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ABSTRACT

The detection of foreground targets on airport surface is the foundation of air-
port surveillance applications. However, effective algorithms and specialized
benchmarks are still lacking in this area. Based on this fact, we propose an Air-
port Foreground Target Detection dataset (AFTD), which contains the three most
important foreground targets moving on the airport surface: airplane, vehicle,
and person. Through self collection and collection of web images, we have ob-
tained a total of over 200000 images and filtered out 10050 images based on
diversity principles to form the AFTD dataset, which includes a total of 26968
airplane instances, 24759 vehicle instances, and 5064 person instances. AFTD
includes a variety of changes of these targets, such as super multi-scale, multi-
level occlusion and viewangle changes, etc. In addition, we further illustrate the
challenges posed by AFTD to existing algorithms through statistical analysis and
detailed experiments, and discuss how to solve these challenges in the airport
surveillance scenario.The AFTD dataset can be downloaded from http://www.agvs-
caac.com/aftd/aftd.html. And our moduel is available at https://github.com/cpc1111-
lab/Additional-discussion-for-ATFD.

1 INTRODUCTION

In recent years, with the rapid growth of global population and economy, airports have experienced a
significant increase in passenger and cargo traffic. Meanwhile, there has been an upward trend in the
number of security incidents related to movable targets on airport surface. For example, on January 2,
2024, two planes collided at Haneda Airport in Japan, resulting in five deaths, and on January 16,
two planes collided again at New Chitose Airport in Hokkaido, Japan. Therefore, it is particularly
important to develop intelligent applications to enhance the surveillance of foreground targets on the
airport surface.

Object detection is widely used in airport surveillance applications. However, we found that the
performance of object detection algorithms has decreased to varying degrees in airport scenarios, and
subsequent experiments have also proven this. This is because fundamental research emphasizes the
generalization of algorithms, and thus classical datasets usually contain rich object categories, but
without considering all states of each class. Practical applications, such as airport surveillance, do not
focus on algorithm generalization, but rather on robustness to variations of specific targets. In other
words, the study of airport surveillance requires a dataset with rich samples for airport foreground
targets. Obviously, classical datasets do not meet this requirement.

In this paper, we propose the first Airport Foreground Target Detection dataset, AFTD, for airport
surveillance. AFTD only includes three types of movable targets on the airport surface, but strives
to cover variations of each type of target. We obtained permission to collect data at multiple
airports through cooperation with the institute of civil aviation, and fully utilized network resources,
ultimately collecting over 200000 raw images. We then rigorously filtered the data based on the
diversity principle. Due to the high similarity of airport surface structures, only 10050 images were
retained, totaling 26968 airplane instances, 24759 vehicle instances and 5064 person instances. In
addition, we designed more refined label format for airplane. For example, for the airplane category,
we designed three scale formats, three occlusion formats and eight viewangle formats. All images are
manually annotated following strict rules. Finally, we fully tested the AFTD dataset and analyzed the
experimental results.
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In summary, our main contributions to the field of object detection are:

* We have established a dataset AFTD for airport surveillance, which covers various challenges
of movable targets on the airport surface.

* We illustrated the challenges posed by AFTD to existing algorithms through statistical
analysis and detailed experimentst.

* We discussed how to solve these challenges in the airport surveillance scenario.

2 RELATED WORK

2.1 OBIJECT DETECTION DATASETS

In the past more than ten years, many classical object detection datasets have been proposed, such as
VOC2007Everingham et al., VOC2012Everingham & Winn| (2012), ImageNetDeng et al.| (2009),
MS-COCQOLin et al.|(2014), Objects365Shao et al. (2019), etc.

The VOC2007 dataset consists of 5k images and 12k annotated objects. The VOC2012 dataset
consists of 11k images and 27k annotated objects. These two datasets annotate 20 common objects in
daily life. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has promoted the
technological level of universal object detection, with the ILSVRC detection dataset containing 200
categories of visual objects. The MS-COCO dataset has fewer object categories than ILSVRC, but
it has more object instances and contains more small objects and more densely located objects. At
present, the MS-COCO dataset has become the de facto standard in the field of object detection.

None of the above datasets specifically consider airport scenarios. The FGVC airplane datasetMaji
et al.| (2013) is an airplane classification dataset that contains 10200 airplane images, with 100 images
of each of the 102 types of Boeing airplanes. The majority of the airplanes in the FGVC-airplane
dataset are presented in sideways view, with a very single view viewangle and no scale variation.

2.2  OBIJECT DETECTION ALGORITHMS

Since the successful application of AlexNetKrizhevsky et al.[(2012) in 2012, Convolutional Neural
Networks (CNN) have gradually become mainstream. Object detection has been revolutionized by
CNN, experiencing a shift from traditional methods to deep learning methods.

R-CNNGirshick et al.| (2014) generates candidate frames and further refines classification and
localization through a region proposition network, which marked the rise of two-phase detection.
SPPNetHe et al.| (2015)) avoids repeated calculation of convolution features by introducing a spatial
pyramid pooling layer that generates a fixed-length representation of a candidate region frame of
arbitrary size. Fast RCNNGirshickl (2015) enables neural networks to train both classification and
regression tasks simultaneously, further reducing redundant calculations. Faster RCNNRen et al.
(2015)) is the first near real-time object detector to replace traditional candidate region extraction
methods by introducing a region proposal network.

YOLO seriesRedmon et al.| (2016)Redmon & Farhadi|(2017) adopts an end-to-end approach to predict
both bounding box and category probabilities, pioneering the paradigm of one-stage object detection
algorithms. SSDLiu et al.|(2016) improves the detection accuracy of one-stage detectors by detecting
objects at different scales on different layers of the network. RetinaNetLin et al.|(2017) reshapes the
standard cross-entropy loss by introducing a new loss function, focal loss, which allows the detector
to focus more on hard, misclassified samples during training. CornerNetLaw & Deng|(2018)) detects
each bounding box as a pair of keypoints. CenterNetDuan et al.|(2019) treats an object as a single
point and regresses all its attributes.

DETRCarion et al.|(2020) first applies the TransformerVaswani et al.| (2017) to the field of object
detection, directly predicting bounding boxes and categories through encoder-decoder structure,
eliminating anchor, NMS, and other steps. Deformable DETRZhu et al.|(2020) reduces computational
complexity by introducing a deformable attention module, and improves performance for small objects
by using multi-scale feature maps.
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3 AFTD BENCHMARK

The AFTD dataset focuses on three types of movable targets on the airport surface: airplane, vehicle,
and person, the movements of which are the primary causes of various airport security incidents. We
will introduce how we build the AFTD dataset from three aspects: dataset design, data collection,
data annotation.In addition,we illustrate the challenges raised by AFTD through statistical analysis.

3.1 DATASET DESIGN

The principle of dataset design is to try to cover as many variations or challenges of the target of
interest as possible. We will introduce the challenges for airplane, vehicle and person in turn.

1) airplane are our primary target of interest. We have summarized six main challenges to airplane
detection in airport scenarios, each of which is described below.

Figure 1: (a) and (b) show airplane presented at different scales on the screen. (c) and (d) show the
situation where airplane is obstructed by the airport terminal and part of the fuselage is not on the
monitoring screen.

Super multi-scale. Compared with the scale change in ordinary monitoring scenes, the scale of
airplane in airports varies greatly on the imaging plane, as shown in Figure[I|(a) and 1(b). This is due
to the airport has a vast area, with monitoring distances spanning the range of ten meters to kilometers.
When the scale of the airplane is too large, details may be magnified, resulting in the algorithm being
unable to effectively capture the global features of the object. When the scale of the airplane is
too small, it is difficult to effectively capture the local features of the object. In addition, there is a
multi-scale coexistence in the airport, as shown in Figure [[(b), where very large and small objects
occur simultaneously. Because the solutions to objects at different scales may be incompatible, the
simultaneous appearance of multiple scales poses greater challenges.

Multi-level occlusion. In airport, there is a frequent occurrence of airplane being obstructed by other
objects, such as bridges, adjacent airplane, etc. and it is also frequent that part of the airplane’s body
is outside the screen, as shown in Figure IIKC) and (d). Occlusion often leads to incomplete feature
information of the object, or even results in a serious lack of key identification features.

Viewangle changes. The appearance of the airplane varies tremendously from one viewangle to
another because of the wingspan shape. The shape of is completely different in the side and front and
rear viewangle, as shown in Figure[T} The characteristics of the airplane may be more varied when
the viewangle occurs in conjunction with other changes, thus increasing the difficulty in detection.

: T
(c)

(d)

(a) (b)

Figure 2: (a) and (b) show the evening and night scenes. (c) and (d) show the foggy and snowy day.

Ilumination changes. Airports, as a typical outdoor scene, make all the data in AFTD subject to
illumination variations, as shown in Figure [2(a) and (b). Weak illumination at night significantly
reduces the contrast of the image, as shown in Figure 2[b), resulting in the silhouette of the airplane
being difficult to recognize, which may lead to missed detection.
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Weather changes. There are various weather changes in airports and different weather conditions
have a significant impact on the visibility. In foggy days, as shown in Figure 2]c), the image contrast
is sharply attenuated, and the silhouette of the object become blurred or even indistinguishable.
During snowy days, as shown in Figure[2d), the high degree of similarity in hue between the color of
the airplane fuselage and the snow-covered ground greatly increases the difficulty in distinguishing
the airplane from the background, resulting in a decrease in the accuracy of the boundary localization.

(a) (b)

Figure 3: (a) shows the complex background of the airport surface. (b) shows that due to the long
imaging distance, person’s silhouette is difficult to identify.

Complex background. In addition to movable targets, there are a large number of buildings and
greenery in and around the airport, which constitute a complex visual background, as shown in Figure
Bl@). Some objects on the airport surface, such as high pole lights, signs, etc., are not our focus and
most of them are stationary. Therefore, we will also include them in the background part.

(a) fuel truck (b) tractor (c) boarding vehicle (d) bus o
Figure 4: From (a) to (d) shows some vehicles we observed while collecting data.

2) Vehicle and person are also the main movable targets on airport surface. Some of the functions
they provide, such as cargo handling and runway inspection, are important part of airport production
activities. Although vehicle and person are common object categories, their attributes in airport surface
differ greatly from those in other scenarios. Firstly, due to the wide range of airport surveillance
beyond conventional traffic scenarios, vehicles and people are far away from surveillance cameras,
resulting in a significant reduction in the size of the imaging. Therefore, small objects such as person
is often poorly outlined or even difficult to recognize, as shown in Figure 3[b). Secondly, vehicles in
airports contain various types such as tractor-trailers, fuel trucks, etc, as shown in Figureﬂ However,
since their movement behaviors are similar, we collectively refer to such movable targets as "vehicles"
at present. If necessary in future research, we will differentiate different types of vehicles based on
specific needs.

3.2 DATASET ACQUISITION

Through cooperation with a institute of civil aviation, we have been granted permission to collect data
at several airports. The collection equipment consists of multiple fixed cameras and PTZ cameras,
with image resolutions of 1920 * 1080, 1280 * 720, etc.

1) Raw data collection. The central principle of data collection is to ensure the diversity of movable
target patterns and backgrounds, covering all previously mentioned challenges, each with rich
examples. For example, for airplane categories, by continuously adjusting the viewangle and focal
length of the PTZ camera, try to cover various imaging distances, viewangles and activities within the
camera monitoring range. In order to ensure diversity against certain challenges, such as weather and
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Table 1: Definition of the occlusion degree and scale in the airplane annotation process.

Occlusion Scale
Percentage of occlusion  Degree of occlusion ~ Abbreviations || Percentage of airplane size Scale Abbreviations
none No occlusion 0 <8% Small scale S
0% - 30% Mildly occlusion 1 8% - 25% Medium scale m
30% - 70% Medium occlusion 2 >25 % Large Scale X
70% - 100% Heavy occlusion 3

illumination changes, the collection cycle has been continuously extended. We collect as much raw
image data as possible for subsequent screening. In over half a year, we have collected approximately
100000 raw image data in total.

Figure 5: (a) and (b) shows images taken from two separate airports, but with some similarities. (c)
and (d) are web images.

2) Data screening. The purpose of data filtering is to minimize data redundancy while ensuring
diversity. The data collection and the data filtering of the AFTD dataset are extremely challenging.
Although we conducted data collection at several different airports, since the airports are very similar
in terms of layout, facility configuration, etc., when we analyzed the collected data, we found that the
images collected from different airports were highly similar, and even unable to distinguish which
airport they came from, as shown in Figure[5a) and (b). In addition, due to the high standardization of
airport production activities, the activities of movable targets are also very similar, so the redundancy
of data is very high. After screening, we only retained 5050 out of over 100000 raw images. Opening
more data collection points can increase the number of effective samples. However, in addition to the
semi-military restrictions of airports, the number of airports is also relatively limited. There are only
255 civil airports in the whole of China.

3) Data expansion. Due to the difficulty in opening airport data sources, we decided to enrich the
AFTD dataset by collecting public images of domestic and foreign civil airports from web resources.
We collected approximately 100000 images from the internet and followed similar principles as in
the previous section to filter the data. In addition, we especially considered the imaging angle. Web
images were removed if their imaging angles, especially the pitch angle, differed significantly from
the self-collection data. For example, satellite images viewed directly downwards were all deleted.
After filtering, only 5000 out of over 100000 web images were retained. The web images did enrich
the diversity of the dataset to some extent, as shown in Figure Ekc) and (d).

In summary, the AFTD dataset currently contains 10050 image data. Although it has been possible
to conduct experiments on this dataset and draw the conclusions, the amount of data is still slightly
insufficient. We plan to enrich the data in two ways in the future. Firstly, we plan to open up more
data collection points. However, due to the high similarity of airport structures and the necessity of
obtaining permits, this work may be laborious. Secondly, we plan to collect data at the simulated
validation airport, such as the one to be built in Chengdu in 2025.

3.3 DATA ANNOTATION

We use the annotation tool, AnyLabeling, to annotate the AFTD dataset. The label format of
groundtruth is <class, Zmaxs Tmin, Ymax> Tmins Ws h>. The values of the class are 0, 1, and 2, respectively
representing airplane, vehicle, and person. (Zmax, Zmin» Ymax> Tmin) Tepresent represents the four
vertices of the bounding box. (w, h) respectively represent the resolution of the image which contain
the bounding box. Basic label information can be obtained by drawing rectangular boxes for objects,
as shown in Figure[6(a).
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Figure 6: Annotation: (a) shows the airplane to be annotated; (b) shows the segmentation masks of
the airplane; (c) shows the outline of key points of the airplane; (d) shows the airplane viewangle;
(e) shows finding an approximate 3D model and projecting the 3D model to a 2D plane; (f) shows
roughly calculating the proportion of obscured.

. Be';'"d , Orientation Angle Viewangle Abbreviations
I ,
\ / -20° ~ 20° Right r
LeftBehind \ : /" RightBehind } )
\\ | // 20° ~ 70° RightBehind rb
T~ N -7 70° ~ 110° Behind b
~<_ \l// - Right ] ] .
T N . 110° ~ 160 LeftBehind Ib
-7 FEN S~ 160° ~ 200° Left |
FERTAN 200° ~ 250° LeftFront i
LeftFront // : \\ RightFront 250° ~ 290° Front f
/ \ .
' 290° ~ 340° (-20°) RightFront rf

Front

Figure 7: Orientation angle and viewangle division.

In addition, AFTD is a application-oriented dataset with the goal of covering the variations of limited
movable targets, especially airplane, so we added three additional labels for airplane for more granular
description, with the format of <viewangle, occlusion, scale>, which will contribute to design of
detection algorithms for foreground targets on airport surface.

The definition and labeling of these three additional labels are described next.

Viewangle. The viewangle refers to the angle of orientation of the airplane in the image, which is
defined by measuring the angle between an imaginary line from the tail to the head of the airplane
and the positive X-axis direction. The division of viewangle is shown in Figure[7] As shown in Figure
[6lb), the viewangle of the airplane is "RightFront", denoted as "rf".

Occlusion. The occlusion refers to the proportion of the unpresented parts to the complete area of
the airplane from the same viewangle. The division of occlusion degree is shown in Table[T] In
order to calculate the degree of occlusion, we need to obtain the area of the airplane’s segmentation
mask and the approximate full area at the same viewangle. We will label twice to obtain accurate
segmentation masks and key location silhouette respectively, as shown in Figure [p[c) and (d). With
keypoint mapping, we can adjust and scale a 3D airplane model and project it onto a 2D plane to
obtain the pseudo-real mask area, as shown in Figure [6{e). Then we can calculate the degree of
occlusion based on Equation]I} where Degree denotes the degree of occlusion, S denotes the full
area and S denotes the segmented area. The obscured part is shown in Figure[6{f) is mildly obscured,
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denoted as "1".
Degree = (SFull - Ssegmentation)/SFull- (1)

Scale. Since the image sizes in the AFTD dataset are not uniform, we use relative scale to define the
scale of the airplane. By calculating the proportion of the complete area of the airplane to the image
area, rather than directly dividing it based on the bounding box area obtained from annotations. This
is to ensure the effectiveness of scale comparison between images of different sizes. The division is
shown in Table[T] The airplane in Figure [f[a) belongs to the large scale, denoted as "x".

Other issues. In addition, for all class of objects, there is a common question: how small a object
does not need to be labeled? Our principle is to label objects that can roughly distinguish categories
based on silhouettes. If the object is too small to distinguish its class, it is not labeled. To ensure
the quality of labeling, we have established data review standards, with three people who were not
involved in the annotation work responsible for data verification. The annotated results are visualized
and independently reviewed by two reviewers. If both reviewers agree the data annotation is correct,
the data will be sent to the last reviewer for review. If one or both of them think the annotation has
problems, the data will be discussed and the conclusion will be fed back to the annotator, and the
annotation will be reviewed again. It is only qualified if it is approved by the final reviewer.

3.4 STATISTICAL ANALYSIS OF DATASET

We conducted statistical analyses on the variations in scale, angle, and occlusion levels in our dataset
to showcase the inherent challenges faced by this dataset.

Scale distribution. In order to calculate the scale distribution of all objects in AFTD, we introduce

the area ratio to measure the scale of the objects. The calculation formula of the area ratio is as

follows:

(xmax - Imin)(ymax - ymin)
@)

wh

The statistical results are shown in Figure [8] It shows that the scales of all types of objects are

concentrated in the small scale. The scales of people and cars are concentrated in extremely small

scales, while the distribution of airplane scales is broader but still primarily concentrated in smaller

scales. This poses challenges for current object detectors in detecting small objects, handling

intra-class diversity, and detecting multi-scale objects.

Arearatio =

Airplane Area Ratios Car Area Ratios Person Area Ratios

Figure 8: Scale distribution:(a) shows area ratio aistribution for airplane,(b) shows area ratio aistribu-
tion for car,(c) shows area ratio aistribution for person.

Viewangle distribution. Figure[Dfa) shows the distribution of viewangle of the airplane in the AFTD.
According to the distribution, the airplane in the airport are widely distributed in all angles, and the
airplane in the right and left direction account for the majority of all airplane. According to the 3D
model of the airplane, it is easy to obtain that the wing target exists on the non-left-right orientation
of the airplane parent mark. The visual distribution of airplane shows that the detection of the wing is
a problem that can not be ignored in the realistic foreground target surveillance scene of the airport,
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but the existing object detection algorithms are not good in the performance of slender objects such
as the wing. This is also a challenge posed by AFTD to existing object detection algorithms.

Occlusion Distribution View Angle Distribution

Heavily occluded
q No occlusion
Medium occluded b

42.8%

Mildly occluded

b o

(a) (b)

Figure 9: Viewangle distribution and occlusion distribution.

Occlusion distribution. Figure[0(b) shows the distribution of airplane occlusion degree in the AFTD
dataset. It shows that the problem of airplane occlusion exists widely in the airport surveillance scene,
and a large number of medium occluded and heavily occluded aircraft seriously affect the detection
results.

4 EXPERIMENTS

In this section, we select 14 object detection algorithms that perform well on MS-COCO to test our
dataset and analyze the results. These algorithms include two-stage, one-stage, and end-to-end object
detection algorithms. Moreover, we discuss algorithm design approaches for future research.

4.1 EXPERIMENTAL SETTINGS

For the each algorithm we chosed, we used the source code provided in the original paper. For model
configuration, unless specified otherwise, we adopted the default training settings. It should be noted
that the three additional labels we designed for the airplane are for the need of subsequent algorithm
design, so they are not used in the experiments in this section.

4.2 EVALUATION METRICS

Average Precision (AP) is an average of the precision at different recall points, and the larger the
AP value indicates that the model is more effective. mAP is an average of the AP values of all the
categories, AP can reflect the accuracy of the prediction of each category, and mAP is used to reflect
the accuracy of the whole model. Since the AFTD dataset contains multiple categories, we use mAP
as the evaluation metric. Here we calculate AP50 and AP75 for each algorithm on the AFTD dataset
separately. AP50 denotes the value of mAP for the IOU threshold of 0.5, and AP75 is the same.

4.3 EXPERIMENTAL RESULT AND ANALYSIS

The experimental results of the 14 algorithms on the AFTD dataset are shown in Table 2] and the
highest scores under each indicator are bolded. As a comparison, the experimental results of these
algorithms on the MS-COCO dataset are also shown in Table 2] which are taken from the official
website. It can be seen that the box AP of each algorithm on the AFTD dataset decreased by almost 15
percentage points compared to the boxAP on the MS-COCO dataset. On the one hand, this indicates
the fact that the AFTD dataset is more difficult than MS-COCO. On the other hand, it also reflects
that general object detection algorithms can still be further optimized for specific domains and tasks.
Among the 14 algorithms we tested, the Sparse RCNN and TOOD performed comparably well with
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Table 2: The performance comparison of some object detection algorithms on MS-COCO and on the
AFTD. Best scores are marked in bold.

Algorithms Backbone COCO AFTD

boxAP | boxAP AP50 AP75 APS APM APL
Mask RCNNHe et al.|(2017 ResNet-50 38.2 25.6 47.1 247 164 373 554
Cascade RCNNCai & Vasconcelos ResNet-50 404 267 462 265 163 375 56.6
CenterNe(Duan et al. ResNet-50 40.2 25.8 45.1 258 200 413 598
Libra R- ang et al.[(2019 ResNet-50 38.3 25.9 48.0 24.9 17.8  39.1 55.0
TridentNe(Li et al. ResNet-50 37.7 24.8 44.0 244 126 353 563
FOCSTian et al. ResNet-50 38.5 22.7 424 216 162 372 553
Double-Hea u et al.|(2020 ResNet-50 40.0 26.4 46.6 260 17.1 385 56.8
Dynamic RCNNZhang et al. ResNet-50 389 25.6 45.5 252 150 36.6 551
DETR(Carion et al. DETR 39.9 21.9 41.8 193 11.7 305 560
Sparce un et al.|(2021 ResNet-50 42.8 26.8 46.8 262 21.0 401 594
YOLOKChen et al.[(2021 ResNet-50-C5 37.5 223 41.4 20.7 10.8 351 574
YOLOX-SGe et al.|(2021 - 40.5 23.1 41.5 223 134 343 544
TOO I ( ) ResNet-50 42.4 28.1 47.7 28.1 205 435 624
Conditional DETR (2021 } ResNet-50 41.1 24.1 45.7 214 140 347 585

Figure 10: Result: The first row of images shows the exact detection results. The next three rows
show some problems with the detection algorithm, with phenomena such as inaccurate boundary
localization, missed detection, and false detection.

relatively high boxAP. This may be attributed to the fact that both algorithms show relatively good
performance in small object detection.

We next illustrate the reasons for the poor performance of existing methods in terms of challenges.
The first row in Figure|10]shows some results with relatively accurate localization.

Super multi-scale. The challenges brought by super multi-scale are mainly manifested in two aspects:
objects with too large or small in scale. When the airplane is close to the camera, the imaging scale is
large and the algorithm may give more than one detection result for the same airplane, as shown in
Figure[I0[2a) to (2c). When movable targets are displayed at a small size in the image, it may result
in the algorithm being unable to accurately recognize these objects, as shown in Figure[T0[2d) to (2f).

Viewangle changes. There are cases of inaccurate boundary localization for movable targets, as
shown in Figure[I0{3a) to (3c).This situation mainly occurs when the airplane wings form the left or
right boundaries of the airplane, mainly because the slender characteristics of the wings are not easy
to accurately locate the boundaries.

Multi-level occlusion. Occlusion can lead to the loss of key features for movable targets, resulting in
the algorithm missing these objects, as shown in Figure[T0f3e) to (3f).

INlumination changes and weather changes. In conditions of low visibility and poor Illumination,
such as foggy, rainy days and nights, it may be difficult to distinguish movable targets from the
background, which in turn causes the algorithm to miss them, as shown in Figure[I0[4a) to (4e).
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Complex background. In complex backgrounds, movable targets are easily masked by similar
texture features of the surrounding environment, leading to a reduced differentiation between object
and background, as shown in Figure [I0[4f).

4.4 ADDITIONAL DISCUSSION

The above experiments show that object detection does face challenges in airport surveillance. Here,
we take one challenge as examples and propose some possible algorithm design ideas.

Super multi-scale problem. Since objects at different scales differ in texture details, relationship with
the context, etc., detection at different scales may not be fully compatible or have different optimal
solutions. Therefore, a single detection algorithm might not be effective for all scales at the same
time. We could use different attention mechanisms for objects at different scales. This method first
requires predicting the approximate locations where different scale objects will appear. Observations
have shown that there is a special “target/background” co-occurrence in airport scenarios, so that the
scale of the object can be initially predicted by dividing the background region, for example, airplane
appearing in the sky region generally belong to the small-scale objects.

Based on the above ideas, we designed a module that uses different attention mechanisms for different
scale features. Figure [[T]shows the structure of the module.In order to prove the effectiveness of our
module, we conducted experiments on yolov8 with small target detection head, and the experimental
results are shown in Table[3l

Global
Attention

SElayer

N
V
A

A

Airport image

Localization
Attention

Figure 11: The structure of our multiscale attention module.

For small-scale features, we use localization attention to enhance their attention to local information,
for middle-scale features, we use SElayetHu et al.|(2017)) to provide attention to channel information,
and for large-scale features, we use global attention to enhance their attention to global information.
Finally, these features are weighted and fused for detection.

Table 3: Comparison of performance metrics with and without multi-scale attention.

Class Instances RT-DETR without attention RT-DETR with attention

BoxAP | mAP50 | mAP50-95 BoxAP mAP50 mAP50-95
airplanes 1766 0.617 0.607 0.383 0.609 0.625(+0.018) | 0.389(+0.006)
airplanem | 804 0.452 0.485 0.398 0.485(+0.032) | 0.514(+0.029) | 0.411(+0.013
airplanex | 683 0.666 0.798 0.71 0.724(+0.058) | 0.819(+0.021) 0.73(+0.02)

The experimental results show that using different attention mechanisms for different scales can
effectively improve the performance of the object detection algorithm on the AFTD, which indicates
that our previous analysis on the scale of our dataset is correct.

5 CONCLUSION

In this paper, we proposed an airport foreground target detection dataset, AFTD, which contains a
total of 10050 image data. The AFTD dataset covers a variety of changes of foreground targets on
the airport surface. Our experiments showed that some algorithms that performed well on classical

10
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datasets exhibited varying degrees of performance degradation on the AFTD dataset. We analyzed
the reasons for this phenomenon and proposed some algorithmic design ideas for future research.
Further expanding the AFTD dataset and improving the detection performance of airport foreground
targets will be the focus of our future research.
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