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Abstract

We present Speculative Rollout with Tree-Structured Cache (SRT), a simple, model-
free approach to accelerate on-policy reinforcement learning (RL) for language
models without sacrificing distributional correctness. SRT exploits the empirical
similarity of rollouts for the same prompt across training steps by storing previously
generated continuations in a per-prompt tree-structured cache. During generation,
the current policy uses this tree as the draft model for performing speculative
decoding. To keep the cache fresh and improve draft model quality, SRT updates
trees online from ongoing rollouts and proactively performs run-ahead generation
during idle GPU bubbles. Integrated into standard RL pipelines (e.g., PPO, GRPO
and DAPO) and multi-turn settings, SRT consistently reduces generation and step
latency and lowers per-token inference cost, achieving up to 2.08x wall-clock time
speedup during rollout.

1 Introduction

Reinforcement learning (RL) has emerged as a pivotal paradigm for scaling language models, enabling
them to tackle sophisticated problems like competition-level mathematics and programming tasks
through deeper and longer reasoning processes [[GLM et al.| 2025| [DeepSeek-Al et al.,2025| [Seed
et al.| 2025/ OpenAl et al.| 2025} [Yang et al.,[2025| [Kimi et al., 2025].

However, as RL training scales, the rollout gen-
eration phase has become the dominant wall- — gisr:“”e
clock bottleneck, consuming over 70% (see Fig-

ure [2) of total runtime in synchronous sys-
tems [Sheng et al., 2025]]. This stems from
the auto-regressive, memory-bound nature of
token generation and the “long-tail” distribu-
tion of response lengths, where a few lengthy
rollouts stall entire batches, leaving GPUs idle
and underutilized [Fu et al., [2025a, [Zhong et al.}
2025]]. The issue is exacerbated in advanced
algorithms like Group Relative Policy Optimiza- ol
tion (GRPO) [Shao et al.| 2024] and Decoupled PPO GRPO DAPO Retool

Clip and Dynamic Sampling Policy Optimiza- Figure 1: Rollout Speedups of SRT Across Differ-
tion (DAPO) [Yu et al.| 2025a], which sample en¢ RL Algorithms on Qwen2.5-1.5B

multiple responses per prompt to compute rela-

tive advantages or filter uninformative data, thereby amplifying generation costs.
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To mitigate rollout overhead, recent algorithm-system co-design approaches [[Fu et al.,[20254} [Seed)
let all} 2025 [Kimi et al.,[2023] relax strict on-policy execution by asynchronously launching future
rollouts without awaiting current weight updates. While these approaches boost hardware utiliza-
tion and throughput by reducing idle “bubbles”, they deviate from on-policy sampling, potentially
introducing convergence issues in certain regimes.

In this work, we introduce Speculative Rollout with Tree-Structured Cache (SRT), a new acceleration
paradigm that speeds up on-policy rollouts without sacrificing training efficiency. SRT leverages the
observation that the policies at different training epochs exhibit a certain level of similarity when
responding to the same prompt. We maintain the generated rollouts of questions and store them in a
tree-structured cache, using them as a model-free draft for speculative decoding during generation:
the current policy verifies and accepts drafted tokens up to the first mismatch, ensuring lossless
preservation of the on-policy distribution.

To improve cache freshness and draft quality, SRT employs two complementary cache maintenance
strategies. First, it inserts decoded tokens from ongoing rollouts into the tree-structured cache. Second,
near the end of each step—when only a few long sequences remain—SRT leverages otherwise idle
GPUs to run ahead on active prompts, generating partial rollouts that are inserted into the cache and
then discarded. This preserves on-policy training: actual rollouts are produced at the designated step,
and speculative continuations are never used as learning targets.

We evaluate SRT on popular RL training algorithms (PPO, GRPO, DAPO) and in the multi-turn
scenario (ReTool [Feng et al| [2025]]). Extensive experiments show that SRT can achieve rollout
speedups of up to 2.08 x providing a practical, on-policy path to more efficient RL training.
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Figure 2: (a). Time breakdown across different RL algorithm. (b.) Output length distribution on
DAPO-17k dataset. (c.) Example of N-gram overlap for a specific prompt. The overlap is computed
by comparing rollouts from the current step against the aggregated N-grams from all prior stepsEl

2 Motivation

Dominant rollout generation time during RL training. The standard RL pipeline suffers from
substantial inefficiencies, with the rollout stage emerging as the dominant computational bottleneck.
As shown in Figure2h, rollout consumes 65% of total training time across four algorithms on average,
making it the most critical target for optimization.

Imbalanced response length among questions in a batch. A further structural issue arises from
batched generation. Output lengths follow a long-tailed distribution (Figure[2b): while most sequences
terminate quickly, a few very long responses delay batch completion. This imbalance leaves many
GPUs idle, creating underutilized bubbles of compute.

Similarity of rollouts across epochs. Responses to the same question often exhibit high similarity
across epochs, and this overlap grows as more rollouts are accumulated (Figure 2). This pattern
suggests an opportunity that existing RL methods fail to leverage: historical responses can be used
to predict current rollouts to accelerate training. This missed opportunity wastes GPU resources on
generating nearly identical content.

These factors point to a clear need for rethinking the standard RL pipeline and motivate the develop-
ment of more streamlined RL strategies.

Experiments are conducted using Qwen2.5-1.5B



3 Method

RL training in brief. We consider standard on-policy reinforcement learning for language models.
Given a prompt 1., and a policy 7y, the learner samples one or more continuations y by autore-
gressively decoding from 7 (- | 1., ). A task-specific reward r(z, y) is computed (e.g., program
execution, self-consistency or preference modeling), and gradients are formed from advantages
A(x,y) under a clipped policy-gradient objective (PPO-style) or its multi-sample variants such as
GRPO and DAPO. Training alternates between a rollout phase that generates K samples per prompt
and an update phase that fits 9 on the on-policy batch.

Per-prompt rollout cache using tree-structured cache. SRT accelerates these on-policy rollouts
by maintaining, for each prompt p, a cache of previously seen token subsequences organized as a
tree-structured cache 7,. Paths in 7, therefore compactly index all substrings that have occurred
in earlier generations for the same prompt, including from prior policy checkpoints. Each node
corresponds to a context (a token subsequence) and stores outgoing edges labeled by next tokens,
together with simple frequency statistics: count(u) for a node u recording its frequency in previous
rollouts. This structure is purely model-free and can be stored in CPU memorys; it can be updated
online in amortized linear time as new tokens arrive.

Speculative Rollout with Tree-Structured Cache.
During rollout for prompt p, suppose we have al- C away'
ready produced a partial continuation y;... We lo-

cate the longest suffix of y;.; that appears in 7, b B~
walking throgugh the tree from the rolz)rt) along toﬁen}s, L’
Yi—q+1:¢; if the walk fails, we revert to standard de-
coding for one step and try again. Once a match of
length g is found at node u,, SRT assembles a set

T of draft tokens by greedily adding descendants )
of u, that are most likely to be accepted. We rank ~Figure 3: Given the matched prefix “the cat”,

Frequ‘éncy

) (C=15/15) "the
Suffix with (C=10/15)--mat.

highest score (C=10/10)

an edge to child v by empirica] conditional we choose its suffix “sit on the mat” with high-
est score as draft tokens. Leaf nodes show the

Cv) = count(v) : number of times each suffix appeared in cached

Y weenil dren(parent(v)) count(w) rollouts, while non-leaf nodes contain the sum

~ of their children’s counts.
and score a node by the product of scores along its

path from u,. Intuitively, C'(v) estimates how often a specific next token followed this prefix in prior
rollouts, and the path product estimates the chance that a drafted chain of tokens will align with what
the current policy would generate. We continue expansion until a budget B(q) is reached. Given
T, SRT performs one decode pass of the current policy to verify multiple drafted tokens in parallel
following classic speculative decoding procedure [Cai et al., 2024, [Miao et al.,[2023} |Li et al.| 2024,
Leviathan et al., [2023} |Oliaro et al.l [2025]].
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Figure 4: Tllustration of cache maintenance strategy in SRT.

Cache update strategy. The maintenance of the rollout cache is crucial to the achievable speedups.
In SRT, we maintain the cache by two sources as illustrated in Figure[d] First, decoded outputs of
running rollouts are inserted online into 7, and node counts are updated. This immediately benefits
the remaining samples for the same prompt in multi-sample algorithms and carries signal across
training steps when the prompt reappears. Second, we exploit run-ahead generation during bubbles.
Whenever some sequences in a batch finish early and GPU compute would have otherwise been idle,



we allocate that slack to generate rollouts of prompts that will be sampled soon (e.g., from the data
loader’s look-ahead window or an active prompt queue). Run-ahead tokens are inserted into 7, but
are never used for learning targets; they serve solely as future drafting hints. Unlike a history-only
caches design [He et al.,[2025b]], which caches only completed responses from previous epochs in
an offline and asynchronous fashion, SRT’s maintenance strategy mitigate cold-start for first-time
prompts, actively enriches the cache, and yields more accepted tokens per decoding step—reducing
decoding steps and end-to-end latency.

4 Experiment

4.1 End-to-end Results

Table 1: SRT achieves superior performance over other methods.

Gen (s) (1) Step(5) () pusftoken (1)
0,90 0 90,90 5 g0 g0
Method B R SR AR CRE SN WA T
Baseline 31.5 31.8 44.1 49.0 47.5 42.9 81.7 74.8 104 83.8 32.9 121
N-gram 31.4 31.1 46.0 45.0 47.3 42.1 84.5 69.3 105 82.4 33.3 161
SuffixDecoding 18.4 19.7 62.5 38.8 35.9 30.7 103 69.2 56.6 52.4 41.1 76.7
SRT (Ours) 15.2 15.4 31.5 28.7 31.5 26.2 68.7 58.8 48.3 41.6 23.3 62.2

Effectiveness of Per-prompt Rollout Cache. We present the experiment results without run-
ahead generation to examine the potential of the proposed rollout cache. We integrated SRT into
vLLM [Kwon et al., 2023[] and used it as the inference engine for Verl [Sheng et al., 2025]]. Our
end-to-end experiments were conducted with the Qwen2.5-1.5B model, using on-policy RL across
four algorithms. Concretely, PPO and GRPO were trained on the math dataset [Hendrycks et al.|
2021]], while DAPO and ReTool were trained on DAPO-Math-17k [Yu et al., [2025b]]. As summarized
in Table[T] SRT consistently outperforms speculative decoding strategies that were originally designed
for non-RL scenario across various RL algorithms. In particular, SRT achieves lower generation and
step latency as well as reduced per-token inference cost, and these gains hold robustly across both
single-turn (PPO/GRPO/DAPO) and multi-turn (ReTool) training regimes.

4.2 Effect of On-the-Fly Updates and Run-Ahead Generation

—— Histo
SRT(w/o run-ahead)
—— SRT(w/ run-ahead)

w
3}

In this section, we present simulation studies evaluating the impact
of (i) on-the-fly updates from ongoing rollouts and (ii) run-ahead
generation, both of which enrich the tree-structured cache. Using the
DAPO algorithm on DAPO-17k [Yu et al.,2025a], we compare SRT
to a history-only baseline that updates the cache solely with fully
completed responses from previous epochs. As shown in Fig.[5] SRT
consistently achieves a higher mean of accepted tokens (per decoding
step). Enabling run-ahead yields additional gains, indicating that a
richer cache produces higher-quality drafts. In practice, this reduces

decoding steps per prompt, thereby reducing end-to-end cost and Figure 5: Mean agcepted
latency. tokens analysis of different

cache maintenance strategy.
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5 Conclusion

We introduced Speculative Rollout with Tree-Structured Cache

(SRT), a speculative rollout algorithm that accelerates on-policy reinforcement learning by ex-
ploiting redundancy across rollouts. By organizing past continuations into per-prompt tree-structured
caches and leveraging speculative decoding with run-ahead generation, SRT achieves substantial
reductions in generation latency and inference cost without compromising distributional correctness.
Experiments across multiple RL algorithms and multi-turn settings demonstrate up to 2.08x rollout
speedup, highlighting SRT as a practical framework for scaling efficient RL training.
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A Experimental Setup

Table 2: Training configurations for four algorithms.

(a) PPO (b) GRPO
Hyperparameter Value  Hyperparameter Value Hyperparameter Value  Hyperparameter Value
Actor learning rate 1x 1075  Critic learning rate 1x107° Actor learning rate 1x 107% Response per Prompt 5
Warmup ratio 0.0 Rollout temperature 1.0 ‘Warmup ratio 0.0 Rollout temperature 1.0
KL Coefficient (3) 0.001 Train batch size 512 KL Coefficient (3) 0.001 Train batch size 128
PPO mini batch size 128 Training steps 300 PPO mini batch size 64 Training steps 300
Max input length 512 Max response length 4096 Max input length 512 Max response length 4096
(¢) DAPO (d) ReTool
Hyperparameter Value  Hyperparameter Value Hyperparameter Va]“e_ 5 Hyperparameter _ Value; 5
Actor learning rate 1x 10~% Response per Prompt 16 Qctor leamlpg rate 1 X()l(;J gnltllc learning rate 2 Xl 1(?
Warmup ratio 0.0 Rollout temperature 1.0 armup ratio N orlout lem'?.e rature .
. . X . KL Coefficient (5) 0.001 Train batch size 512
KL Coefficient (3) 0.0 Train batch size 128 PPO mini batch si 128 Training steps 300
PPO mini batch size 32 Training steps 300 mini batch size raining steps
. Max input length 2048 Max response length 16384
Max input length 2048 Max response length 8192 . .
X i X R Max turns 8 Clip ratio high 0.28
Clip ratio high 0.28 Clip ratio low 0.20 Clip ratio low 0.20

RL training is conducted using Verl [Sheng et al.| 2025]], with vLLM [Kwon et al., [2023]] serving
as the inference engine. The experimental configuration is summarized in Table 2] All RL training
experiments are performed on 8 x NVIDIA H20 GPUs.

B Ablation Study

B.1 Responses per Prompt in GRPO

We analyzed the effect of varying the number of responses per prompt on the efficiency of SRT. As
reported in Table 3| increasing n from 5 to 10 produces a greater performance improvement relative
to competing algorithms. This behavior is consistent with expectation: as additional rollouts are
incorporated, the resulting outputs exhibit greater similarity, thereby enabling SRT to exploit more
reliable historical information during speculative decoding.

Table 3: Comparison of step time and generation time for GRPO.
GRPOn =5 GRPOn =10

Method Step(s) Gen(s) Step Gen(s)
Baseline 42.9 31.8 61.2 47.1
N-gram 42.1 31.1 58.8 45.3
SuffixDecoding 30.7 19.7 51.9 30.5
SRT 26.2 154 41.2 20.4

Improvement (%) 14.7 21.8 20.6 33.1

C Related Work

Efficient Reinforcement Learning Frameworks for LLMs. Recent open-source RL frameworks
have democratized RL training [Sheng et al., [2025] [Fu et al., |2025bl [Hu et al.,|2025]]. A common de-
sign choice is to employ Ray [Moritz et al., 2018] to coordinate inference engines (e.g., vVLLM [Kwon
et al., [2023]], SGLang [Zheng et al.l [2024]]) with training engines (e.g., Megatron [Shoeybi et al.,
2020]], FSDP [Zhao et al., 2023])). Building on this foundation, researchers have proposed various
approaches to further improve efficiency. For example, GRESO [Zheng et al.l |2025]] accelerates
training by skipping low-quality rollouts. Our closest concurrent work, RhymeRL [He et al.| [2025a],
explore the speculative rollouts by caching historical responses and updating its cache offline with
outputs from the previous epoch asynchronously, without modifying the cache during the current
batch’s rollout, which can face history-scarcity cold-start. In SRT, instead of ingesting completed
responses from the previous epoch, we (i) stream tokens on-the-fly from the current batch’s rollouts
into a per-prompt tree-structured cache, and (ii) perform run-ahead generation for the future batch to



proactively enrich the cache. This unique design mitigates RhymeRL’s cold-start issue by enrich-
ing useful drafts immediately and continuously, increasing accepted tokens per step and reducing
decoding cost, offering a complementary acceleration path for on-policy RL.

Speculative Decoding. Conventional LLM decoding requires accessing the KV cache at every
step, making the process memory-bandwidth bound and limiting GPU efficiency. Speculative
decoding mitigates this bottleneck by generating multiple candidate tokens in advance, either with
a smaller draft model [Leviathan et al.,[2023| |Ca1 et al., 2024, [Miao et al., 2023} |Li et al., [2024]] or
through retrieval-based strategies [[Oliaro et al., 2025] |Yang et al.| |2023|]. These speculative tokens
are subsequently verified by the base model, reducing KV cache accesses to a single pass while
increasing computational intensity. Building upon this foundation, our work extends speculative
decoding by reusing previous rollouts, thereby further improving the efficiency of RL training.
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