-Drop during
training. From the BLEU curves, we can clearly find that DM-CT performs better along with each
training epoch.
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