Arrows of Time for Large Language Models

Vassilis Papadopoulos “ ' 2 Jérémie Wenger

Abstract

We study the probabilistic modeling performed by
Autoregressive Large Language Models (LLMs)
through the angle of time directionality, address-
ing a question first raised in (Shannon, 1951). For
large enough models, we empirically find a time
asymmetry in their ability to learn natural lan-
guage: a difference in the average log-perplexity
when trying to predict the next token versus when
trying to predict the previous one. This difference
is at the same time subtle and very consistent
across various modalities (language, model size,
training time, ...). Theoretically, this is surpris-
ing: from an information-theoretic point of view,
there should be no such difference. We provide
a theoretical framework to explain how such an
asymmetry can appear from sparsity and compu-
tational complexity considerations, and outline a
number of perspectives opened by our results.

1. Introduction

Generative Models have revolutionized modern Al, yielding
a wide array of applications. Modern works have shown
that such models can perform spectacularly (and somewhat
mysteriously) well on various kinds of data. Text is perhaps
the domain where progress has been the most drastic: in a
few years, Large Language Models (LLMs) have gone from
generating barely correct sentences to producing consistent
stories, code, and performing countless new tasks; key mile-
stones include the Transformer architecture (Vaswani et al.,
2017), BERT (Devlin et al., 2019), and GPTs (Radford et al.,
2018; 2019; Brown et al., 2020; OpenAl, 2023).

At the heart of these developments are probabilistic mod-
els trained in an unsupervised manner on vast amounts of

“Equal contribution 'FSL/Institute of Physics, EPFL
2CSFT/Institute of Mathematics, EPFL, Lausanne, Switzer-
land *Department of Computing, Goldsmiths/University of
London, London, UK. Correspondence to: Clément Hongler
<clement.hongler@epfl.ch>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

3 Clément Hongler *>

data, for prediction or recovery tasks: this yields an estima-
tion of the probability measure underlying the data. These
probabilistic models appear to gain surprising abilities, such
as reasoning, as their sizes increase (see (Wei et al., 2022;
Schaeffer et al., 2023) among others).

In this work, we investigate the interplay between the prob-
abilistic structure of autoregressive LLMs and the data they
are trained on. More precisely, we investigate how time
directionality influences their ability to model natural and
synthetic languages.

1.1. Autoregressive LLMs

Famously, the pre-training of LLMs such as the GPTs con-
sists in ‘learning to predict the next token’ knowing previous
ones, in sequences extracted from large text corpora, using
the natural time ordering of the data they are being trained
on. A vocabulary V of V tokens is chosen; the dataset
is then tokenized into a sequence of tokens in V; at each
step, the model reads a sequence of tokens and outputs a
probability distribution on V predicting the next token.

Typically, as a probabilistic model, an autoregressive model
will estimate the probability that n random consecutive
tokens (X, --,X,) are equal to (z1,--- ,z,) € V" by
taking the product of the (estimations of) the probabilities

P{Xl :xl}
P{XQ :$2|X1 :xl}

: ()
P{Xn = mn|X1 =T1," 7Xn71 = xnfl}a

yielding an estimated probability measure P, on V".

Autoregressive LLMs (GPTs, GRUs, LSTMs, ...) thus fac-
torize (their estimates of) the joint probabilities in terms of
conditional probabilities for each token knowing past ones.
This brings a number of advantages: first, this leverages
the fact that for each token sequence z1, ..., z,, each to-
ken x, is used in to predict each token x, with £ > k. In
particular, GPT (compared to the earlier BERT) includes
causality-aware attention, allowing for a parallelization of
the training process: a sequence 1, .. ., T, generates n — 1
fully parallelizable tasks (predict xj, from (x1,...,25_1)
for 2 < k < n). Also, this representation enables a natural

Arrows of Time for Large Language Models

sampling from P, (token by token), as well as data com-
pression: the factorization decomposes these processes into
many smaller substeps (Graves et al., 2023).

Autoregressive LLMs such as GPTs have enabled a massive
scaling up of the number of parameters and dataset sizes,
yielding numerous fascinating phenomena, e.g. scaling laws
(Kaplan et al., 2020; Hoffmann et al., 2022) and emergent
behavior, e.g. abilities at arithmetic operations (Shen et al.,
2023), circuit computing tasks (d’Ascoli et al., 2023), or
high-level linguistic proficiency.

1.2. Arrow of Time and Language Models

While decomposing measures into a sequence of conditional
probabilities is natural, it is not a priori clear why following
the time direction of language to do so is optimal (except for
downstream tasks, e.g. making a chatbot): what is the best
order when predicting the token probabilities? A natural
idea to investigate this question is simply to reverse the
Arrow of Time: to estimate probabilities backward. This
amounts to training models on time-flipped datasets: we
train the same models on the same data slices for next-token
predictions, but for each data slice (z1,--- ,z,) we feed
the model with (z,,, z,—1, -+ , 1) instead.

As aresult, instead of (1), we take the product of the estima-
tions of

P{X, =z,}
]P{Xn—l = xn—l‘Xn = zn}

: @
]P){Xl :zl‘Xn = Tp," " ,XQ :IQ}.

This yields an estimated probability measure P}~ on V™.

In this paper, we will speak of forward/backward (FW/BW)
model to refer to the same (architectural) model trained
with the same hyperparameters (learning rate, batch size,
training time, ...) but fed with (batches of) (z1,...,z,) and
(Zn, ..., 21) from the same dataset respectively. In other
words, both models are the same, except that the FW model
is trained to predict the next token, while the BW one is
trained to predict the previous token.

Problem 1. For a measure P and a given model, how do the
forward and backward measures Py and P} differ from
one another?

For certain Ps, we will see universal asymmetries: for any
given architecture and hyperparameters, a substantial differ-
ence between the way IP,” and P approximate P arises.

1.3. Cross-Entropy Loss and Perplexity

LLMs are trained as follows: sample sequences of n con-
secutive tokens (z1,...,x,) from the dataset; then, for

t=1,...,n, getaprediction p; : V — [0, 1] for X; (given
previous tokens for the FW model/next tokens for the BW
one), compute the loss >_"_; ¢ (p;, z;) on the observed to-
kens x; for a loss function ¢, perform a gradient step to
optimize ¢, and start again.

In the training of most LLMs, the prime choice for ¢ is the
cross-entropy loss, defined by {¢ (pg,) = —Inpg (zk):
the negative log of the predicted probability of the observed
token. It is a proper scoring rule (Savage, 1971; Gneiting
& Raftery, 2007), uniquely identified by certain modular-
ity properties (Hanson, 2012); in expectation, it gives the
number of nats (In 2 times the number of bits) needed to
compress (z1, . ..,Z,) when using a coding scheme based
on the model’s estimated probabilities. Finally, and crucially
for us, we have the following:

Remark 2. Fori =1,...,n,let (p;”), and (p;), denote
the predictions of the FW and BW models respectively.

Setting £, := (¢ (p;:’7 :ci), we have

N UT =Py Xy =2y, Xy =20}

i=1

In particular, if the FW and BW measures coincide, the
cross-entropy losses are identical.

Remark 3. If (x4, ..., x,) is sampled from P,,, denoting by
L, the expectations of Y -, Ki:’ (estimated by the test loss
of the models during training), we have

L, =Dk (Pu|[P) + H (P,),

where H denotes the entropy and Dy, the Kullback-Leibler
divergence.
Remark 4. 1t is worth noting that, in spite of its apparent
triviality, Remark 2 crucially depends on the choice ¢ as
{c. Moreover, even if ;7 = 5, we will generally have
077 # 0 for1 <4 < n(though), ¢;7 =% /). When
P> = P;~ = P, we have that ¢;” and ¢; yield two (typ-
ically different) decompositions of the log-likelihood of
(21,...,xy). For instance, take as a dataset the 81 expres-
sions Ax B=CDforl <A B<90<C,D<9
(setting C' = 0 when needed). The FW log-perplexity is
concentrated on A and B, each contributing In 9 ~ 2.2 nats:
2 =105 = 22,07 = {5 = 0. The BW log-perplexity
is distributed differently: for instance, for 3 x 4 = 12,
(5, 05,45 ,05) ~ (0,1.39,1.1,1.91).
Remark 5. Remark 3 suggests that if ;" and [P}, coincide
(e.g. if both models have learned the true measure P, mem-
orized the training set, or more generally have learned P
‘equally well’), their associated average losses should be
equal. If we take a very small dataset or context length,
we can expect to have £.” ~ L. If we are to train a FW
and a BW model with our setting, any substantial differ-
ence in their cross-entropy losses will necessarily reflect an
asymmetry of P (w.r.t. its learnability by the models).

Arrows of Time for Large Language Models

As it will turn out, for many types of data (i.e. IPs), a consis-
tent difference between FW and BW log-perplexities arises
across a wide range of models and hyperparameters.

1.4. Setup and Plan

In Section 1.3, we showed that a difference between FW and
BW losses reflects a difference between the measures P,
and P}, learned by the FW/BW models, all else being equal:
same dataset, same model (architecture and hyperparame-
ters). In such a case, we say that P (or the corresponding
dataset) exhibits an Arrow of Time (AoT) with respect to the
model and context length n. We speak of a FW AoT if the
average FW log-perplexity is below the BW one (i.e. if the
FW model outperforms the BW one).

This paper aims to investigate the following questions:

* Is there an AoT in large natural language datasets? Does
it depend on the language? Does it depend on the context
length n?

* Can we formulate a theoretical framework explaining the
presence of an AoT? Can we construct simple synthetic
datasets exhibiting an AoT? Can the presence of an AoT
be explained mathematically from first principles? What
should we expect as the model sizes tend to infinity?

The paper is organized as follows:

* In Section 2, we investigate the existence of an AoT,
starting from a basic setup and expanding across modali-
ties: languages, architectures, hyperparameters, context
lengths.

* In Section 3, we investigate the theoretical origins of
AoTs, starting with a simple synthetic dataset exhibiting
one; in this case, the difference between £” and £ can
be shown to be related to the hardness of the factoring
problem (Section 3.1). We then introduce a more general
class of synthetic datasets which we call ‘linear languages’
(Section 3.2), providing us with a fairly wide class of
datasets with a mathematically justified AoT.

* Finally, in Section 4, we summarize our results and outline
a number of possible future research directions.

1.5. Relation to Previous Works in Language Modeling

To the best of our knowledge, the question of comparing
FW and BW text generation in Language Modeling was
first raised in (Shannon, 1951): Shannon ran experiments
on the task of predicting the next vs previous letters, noting
the theoretical equality between FW and BW entropies; he
noted that while the BW prediction appeared to be “sub-
jectively much more difficult” for humans, it led to “only
slightly poorer” scores.

A notable recent example is (Sutskever et al., 2014), fo-
cusing on machine translation using LSTMs, finding that

reversing the source sentence (i.e. training the source LSTM
backwards) improves performance. Other well-known ex-
amples of related techniques include ULMFiT (Howard &
Ruder, 2018) and ELMO (Peters et al., 2018), the already
mentioned BERT (Devlin et al., 2019), as well as T5 (Raffel
et al., 2023), and XLNET (Yang et al., 2020).

Attempts at combining FW/BW models include (Mou et al.,
2016; Liu et al., 2016; Zhang et al., 2018; Serdyuk et al.,
2018; Mangal et al., 2019) (using RNNs); or recently
(Nguyen et al., 2023), a ‘Meet in the Middle’ approach
which shows how pre-training using FW/BW Transformer
models enhance FW-only autoregressive generation; as well
as in (Shen et al., 2023), applying the idea of reversing data
to improve LLM performance (see also Section 3.1). In
these approaches, the FW/BW models are treated as one
model, yielding one combined loss. They compare various
models on a task (see section 5 of (Nguyen et al., 2023)
for a comprehensive review), rather than study potential
discrepancies in FW/BW learning.

Some results showing BW models performing equally or
even better than FW models can be found in the literature.
While (Vinyals et al., 2016) highlights the importance of
order (of input and output sequences) for performance, and
shows that scrambling words reduces performance, it shows
FW and BW seemingly performing equally well. In a recent
work (Pfau et al., 2023) use BW GPT models to perform
adversarial attacks on LLMs, showing slightly better accu-
racy BW than FW. An older study (Duchateau et al., 2002)
based on trigram models, also seemingly reports better BW
than FW performances. Note that these works do not affect
our confidence in our results, given the magnitude of our
experiments and the level of care involved in their setup.

A number of works, in particularly related to the machine-
translation setup, try to use token re-ordering to improve
performances in one way or another, see, e.g. (Wu et al.,
2018; Oord et al., 2017; Gu et al., 2018; Lee et al., 2018;
Ford et al., 2018; Savinov et al., 2022; Welleck et al., 2019;
Stern et al., 2019; Gu et al., 2019b; Chan et al., 2019b;a;
Gu et al., 2019a; Emelianenko et al., 2019; Mansimov et al.,
2020). See (Xiao et al., 2023) for a survey. Given the
extensive body of work on the topic, it comes across as
somehow surprising that the effect we highlight in our paper
is not noted anywhere (besides in the early works of Shan-
non). Among possible reasons for this could be the use of
translation-specific metrics such as the BLEU score (Pap-
ineni et al., 2001), rather than cross-entropy losses, and the
lack of careful setups comparing FW and BW performance
for large models on large datasets, all else being equal.

1.6. Causality and Information Theory

While the AoT effect we highlight in this paper is surprising
from the point of view of information theory, there are

Arrows of Time for Large Language Models

several theoretical frameworks that appear to be related to
this effect:

¢ Structural Causal Models (Peters et al., 2017) consist
of families of random variables linked by certain rela-
tionships that (implicitly) involve a notion of time: con-
sider random variables X1,..., X, such that for each
i > 1, X;11 is a written as f;(X1,...,X;, Z;), where
the Z;’s are jointly independent. While the presence
of such a decomposition is not special to the order in
which the variables are labeled, an order may be sin-
gled out in certain cases if we put constraints on the
structure of f; and Z; (e.g. that f;, Z; are ‘simple’ in
some sense): if we e.g. reverse the order of the variables
(X1,...,Xn) = (Xp, ..., X1), it may not be possible to
write X;11 = fi(X1,...,X,, Z;), with f;, Z; being as
‘simple’ as f;, Z;. This may have an impact on learnability
(Scholkopf et al., 2021), akin to that of an AoT.

» Computationally-constrained views on information the-
ory, in particular the recent framework of V-information
(Xu et al., 2020), allow one to take into account the com-
putational challenges associated with the information ex-
traction; through the lens of the V-information, we see the
emergence of symmetry breaking, an example of which
is the Arrow-of-Time effect.

2. Empirical Results on Natural Language

In this section, we explore the existence of an AoT for LLMs
in natural language datasets. We first reveal the presence
of an AoT in a basic setup (GPT2 models on English and
French with context window of length 256, see Section 2.2.1
below). We then decline our explorations over more than 50
model modalities (GPT/GRU/LSTM architectures, 6 GPT
sizes, context window lengths of 16/32/64/128/256/512 and
8 languages), and rule out possible tokenization artifacts.
We observe a consistent FW AoT in these setups, including
a number of takeaways concerning its magnitude.

2.1. Setup

For the identification of an AoT in a dataset, we make sure
that both the FW and BW models are trained with the ex-
act same specifications: the only reason for a difference
between the models’ performances is hence the token pre-
diction order. In all experiments, the models are trained
from scratch, using He initialization (He et al., 2015).

2.1.1. DATASET AND TOKENIZATION

We conduct our natural language experiments on the CC-
100 dataset (Wenzek et al., 2019; Conneau et al., 2020),
which provides large monolingual text datasets for various
of languages and is reasonably homogeneous across lan-
guages. This dataset is made of Commoncrawl snapshots,

filtered for quality by comparing the data with a Wikipedia-
trained model (Wenzek et al., 2019) (use the Huggingface
viewer to explore the dataset). For each language, we train
from scratch a BPE tokenizer (Sennrich et al., 2016), with a
vocabulary size of 50257, the same as GPT2 (Radford et al.,
2019), including the beginning of sentence (BOS) token.

To train on length-n data batches, we split the dataset into
‘sentences’ of n — 1 tokens, with a stride of %, ensuring that
each token can be seen at least once with reasonable context.
For the FW model, we add the (BOS) token at the start of
the sequence, while for the BW model, we add the (BOS)
token at the end, and flip the token order before feeding it to
the model. We withhold ~ 250k sentences from the dataset
for validation.

2.1.2. MODELS, HYPERPARAMETERS AND TRAINING

While some experiments involve other autoregressive mod-
els (GRU, LSTM), for most training jobs we use the decoder-
only Transformer (GPT) (Radford et al., 2018); our imple-
mentation (with code in the supplementary material) is de-
rived from minGPT (Karpathy, 2023). All GPT experiments
use learned positional embeddings and a dropout rate of 0.1.
Other hyperparameters may depend on the experiment, see
the Appendix.

For all models, we use the AdamW optimizer (Loshchilov &
Hutter, 2019) with base learning rate of 10~ and a learning
rate schedule with a warmup, followed by cosine annealing
with warm restarts (Loshchilov & Hutter, 2017). These
hyperparameters are mostly kept constant across different
experiments, although the period of the warm restarts might
be tweaked to synchronize the end of training with the end
of a cycle, see Appendix A for details.

2.2. Results

In this section, we present results of various experiments
confirming the presence of a FW AoT in English and French
datasets, and provide compelling evidence for its universal
existence in natural languages by considering six other lan-
guages (five distinct families in total).

2.2.1. ARROW OF TIME IN ENGLISH AND FRENCH

We begin in this section by analyzing the difference in FW
vs BW training dynamics for a Transformer of size GPT2-
Medium (~ 405M parameters, context window length of
256) on the CC-100 datasets for English and French. We
train the FW and BW models for the equivalent of 1 epoch of
the French dataset (~ 27 B tokens), avoiding memorization.

As is seen in the zoom-in of Fig 1., after an initial short
transition period, the BW model loss separates from its FW
counterpart and settles slightly above it, and then follows
an almost parallel trajectory. This consistent difference

https://huggingface.co/datasets/cc100/viewer
https://huggingface.co/datasets/cc100/viewer

Arrows of Time for Large Language Models

35

3.4

33

3.2

loss

31

—— en, forward

=== en, backward
fr, forward

28 fr, backward

0.0 20.0 40.0 60.0 80.0 100.0
samples seen (millions)

Figure 1: English vs French validation losses (French training
losses in the zoom-in, early loss values cropped for readability).

throughout training (even persisting through warm restarts)
points to the existence of an AoT both in English and in
French: at the end of training, we see the following losses for
English: FW: 2.88, BW: 2.902 a difference of +0.76%; and
for French: FW: 2.788, BW 2.862, a difference of +2.65%.
Interestingly, the magnitude of this effect is different for
English and French.

As will be discussed in the next subsections, the findings are
quite universal: they can be consistently expanded to various
settings, across models, languages, and context lengths.

2.2.2. CONTEXT WINDOW SIZE

In this section, we examine the influence of long-range cor-
relations on the AoT, by studying its relationship with the
context length. Intuitively, for a very small context length,
we should see virtually no AoT; with very few tokens, mod-
els approach the optimal solutions similarly, as they have
fewer degrees of freedom. For instance, in the extreme case
of a context of length 2, models are only tasked with learn-
ing a two-variable function V2 — [0,1], i.e. to learn the
frequencies of 2-grams, which should be (equally) easy in
both directions. It is likely that an AoT emerges for larger
context lengths (and for reasonably large models).

We test the dependence on the context window by training
the same GPT-Medium model, but with context lengths
spanning from 16 to 512 tokens, both on English and French.
As can be seen in Fig. 2, the magnitude of the AoT in
both English and French increases with the context size,
suggesting the importance of long-range dependences.

2.2.3. MODEL SIZE

In this section, we investigate the effect of model size for
GPT models (other models are discussed in the next sub-
section). As in Section 2.2.2 above, it is natural to expect
small models to struggle to exhibit an AoT that would de-
pend on sophisticated, long-range dependences. To test this,
we train GPT models of different sizes, from 5M to 405M
parameters, all with a context length of 256. Interestingly

w
=]
L

French
B English

N
wn
s

N
o
L

% of loss difference BW/FW
Lo
o

(backward loss/forward loss - 1)
=
w

©
wn

©
=]
|

16 32 64 128 256 512
context window

Figure 2: BW/FW losses percentage difference for different con-
text lengths

the AoT is much smaller at very small model sizes, rein-
forcing the idea that long-range dependences are key; as
the model size keeps growing beyond that, the difference
tends to grow. Note also that larger BW models typically
outperform smaller FW ones.

Table 1: Final FW losses and relative BW differences.

Nano Micro Mini Small GPT1 Med
Size 4.92M 13.7M 22.0M | 55.6M 162M 405M
Fr-FW | 4.525 3.964 3.683 3.293 2.979 2.788
Fr-BW | +0.15% | +0.63% | +1.49% | +1.64% | +2.07% | +2.65%
En-FW | 4.599 4.064 3.799 3416 3.081 2.880
En-BW | -0.33% | +0.1% | +0.11% | +0.26% | +0.49% | +0.76%

2.2.4. OTHER MODELS

While most results in this paper are focused on GPT mod-
els (the current state of the art for language modeling), the
question of the AoT can naturally be asked for other autore-
gressive models. We investigate this for GRUs and LSTMs
(three sizes each), again with a context length of 256.

Once more, for sufficiently large models, we observe a
consistent AoT throughout modalities, confirming that the
observed AoT goes beyond Transformer models; rather, it
appears to be intrinsic to the dataset. It is interesting for
instance that for the English dataset, the smaller BW model
performs slightly better than the FW one. This however
convincingly disappears for larger context sizes and models.

Table 2: Final FW GRU/LSTM losses and relative BW differences.

GRUS | GRUM | GRUL | LSTMS | LSTMM | LSTML
Size 4.92M 13.7M 22.0M | 55.6M 162M 405M
Fr-FW | 3.905 3.692 3.363 3.901 3.566 3.314
Fr-BW | +0.26% | +0.3% +0.62% | +0.1% +0.45% +0.66%
En-FW | 4.030 3.712 3.483 4.015 3.653 3.418
En-BW | -0.07% | +0.22% | +0.34% | -027% | +0.11% +0.15%

2.2.5. OTHER LANGUAGES

The above experiments confirm the existence of an AoT for
English and French across various modalities. An exciting

Arrows of Time for Large Language Models

== greek_b = greek == indonesian_b = indonesian = turkish == turkish_b
french_b french = vietnamese == vietnamese_b = finnish == finnish_b == german_b — german
4
3.5
3
2.5

100k

200k

300k 400k 500k

Figure 3: Validation loss curves for FW and BW models during training. Consistently, the BW loss is higher than its FW counterpart.
This persists through the warm restart of the learning rate, which causes a bump in the loss.

question that naturally arises is whether this might be a
universal property of natural languages. To begin to explore
this question, we train models of two sizes (GPT2-Medium
and GPT2-XL) on six more languages.

Table 3: Final losses for different languages, Medium/XL models.
Format: [Final FW loss]/[BW relative difference].

Turkish
3.292/+0.94%
3.084/+1.17%

Vietnamese
2.396/+1.67%
2.099/+2.81%

Finnish
3.359/+1.07%
2.975/+1.85%

German
Med | 3.148/+1.46%
XL | 2.892/+1.59%

Greek Indonesian French English
Med | 2.794/+2.4% | 3.079/+2.18% | 2.834/42.4% | 2.926/+0.61%
XL | 2.494/+3.05% | 2.741/+3.17% | 2.586/+2.51% | 2.683/+0.63%

From Table 3, we can see that in all the cases we tested, a
FW AoT emerges, although its magnitude appears to vary
from language to language, suggesting some universality of
this phenomenon across human languages. Fig. 3 showcases
the stability of this AoT during training, across languages.
Three more languages (Tagalog, Hebrew and Arab) were
tested at the suggestion of reviewers, confirming the uni-
versality of the AoT in human languages (see Appendix
A.S).

2.2.6. POSSIBLE ARTIFACTS

While the training procedures are perfectly symmetric with
respect to the two directions, it is important to rule out
any other possible sources of asymmetry. One possible
source could in principle be the tokenization; indeed, the
BPE tokenizer is trained in the FW direction. To rule out
this possibility, we inverted (at character level) two datasets
(Greek and French), and re-trained a BPE tokenizer on the
result. We trained a GPT2-Medium on it, and confirmed
that the direction of the BPE tokenization has no effect on
the training dynamics: in this case, the FW (respectively
BW) model performs very closely to the BW (respectively
FW) model on the original tokenization, thereby showing
exactly the same AoT. See Appendix A.6 for details.

Additionally, one might ask about the variation in the final
losses due to initialization. Although the agreement of all
the different experiments show that this is negligible w.r.t.
the AoT effect, we quantify this influence by repeating
experiments for Greek, see app. A.7.

2.3. Key Takeaways

The above experiments suggest the universality of the phe-
nomenon of AoT across languages, models, and hyperpa-
rameters. More specifically:

* A very consistent AoT emerges for large enough models,
trained for long enough, and with a large enough context
window; in the other cases, the effects are less clear.

* An important finding is that the magnitude of the AoT
increases with the context length: this suggests the impor-
tance of long-range correlations; relatedly, the model’s
size can influence its ability to use the information of its
whole context window.

* While most of our training is done with GPT models, we
observe the same type of results for GRUs and LSTMs,
suggesting that AoTs are intrinsic to datasets.

* An interesting phenomenon is that the magnitude of the
AoT greatly depends on the language, even if its presence
and direction are universal. Explaining this convincingly
remains a fascinating challenge.

In Section 3, we introduce a framework to reveal the emer-
gence of the AoT in synthetic datasets and propose mecha-
nisms to explain how this can apply to natural languages. In
Section 4, we discuss how these somehow surprising results
open the door to many possible investigations.

3. Computability and Irreversibility

As discussed in 1.3 above, from an information-theoretic
point of view (abstracting away computability), there should
be no difference between FW/BW models. However, as

Arrows of Time for Large Language Models

shown in 2.2, we see a consistent AoT for various types of
architectures across multiple modalities, which increases
with larger context windows. As a result, any plausible ex-
planation must explain why certain probabilities are harder
either to be (1) represented or (2) learned with BW models
than with FW ones. Naturally (1) is stronger than (2): mod-
els cannot learn what they cannot represent (e.g. if there
exists no set of model weights that solve the problem). In
this section, we provide simple mathematical models of data
illustrating how both mechanisms can arise and naturally
contribute to the AoT. We start with a simple mathematical
model using prime number multiplications, illustrating how
the computational hardness of reversing certain information-
preserving operations generates an AoT. We then construct
a more general class of data models based on binary opera-
tions, allowing one to reveal an AoT based on sparsity and
complexity theory ideas.

3.1. Number Factoring and Arrow of Time

Perhaps the most classical example of information-
preserving, yet hard to invert, computation is number factor-
ing: given two large primes p, ¢ with p < ¢, it is relatively
easy to compute n = pq; while n contains the same infor-
mation as p and g, recovering them from their product is
(believed to be) very hard. This problem is the basis of much
of asymmetric cryptography. In this section, we study how
FW/BW models perform when trained on a dataset based
on this idea; we study the theoretical entropy distribution
when reading the data FW and BW and compare this to the
experimental values for FW/BW GPTs.

3.1.1. SYNTHETIC DATASET

For fixed £ > 1, consider the language of strings of the
form p x q > rev (pq), with p < q primes, p, ¢ < 10¥ and
rev (pq) being the product of p times ¢, written in reverse
order (see (Shen et al., 2023; Lee et al., 2023)). The numbers
p and ¢ are padded to be of k digits exactly and the rev (pq)
is padded to be of 2k digits exactly (e.g. for £ = 4: 0019 x
0023 <> 73400000). The symbols x and <+ are written
as multiple tokens (3 tokens for x, and 7 tokens for <),
to facilitate the learning of non-trivial operations by GPTs
(Thomas Ahle, 2023). For a fixed k, P is thus supported
on 4k + 10 token sequences; in our experiments, we set
k = 5 and take 10® such random ordered pairs. Intuitively,
computing the right-hand side (RHS) of the symbol <+ given
the left-hand side (LHS) should be easy, while computing
the LHS from the RHS should be much harder (at least
finding ¢; given ¢ and rev (pq), finding p should be easier).

3.1.2. NATS OF ENTROPY

In order to better understand the experimental results, we
compute the aggregate entropy (in nats) on p, ¢ and rev (pq)

when reading the strings p x ¢ <> rev (pq) FW and BW
(we do not compute the entropy on each token individu-
ally, and the entropy on the symbols x and <« is 0). For
instance, for k = 5, there are In (7 (10°)) = 9.17 (with
7 () = #p : p < x) nats of entropy over the possible prime
numbers < 10°, which drops to 8.98 nats of entropy on p
(because of the ordering), and (averaging over p) 8.67 nats
of entropy on g; this results in 17.64 nats of entropy for the
pair (p, ¢), which is roughly 2 x 9.17 — In (2) (we subtract
the bit of information due to the ordering); since rev (pq) is
determined by p and g, its conditional entropy is naturally
zero. Reading the string backward, the 17.64 nats of entropy
are concentrated on rev (pq); the rest is fully determined,
and thus has zero entropy.

3.1.3. EXPERIMENTAL RESULTS

Training a model with a GPT2-Medium on the p x ¢ dataset
yields the log-perplexities recorded in Table 4. The FW
model is able to reach the information-theoretical limits on
p and ¢; the conditional cross-entropy loss on rev (pq) is
low but non-zero, indicating that the model (imperfectly)
learns to multiply the prime numbers. In contrast, the results
for the BW model show a far-from-optimal perplexity on
rev (pq), which points to the difficulty for the model to
recognize the products of two primes; knowing rev (pq),
almost no information on the prime factor ¢ is extracted:
only 8.98 — 8.41 = (.57 nats, i.e. less than one bit. The
‘division’ is much more learnable, with all but 0.02 nats of
information learned. All in all, the total FW log-perplexity
is 22.2 nats, while the BW one reaches 30.2 nats.

Table 4: Final perplexities for the prime numbers dataset

P q rev(pq)
FW | 8.98 | 8.67 | 4.55
BW | 0.02 | 8.41 | 21.56

3.1.4. DISCUSSION

The above setup shows a significant AoT for the p X ¢ <>
rev (pq) dataset. This discrepancy can be largely attributed
to the asymmetry between the difficulty of factoring ver-
sus multiplication: compared to the information-theoretical
limit, about 4.55 nats are lost for the multiplication, while
8.43 nats are lost for the factorization. We also see that the
different structures of the LHS and RHS (which have the
same information-theoretic content as they determine each
other) also present a significant difference w.r.t. the models’
abilities: while the FW model reaches essentially optimal
perplexity for the LHS (i.e. it recognizes primes < 10¥),
the BW model is very far from optimal on the RHS (i.e.
to recognize products of primes pairs p, ¢ < 10* proves to
be much more difficult). While part of the asymmetry is
attributable to the models’ specifics, as long as the dataset

Arrows of Time for Large Language Models

size is kept high enough that all pairs (p, ¢) cannot be mem-
orized, a significant AoT can be expected: as the model
size (and training time) grows, multiplication will eventu-
ally be learned (long before the dataset can be memorized,
(Shen et al., 2023)), while extracting substantial informa-
tion from rev (pq) about ¢ should remain very hard. The
above data model displays an AoT of types (1) and (2) (see
3 above): certain features turn out to be harder to learn for
the BW models, while others simply are likely not even rep-
resentable by LLMs (of reasonable sizes), as the alternative
would yield an efficient factorization algorithm.

Remark 6. Note also that the above also illustrates the impor-
tance of long-range dependences for the AoT: if the context
length is kept e.g. significantly below k, the FW model
will have trouble saying anything about rev (pq), as p will
already be forgotten when reaching the RHS, shrinking its
advantage over the BW model.

Remark 7. In the above setting, we are rooted in the com-
putational difficulty of the inversion of a bijective function;
note that the core of the argument is the computational dif-
ficulty, rather than bijectivity. Abstracting computability
issues, there is still no difference between FW and BW per-
plexities for optimal predictors, even if a mapping is not
injective, or if it is not well-defined as mapping (e.g. if some
random noise is added to it). The invertibility merely helps
us get a simple computation of the theoretical entropies, and
to pinpoint where each model performs suboptimally; it is
however not directly related to the presence of an AoT.

3.2. Binary Operations

The model of Section 3.1 shows how an AoT can appear in
a dataset: in that example, based on computational complex-
ity ideas, we could handcraft a synthetic dataset that is both
practically and theoretically harder for a BW model than a
FW one. This still leaves the question of why an AoT would
arise in a dataset such as natural language, as in Section 2,
and why in one direction rather than another, i.e. why FW
models would consistently outperform BW ones. In this
section, we introduce synthetic datasets based on operations
on the space of m-bit registers identified with F5* (IFy de-
notes the field of integers mod 2). We focus on languages
based on Fo-linear circuits and relate their learnability to
their sparsity, using this to explain a difference between FW
and BW learnability; we then provide a setup motivating
the specific FW direction of the AoT in natural languages;
we then provide experiments validating our framework; we
conclude by discussing extensions to the nonlinear case.

3.2.1. LINEAR SPARSE CIRCUIT DYNAMICS

Consider the class of measures P, on a linear language
formed by sequences of n = 2m + 1 tokens, of the form
x <> y where x, y are random uniform on F5?, but related

by a bijective linear map; <+ is counted as a token. For
each P,,, we can write y = fp’ (z) and z = f5~ (y) for
f= : F* — F3. We define the sparsity of a linear map
f + F5* — F3* as the proportion of zero entries of its
matrix. We will (informally) say that a matrix is sparse if
this proportion is relatively high, i.e. close to 1. Intuitively,
the sparsity of f (resp. of f¥) is related to how easy it is
to learn P, (based on random data samples) for a FW model
(resp. for a BW model). For GPT predictors, this is studied
numerically in Section 3.2.3 below. For a linear language
P,,, an AoT will thus emerge if the sparsities of f— and
f¢ are significantly different. It is common knowledge that
the inverse of a sparse matrix is generally less sparse (e.g.
(Duff et al., 2017), Section 15.6). This is the basis for the
following claim (verified numerically in Appendix B.2.2):

Claim 8. If A is a sparse random m X m matrix in Fo con-
ditioned to be invertible, the matrix A~ has typically lower
sparsity. Similarly, if we perturb a invertible matrix M by
a random sparse matrix A, we have that the corresponding
perturbation of the inverse (M + A) ™" — M~ is typically
less sparse than A.

This claim can be used to show that in natural settings, if we
want to condition e.g. on f~ being sparse, this will result
in an f* that is comparatively less sparse, and vice versa.
In 3.2.2 below, we propose a communication setup where
the sparsity of f~ is naturally favored, yielding a FW AoT
as observed in the natural languages (see 2.2 above).

3.2.2. A SIMPLE COMMUNICATION SETUP

In the previous section, we have shown that the emergence
of an AoT is natural in the sparse setting: if we e.g. condi-
tion f~ to be sparse, this will yield an inverse f* that is
less sparse. To motivate the importance of sparsity, and in
particular of FW sparsity (for the presence of a FW AoT),
we give a simple communication setup.

Suppose Alice and Bob are (human) agents with FW pre-
dictors having learned a common language P, and Carol
is an (alien) agent with a BW predictor having learned P
as well. Now suppose Alice wants to teach Bob a new lan-
guage P4 by sending him samples from P 4; how easy this
is will typically depend on how far away P4 is from Pp,
i.e. how sparse f5’y = f1* — f5 is. Assume Alice is only
able to teach P4 to Bob if f7, is sparse enough (note that
Alice needs to learn P4 herself, it is reasonable to assume
that she will only be able to do so if f7, is sparse enough).
Conditioning on Alice being able to teach P4 will hence
yield (with high probability) a FW AoT: following Claim 8
above, f5, = fi — f§ will be typically less sparse than
f5'a and P4 will be harder for Carol to learn than for Bob.
This will ultimately impact the language structure: if e.g.
fi5 4 was often sparser than fz’,, it would be profitable to
‘restructure’ the language, expressing y <> x rather than

Arrows of Time for Large Language Models

x <> y. This suggests that selection pressure may cause lan-
guages to evolve to take a form where fz’, is often sparser
than f5, , yielding a consistent FW AoT.

3.2.3. EXPERIMENTAL RESULTS

In this section, we present experimental results supporting
the claims of the previous sections. We first consider a
dataset made of linear languages with z,y € F3°, for dif-
ferent sparsities of f~. We train a GPT1 model on these
datasets (see Appendix B.2) and plot the final losses in Fig.
4, confirming that sparser matrices are easier to learn.

0.550

¢ error margins I
0.525 1 i

0.500 4

0.475

¥ |

loss

0.425 4

0.400 1

0.3754 ot
’ +

0.350 4 - - ’ -

0O 2 4 6 8 10 14 18 20 25 30 35 40 45 50
number of nonzero coefficients

Figure 4: Models loss at the end of training vs f~ sparsity.

In the second experiment, we consider a model’s ability to
learn a sparse update, given a learned prior: we first train
FW/BW models on a linear language with a m = 20 sparse
FW matrix, until it is learned perfectly, then generate a new
linear language by a sparse perturbation of the matrix. Table
5 shows the losses of both models after 400 gradient descent
steps. Again, we see that the FW model adapts better to the
sparse modifications (see also Appendix B.2.3).

Table 5: GPT losses for various perturbations of the learned prior.

2-bit flips 4-bit flips 6-bit flips
FW | 0.347 £ 0.009 | 0.354 +0.007 | 0.367 &+ 0.014
BW | 0.353 +£0.008 | 0.371 +£0.011 | 0.387 £ 0.013

3.2.4. NON-LINEAR CASE AND EXTENSIONS

If we consider a more general model of languages compared
to Section 3.2.1, based on arbitrary functions f : Fy* — FZ7,
the notion of sparse map needs to be adapted to con-
sider sparse circuits, made of relatively few logic gates
(AND/OR/XOR) in the linear circuits. We can expect that
for a random sparse circuit model f~, the inverse (or any
pre-image computation) will typically be much less sparse.
This is suggested by the fact that inverting circuits is ex-
pected to be computationally hard (roughly the content of
the P # NP conjecture). We can hence expect an AoT
for similar reasons. Due to the computational hardness of
inverting nonlinear circuits, a difference with the linear case
can be expected to arise: the nature of the AoT in this case
can also be of Type 1 (see Section 3); in some cases, a

BW model may simply be unable to represent what the FW
model learns, as in the example of Section 3.1.

4. Discussion

In this paper, we have investigated the abilities of auto-
regressive LLMs, which predict tokens sequentially: for a
given measure (dataset), we compare the abilities of two
models (FW/BW). Theoretically, if both models learn to
represent the same measure, their average log-perplexities
should coincide. We discover the existence of an Arrow
of Time (AoT) for natural language datasets: across a wide
variety of models and hyperparameters, all else being equal,
FW models exhibit a consistently lower perplexity than
BW ones; this difference emerges as soon as the model is
large enough; its causes appear rooted in long-range corre-
lations in the data, as the effect magnitude increases with
the context length. We propose a framework to explain this
phenomenon, based on complexity and sparsity ideas: we
construct examples of synthetic datasets based on operations
that display an asymmetry in terms of computability (de-
spite being information-theoretically reversible); finally, we
propose a setup where a FW AoT like the one seen in natural
language can spontaneously emerge. Our work suggests a
number of possible future research directions:

* Are AoTs universal across all human languages?

* Are there AoTs in other types of languages, e.g. computer
code, binaries, DNA code, or bitmap files?

* How to explain the variation in magnitude of the AoT
across languages?

* Are there AoT scaling laws with respect to model sizes?

* Are natural language AoTs of Type 1 or 2 (in the sense of
Section 3)?

* For very long training times, is there a difference between
train and test AoTs?

* Can AoTs, Causality, and V-Information (see Section 1.6)
be understood under a common framework?

* What about AoTs in continuous settings, e.g. for video?

* Is there a link with other AoTs, e.g. in thermodynamics?

* Is the presence of an AoT in data a sign of life or intelli-
gent processing?

* Can we generalize the idea of flipping the order of the
tokens to other permutations of the context window?

* Are AoT and computational hardness deeply linked?

In conclusion, the concept of AoT appears to be related to
subtle properties of natural language data, revealed through
their interplay with autoregressive LLMs. This idea’s appli-
cability seems wide, and a promising new tool to reveal the
presence of deep structural features in data. Further study of
its theoretical origin could prove fruitful towards uncovering
links between AoTs and complexity theory.

Arrows of Time for Large Language Models

Acknowledgements

The authors would like to thank Stéphane d’ Ascoli, Samy
Bengio, Gloria Capano, Diego Dorn, Franck Gabriel, Ron
Maimon, Jacob Menick, Christos Papadimitriou, Jodao Pene-
dones, Matthieu Wyart, Nicolas Zlatoff, as well as the anony-
mous reviewers for interesting discussions and suggestions.
Support from the Blavatnik Family Foundation, the Latsis
Foundation, the NCCR SwissMAP, and from an EPFL FSB
Seed Funding Grant are gratefully acknowledged.

Impact Statement

This paper presents work with the goal of advancing the
field of Machine Learning, and our scientific understanding
of language models. There are many potential societal con-
sequences of a greater understanding of this discipline, and
thus, indirectly, of our work, however, none of them feel
direct enough to be specifically highlighted here.

References

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P, Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, L., and Amodei, D. Language
Models are Few-Shot Learners. arXiv:2005.14165 [cs],

May 2020. URL http://arxiv.org/abs/2005.

14165. arXiv: 2005.14165. 1

Chan, W., Kitaev, N., Guu, K., Stern, M., and Uszkoreit,
J. KERMIT: Generative Insertion-Based Modeling for
Sequences, June 2019a. URL http://arxiv.org/
abs/1906.01604. arXiv:1906.01604 [cs, stat]. 1.5

Chan, W., Stern, M., Kiros, J., and Uszkoreit, J. An Em-
pirical Study of Generation Order for Machine Trans-
lation, October 2019b. URL http://arxiv.org/
abs/1910.13437. arXiv:1910.13437 [cs]. 1.5

Conneau, A., Khandelwal, K., Goyal, N., Chaud-
hary, V., Wenzek, G., GuzmAjn, E.,, Grave, E., Ott,
M., Zettlemoyer, L., and Stoyanov, V. Unsuper-
vised Cross-lingual Representation Learning at Scale,
April 2020. URL http://arxiv.org/abs/1911.
02116. arXiv:1911.02116 [cs]. 2.1.1

d’Ascoli, S., Bengio, S., Susskind, J., and AbbAO®, E. Bool-
former: Symbolic Regression of Logic Functions with
Transformers, September 2023. URL http://arxiv.
org/abs/2309.12207. arXiv:2309.12207 [cs]. 1.1

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
BERT: Pre-training of Deep Bidirectional Transformers

10

for Language Understanding, May 2019. URL http://
arxiv.org/abs/1810.04805. arXiv:1810.04805
[cs]. 1, 1.5

Duchateau, J., Demuynck, K., and Wambacq, P. Confidence
scoring based on backward language models. In ICASSP,
pp. 221-224,2002. 1.5

Duff, 1. S., Erisman, A. M., and Reid, J. K. Di-
rect Methods for Sparse Matrices. Oxford Uni-
versity Press, January 2017. ISBN 978-0-19-
850838-0. doi: 10.1093/acprof:0s0/9780198508380.
001.0001. URL https://doi.org/10.1093/
acprof:0s0/9780198508380.001.0001. 3.2.1

Emelianenko, D., Voita, E., and Serdyukov, P. Sequence
Modeling with Unconstrained Generation Order, Octo-
ber 2019. URL http://arxiv.org/abs/1911.
00176. arXiv:1911.00176 [cs]. 1.5

Ford, N., Duckworth, D., Norouzi, M., and Dahl, G. The Im-
portance of Generation Order in Language Modeling. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 2942-2946,
Brussels, Belgium, 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1324. URL http:
//aclweb.org/anthology/D18-1324. 1.5

Gneiting, T. and Raftery, A. E. Strictly Proper Scor-
ing Rules, Prediction, and Estimation. Journal
of the American Statistical Association, 102(477):
359-378, March 2007. ISSN 0162-1459, 1537-
274X. doi: 10.1198/016214506000001437. URL
http://www.tandfonline.com/doi/abs/10.
1198/016214506000001437. 1.3

Graves, A., Srivastava, R. K., Atkinson, T., and Gomez, F.
Bayesian Flow Networks, August 2023. URL http://
arxiv.org/abs/2308.07037. arXiv:2308.07037
[cs]. 1.1

Gu, J., Bradbury, J., Xiong, C., Li, V. O. K., and
Socher, R. Non-Autoregressive Neural Machine Transla-
tion, March 2018. URL http://arxiv.org/abs/
1711.02281. arXiv:1711.02281 [cs]. 1.5

Gu, J., Liu, Q., and Cho, K. Insertion-based Decod-
ing with automatically Inferred Generation Order, Octo-
ber 2019a. URL http://arxiv.org/abs/1902.
01370. arXiv:1902.01370 [cs]. 1.5

Gu, J., Wang, C., and Zhao, J. Levenshtein Transformer, Oc-
tober 2019b. URL http://arxiv.org/abs/1905.
11006. arXiv:1905.11006 [cs]. 1.5

Hanson, R. LOGARITHMIC MARKETS CORING
RULES FOR MODULAR COMBINATORIAL INFOR-
MATION AGGREGATION. The Journal of Pre-
diction Markets, 1(1):3—-15, December 2012. ISSN

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1906.01604
http://arxiv.org/abs/1906.01604
http://arxiv.org/abs/1910.13437
http://arxiv.org/abs/1910.13437
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/2309.12207
http://arxiv.org/abs/2309.12207
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
http://arxiv.org/abs/1911.00176
http://arxiv.org/abs/1911.00176
http://aclweb.org/anthology/D18-1324
http://aclweb.org/anthology/D18-1324
http://www.tandfonline.com/doi/abs/10.1198/016214506000001437
http://www.tandfonline.com/doi/abs/10.1198/016214506000001437
http://arxiv.org/abs/2308.07037
http://arxiv.org/abs/2308.07037
http://arxiv.org/abs/1711.02281
http://arxiv.org/abs/1711.02281
http://arxiv.org/abs/1902.01370
http://arxiv.org/abs/1902.01370
http://arxiv.org/abs/1905.11006
http://arxiv.org/abs/1905.11006

Arrows of Time for Large Language Models

1750-676X, 1750-6751. doi: 10.5750/jpm.v1il.417.
URL http://www.bjll.org/index.php/ jpm/
article/view/417. 13

He, K., Zhang, X., Ren, S., and Sun, J. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification, February 2015. URL http://
arxiv.org/abs/1502.01852. arXiv:1502.01852
[cs] version: 1. 2.1

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican,
K., Driessche, G. v. d., Damoc, B., Guy, A., Osindero,
S., Simonyan, K., Elsen, E., Rae, J. W., Vinyals, O., and
Sifre, L. Training Compute-Optimal Large Language
Models. arXiv:2203.15556 [cs], March 2022. URL
http://arxiv.org/abs/2203.15556. arXiv:
2203.15556. 1.1

Howard, J. and Ruder, S. Universal Language Model Fine-
tuning for Text Classification, May 2018. URL http://
arxiv.org/abs/1801.06146. arXiv:1801.06146
[cs, stat]. 1.5

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling Laws for Neural Language Mod-
els. arXiv:2001.08361 [cs, stat], January 2020. URL
http://arxiv.org/abs/2001.08361. arXiv:
2001.08361. 1.1

Karpathy, A. karpathy/minGPT, May 2023. URL https:
//github.com/karpathy/minGPT. original-date:
2020-08-17T07:08:48Z. 2.1.2

Lee, J., Mansimov, E., and Cho, K. Deterministic Non-
Autoregressive Neural Sequence Modeling by Iterative
Refinement, August 2018. URL http://arxiv.
org/abs/1802.06901. arXiv:1802.06901 [cs, stat].
1.5

Lee, N., Sreenivasan, K., Lee, J. D., Lee, K., and Papail-
iopoulos, D. Teaching Arithmetic to Small Transformers,
July 2023. URL http://arxiv.org/abs/2307.
03381. arXiv:2307.03381 [cs]. 3.1.1

Liu, L., Utiyama, M., Finch, A., and Sumita, E. Agree-
ment on Target-bidirectional Neural Machine Trans-
lation. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pp. 411-416, San Diego, California, 2016.
Association for Computational Linguistics. doi: 10.
18653/v1/N16-1046. URL http://aclweb.org/
anthology/N16-1046. 1.5

Loshchilov, I. and Hutter, F. SGDR: Stochastic Gradient
Descent with Warm Restarts, May 2017. URL http://
arxiv.org/abs/1608.03983. arXiv:1608.03983
[cs, math]. 2.1.2

Loshchilov, I. and Hutter, F. Decoupled Weight De-
cay Regularization, January 2019. URL http://
arxiv.org/abs/1711.05101. arXiv:1711.05101
[cs, math]. 2.1.2

Mangal, S., Joshi, P., and Modak, R. LSTM vs. GRU vs.
Bidirectional RNN for script generation. August 2019.
1.5

Mansimov, E., Wang, A., Welleck, S., and Cho, K. A
Generalized Framework of Sequence Generation with
Application to Undirected Sequence Models, Febru-
ary 2020. URL http://arxiv.org/abs/1905.
12790. arXiv:1905.12790 [cs, stat]. 1.5

Mou, L., Yan, R., Li, G., Zhang, L., and Jin, Z. Backward
and Forward Language Modeling for Constrained Sen-
tence Generation, January 2016. URL http://arxiv.
org/abs/1512.06612. arXiv:1512.06612 [cs]. 1.5

Nguyen, A., Karampatziakis, N., and Chen, W. Meet
in the Middle: A New Pre-training Paradigm, March
2023. URL http://arxiv.org/abs/2303.
07295. arXiv:2303.07295 [cs]. 1.5

Oord, A. v. d., Li, Y., Babuschkin, I., Simonyan, K., Vinyals,
0., Kavukcuoglu, K., Driessche, G. v. d., Lockhart, E.,
Cobo, L. C., Stimberg, F., Casagrande, N., Grewe, D.,
Noury, S., Dieleman, S., Elsen, E., Kalchbrenner, N.,
Zen, H., Graves, A., King, H., Walters, T., Belov, D.,
and Hassabis, D. Parallel WaveNet: Fast High-Fidelity
Speech Synthesis, November 2017. URL http://
arxiv.org/abs/1711.10433. arXiv:1711.10433
[cs]. 1.5

OpenAl GPT-4 Technical Report, March 2023.
URL http://arxiv.org/abs/2303.08774.
arXiv:2303.08774 [cs]. 1

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. BLEU:
a method for automatic evaluation of machine translation.
In Proceedings of the 40th Annual Meeting on Associa-
tion for Computational Linguistics - ACL 02, pp. 311,
Philadelphia, Pennsylvania, 2001. Association for Com-
putational Linguistics. doi: 10.3115/1073083.1073135.
URL http://portal.acm.org/citation.
cfm?doid=1073083.1073135. 1.5

Peters, J., Janzing, D., and SchA‘][lkopf, B. Elements of
Causal Inference: Foundations and Learning Algorithms.
The MIT Press, 2017. ISBN 978-0-262-03731-0 978-
0-262-34429-6. URL https://library.oapen.

http://www.bjll.org/index.php/jpm/article/view/417
http://www.bjll.org/index.php/jpm/article/view/417
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/2001.08361
https://github.com/karpathy/minGPT
https://github.com/karpathy/minGPT
http://arxiv.org/abs/1802.06901
http://arxiv.org/abs/1802.06901
http://arxiv.org/abs/2307.03381
http://arxiv.org/abs/2307.03381
http://aclweb.org/anthology/N16-1046
http://aclweb.org/anthology/N16-1046
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1905.12790
http://arxiv.org/abs/1905.12790
http://arxiv.org/abs/1512.06612
http://arxiv.org/abs/1512.06612
http://arxiv.org/abs/2303.07295
http://arxiv.org/abs/2303.07295
http://arxiv.org/abs/1711.10433
http://arxiv.org/abs/1711.10433
http://arxiv.org/abs/2303.08774
http://portal.acm.org/citation.cfm?doid=1073083.1073135
http://portal.acm.org/citation.cfm?doid=1073083.1073135
https://library.oapen.org/handle/20.500.12657/26040
https://library.oapen.org/handle/20.500.12657/26040

Arrows of Time for Large Language Models

org/handle/20.500.12657/26040.
2019-01-20 23:42:51. 1.6

Accepted:

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. Deep contextualized
word representations, March 2018. URL http://
arxiv.org/abs/1802.05365. arXiv:1802.05365
[cs]. 1.5

Pfau, J., Infanger, A., Sheshadri, A., Panda, A., Huebner,
C., and Michael, J. Eliciting Language Model Behaviors
using Reverse Language Models. October 2023. 1.5

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving Language Understanding by Generative
Pre-Training. pp. 12, July 2018. 1,2.1.2

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language Models are Unsupervised Multi-
task Learners. pp. 24, February 2019. 1, 2.1.1

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text
Transformer, September 2023. URL http://arxiv.
org/abs/1910.10683. arXiv:1910.10683 [cs, stat].
1.5

Savage, L. J. Elicitation of Personal Probabilities and Expec-
tations. Journal of the American Statistical Association,
66(336):783-801, December 1971. ISSN 0162-1459,
1537-274X. doi: 10.1080/01621459.1971.10482346.
URL http://www.tandfonline.com/doi/
abs/10.1080/01621459.1971.10482346. 1.3

Savinov, N., Chung, J., Binkowski, M., Elsen, E., and Oord,
A. v. d. Step-unrolled Denoising Autoencoders for Text
Generation, April 2022. URL http://arxiv.org/
abs/2112.06749. arXiv:2112.06749 [cs]. 1.5

Schaeffer, R., Miranda, B., and Koyejo, S. Are Emer-
gent Abilities of Large Language Models a Mirage?,
May 2023. URL http://arxiv.org/abs/2304.
15004. arXiv:2304.15004 [cs]. 1

Scholkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalch-
brenner, N., Goyal, A., and Bengio, Y. Towards Causal
Representation Learning, February 2021. URL http://
arxiv.org/abs/2102.11107. arXiv:2102.11107
[cs]. 1.6

Sennrich, R., Haddow, B., and Birch, A. Neural Ma-
chine Translation of Rare Words with Subword Units,
June 2016. URL http://arxiv.org/abs/1508.
07909. arXiv:1508.07909 [cs]. 2.1.1

Serdyuk, D., Ke, N. R., Sordoni, A., Trischler, A., Pal, C.,
and Bengio, Y. Twin Networks: Matching the Future for

12

Sequence Generation, February 2018. URL http://
arxiv.org/abs/1708.06742. arXiv:1708.06742
[cs, stat]. 1.5

Shannon, C. E. Prediction and entropy of printed english.
Bell Systems Technical Journal, pp. 50-64, 1951. (docu-
ment), 1.5

Shen, R., Bubeck, S., Eldan, R., Lee, Y. T., Li, Y., and
Zhang, Y. Positional Description Matters for Transform-
ers Arithmetic, November 2023. URL http://arxiv.
org/abs/2311.14737. arXiv:2311.14737 [cs]. 1.1,
1.5,3.1.1,3.14

Stern, M., Chan, W., Kiros, J., and Uszkoreit, J. Insertion
Transformer: Flexible Sequence Generation via Inser-
tion Operations, February 2019. URL http://arxiv.
org/abs/1902.03249. arXiv:1902.03249 [cs, stat].
1.5

Sutskever, 1., Vinyals, O., and Le, Q. V. Sequence to Se-
quence Learning with Neural Networks. arXiv:1409.3215
[cs], September 2014. URL http://arxiv.org/
abs/1409.3215. arXiv: 1409.3215. 1.5

Thomas Ahle. This week I trained an 800K transformer
to learn 5 digit multiplication., September 2023.
URL https://twitter.com/thomasahle/
status/1702723749798354976. 3.1.1

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
Is All You Need. arXiv:1706.03762 [cs], June 2017. URL

http://arxiv.org/abs/1706.03762. arXiv:
1706.03762. 1

Vinyals, O., Bengio, S., and Kudlur, M. Order
Matters: Sequence to sequence for sets, Febru-

ary 2016. URL http://arxiv.org/abs/1511.
06391. arXiv:1511.06391 [cs, stat]. 1.5

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D.,
Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O.,
Liang, P, Dean, J., and Fedus, W. Emergent Abil-
ities of Large Language Models, June 2022. URL
http://arxiv.org/abs/2206.07682. Number:
arXiv:2206.07682 arXiv:2206.07682 [cs]. 1

Welleck, S., Brantley, K., DaumA®© III, H., and Cho,
K. Non-Monotonic Sequential Text Generation, Oc-
tober 2019. URL http://arxiv.org/abs/1902.
02192. arXiv:1902.02192 [cs, stat]. 1.5

Wenzek, G., Lachaux, M.-A., Conneau, A., Chaudhary, V.,
GuzmA;n, F., Joulin, A., and Grave, E. CCNet: Extract-
ing High Quality Monolingual Datasets from Web Crawl
Data, November 2019. URL http://arxiv.org/
abs/1911.00359. arXiv:1911.00359 [cs, stat]. 2.1.1

https://library.oapen.org/handle/20.500.12657/26040
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482346
http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482346
http://arxiv.org/abs/2112.06749
http://arxiv.org/abs/2112.06749
http://arxiv.org/abs/2304.15004
http://arxiv.org/abs/2304.15004
http://arxiv.org/abs/2102.11107
http://arxiv.org/abs/2102.11107
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1708.06742
http://arxiv.org/abs/1708.06742
http://arxiv.org/abs/2311.14737
http://arxiv.org/abs/2311.14737
http://arxiv.org/abs/1902.03249
http://arxiv.org/abs/1902.03249
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://twitter.com/thomasahle/status/1702723749798354976
https://twitter.com/thomasahle/status/1702723749798354976
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1511.06391
http://arxiv.org/abs/1511.06391
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/1902.02192
http://arxiv.org/abs/1902.02192
http://arxiv.org/abs/1911.00359
http://arxiv.org/abs/1911.00359

Arrows of Time for Large Language Models

Wu, L., Tan, X., He, D., Tian, F,, Qin, T., Lai, J., and
Liu, T.-Y. Beyond Error Propagation in Neural Machine
Translation: Characteristics of Language Also Matter. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 3602-3611,
Brussels, Belgium, 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1396. URL http:
//aclweb.org/anthology/D18-1396. 1.5

Xiao, Y., Wu, L., Guo, J., Li, J.,, Zhang, M., Qin, T.,
and Liu, T.-y. A Survey on Non-Autoregressive Gen-
eration for Neural Machine Translation and Beyond,
July 2023. URL http://arxiv.org/abs/2204.
09269. arXiv:2204.09269 [cs]. 1.5

Xu, Y., Zhao, S., Song, J., Stewart, R., and Ermon, S. A
Theory of Usable Information Under Computational Con-
straints, February 2020. URL http://arxiv.org/
abs/2002.10689. arXiv:2002.10689 [cs, stat]. 1.6

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdi-
nov, R., and Le, Q. V. XLNet: Generalized Autore-
gressive Pretraining for Language Understanding, Jan-
uvary 2020. URL http://arxiv.org/abs/1906.
08237. arXiv:1906.08237 [cs]. 1.5

Zhang, Z., Wu, S., Liu, S., Li, M., Zhou, M.,
and Xu, T. Regularizing Neural Machine Trans-
lation by Target-bidirectional Agreement, Novem-
ber 2018. URL http://arxiv.org/abs/1808.
04064. arXiv:1808.04064 [cs]. 1.5

13

http://aclweb.org/anthology/D18-1396
http://aclweb.org/anthology/D18-1396
http://arxiv.org/abs/2204.09269
http://arxiv.org/abs/2204.09269
http://arxiv.org/abs/2002.10689
http://arxiv.org/abs/2002.10689
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1808.04064
http://arxiv.org/abs/1808.04064

Arrows of Time for Large Language Models

A. Details on training on natural languages
In this appendix, we provide more details on the training of our models on natural languages.

For any experiment, the precise hyperparameters used can be found in the code repository found at
github.com/frotaur/ICMLBackPerp, under the folder ‘Training Parameters’, in .json format. Those files can also be
used to reproduce any experiment using the codebase, as explained in the README.md of the repository The branch ‘main’
contains the code used to generate the experiments of the paper, while the ‘Rebutt’ branch contains updated, cleaner code, as
well as the necessary data to run the extra experiments on Tagalog, Hebrew and Arabic.

All experiments (save for the 512 context size) were run on a single A100 GPU, adjusting the batch size to fit the available
memory.

Concerning the shuffling of the dataset, we proceed for all the experiments as follows: we begin by splitting the textual
dataset into ‘sentences’ of the appropriate context size n, with a stride of n/2 (i.e., if we have a context size of 4 and the text
is ABCDEF, this results in two sentences, ABCD and CDEF). This is to ensure that all tokens appear in the training data
with at least some context. After that, we shuffle the obtained sentences with a set seed. We withhold 250k sentences (1000
batches at batch size 250) for validation. The inversion of the tokens is made at the level of each batch; in this way, when
training, the FW/BW models see the data in the same order, preventing the emergence of undesirable differences.

A.1. Model sizes

Table 6 provides more detail on the model sizes used in the paper.

Table 6: Model sizes used throughout the experiments. dempeq: number of embedding dimensions. 7peqds: number of attention heads.
Niayers: Number of transformer blocks (attention + MLP). parameters: total number of parameters, including the last linear layer which
projects on vocabulary size (commonly referred to as the ‘head’).

GPT2 model name — | Nano Micro | Mini Small | GPT1 | Medium | XL
dembped 48 128 192 380 768 1024 1600
Nheads 3 4 6 10 12 16 25
Niayers 3 4 6 10 12 24 48
parameters 4.92M | 13.7M | 22.0M | 55.6M | 162M | 405M 1.6B

In the MLP layer, all models have one hidden layer with 4 * d¢;,.q hidden dimensions, a.k.a. an MLP ratio of 4.

A.2. Different languages
A.3. Context Window size

For the testing of the influence of the context window length, we use a GPT2-Medium model, with context window lengths
going from 16 to 512 tokens. Because of the different context lengths, it will take a model with a small context length many
more gradient steps to see the same amount of data. For this reason, we do not train all models up to the equivalent of 1
epoch of the French dataset (~ 26.6B tokens), but rather train them for sufficiently long so that the perplexity differences
stabilize, and that their losses converge. Due to the cosine annealing learning rate schedule, we stop the training at the end
of a cosine decay, to avoid the bump in the loss caused by a warm restart (note however that this has little to no effect on the
perplexity differences).

In Table 7, we record the number of steps (i.e. minibatches) that were seen for each context length.

Table 7: Number of batches seen during training for the different context lengths. Note that the recorded batch size is the ‘effective’ one,
that is, potentially obtained through aggregation of smaller batch sizes.

Context length — | 16 32 64 128 256 512
batch size 500 500 500 400 180 156
seen batches 1.74M | 1.62M | 1.64M | 1.02M | 0.5M | 0.6M

For this experiment, because of our memory limitations, we trimmed down the English dataset, which was too big when
working with context windows of lengths 16 and 32. Note that the 256 context length experiment in this section is thus

14

https://github.com/frotaur/ICMLBackPerp/

Arrows of Time for Large Language Models

slightly different from the one recorded in Table 3, due to the different datasets (as well as the batch size and the cosine
annealing period).

A.4. Other Models

The GRU and LSTM implementations we used for these experiments are those natively implemented in the pytorch.nn
module of the Pytorch Python library. In each case, we choose the ‘input size’ (i.e., the number of embedding dimensions
for each token) to be equal to the ‘hidden size’ (i.e., the number of hidden dimensions in the RNN’s hidden state).

Table 8: Parameters for different sizes of LSTM and GRU models.

Small | Medium | Large
hiddeng;,, | 256 512 768
Niayers 1 3 5

Although RNNs have technically no limit on the context length, for training purposes, to allow for a backward pass, we feed
them with batches of texts of lengths 256.

A.S. Other Languages

For the experiments on other languages, we decided to stop the training at the equivalent of 1 epoch of Greek, which was
one of the smallest datasets on which we were training (along with Turkish). This choice was maintained for all languages,
and models never saw the same datapoint more than once (note that we also tried training on Greek for two epochs, as
shown in Fig. 5; this suggests that our results remain valid beyond one epoch).

For GPT2-Medium, a batch size of 90 was used!, with one warm restart during training. For the XL models, a batch size of
26 was used, aggregated 6 times for an effective batch size of 156, which didn’t allow for a warm restart before the one
epoch of Greek.

We also tested (using GPT2-Medium, with an adjusted learning rate schedule, due to the smaller size of the datasets) Hebrew,
Arabic and Tagalog (see Table 9 for final losses), at the suggestions of anonymous reviewers.

Hebrew and Arabic constituted an example of languages written right-to-left; a priori, we would not expect this to affect the
emergence of an AoT: after all, tokens are still processed in the ‘spoken’ order by the model, so the writing direction does
not affect training. Still, there could have been an influence on the language itself from the writing direction, which cannot
be detected from our results.

Tagalog is an example of a language with ‘verb-initial word order’, a relatively rare class of languages, which was not
included in our list. Here, our expectations are again confirmed as an AoT appears also for this example. This reinforces the
idea that the AoT for natural language emerges from long-range correlations. The specifics of the grammar and the order of
words in a sentence are therefore not that important.

Table 9: Final losses for extra languages. Arabic and Hebrew are at 1 epoch of training, and Tagalog at 7 epochs, due to the small size of
the dataset. Format: [Final FW loss]/[BW relative difference].

Tagalog Arabic Hebrew
Med | 2.368/+1.48% | 3.446/+1.91% | 3.288/+2.37%

For completeness, we also attempted to run the training for Greek for 2 epochs, to see if memorization of the dataset may
affect the Arrow of Time. In Fig. 5, we display the validation loss during training. Comparing the difference in performance
at 1 and 2 epochs, it remains almost exactly the same. It would be interesting to test this with bigger models, and several
epochs of training.

"Due to an oversight in the code, the batches were not aggregated in groups of 2 as expected, but the loss was still renormalized
by dividing it by 2. This amounts to a very slight change in learning dynamics, but does not affect any of the results. Similarly, all
graphs/reported results display the correct loss. In case one wants to reproduce exactly the results of the paper, the loss should be divided
by 2 before backpropagation.

15

Arrows of Time for Large Language Models

== greek_backwarde = greeke <

Figure 5: Validation loss for two epochs of training on the greek dataset, for forward and backward models.

A.6. BPE Tokenization

For the tokenization, we use the Huggingface implementation of the BPE Tokenizer (link), using the method
Tokenizer.train_from_iterator. The tokenizers are trained on the same CC-100 dataset on which we train the
model.

To exclude potential tokenization asymmetries (see section 2.2.6), we perform extra experiments in which we train the BPE
tokenizer in reverse. To do so, we reverse the language dataset at the character level (not at the byte level, as this would
make the output of the model unreadable because of multi-byte characters in utf-8), then train the BPE tokenizer on this new
dataset. We then train a FW and a BW model on this character-flipped dataset, tokenized with the new BPE tokenizer.

To make things clearer, we will call a model ‘backward’ (BW) if it processes tokens in the opposite order w.r.t. the natural
reading direction (hence the ‘previous-token predictor’ on the ‘character-flipped dataset’ corresponds to what we will call
the FW model). Thus, if the Arrow of Time is a property of the language and not a tokenization artifact (as we expect), we
expect the arrow of time to be in the same direction, independently of the tokenization scheme. Fig. 6 confirms this; relying
on the reverse BPE tokenization introduces very slight differences in the losses. This difference is negligible compared to
the AoT effect in both Greek and French, so we can conclude that the AoT is not a tokenization artifact.

In figures 6 and 7, we display the loss curves during training for the french and greek models, trained using both the normal
and reversed BPE tokenizers. The tokenizer switch has minimal impact on the losses, and most importantly, it does not
affect the AoT direction.

A.7. Initialization variance

The AoT computed in our experiments were obtained with a single training run. One might ask if such a difference remains
significant compared to variations in loss due to initialization. The consistency throughout experiments shows that the AoT
is significant, but in this section we set to verify the magnitude of the initialization variance. Due to computational costs, it is
not possible to obtain error bars for all the experiments. Instead, we focus on Greek, for which we re-run the GPT2-Medium
training 4 times in total. Computing the error bars, we obtain a loss (at one epoch) of 2.802 + 0.005 FW, and 2.871 + 0.003
BW. This gives us an AoT magnitude of 2.46% =+ 0.18%, where we can see that the variations due to initialization are
negligible w.r.t. the magnitude of the AoT.

16

https://huggingface.co/docs/tokenizers/api/tokenizer

Arrows of Time for Large Language Models

— greek == greek_b = rev_greek == rev_greek_b =

)8 Batches
50k 100k 150k 200k 250k

Figure 6: Validation curves for models training on the Greek dataset on forward and backward (label prefixed with ‘rev’) BPE tokenizations.
The Arrow of Time remains the same in the FW direction, despite the different tokenization schemes.

= french == french_.b = rev_french_b == rev_french
3.6
3.4
3.2
3
batches
50k 100k 150k 200k 250k

Figure 7: Validation curves for models training on the french dataset on forward and backward (label prefixed with ‘rev’) BPE tokenizations.
The Arrow of Time remains the same in the FW direction, despite the different tokenization schemes. It seems the reverse tokenization is
slightly suboptimal, slightly degrading the losses of both FW and BW models.

B. Linear Language Toy Model
B.1. Matrix Inverse Sparsity

Here, we substantiate the assertions of Claim 8 by running numerical experiments. To this end, we wish to look at n x n
matrices in Fy with a given number of non-zero elements (which we will call k), and compute % in the inverse. To generate
invertible matrices with extremely high sparsity (low k), we proceed as follows. We start with the identity matrix Id, which
is the only invertible matrix (up to permutations, which do not affect sparsity) when k& = n. To generate a matrix with
approximately k non-zero elements, we flip £ — n elements of /d at random. This allows us to often obtain invertible
matrices when £ is close to n, which would not be the case if we simply selected the k& non-zero elements at random. When
k becomes bigger than n, the initial presence of the identity is quickly erased.

We choose n = 30, generate matrices with k = [30, 250], and record the average number of non-zero elements in the inverse,
given k fixed. Fig. 8 clearly confirms that the sparsity of the inverse is generally much lower.

17

Arrows of Time for Large Language Models

—_— y=X

4001 matrix size: 30x30

350 A

300 A

250 A

200 A

150 1

average of # of non-zero
elements in inverse

100 A

50 A

50 100 150 200
of non-zero elements in matrix

Figure 8: Plot displaying the connection between the sparsity of a matrix and its inverse. It is clear that on average, the inverse of a sparse
matrix is less sparse. The number of non-zero elements for the inverse caps at 450.

B.2. Linear Languages Experiments

In this section, we give more details on the experiments of Section 3.2.3.

B.2.1. LINEAR LANGUAGE DATASET

Given a matrix M of size n X n, the associated linear language dataset will contain sentences of 2n + 7 tokens in the form
x______y, where x,y € F7, and the underscores are added as padding, providing the model with more tokens if needed
to perform more complex computations. The vector x is drawn at random, and y is computed with y = Mx. We finish
by randomly flipping each bit with probability p = 0.01 (which we call ‘adding’ perturbations), aimed at smoothing out
the probabilities output by the model. This is necessary for the ‘fine-tuning’ experiments, as otherwise the models become
too confident in their predictions, and any small change M results in a huge change in the loss, leading to a catastrophic
forgetting of the learned prior.

B.2.2. SPARSITY LEVELS

In the first experiment, we generate a linear language model in F3°, with p = 0 perturbations, and matrices with a number
25 + k of non-zero elements, where k € [0, 2,4, 8,10, 14, 18, 20, 25, 30, 35, 40, 45, 50]. We then train a transformer model
of size GPT1 (see Table 6) on 600k sentences, with batch size 200. Note that the context size of the model matches exactly
the number of tokens in one sentence. Final losses are reported in 4. Note that for lower sparsities, the trend is not obvious:
this is due to the high variance in the final learning rate, as the learning of only a few non-zero elements is binary, depending
on the initialization, the model either learns the matrix perfectly quickly, or it usually struggles to find the last few non-zero
elements. Fig. 9 displays this behavior in the case k = 4. Note that the perturbations somewhat reduce this behavior, but
don’t cancel it completely.

Fig. 10 displays typical learning dynamics for this problem, for £ = 8 (high sparsity) and k£ = 40 (medium sparsity). We
remind that in principle, given a large enough model, and enough training steps, the model should be able to find the optimal
solution (hardness of type (2), see Section 3).

B.2.3. SPARSE UPDATES

In the second experiment, we choose a linear language in F3°. We generate the dataset in the same way explained in Section
B.2.1. We begin by training a FW model and a BW one on this language, until both models learn it almost perfectly (batch
size 200). For this reason, we choose a very sparse matrix, with £ = 6 (in this specific example, the inverse has &k = 10). As
expected, this takes much longer for the BW model, as displayed in Fig. 11.

Once this ‘prior’ is learned, we generate perturbation of the learned matrix by flipping e entries of the matrix randomly,

18

Arrows of Time for Large Language Models

loss

Figure 9: Average perplexities for each token in the linear language after 600k sentences, for two runs with k = 4. One of the models is
very close to the optimal solution, while the other is missing a single token. It usually takes a long time for the model to correct this,
leading to higher variance in the final losses.

— k=8 = k=40

._.
~
loss

=
N}

0.8

0.6

0.4

0.2
batches

0 1k 2k 3k

Figure 10: Loss during learning for £ = 8 and & = 40 sparsities. The first plateau simply arises when the model learns to guess all
coefficients randomly. Subsequently, the k = 8 experiences plateaus each time it learns more non-zero coefficients. The learning of
k = 40 is much smoother, as discovering non-zero coefficients doesn’t lead to perfect predictions right away.

conditioned to the fact that it should remain invertible. We then train the models further on this new dataset, for a relatively
small amount of steps (400 gradient steps). We also lower the learning rate to 8 x 107, with 10 steps of warmup, again to
prevent catastrophic forgetting of the prior. The training dynamics are displayed in Fig. 12, in the case e = 4.

We observe that the FW model adapts better than the BW one, and this is due to the fact mentioned in Claim 8, namely that
a sparse FW update will generically result in a less sparse BW update.

19

Arrows of Time for Large Language Models

— Backward = Forward

loss

0.4

0.38

0.36 L A k

o U 2

batches

5k 10k 15k 20k 25k 30k

Figure 11: Training loss for the FW and BW models, trying to learn a linear language with a matrix £ = 6. While the FW model learns
the quasi-optimal solution very quickly, the BW model remains stuck on a plateau for a long time. This in fact corresponds to a single
element of the predicted vector which was missing, as in Fig. 9.

— backward = forward
w
0.5 3
0.45
0.4
0.35
100 200 300

Figure 12: Averaged loss for forward and backward models, when trying to learn a sparse forward perturbation of the Linear language. In
the first ~ 100 steps, the curves are similar as both models decrease their confidence in the new, perturbed tokens, setting them back to
random chance. Subsequently, they begin learning the perturbation, where the forward model is clearly at an advantage.

20

