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Abstract

Many practical applications require optimization of multiple, computationally expensive, and
possibly competing objectives that are well-suited for multi-objective Bayesian optimization
(MOBO) procedures. However, for many types of biomedical data, measures of data analysis
workflow success are often heuristic and therefore it is not known a priori which objectives are
useful. Thus, MOBO methods that return the full Pareto front may be suboptimal in these
cases. Here we propose a novel MOBO method that adaptively updates the scalarization
function using properties of the posterior of a multi-output Gaussian process surrogate
function. This approach selects useful objectives based on a flexible set of desirable criteria,
allowing the functional form of each objective to guide optimization. We demonstrate the
qualitative behaviour of our method on toy data and perform proof-of-concept analyses of
single-cell RNA sequencing and highly multiplexed imaging datasets.

1 Introduction

The analysis of high-dimensional biological data is often exploratory and unsupervised. For example, gene
expression data may be subject to clustering algorithms to find groups representative of meaningful biological
variation. For assays that profile at the patient level, these clusters may represent novel disease subtypes,
while for assays at the single-cell level, they may represent novel cell types.

Despite the importance of these methods, there is no “one-size-fits-all” approach to the analysis of such data.
Instead, there is a myriad of different possible parameter combinations that govern these workflows and lead
to variations in the results and interpretation. For example, in the analysis of single-cell RNA-sequencing
(scRNA-seq) – a technology that quantifies the expression profile of all genes at single-cell resolution – a
common analysis strategy is to cluster the cells to identify groups with biological significance. However, each
workflow for doing so has variations with respect to data normalization, cell filtering strategies, and the
choice of clustering algorithm and parameters thereof. Changes to these algorithm and parameter choices
produce dramatically different results (Germain et al., 2020; Duò et al., 2018) and there is no ground truth
available. This motivates an important question: how do we optimize these workflows such that the resulting
exploratory analysis best reflects the underlying biology?

In the adjacent field of supervised machine learning (ML), such optimization over workflows has largely been
tackled from the perspective of automated ML (AutoML, He et al. (2021)). This comprises a diverse set of
methods such as Bayesian optimization (Snoek et al., 2012) and Neural Architecture Search (Elsken et al.,
2018) that attempt to optimize the success of the model with respect to one or more hyperparameter settings.
In this context, success is defined as the model accuracy on a held out test set, though can also correspond to
the marginal likelihood of the data given the model and hyperparameters.

However, in the context of exploratory analysis of genomic data, existing AutoML approaches face three
challenges. Firstly, they are almost exclusively unsupervised, meaning there is no notion of accuracy on a
test set we may optimize with respect to. Secondly, the majority of methods are not generative probabilistic
models (Zappia et al., 2018) so it is impossible to optimize with respect to the marginal or test likelihood.
Finally, the objectives used to optimize a workflow are numerous, conflicting, and can be highly subjective,
due to often being heuristics.
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This is demonstrated by attempts to benchmark clustering workflows of scRNA-seq data. As said above,
there are many parameters that must be set, e.g. which subset of genes and clustering algorithm to use, along
with such parameters as resolution in the case of community detection (Germain et al., 2020). However, there
is no quantitative way to choose which parameter setting is “best” and so the community turns to a number
of heuristic objectives to quantify the performance of a workflow. For example, Cui et al. (2021) attempt to
optimize the adjusted Rand index (ARI) with respect to expert annotations and a heuristic based around
downsampling rare cell types while minimizing runtime. Germain et al. (2020) similarly consider the ARI
but also the average silhouette width to maximize cluster purity. Zhang et al. (2019) consider a range of
heuristics including agreement with simulated data and robustness to model misspecification.

However, given that these objectives are all heuristic and open to user preference, there is no guarantee that all
of them are useful and have maxima that align with the meta-objective at hand, which in the above example
is the ability to identify a biologically relevant population of cells. Conversely, some heuristic objectives
may be non-useful – they are largely noisy and attribute nothing to the overall optimization problem by
not aligning with a meta-objective. This motivates the central question we attempt to address: how can we
adapt AutoML approaches to optimize unsupervised workflows over multiple heuristic objectives that are
frequently subjective and conflicting?

To begin to tackle this question, we introduce MANATEE (Multi-objective bAyesiaN optimizAtion wiTh
hEuristic objEctives). The key idea is that by considering a linear scalarization as a probabilistic weighting
over (heuristic) objective inclusion, we may up- or downweight an objective based on desirable or non-desirable
properties of its posterior functional form. Consequently, rather than returning the full Pareto front that
may include points (parameter combinations) that maximize potentially non-useful heuristic objectives,
we automatically concentrate on a useful region in accordance with the specified properties. The main
contributions presented here are:

1. Introduce the concept of behaviours B of the posterior functional form of the surrogate objective function
f that are desirable if a function is useful for overall optimization.

2. Suggest a set of such behaviours that may be inferred from the posterior of a multi-output Gaussian
process, if used as the surrogate function.

3. Build upon previous MOBO procedures to compute the distribution of scalarization weights p(λ|B) with
resulting optimizations returning Pareto optimal points.

4. Devise a set of experiments based on the analysis of real molecular imaging and transcriptomic data and
show that the proposed procedure compares favourably to existing approaches.

2 Background

2.1 Bayesian optimization

Bayesian optimization (BO, see Frazier (2018) and references therein) attempts to optimize a function
g(x) ∈ R for some x ∈ RD that is, in some sense, expensive to evaluate and for which derivative information
is not available, precluding gradient-based approaches. Applications of BO have become popular in the
tuning of ML hyperparameters (Turner et al., 2021) and indeed entire workflows (Fusi et al., 2017) due to
the expensive nature of re-training the models.

At their core, BO approaches propose a surrogate function f defined on the same range and domain as g
that may be searched efficiently to find points x that either maximize g, reduce uncertainty about f , or both.
This leads to the concept of an acquisition function acq(x) ∈ R that may be optimized to find the next x at
which g may be evaluated. While multiple acquisition functions have been proposed, here we focus on the
Upper Confidence Bound (UCB) (Auer, 2002) defined as:

acqUCB(x) = µ(t)(x) +
√
βtσ

(t)(x) (1)

where µ(t)(x) and σ(t)(x) are the posterior mean and standard deviation of f at x after t acquisitions from g,
while βt is a hyperparameter that controls the balance between exploration and exploitation. While there are
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many possible choices for the surrogate function f , including deep neural networks (Snoek et al., 2015), a
popular choice is a Gaussian process due to its principled handling of uncertainty and capacity to approximate
a wide range of functions.

2.2 Gaussian processes

Overview Gaussian processes (GPs) (Williams & Rasmussen, 2006) define a framework for performing
inference over nonparametric functions. Let m(x) be a mean function and k(x, x′) a positive-definite covariance
function for x, x′ ∈ RD. We define f(x) to be a Gaussian process denoted f(x) ∼ GP (m(x), k(x, x′)) if
for any finite-dimensional subset x = [x1, . . . , xN ]T ∈ RN×D, the corresponding function outputs f =
[f(x1), . . . , f(xN )] follow a multivariate Gaussian distribution p(f |x) = N (0,K), where K is the covariance
matrix with entries (K)ij = k(xi, xj) and we have assumed a zero-mean function without loss of generality.
The kernel fully specifies the prior over functions, with one popular choice we use throughout the paper
being the exponentiated quadratic kernel k(x, x′) = exp

(
(x−x′)2

l2

)
. It is common to model noisy observations

y via the likelihood p(y|f), which when taken to be N (f , σ2
ϵ ) with noise variance σ2

ϵ leads to the exact
marginalization of f .

Multi-output GPs GPs may be extended to model K distinct outputs1 via the functions {fk(x)}K
k=1.

One construction is to model the full covariance matrix as the Kronecker product between the K × K
inter-objective covariance matrix KIO and the data covariance matrix:

cov (fk(x), fk′(x′)) = (KIO)k,k′k(x, x′). (2)

Here the kernel hyperparameter l is shared across objectives, though in the following we model objective-specific
observation noises ϵk.

2.3 Multi-objective Bayesian optimization

Multi-objective optimization Multi-objective optimization attempts to simultaneously optimize K
objectives g1(x), . . . , gK(x) over x ∈ RD, which is common in many real-world settings. However, it is rare
in practice to be able to optimize all K functions simultaneously and instead is common to attempt to
recover the Pareto front. We say a point x1 is Pareto dominated by x2 iff gk(x1) ≤ gk(x2) ∀k = 1, . . . ,K and
∃ k ∈ 1, . . . ,K s.t. gk(x1) < gk(x2). A point is said to be Pareto optimal if it is not dominated by any other
point. The Pareto front is then defined as the set of Pareto optimal points, which intuitively corresponds to
the set of equivalently optimal points given no prior preference between objectives.

Scalarization functions One popular approach to multi-objective optimization is the use of scalarization
functions (see Chugh (2020) for an overview). A scalarization function sλ(g(x)) parameterized by λ takes
the set of K functions g(x) = [g1(x), . . . , gK(x)] and outputs a single scalar value to be optimized in lieu of
g(x). It can be shown (Paria et al., 2018) that if sλ is monotonically increasing in all gk(x) then the resulting
optimum x∗ lies on the Pareto front of g.

While many scalarization functions exist, one popular choice is the linear scalarization function sλ(g(x)) =∑K
k=1 λkgk(x), λk > 0 ∀k. This has the intuitive interpretation that each λk corresponds to the weight

assigned to function k, with a larger relative value pulling the optimum of sλ towards the optimum of gk.

Hypervolume improvement Another multi-objective optimization approach relies on the notion of
hypervolume (HV), the volume of the space dominated by a Pareto front and bounded from below by a
reference point, which current work assumes to be known by the practitioner (Daulton et al., 2021). HV is
used as a metric to assess the quality of a Pareto front and is sought to be maximized in the optimization.
Expected HV improvement (EHVI) for a new set of points can be computed using box decomposition
algorithms (Yang et al., 2019).

Multi-objective BO with scalarizations Multi-objective Bayesian optimization (MOBO) approaches
that use scalarizations operate under the same conditions as BO, where each evaluation of gk(x) is expensive

1Commonly referred to as tasks, we here refer to them as objectives given the application.
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and derivative information is unavailable. An example method is ParEGO (Knowles, 2006), which randomly
scalarizes objectives with augmented Chebyshev scalarization and uses expected improvement. It was recently
extended to qNParEGO (Daulton et al., 2020), which supports parallel and constrained optimization in a
noisy setting. Unlike hypervolume-based methods which can struggle with > 5 objectives (Balandat et al.,
2021), qNParEGO is more suited for such problems.

Paria et al. (2018) propose a MOBO procedure that, rather than maximizing sλ for a single λ, constructs a
distribution p(λ) and minimizes the expected pointwise regret,

R(X) = Ep(λ)

(
max
x∈X

sλ(g(x)) − max
x∈X

sλ(g(x))
)
,

where X is the feature space of x and X is the subset of X lying on the Pareto front to be computed. The
exact region of the Pareto front to be considered is governed by p(λ) and the authors provide a bounding
box procedure for the user to select p(λ), akin in the case of a linear scalarization to asserting a priori which
objectives k are important. However, to our knowledge, no MOBO approach has proposed a p(λ|·), inferred
from either the data or the posterior over functions, that adaptively up- or downweights objectives based on
desirable properties.

Figure 1: Cartoon illustrating proposed desirable be-
haviours of objectives. Explainability captures how
much an objective covaries with the parameter x,
favouring those with lower observation noise. Inter-
objective agreement favours objectives that agree with
each other. Maximum not at boundary determines
whether the optimum is contained within the user-
specified parameter range.

Multi-objective BO beyond scalarizations
For hypervolume-based methods in the MOBO set-
ting, EHVI has been extended to parallel evaluation
of q points, leveraging automatic differentiation and
boosting efficiency (Daulton et al., 2020). As EHVI
assumes noise-free case and can be affected in noisy
settings, recent work introduced noisy EHVI (NE-
HVI), which uses its expectation under the posterior
distribution of the surrogate function values given
noisy observations (Daulton et al., 2021). NEHVI is
more robust to noise than other hypervolume-based
MOBO methods, is equivalent to EHVI in the noise-
less setting, and its parallel formulation (qNEHVI)
achieves computational gains and state-of-the-art
performance in large batch optimization (Daulton
et al., 2021).

2.4 Applications of AutoML in genomics

Despite the prevalence of ML applications in ge-
nomics, AutoML methods have received surprisingly
little attention. The GenoML project (Makarious
et al., 2021) provides a Python framework centered
on open science principles to perform end-to-end Au-
toML procedures for supervised learning problems
in genomics. AutoGeneS (Aliee & Theis, 2021) de-
velops a multi-objective optimization framework for
the selection of genes for the deconvolution of bulk
RNA-sequencing. However, to our knowledge, there
is no work that tackles the general problem of optimizing bioinformatics and genomics workflows in the
absence of well-defined objective functions. In contrast, there are multiple BO techniques that allow a user to
express a preference between solutions (González et al., 2017). While these could have exciting applications
in genomics, we assume such information is not available here.
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3 Multi-objective Bayesian optimization over heuristic objectives

3.1 Setup

We assume we have access to K noisy, heuristic objectives that at acquisition step t return a measurement ykt

for an input location xt ∈ X , where X is a compact subset of R on [a, b]. We introduce surrogate functions
fk(x) that we model with a multi-output GP as described in Section 2.2 with a full kernel given by Equation 2.
The choice to fit a multi-output GP to data reflects our prior assumption that the heuristic objectives may
have a correlated functional form. Our framework is applicable to any scalarization function that uses
weightings (e.g. Tchebyshev scalarization (Nakayama et al., 2009)) and here we consider a linear scalarization
function over objectives sλ(f(x)) =

∑
k λkfk(x). Ultimately, we seek to maximize Ep(λ|·)[sλ(f(x))].

The next point to query xt+1 is chosen by maximizing the expectation of the acquisition function. For
this we propose two approaches: maximize (i) the expectation of the scalarization of the single-objective
acquisition function of each objective Ep(λ|·) [sλ(acq(f(x)))] as per Paria et al. (2018) or maximize (ii) the
expectation of the single-objective acquisition function of the scalarized objectives Ep(λ|·) [acq(sλ(f(x)))]
(derived in Appendix C). We denote these as SA (scalarized acquisition) and AS (acquisition of scalarized),
respectively. While many choices of acquisition functions are possible, we use the UCB single-objective
acquisition function as per Equation 1. The SA formulation simplifies to an intuitive interpretation where
each objective’s UCB function value is weighted by the probability of that objective being useful (Appendix
C). The AS formulation takes into account the multi-objective posterior covariance structure (Appendix C)
but has a longer computation time that may require approximations when K is large.

3.2 Desirable heuristic objective behaviours

Next, we wish to set p(λ|·) to upweight objectives that are inferred as useful based on desirable properties
learned from the data. We begin by considering what properties of a given heuristic objective fk(x) may be
considered desirable. While many are possible, we suggest three behaviours (Figure 1):

1. Explainability: fk(x) covaries significantly with x (i.e. is explained by x). The justification here is that
the practitioner has selected heuristic k assuming it will provide insight into the choice of x, so if there
is no correlation then it should be downweighted. Given that the data have been scaled to empirical
variance 1, σ2

ϵ k represents the proportion of variance unexplained by fk so we define B(1)
k := σ2

ϵ k.

2. Inter-objective agreement: fk shares a similar functional form with fk′ , k′ ≠ k, with the intuition that
it is useful for practitioners to find regions of the input space where multiple heuristics agree. After fitting
the multi-output GP, (KIO)k,k′ defines the covariance between objective k and k′ for k ̸= k′ and (KIO)k,k

defines the variance of objective k. We therefore introduce the inter-objective agreement behaviour as

B
(2)
k :=

K∑
k′=1 : k′ ̸=k

max
(

0, 1
K − 1

(KIO)k,k′√
(KIO)k,k(KIO)k′,k′

)
. (3)

The intuition is that (KIO)k,k′√
(KIO)k,k(KIO)k′,k′

represents the correlation between objectives k and k′ so B
(2)
k

represents the average correlation with other objectives while not penalizing negative correlation worse
than no correlation.

3. Maximum not at boundary: Within X , fk has a maximum that is not at the boundary of x. The
useful range of x is specified by the practitioner. Then, if fk is maximized by a boundary value of x, then
either (i) the optimum is outside of the specified range, conflicting with the practitioner’s intuition, or
(ii) fk is unbounded in x, in which case it is not useful for optimization. In the former case, one approach
would be to revise the range and repeat the process. Since the derivative of a GP is also a GP, we may
identify whether a stationary point exists in X by searching for the zeros of the posterior mean derivative
f̄ ′(x). We therefore define B(3)

k := hasmax(fk,X ), where hasmax returns 1 if fk has a maximum on X
and 0 otherwise by evaluating the derivatives of the posterior mean of the multi-output GP (derived in
Appendix D).
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Figure 2: Multi-objective Bayesian optimization with heuristic objectives. A multi-output Gaussian process
is fitted (Step 2) to the initial training dataset (Step 1). Objective behaviours are inferred from the posterior
form (Step 3) and are used to update the distribution of objective inclusion weights (Step 4). The acquisition
function defined as the expectation under the weights distribution is optimized (Step 5) to give the next
location to sample objectives at (Step 6). Step 5 shows the scalarized acquisition (SA) function approach.

3.3 Incorporating desirable behaviours into scalarization weights

We next consider how to use the set of behaviours B to parameterize the scalarization probabilities p(λ|B).
We assume that λk is a binary variable ∀k that corresponds to whether objective k is useful or otherwise,
with p(λk|Bk) given by a Bernoulli distribution. While this construction initially appears restrictive, it has
two desirable properties outlined below that maintain its generality (proofs presented in Appendix E).

Theorem 3.1. If Ep(λk|Bk)[λk] > 0 ∀k, the solution to maxx Ep(λ|B)sλ(f(x)) lies on the Pareto front of f .

Theorem 3.2. For some p(λ|B), any point x∗ on the linear Pareto front of f is reachable as a maximizer of
Ep(λ|B)sλ(f(x)).

However, how to construct p(λk = 1|B(1)
k , B

(2)
k , B

(3)
k ) directly is non-obvious. Instead, we ask how would each

objective behaviour appear if we knew that objective was useful or otherwise? These allow us to specify
p(B(i)

k |λk = 1), p(B(i)
k |λk = 0) for i = 1, 2, 3 and combine with a prior p(λk = 1) = 1 − p(λk = 0) to compute

p(λk =1|Bk) =
∏

i
p(B

(i)
k

|λk=1)p(λk=1)∑
q=0,1

∏
i

p(B
(i)
k

|λk=q)p(λk=q)
.

With these considerations, we suggest distributions for p(B(i)
k |λk); however, we emphasize that these are

suggestions only and there are many possible that would fit the problem.

Explainability: For B(1)
k , the explainability of objective k (i.e. the proportion of variance unexplained by

that function), we assume that if that objective is desirable (λk = 1) then the lower the observation noise,
the better and in the non-desirable case (λk = 0), higher noise is expected. Given the lack of additional
assumptions, we appeal to the principle of parsimony and propose a linear relationship of the form:

p(B(1)
k |λk) =

{
2(1 − λk)B(1)

k + 2λk(1 −B
(1)
k ) if B(1)

k ∈ [0, 1]
0 otherwise.

(4)
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Inter-objective agreement: For inter-objective agreement B(2)
k , we propose reversed likelihoods to

Equation 4 given the reasoning that high inter-objective correlation should be more likely under a desirable
objective and vice-versa for a non-desirable one, and again a linear relationship is the most parsimonious.

Maximum not at boundary: We propose B(3)
k |λk = i ∼ Bernoulli(πi) where π0, π1 are user-settable

hyper-parameters. This means that conditioned on an objective being useful (or otherwise), there is a fixed
probability of that objective containing a maximum in the region.

3.4 MANATEE

Putting these steps together results in the MANATEE framework, an iterative MOBO procedure as outlined
in Figure 2. First, the objectives are evaluated at a set of input locations randomly chosen on the parameter
space. Second, the multi-output GP surrogate function with covariance given by Equation 2 is fitted to all
objectives. Then, the objective behaviours B are computed from the surrogate function and the distributions
over objective weights are updated. Finally, the updated acquisition function is optimized, guiding acquisition
of the next point. The procedure is repeated for a predetermined number of steps. The overall “best” point
to be used for downstream analysis may be chosen as that which maximizes the scalarized surrogate function.

3.5 Baselines for experiments

We contrast our method against two baselines and two existing approaches designed for MOBO of noisy
objectives: (i) Random acquisition: draw xt ∼ Unif(0, 1) at each iteration, (ii) Random scalarization: use
identical surrogate and acquisition functions as MANATEE-SA to sample xt but draw λk ∼ Unif(0, 1) rather
than conditional on B, (iii) qNEHVI (Daulton et al., 2021) with approximate hypervolume computation to
facilitate inference over > 5 objectives, and (iv) qNParEGO (Daulton et al., 2020).

When a meta-objective h(xt) is available at every iteration t = 1, . . . , T with overall maximum
y∗ = maxx∈X h(x), to compare among approaches we compute the following metrics: (i) Cu-
mulative regret: 1

T

∑T
t=1 (y∗ − h(xt)), (ii) Full regret: y∗ − maxx∈X1:T h(x), and (iii) Bayes regret:

1
T

∑T
t=1 (y∗ − maxx∈X1:t h(x)), where X1:t is the set of x acquired up to time t. Of these, we place most

emphasis on cumulative regret as it quantifies how close each method gets to the optimal solution on average.
In contrast, the full and Bayes regret quantify how close the “best” acquired point gets to y∗ as measured by
the max over h of all points acquired so far; however, since the meta-objective h is in general inaccessible for
our problem setup (and only used for method comparison), it is impossible to quantify maxx∈X1:T h(x) in
practice outside of benchmarking exercises.

4 Experiments

4.1 Toy data experiment

We begin by demonstrating the overall problem setup on toy data on an input space x ∈ [0, 1]. We consider
5 objectives overall – 3 that act as the useful objectives with maxima around that of a meta-objective at
1/4 given by sin 2πx, max(0, sin 2πx), and sin 2π(x − 0.05) and 2 that disagree and act as the non-useful
objectives given by 2x and −2x. Each objective is augmented with noise (Appendix B.1). Note that on real
data we do not know a priori which objectives are useful2. Further, the meta-objective is not specified –
it may be linear, non-linear, and not necessarily a function of the heuristic objectives – it simply needs a
maximum at x ≈ 1

4 .

Samples from each of these functions can be seen in Figure 3A (blue points). The overall Pareto front (orange
points) spans almost the entire region including samples at the very right where one of the non-useful linear
objective functions has its maximum. However, when applied to this toy problem, MANATEE quickly begins
acquiring samples around the joint maxima of the three useful objective functions (red points). Indeed, tracing
the inclusion probabilities p(λk = 1|Bk) across the iterations (Figure 3B) demonstrates how MANATEE
learns to upweight objectives 1-3 while downweighting 4-5. This demonstrates than when we do not know

2Otherwise only useful objectives would be included and standard MOBO procedures applied.
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A

B

Figure 3: A Samples of toy data for the 5 objectives, including those on the Pareto front (orange) and
otherwise (blue), along with points acquired by MANATEE-SA (red). B Inclusion probabilities for each of
the objectives as a function of acquisition step. Solid line shows the mean and shaded region denotes the 95%
confidence interval.

a priori which objectives to trust, we may still recover a region of high utility when the Pareto front spans
the full space of conflicting objectives.

4.2 Imaging Mass Cytometry cofactor selection

We next apply MANATEE to the selection of cofactors for Imaging Mass Cytometry (IMC) data, a new
technology that can measure the expression of up to 40 proteins at subcellular resolution in tissue sections
(Giesen et al., 2014). In the analysis of mass cytometry data, a cofactor c is frequently used to normalize
the data (Ray & Pyne, 2012; Wagner et al., 2019) via the transformation ỹ = sinh−1(y/c). However, to
our knowledge no systematic approach exists to set the cofactor and it is typically left as a user-specified
parameter.

Table 1: Results for IMC cofactor optimization experiment. CR: cumulative regret, FR: full regret; BR:
Bayes regret. M-SA: MANATEE with scalarized acquisition, M-AS: MANATEE with acquisition of scalarized
function, RA: random acquisition, RS: random scalarization. ARI: adjusted Rand index, NMI: normalized
mutual information. Values are mean (s.d.).

Method ARI NMI
CR FR BR CR FR BR

M-SA 0.017(0.005) 0.003(0.003) 0.007(0.006) 0.019(0.009) 0.002(0.005) 0.008(0.009)
M-AS 0.021(0.010) 0.006(0.010) 0.011(0.011) 0.025(0.017) 0.007(0.016) 0.015(0.017)
RA 0.045(0.001) 0.024(0.013) 0.031(0.008) 0.065(0.003) 0.026(0.013) 0.036(0.009)
RS 0.021(0.004) 0.003(0.004) 0.008(0.005) 0.025(0.006) 0.003(0.006) 0.008(0.007)
qNEHVI 0.042(0.004) 0.011(0.007) 0.021(0.011) 0.061(0.007) 0.011(0.007) 0.026(0.017)
qNParEGO 0.037(0.005) 0.002(0.003) 0.017(0.012) 0.049(0.009) 0.005(0.003) 0.023(0.017)

Here, we consider the standard workflow where (i) the expression data is normalized with a given cofactor c
and (ii) the data is clustered using standard methods with the “best” cofactor being the one that leads to the
most biologically relevant cellular populations3. Given that this problem in general has no notion of “test
accuracy” with respect to which we could optimize the cofactor, we instead suggest a number of heuristic
objectives based around maximizing the correlation of cluster-specific mean expression of known protein

3All parameters of the clustering procedure are held constant across cofactors to allow for fair comparison.
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marker combinations. For example, the proteins CD19 and CD20 are highly expressed in B lymphocyte
cells and lowly expressed in all others. Therefore, if a clustering correctly separates B cells from others, the
correlation between the mean CD19 and CD20 expression in each cluster should be high as the proteins
should either be co-expressed or both not expressed (at the origin), as demonstrated in Appendix F.1. We
can apply this logic to a range of cell type markers to construct our set of heuristic objectives (Appendix F.2).

To quantify the ability of each clustering to uncover biologically relevant populations, we use expert annotated
cell types from Jackson et al. (2020) and assess cluster overlap with the adjusted Rand index (ARI) and
normalized mutual information (NMI), which for this experiment form the overall meta-objectives 4 in line
with prior benchmarking efforts of single-cell clustering (Qi et al., 2020; Kiselev et al., 2017). Note that
this is in general unavailable for the analysis of newly generated data and we would only have access to the
correlation (heuristic) objectives.

The results comparing MANATEE to the alternative methods are shown in Table 1 and the optimization
trajectories across acquisitions are shown in Supplementary Figure 4. On the metric of cumulative regret,
which as above, is most relevant for the problem setup at hand, MANATEE-SA outperforms the alternative
approaches. On full and Bayes regret, MANATEE performs comparably with the baselines. On cumulative
regret, qNEHVI is comparable to random acquisition, suggesting that consistently acquiring close-to-optimal
solutions over > 5 noisy objectives is challenging even for approximate hypervolume computation. Interestingly,
we find that random scalarization exhibits strong performance on several measures, which may be understood
by the fact that the scalarized objective

∑
k λkfk naturally places high weight on regions where many

objectives agree, mimicking a similar scenario to our inter-objective agreement criterion.

We further performed ablation experiments of each behaviour and found that no single behaviour drives
the performance (Appendix A.4). We also performed cross-validation on data splits to demonstrate that
MANATEE does not overfit to a given dataset (Appendix A.3).

4.3 Single-cell RNA-seq highly variable gene selection

Single-cell RNA-sequencing (scRNA-seq, see Hwang et al. (2018) for an overview) quantifies whole-
transcriptome gene expression at single-cell resolution. A key step in the analysis of the resulting data
is selection of a set of highly variable genes (HVGs) for downstream analysis, typically taken as the “top
x%” (Yip et al., 2019), but there are no systematic or quantitative recommendations for selecting this
proportion (Luecken & Theis, 2019). Therefore, we apply MANATEE to this problem following a clustering
workflow similar to the IMC experiment, but by varying the proportion of HVGs used for the analysis and
keeping all other clustering parameters fixed. We again propose a number of co-expression based heuristics
(Appendix F.3) and augment these with measures of cluster purity (mean silhouette width, Calinski and
Harabasz score, Davies-Bouldin score) previously used in scRNA-seq analysis (Germain et al., 2020).

Table 2: Results for scRNA-seq HVG selection optimization experiment. CR: cumulative regret, FR: full
regret; BR: Bayes regret. M-SA: MANATEE with scalarized acquisition, M-AS: MANATEE with acquisition
of scalarized function, RA: random acquisition, RS: random scalarization. ARI: adjusted Rand index, NMI:
normalized mutual information. Values are mean (s.d.).

Method ARI NMI
CR FR BR CR FR BR

M-SA 0.119(0.024) 0.048(0.008) 0.053(0.008) 0.114(0.030) 0.014(0.014) 0.022(0.015)
M-AS 0.117(0.027) 0.049(0.012) 0.057(0.013) 0.112(0.035) 0.017(0.014) 0.028(0.017)
RA 0.191(0.022) 0.045(0.007) 0.060(0.014) 0.201(0.027) 0.019(0.008) 0.036(0.017)
RS 0.128(0.017) 0.045(0.006) 0.051(0.007) 0.116(0.019) 0.010(0.003) 0.018(0.008)
qNEHVI 0.182(0.054) 0.046(0.013) 0.086(0.061) 0.189(0.067) 0.020(0.008) 0.067(0.076)
qNParEGO 0.152(0.035) 0.045(0.006) 0.075(0.032) 0.152(0.040) 0.013(0.010) 0.055(0.043)

4The fact that we can easily specify 2 meta-objectives highlights the ubiquity of the “multiple heuristic objective” issue in
bioinformatics.
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For these workflows, no general ground truth clustering or cell types are available. However, a new technology
called CITE-seq can simultaneously quantify both the RNA and surface protein expression at single-cell
level (Stoeckius et al., 2017). Given that cell types are traditionally defined by surface protein expression
(Oostrum et al., 2019), we use a clustering of the surface protein expression alone as the ground truth
following existing work (Liu et al., 2021). The concordance with this clustering acts as the meta-objective
in this experiment, which we benchmark the proposed approaches against. We supply each method with
the heuristic objectives above and benchmark the gene proportion acquisitions by contrasting the resulting
clusterings with the surface protein-derived ground truth using ARI and NMI as metrics. Once again, these
represent only two possible choices of meta-objective and there are many more we could design, highlighting
the prevalence of heuristic objectives in the field.

The results are shown in Table 2 and the optimization trajectories in Supplementary Figure 5. As above, our
main focus is on cumulative regret since when deploying in a real-world scenario, we would not have access to
the meta-objective. MANATEE performs favourably on cumulative regret compared to the other approaches,
though has higher full and Bayes regret. Overall, this demonstrates our method to be a promising approach
to tackle hyperparameter optimization on real, noisy datasets and achieve competitive performance compared
to existing baselines and state-of-the-art methods.

5 Discussion

A common theme here is the subjectivity of parameter setting in biological data analysis workflows. Setting
these often involves no heuristic objectives at all, simply relying on an iterative data exploration to find a
parameter combination that “works”. Even when heuristic objectives are involved – such as in the benchmarking
analyses of scRNA-seq workflows – the precise choice of which objectives to include is fundamentally subjective
too.

It is important to note that our proposed approach does not remove subjectivity from the analysis. Many
important steps, including the chosen behaviours B and their conditional inclusion distributions p(B|λ) are set
by the user. Therefore, it abstracts the subjectivity by a level, changing the question from “which objectives
should I use to benchmark my method?” to “what would the behaviour of a good objective function be?”.
Given that no link is assumed between the specified heuristic objectives and the true meta-objective and that
the choice of desirable objective behaviours is given as example only, we make no optimality claims about the
ability to explore the Pareto front.

Our framework can be used with other scalarization functions that include a weighting λ which may be more
suitable in some scenarios, but here we performed experiments using linear scalarization. We note that if the
true meta-objective is not linear in the observed objectives then a linear scalarization will be suboptimal.
However, in the context we considered, the true meta-objective may represent complex notions such as the
ability to uncover biologically meaningful results, which, while likely nonlinear, is impossible to quantify or
specify. Therefore, the linear scalarization represents a trade-off between having access to an intuitive weight
λk for each function while not necessarily being theoretically optimal. In addition, MANATEE performed
competitively with state-of-the-art methods in our experiments with real data analysis pipelines, which
represent cases with unknown true meta-objective.

As our general approach is applicable to any multi-objective optimization scenario (while tailored to biomedical
analyses), we acknowledge that it could be used in highly diverse applications. We note that these may
include ethically dubious bioinformatics analyses such as those pertaining to genetic testing of embryos. We
strongly caution against any such use without a thorough ethical review process.

There are several extensions that would serve as future steps. We have only considered optimizing x ∈ R,
but future work can use our method to optimize multiple pipeline parameters as our work generalizes to
x ∈ RD for D > 1 (Appendix D). There is much current research in BO methods over both continuous and
categorical domains (Ru et al., 2020), which may better suit the parameter space of scRNA-seq analysis
pipelines (Germain et al., 2020). A lot of research in BO centres on the incorporation of user input and
expert opinions to guide optimization (Häse et al., 2021; Abdolshah et al., 2019). While we have explicitly
considered the opposite problem – where a priori it is not known which objectives should be upweighted –
there could be situations where both approaches could be integrated. For example, an expert may provide
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ratings for the results of each scRNA-seq clustering during optimization. In such settings, these ratings
could be integrated into our proposed framework by updating the distributions p(λ|B,Θ) over Θ such that
they confer high weights to functions of expert ratings. Finally, we welcome future work evaluating gains in
discovery and accuracy of biological results and computation time arising from using our method to choose
values for pipeline parameters.
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A Implementation details

A.1 Method hyperparameters

Hyperparameters for all methods are summarized in Table 3.

Supplementary Table 3: Method hyperparameters used in the experiments. M-SA: MANATEE with scalarized
acquisition, M-AS: MANATEE with acquisition of scalarized function, RS: random scalarization.

Method Parameter Value Explanation

MANATEE

p(λk = 1) 0.5 Prior over binary λk is set as Bernoulli(0.5)
π1, π0 0.75, 0.25 Bernoulli hyperparameters for p(B(3)

k |λk = i)
δ2f
δx2 < -10 Upper bound to call a max
Min distance 0.01 Distance from max to extrema
l > 0.1 Kernel lengthscale constraint
σ2 1 Kernel variance
ϵ2 > 0.01 Observation noise variance constraint
Line search function strong_wolfe LBFGs optimizer arg

MANATEE
RS

UCB βt 0.125 log(2t+ 1) Set as in Paria et al. (2018)
GP fits 5 Model inits and fits at each acquisition
GP fit re-tries 20 Max re-tries to fit model at each acquisition
Acquisition samples 100 Initial samples from acquisition function

qNEHVI
qNParEGO

MC_SAMPLES 128 QMC sampler arg, set as in Balandat et al. (2021)
max_retries 20 botorch.fit_gpytorch_model arg
batch_range (0,−1) QMC sampler arg, set as in Balandat et al. (2021)
GP model KroneckerMultiTaskGP Set as in Balandat et al. (2021)
BATCH_SIZE 1 Points to acquire
NUM_RESTARTS 20 Optimization re-starts, set as in Balandat et al. (2021)
RAW_SAMPLES 1024 Acquisition samples, set as in Balandat et al. (2021)
batch_limit 5 optimize_acqf arg, set as in Balandat et al. (2021)
maxiter 200 optimize_acqf arg, set as in Balandat et al. (2021)

qNEHVI reference point sample minimum Lower HV bound
alpha 10−8+#objectives approximate partitioning level

MANATEE MANATEE (with both AS and SA acquisition functions) was implemented with PyTorch v.
1.9.0 (Paszke et al., 2019) and gpytorch v. 1.6.0 (Gardner et al., 2018) for the Gaussian process model and
inference. Optimization was performed with the LBFGS optimizer. At every acquisition step, the model was
initialized and fit to to the current training set 5 times and the model with the highest log-likelihood was kept.
If fitting failed, the process would be re-tried a maximum of 20 times before halting. Optimization of the
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acquisition function was initialized with the maximum of 100 random samples. Above implementation details
also apply to the random scalarization (RS) baseline. Optimization of the SA and AS acquisition functions
was performed with the LBFGS optimizer with line search. For MANATEE, maxima of the posterior mean
were identified by computing the first derivative of the posterior mean, finding its zeros, and computing the
second derivative at those locations. A candidate was declared a maximum not at boundary if its second
derivative was less than -10 and if the candidate was at least 0.01 units away from the range extrema.

qNEHVI The qNEHVI approach was implemented with botorch v. 0.6.1.dev37+g4f0a2889 (Balandat et al.,
2020). The development version was used to facilitate usage of qNEHVI with the KroneckerMultiTaskGP
model. Implementation closely followed the tutorial on multi-objective Bayesian optimization (Balandat
et al., 2021). Batch size was set to 1. fit_gpytorch_model was called with max_retries set to 20. Other
parameters were set following the tutorial. Reference point was set to the minimum of the initial acquired
points. To accommodate > 5 objectives, we used approximate hypervolume computation by setting the alpha
parameter according to the heuristic based on the number of objectives as proposed in (Daulton et al., 2020).

qNParEGO The qNParEGO approach was implemented with botorch v. 0.6.1.dev37+g4f0a2889 (Balandat
et al., 2020). Implementation closely followed the tutorial (Balandat et al., 2021). Batch size was set to
1. fit_gpytorch_model was called with max_retries set to 20. Other parameters were set following the
tutorial.

A.2 Experimental setup

Supplementary Table 4: Parameters of the experimental procedure.
Experiment Parameter Value

Toy
Number of initial points 5
Number of acquisitions 30
Replicates 100
xmin 0
xmax 1
Number of objectives 5

IMC
Number of initial points 5
Number of acquisitions 35
Replicates 98
xmin 1
xmax 100
Number of objectives 7

scRNA-seq
Number of initial points 5
Number of acquisitions 36
Replicates 100
xmin 0.01
xmax 0.5
Number of objectives 9

Parameters for all experimental procedures are summarized in Table 4.

Toy experiment The Pareto front on toy objectives was computed with the OApackage (Eendebak &
Vazquez, 2019). The initial dataset contained 5 training points at random locations and MANATEE-SA
performed 30 acquisition steps. The experiment was repeated 100 times. The range of the optimized parameter
x was between 0 and 1. Toy objectives are described in Appendix B.1.
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Supplementary Figure 4: Optimized cofactor value as a function of acquisition step for all methods. M-SA:
MANATEE with scalarized acquisition, M-AS: MANATEE with acquisition of scalarized function, RA:
random acquisition, RS: random scalarization. Solid line shows the mean and shaded region denotes the 95%
confidence interval.
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Supplementary Figure 5: Optimized percentage of highly variable genes as a function of acquisition step for
all methods. M-SA: MANATEE with scalarized acquisition, M-AS: MANATEE with acquisition of scalarized
function, RA: random acquisition, RS: random scalarization. Solid line shows the mean and shaded region
denotes the 95% confidence interval.

IMC experiment At each acquisition step, data was normalized with the acquired cofactor value and
clustered. Mean marker expression in each cluster was computed on the data normalized with cofactor=1.
The co-expression objective values were computed as a Pearson correlation between the mean expression
of a marker pair across clusters. The experiment was repeated 98 times. The range of the optimized
cofactor value was between 1 and 100. The overall meta-objective maximum for ARI and NMI, used to
compute regrets, was set as the maximum of ARI/NMI values computed from all acquisitions by all methods
(MANATEE-SA, MANATEE-AS, RA and RS baselines, qNEHVI, qNParEGO), including behaviour ablation
methods (MANATEE-SA with leave-one-out behaviour). qNEHVI returned an error and completed fewer
than the total of 35 acquisitions on 49 runs; qNParEGO returned an error and completed fewer than the
total of 35 acquisitions on 80 runs, other methods completed all acquisitions on all runs. The objectives are
described in Appendix F.2.

scRNA-seq experiment At each acquisition step, data was subsetted to the top highly variable genes
according to the acquired proportion value and clustered. The co-expression objective values were computed
as a Pearson correlation between the mean expression of a marker pair across clusters. The experiment was
repeated 100 times. The range of the optimized highly variable gene proportion was between 0.01 and 0.5.
Unsupervised cluster purity metrics were computed on the PCA transform of the normalized scRNA-seq data.
The overall meta-objective maximum for ARI and NMI, used to compute regrets, was set as the maximum of
ARI/NMI values computed from all acquisitions by all methods (MANATEE-SA, MANATEE-AS, RA and RS
baselines, qNEHVI, qNParEGO), including behaviour ablation methods (MANATEE-SA with leave-one-out
behaviour). qNEHVI returned an error and completed fewer than the total of 36 acquisitions on 63 runs,
qNParEGO returned an error and completed fewer than the total of 36 acquisitions on 56 runs, other methods
completed all acquisitions on all runs. The objectives are described in Appendix F.3.

Experimental results were tracked with Weights & Biases (Biewald, 2020). Reported regrets include acquisi-
tions from incomplete runs for qNEHVI and qNParEGO.
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Supplementary Table 5: 5-fold cross-validation mean cumulative regret on train and test data splits. IMC
denotes the IMC cofactor optimization experiment, scRNA-seq denotes the highly variable gene proportion
optimization experiment. ARI: adjusted Rand index, NMI: normalized mutual information.

IMC ARI train 0.015 ± 0.003
IMC ARI test 0.017 ± 0.003
IMC NMI train 0.021 ± 0.005
IMC NMI test 0.023 ± 0.005
scRNA-seq ARI train 0.093 ± 0.015
scRNA-seq ARI test 0.088 ± 0.019
scRNA-seq NMI train 0.126 ± 0.024
scRNA-seq NMI test 0.128 ± 0.026

Supplementary Table 6: Results for the behaviour ablation experiments for IMC cofactor optimization. CR:
cumulative regret, FR: full regret; BR: Bayes regret. ARI: adjusted Rand index, NMI: normalized mutual
information. Values are mean (s.d.).

Ablated ARI NMI
CR FR BR CR FR BR

Explainability 0.016(0.004) 0.002(0.003) 0.007(0.004) 0.017(0.006) 0.002(0.005) 0.007(0.007)
Inter-obj agreement 0.018(0.005) 0.003(0.005) 0.007(0.006) 0.020(0.009) 0.003(0.008) 0.008(0.010)
Max not at boundary 0.018(0.007) 0.004(0.006) 0.008(0.007) 0.020(0.012) 0.004(0.011) 0.009(0.012)

A.3 Cross-validation experiments

In both experiments, subsampled and processed data (as described in Appendix B) was divided in 70/30%
train/test splits in 5-fold cross-validation, where the parameter was optimized with MANATEE-SA only on
train and cumulative regrets were computed in train and test. To ensure sufficient data, CITE-seq data was
subsampled to 3000 cells in the cross-validation experiments. For the highly variable gene selection experiment,
the same set of highly variable genes (computed according to the proportion value acquired on train at each
step) was used when computing regrets on test. For both experiments, the initial dataset contained 5 training
points at random locations and MANATEE-SA performed 10 acquisitions. Each cross-validation experiment
was repeated 100 times. When computing regrets, the overall meta-objective maximum for ARI and NMI was
set as the maximum of ARI/NMI values computed from the acquisitions by MANATEE-SA in each run and
each fold. For each run, cumulative regret was averaged over folds. Table 5 shows cross-validation cumulative
regrets averaged over runs on train and test for both experiments.

A.4 Behaviour ablation experiments

In leave-one-out behaviour experiments, MANATEE-SA was run without one of each behaviours at the
time. Table 6 shows results for the IMC cofactor selection experiment, with each row indicating regrets for
MANATEE-SA without said behaviour. Table 7 similarly shows results for the scRNA-seq highly variable
gene selection experiment.

B Data processing

B.1 Toy data

The 5 objectives in the toy experiment had the following functional forms all defined on x ∈ [0, 1]:

1. y1(x) = max(0, sin 2πx) + ϵ, ϵ ∼ N (0, 0.32)

2. y2(x) = sin 2π(x− 0.05) + ϵ, ϵ ∼ N (0, 0.32)
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Supplementary Table 7: Results for the behaviour ablation experiments for scRNA-seq highly variable
gene selection. CR: cumulative regret, FR: full regret; BR: Bayes regret. ARI: adjusted Rand index, NMI:
normalized mutual information. Values are mean (s.d.).

Ablated ARI NMI
CR FR BR CR FR BR

Explainability 0.114(0.020) 0.047(0.006) 0.054(0.008) 0.106(0.028) 0.013(0.008) 0.023(0.013)
Inter-obj agreement 0.118(0.025) 0.047(0.006) 0.054(0.009) 0.109(0.030) 0.013(0.007) 0.022(0.013)
Max not at boundary 0.113(0.022) 0.047(0.010) 0.054(0.011) 0.105(0.028) 0.016(0.011) 0.024(0.015)

3. y3(x) = sin 2πx+ ϵ, ϵ ∼ N (0, 0.32)

4. y4(x) = −2x+ ϵ, ϵ ∼ N (0, 0.82)

5. y5(x) = 2x+ ϵ, ϵ ∼ N (0, 0.12)

B.2 IMC data

IMC data and expert annotated ground truth clustering used in the experiments come from Jackson et al.
(2020). Data was randomly subsampled to 5000 cells and the heavy metal markers that weren’t conjugated
to antibodies were removed. Data was clustered with the scikit-learn (Pedregosa et al., 2011) k-means
algorithm with k = 10.

B.3 CITE-seq data

CITE-seq data used in these experiments come from Stoeckius et al. (2017) retrieved using the
SingleCellMultiModal Bioconductor R package with data version 1.0.0. Cell surface antibody expres-
sion was normalized using the logNormCounts from the scuttle R package (McCarthy et al., 2017) and
clustered using Seurat v. 4.1.0 (Hao et al., 2021) with top 10 principal components as input and reso-
lution parameter set to 0.8. Intra-cellular single-cell RNA-seq data was filtered for genes with at least
100 reads and further processed with scanpy (Wolf et al., 2018). Data was randomly subsampled to 1000
cells (except for cross-validation experiment, where it was subsampled to 3000 cells) and normalized using
pp.normalize_total with target_sum=1e4, pp.log1p, and pp.scale. scanpy was used to select highly
variable genes, compute the neighbourhood graph with 10 neighbours and top 40 principal components,
compute the PCA decomposition with default arguments, and compute Leiden clustering with resolution
parameter set to 0.8.

C Derivations of acquisition functions

C.1 Expectation of scalarization of the single-objective acquisition function of objectives (SA)

We define the SA acquisition function as Ep(λ|B) [sλ(acqUCB(f(x)))] and derive the following expression:

Ep(λ|B)

[
sλ(µ(x) +

√
βσ(x))

]
= Ep(λ|B)

[
K∑

k=1
λk(µk(x) +

√
βσk(x))

]

=
K∑

k=1
Ep(λ|B) [λk] (µk(x) +

√
βσk(x))

=
K∑

k=1
p(λk = 1|Bk)(µk(x) +

√
βσk(x))

For the SA acquisition function, the optimized expression simplifies to the sum over K objectives of each
objective’s acqUCB(fk(x)) function value weighted by the probability of that objective being useful conditioned
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on its behaviours p(λk = 1|Bk). While the SA formulation only takes into account the posterior variance of
each fk, k = 1, . . . ,K, fitting a multi-output Gaussian process to data is still desirable as it ensures that
the posterior form of f reflects our assumptions about the heuristic objectives, namely, that they should be
maximized by similar values of x.

C.2 Expectation of single-objective acquisition function of the scalarized objectives (AS)

We define the AS acquisition function as Ep(λ|B) [acqUCB(sλ(f(x)))] and wish to derive the following expression:

Ep(λ|B)

[
acqUCB

(
K∑

k=1
λkfk(x)

)]

First, notice that,

(λ1f1(x), ...λKfK(x)) ∼ N
(
λµ(x),λT λΣ(x)

)
,

where µ(x) is the posterior mean and Σ(x) is the posterior covariance of f evaluated at some x.

Then, their sum is distributed as:

∑
k

λkfk(x) ∼ N

∑
k

λkµk(x),
∑

k

λ2
kΣkk(x) + 2

∑
1≤i<j≤K

λiλjΣij(x)


Now, we use this to derive:

Ep(λ|B)

[
acqUCB

(
K∑

k=1
λkfk(x)

)]

= Ep(λ|B)

∑
k

λkµk(x) +
√
β ·
√∑

k

λ2
kΣkk(x) + 2

∑
1≤i<j≤K

λiλjΣij(x)


=
∑

k

p(λk = 1|Bk)µk(x) +
√
β · Ep(λ|B)

√∑
k

λ2
kΣkk(x) + 2

∑
1≤i<j≤K

λiλjΣij(x)


For the AS acquisition function, the UCB is applied to the weighted sum of fk, k = 1, . . . ,K. The optimized
expression contains the sum of the posterior means weighted by p(λk = 1|Bk) as before, but the variance
term takes into account the posterior covariance of f .

The proposed acquisition functions can differ e.g. within regions of search space, where those objectives that
have negative posterior covariance with others but still have a large weight due to other behaviours, have
large posterior variance. In these cases, the SA formulation will assign a larger value to those regions than
the AS formulation.

C.2.1 Computing the variance term

We compute the expectation of the variance term w.r.t. p(λ|B) by exhaustively considering all K-dimensional
binary vectors λr, r = 1, . . . , 2K , which is feasible in our experiments with K = 7 and K = 9 objectives.
Specifically, we evaluate the expectation as:
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Ep(λ|B)

√∑
k

λ2
kΣkk(x) + 2

∑
1≤i<j≤K

λiλjΣij(x)


=

∑
λr∈{0,1}K

p(λr|B)
√∑

k

(λr
k)2 Σkk(x) + 2

∑
1≤i<j≤K

λr
iλ

r
jΣij(x)

=
∑

λr∈{0,1}K

(∏
k

p(λk = λr
k|Bk)

)√∑
k

(λr
k)2 Σkk(x) + 2

∑
1≤i<j≤K

λr
iλ

r
jΣij(x)

In problems with large K where this approach becomes infeasible, the expectation can be approximated with
S Monte Carlo samples of λs

k ∼ p(λk|Bk) ∀ k and s = 1, . . . , S as follows:

Ep(λ|B)

√∑
k

λ2
kΣkk(x) + 2

∑
1≤i<j≤K

λiλjΣij(x)


≈ 1
S

S∑
s=1

√∑
k

(λs
k)2 Σkk(x) + 2

∑
1≤i<j≤K

λs
iλ

s
jΣij(x)

D Derivatives of a multi-output Gaussian process

The posterior mean of a single-output Gaussian process with N noisy observations y at a new location x∗ is
given by (Williams & Rasmussen, 2006):

f̄∗ = K(x∗, X)
(
K(X,X) + σ2

ϵ IN

)−1 y.

D.1 First derivative

For the exponentiated quadratic kernel function, the first derivative of the posterior mean (which is also the
mean of the distribution over derivatives of the GP posterior functions) is (McHutchon, 2013):

δf̄∗

δx∗
= δK(x∗, X)

δx∗
α = −Λ−1X̃T

(
K(x∗, X)T ⊙ α

)
α =

(
K(X,X) + σ2

ϵ IN

)−1 y
X̃ = [x∗ − x1, . . . , x∗ − xN ]T .

For D-dimensional input x, diagonal matrix Λ collects lengthscales l2d, d = 1 . . . D on the diagonal, X̃ is an
N ×D matrix and ⊙ represents element-wise multiplication. The resulting derivative δf̄∗

δx∗
is D-dimensional,

with each element corresponding to the d-th input dimension.

D.2 Second derivative

The second derivative of the posterior mean is given by

δ2f̄∗

δ(x∗)2 = δ

δx∗

δK(x∗, X)
δx∗

α

The second derivative of k(x∗, xi) is a D ×D matrix given by (McHutchon, 2013):
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δ2k(x∗, xi)
δ(x∗)2 =

(
−Λ−1 + Λ−1(x∗ − xi)(x∗ − xi)T Λ−1) k(x∗, xi)

We stack these to compute a D × D × N matrix δ2K(x∗,X)
δ(x∗)2 and multiply it by α to compute the second

derivative of the posterior mean. The resulting derivative δ2f̄∗
δ(x∗)2 is a D × D matrix with (i, j)-th element

corresponding to δ2f̄∗
δ(x∗)iδ(x∗)j

(the second derivative w.r.t. dimensions i and j of x∗).

D.3 One-dimensional input case

For one-dimensional input and lengthscale l, the second derivative of the posterior mean w.r.t. x∗ simplifies
to:

δ2f̄∗

δx2
∗

=
(

− 1
l2

K(x∗, X) + 1
l4
X̃T ⊙ X̃T ⊙ K(x∗, X)

)
α

D.4 Multi-output Gaussian process

For a multi-output Gaussian process with M objectives, we arrange observations as MN × 1 array:
y = [y11, . . . , yN1 . . . y1M , . . . , yNM ]T . We also augment the auxiliary matrix X̃ to become an MN × D
matrix: X̃ = [x∗ − x1, . . . , x∗ − xN . . . x∗ − x1, . . . , x∗ − xN ]T .

The multi-output kernel is defined as Kmulti = KIO ⊗ K and the additive noise term is D ⊗ IN , where D is
the diagonal matrix with task-specific observation noises.

The first derivative of the posterior mean for a multi-output Gaussian process is D-dimensional for each of the
M tasks. The second derivative returns a D ×D matrix for each of the M tasks. In the computation of the
second derivative, the last two dimensions of δ2Kmulti(x∗,X)

δ(x∗)2 are flattened similarly to y before multiplication
by α.

E Proofs of theorems

Theorem 3.1: If Ep(λk|Bk)[λk] > 0 ∀k, the solution to maxx Ep(λ|B)sλ(f(x)) lies on the Pareto front of f .

Proof: Let ψk := Ep(λk|Bk)[λk] > 0. Then by linearity of expectation Ep(λ|B)sλ(f(x)) =∑
k Ep(λk|Bk)[λk]fk(x) =

∑
k ψkfk(x) is monotonically increasing in all fk and the result follows from

Paria et al. (2018).

Theorem 3.2: For some p(λ|B), any point x∗ on the linear Pareto front of f is reachable as a maximizer of
Ep(λ|B)sλ(f(x)).

Proof: Let x∗ be the maximizer of
∑

k αkfk(x) with αk > 0 ∀k which is by definition a point on the Pareto
front of f . Then x∗ is also the maximizer of

∑
k δαkfk(x) for a constant δ > 0. We may set δ such that

δ < 1
maxk αk

and so 0 < δαk < 1 ∀k and thus δαk may be expressed as the expectation of a Bernoulli R.V. λk

for some p(λk).

F Cluster mean co-expression as a heuristic

F.1 Overview

The cluster mean co-expression heuristic is demonstrated in Figure 6. After clustering the single-cell data, we
can consider the expression of two proteins which should be markers for a given cell type, i.e. they should
either both be co-expressed or not expressed. An example of this is shown in Figure 6 (right). Consequently,
the correlation in the cluster means is high. Conversely, if the clustering does not capture the cell types well,
the correlation in the cluster means will be low (Figure 6 left). The opposite logic applies if two proteins
should be mutually exclusively expressed: the correlation of cluster mean expression should be minimized.
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Supplementary Figure 6: Mean expression of two example proteins after two sets of clustering. Left: the
cluster means poorly separate into double-positive and double-negative populations as would be expected if
the two proteins are markers for the same cell type. Left: the ideal situation, where clusters only co-express
both proteins simultaneously or not at all.

Supplementary Table 8: Co-expression of marker pairs used as objectives in the IMC cofactor selection
experiment.

Protein pair Co-expression direction Cell type
E-Cadherin, pan-Cytokeratin + Epithelial
CD45, CD20 + B cell
CD45, CD68 + Myeloid
CD45, CD3 + T cell
Vimentin, Fibronectin + Stromal cell
CD19, CD20 + B cell
pan-Cytokeratin, Cytokeratin 5 + Basal epithelial

F.2 IMC experiment

The protein pairs used to construct co-expression heuristic objectives are listed in Table 8.

F.3 scRNA-seq experiment

The gene pairs used to construct co-expression heuristic objectives are listed in Table 9.

Supplementary Table 9: Co-expression of marker pairs used as objectives in the scRNA-seq highly variable
gene selection experiment.

Gene pair Co-expression direction Cell type(s)
CD3E, CD4 + Regulatory T cell
CD3D, CD8A + Cytotoxic T cell
PTPRC, CD68 + Myeloid
CD19, MS4A1 + B cell
CD3D, CD68 - T/myeloid
CD68, MS4A1 - Myeloid/B
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