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ABSTRACT

As a widely used neural network model in NLP (neural language processing),
transformer model achieves state-of-the-art performance in several translation
tasks. Transformer model has a fixed skip connection architecture among different
layers. However, the influence of other possible skip connection architectures are
not discussed completely in transformer model. We search different architectures
of skip connection to discover better architectures in different datasets. To improve
the efficiency of trying different skip connection architectures, we apply the idea
of network morphism to add skip connections as a procedure of fine-tuning. Our
fine-tuning method outperforms the best models trained by the same or smaller
datasets in WMT’16 En-De, WMT’14 En-Fr and WMT’18 En-De with 226M
back-translation sentences. We also make experiment on transferring searched skip
connection architectures to new transformer models.

1 INTRODUCTION

Neural architecture search (Baker et al., 2017; Zoph & Le, 2017) is an idea of automatically searching
hyper-parameters of neural networks. There are different methods such as reinforcement learning and
evolutionary algorithms for automatically designing CNN architectures. For neural language process-
ing, So et al. (2019) propose an evolutionary method to search different transformer architectures.

However, when searching an architecture, training a new model from the beginning is usually required.
These methods are very costly such as the method in Baker et al. (2017); Zoph & Le (2017) (requiring
hundreds or thousands of GPU days). Network morphism Elsken et al. (2018); Chen et al. (2016);
Wei et al. (2016); Cai et al. (2018) is a neural architecture search method which dramatically reduces
these computational costs while still achieving competitive performance in CNN model.

The skip connections are important hyper-parameters in transformer model (Vaswani et al., 2017). A
transformer model composes of encoder layers, decoder layers, residual connections inside encoder
layers and decoder layers, the encoder-decoder attention connections between the last encoder layer
and decoder layers. However, other works (Wu et al., 2019b; Guo et al., 2019) imply that different
skip connection architectures can influence the performance of transformer model.

We focus on applying network morphism to transformer model in machine translation tasks. Specifi-
cally, our contributions are as follows:

• We apply network morphism in searching different skip connection architectures in machine
translation tasks. We add skip connections (residual connections and encoder-decoder
attention connections) to transformer models by network morphism. The skip connections
are added by hill climbing strategy, which searches different connections step by step.
• We initialize transformer models by released pre-trained transformer parameters. The pre-

trained models include transformer models trained by WMT’16 En-De and WMT’14 En-Fr
bitext datasets described in Ott et al. (2018). We also use the transformer model trained by
WMT’18 En-De bitext dataset as well as 226M newscrawl back-translation dataset described
in Edunov et al. (2018a). Our method works as a fine-tuning process, which outperforms the
best models trained by the same or smaller datasets by 0.3 to 1 BLEU.
• As a a fine-tuning process, our method requires few computing resources. We propose faster

gradient trick to accelerate the adjustment of network morphism. Our method can reach its

1



Under review as a conference paper at ICLR 2021

peak by only using 0.05-0.39 of total training data while training a new model needs all
training data. Our method is more efficient with larger training dataset. Since our method is
simple, it can be applied to other existed models efficiently.
• To figure out whether the performance of skip connections is related to the model weights

and datasets, we make experiment on transferring the architecture searched by network
morphism to new transformer models. We extract the skip connection architectures of
two fine-tuned models in two datasets, IWSLT’14 De-En and WMT’18 En-De with back-
translation. Then we apply these skip connection architectures to new transformer models
trained in IWSLT’14 De-En dataset. We find the architecture searched in IWSLT’14 De-En
works better than the architecture searched in WMT’18 En-De for the models in IWSLT’14
De-En dataset. Besides, transferring a skip connection as a dynamic connection works better
than adding them as a static connection (the connection created by network morphism is
dynamic).
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Figure 1: The structure of (a) Sequential layers (b) Sequential layers with added (residual) skip
connection (c) Sequential layers with added skip connection by network morphism. Solid lines denote
forward process, including added skip connection. Dashed line denotes the added skip connection by
network morphism. The hexagons denote the inputs of layer Ln.

2 NETWORK MORPHISM IN TRANSFORMER

2.1 BACKGROUND

Let fw(x) denote a neural network with input x ∈ X . Then a network morphism is finding another
neural network gw̃(x) where:

fw(x) = gw̃(x), ∀x ∈ X (1)
Network morphism is an idea that a well-trained neural network can be replaced by another neural
network with different structure. With this replacement, a neural network with different structure,
gw̃(x), can inherit the performance of a trained neural network, fw(x), and try the performance of
the new structure of gw̃(x) with further training: In forward process, gw̃(x) and fw(x) make the
same output; In backpropagation, the gradients of parameters w̃ are different with the gradients of w
since gw̃ and fw are different.

Network morphism has three usual applications: Make the network deeper such as multiplying a
network with identity matrices; Make the network wider such as dividing the weight matrix to several
parts in a network; Add a skip connection, which is the aim of this paper.

In this paper, the application of skip connection of network morphism is inspired by Network
morphism Type II in Elsken et al. (2018):

Let fiwi(x) denote some part of a neural network fw(x) and assume fiwi(x) has the form fi
wi(x) =

Ahwh(x) + b for an arbitrary function h. We replace fiwi , wi = (wh, A, b), by

f̃i
w̃i

(x) = (A Ã)

(
hwh(x)

h̃wh̃(x)

)
+ b (2)

The parameters of f̃i
w̃i become w̃i = (wh, wh̃, A, Ã, b) with the added function h̃wh̃ . Then, the

requirement of network morphism, Eq.(1), can be satisfied by letting Ã = 0. In practice, we denote
Ã as a small value so that gradient can be transferred to h̃wh̃ in backpropagation.

2



Under review as a conference paper at ICLR 2021

2.2 ADDING A SKIP CONNECTION

The differences between different skip connection methods are shown in Figure 1. (a) corresponds to
a trained model without skip connection; (b) corresponds to adding a residual skip connection to the
trained model in (a); (c) corresponds to adding a network morphism skip connection to the trained
model in (a). The input node, which refers to hexagon in the figure, reflects the differences between
two methods in adding skip connection. In (b), the input of layer Ln after adding a residual skip
connection becomes:

IR = Lm + Lk (3)
where IR denotes the input of Ln with a residual skip connection; Lm and Lk denote the output of
corresponding layers. To save computing resources, initializing by a trained model is better than
training a new model with new architecture. However, the input of layer Ln after adding a residual
skip connection becomes Lm + Lk, which is different from the input without adding connection,
I = Lm. That means adding a residual skip connection to a trained model will change a layer’s input
in forward process. Since the input I = Lm is a well-performed layer input of the trained model in
Figure 1 (a) and there is no guarantee that IR = Lm + Lk also performs well, the method in Eq.(3)
can’t retain the performance of a trained model.

As a contrast, the input of layer Ln after adding a skip connection by network morphism are very
similar to the layer input of trained model:

IM = Lm + aLk (4)
IM ≈ Lm (5)

Parameter a, corresponding to Ã in Eq.(2), is a small value such as 10−7 so that IM is approximately
equal to I = Lm. Since a neural network can be viewed as a continuous function, the final predictions
of a model before and after adding skip connections by Eq.(4) are also approximately equal.

2.3 FASTER GRADIENT TRICK

There is a weakness of adding a skip connection by network morphism: The effect of a skip connection
lies in how much it influences the input of the connected layer. In network morphism where skip
connection is initialized with a small value a, the influence of an added skip connection is also small.
In order to expand the influence of a skip connection at a faster speed, we apply faster gradient trick
which multiplies the gradient of a by a factor F :

a = a+ FG(a) (6)

where G(a) corresponds to the value that a will be added in backpropagation, which also considers
learning rate. Faster gradient trick accelerates the changes of a by F times in backpropagation,
which enables the added skip connection to influence the model prediction apparently. Especially, the
learning rate decreases when training a transformer model so when adding a skip connection to a
trained transformer model by network morphism, the learning rate should be initialized by a small
value. In a word, the small initialized value and small learning rate of a restrict the influence of added
skip connections so the training needs to be accelerated by Eq.(6). F is set to 60 in our experiments.

After the added skip connection has enough influence on the model, the faster gradient trick should
be disabled in order to fine adjust parameter a. As shown in Algorithm 1, the condition to stop
faster gradient trick is enough training step s. If the enough influence of an added skip connection
corresponds to a large enough |a|, the condition to stop faster gradient trick corresponds to a large
enough |a|+ S

∑
|FG(a)|. Since |a|+ S

∑
|FG(a)| ≥ |a+ S

∑
FG(a)|, the condition implies if

a has appropriate gradients, it will have large value with faster gradient trick. However, if a is not
supported by its gradients (e.g., the gradients offset each other or the gradients are small), the skip
connection won’t have much influence. By faster gradient trick and the trainable factor a, only the
connections that are supported by backpropagation can have enough influence.

2.4 SKIP CONNECTION IN TRANSFORMER

There are three kinds of skip connections in transformer models: The residual connection inside
an encoder layer, the residual connection inside a decoder layer and the encoder-decoder attention
connection between an encoder layer and a decoder layer (Vaswani et al., 2017). The residual
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Algorithm 1 Applying faster gradient trick to parameter a
Initialize network morphism skip connection factor a = 10−7.
# Start training.
for training step s = 1 to L do

For other parameters: P = P +G(P )
if s ≤ S then

# S times of training should have enough influence on a.
a = a+ FG(a)

else
a = a+G(a)

end if
end for

connection inside an encoder or decoder layer is contained in layer normalization, which can be
denoted by the equation:

y = LayerNorm(I + Sublayer(I)) (7)
where Sublayer(I) is the function implemented by the sublayer in an encoder or decoder layer. I is
the input of an encoder or decoder layer and y is the output.

Inspired by the residual connection inside an encoder (decoder) layer, we add skip connection between
two encoder (decoder) layers based on Eq.(4). Denote Lk as the outputs of kth encoder (decoder)
layer. Initializing a skip connection from kth encoder (decoder) layer to lth encoder (decoder) layer
(k < l) by network morphism can be described as:

ŷ = LayerNorm((I + aLk) + Sublayer(I + aLk)) (8)

where I is the inputs of lth layer without the new skip connection from kth encoder (decoder) layer
and ŷ denotes the outputs of lth layer after adding the skip connection.

The encoder-decoder attention connection is contained in multi-head attention of transformer model.
Multi-head (MH) attention can be denoted by:

MH(Q,K, V ) = Concat(head1, head2, ...)WO (9)

headi = Attention(QWQ
i ,KW

K
i , V WV

i ) (10)

where Q,K, V denote query, memory key and value vectors in attention mechanism.
WQ

i ,W
K
i ,WV

i ,W
O are parameter matrices. In an encoder-decoder attention connection, the query

vectors come from the previous decoder layer; The memory key and value vectors come from the
output of the final encoder layer.

The encoder-decoder attention connection in this paper can be initialized from any encoder layer
to any decoder layer. Denote Lk as the outputs of the encoder layer in a encoder-decoder attention
connection, which connects to lth decoder layer. A new encoder-decoder attention connection can be
initialized by network morphism:

K̂ = K + aLk (11)

V̂ = V + aLk (12)

where K,V are the key and value vectors in multi-head attention in lth decoder layer without the
new encoder-decoder attention connection; K̂, V̂ are the key and value vectors after initialized a new
skip connection from kth encoder layer to lth decoder layer.

3 EXPERIMENTAL SETUP

3.1 DATASETS

We run experiments on three pre-trained models, based on two WMT English to German (En-De)
datasets and a WMT English to French (En-Fr) dataset. For bitext WMT’16 En-De, we replicate the
setup of Ott et al. (2018), consisting of WMT’16 training data with 4.5M sentence pairs. Following
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Table 1: Tokenized BLEU on various test sets of WMT’18 En-De when adding skip connections
by network morphism compared to back-translation sentence pairs obtained by various generation
methods.

Model News2013 News2014 News2015 News2016 News2017 Average
Bitext 27.84 30.88 31.82 34.98 29.46 31.00
+beam 27.82 32.33 32.20 35.43 31.11 31.78
+greedy 27.67 32.55 32.57 35.74 31.25 31.96
+top10 28.25 33.94 34.00 36.45 32.08 32.94
+sampling 28.81 34.46 34.87 37.08 32.35 33.51
+beam+noise 29.28 33.53 33.79 37.89 32.66 33.43
+sampling+network morphism (ours) 29.16 35.39 35.34 38.54 33.68 34.42

the setup of Ott et al. (2018), we validate on newstest2013 and test on newstest2014. The vocabulary
is a 32K joint source and target byte pair encoding (BPE; Sennrich et al., 2016).

For bitext WMT’14 En-Fr, we replicate the setup of Ott et al. (2018) with 36M training sentence
pairs. We validate on newstest2012-2013 and test on newstest2014. The BPE vocabulary is with 40K
types.

For WMT’18 En-De with back-translation, we replicate the setup of Edunov et al. (2018a), including
5.18M En-De bitext sentence pairs where the sentences longer than 250 words as well as sentence-
pairs with a source/target length ratio exceeding 1.5 are removed. The dataset also contains the back-
translation monolingual data with 226M sentences after removing duplicates. The BPE vocabulary is
with 35K types. We validate on newstest2012 and test on newstest2013-2017.

IWSLT’14 De-En dataset is also used in the paper, where we replicate the setup of Edunov et al.
(2018b) for test dataset and 10K joint BPE vocabulary.

The majority of results in this paper are in terms of case-sensitive tokenized BLEU. We only measure
detokenized BLEU on IWSLT’14 De-En.

3.2 MODELS AND HYPER-PARAMETERS

Since network morphism is a method to improve a trained model, we use the pre-trained transformer
models released in the fairseq-py toolkit (Edunov et al., 2017)1, which correspond to the models in
Ott et al. (2018); Edunov et al. (2018a). Then we add skip connections to these models by network
morphism and fine-tunes the changed models. The big transformer models in WMT datasets share
some hyper-parameters, i.e. big transformer architecture with 6 blocks in the encoder and decoder,
word representations of size 1024, feed-forward layers with inner dimension 4096, 16 attention heads
in multi-head attention. Models are optimized with Adam (Kingma & Ba, 2015) using β1 = 0.9,
β2 = 0.98 and ε = 1e − 8. All models use label smoothing with 0.1 weight (Szegedy et al., 2016;
Pereyra et al., 2017).

For WMT’16 En-De and WMT’14 En-Fr, we use the pre-trained models with the setup of Ott et al.
(2018). For WMT’18 En-De, there are five pre-trained models released with the setup of Edunov
et al. (2018a) and we randomly select the third model for experiment, where the pre-trained model is
trained by En-De sentence pairs as well as monolingual back-translated sentence pairs and we only
use En-De sentence pairs for fine-tuning. The learning rate starts from 3e− 6 in fine-tuning process.

Since there are about 3 × 1023 possible skip connection architectures, searching all architectures
is not practical and we use hill climbing strategy to randomly search appropriate skip connections,
which is shown in Appendix.

4 RESULTS

4.1 FINE-TUNING RESULTS

We first report results on WMT’18 En-De with 226M back-translated sentences where we compare
our results to the baselines in Edunov et al. (2018a), which is also the winner of WMT’18. Table
1 provides results on a wide range of test sets (newstest 2013-2017). Bitext model is only trained

1https://github.com/pytorch/fairseq
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Table 2: Tokenized BLEU on newstest2014 for WMT English-German (En-De) and English-French
(En-Fr). a-h use only WMT bitext (WMT’14, except for b,c,e,f,g which train on WMT’16 in En-De).
In En-De, baseline i uses WMT’18 bitext dataset as well as 226M back-translation sentences.

Model Param (En-De) En-De En-Fr

Bitext

a.Gehring et al. (2017) 216M 25.2 40.5
b.Vaswani et al. (2017) 213M 28.4 41.0
c.Ahmed et al. (2017) 213M 28.9 41.4
d.Chen et al. (2018) 379M 28.5 41.0
e.Shaw et al. (2018) - 29.2 41.5
f.Ott et al. (2018) 210M 29.3 43.2
g.Wu et al. (2019a) 213M 29.7 43.2
h.Wu et al. (2019b) - 29.9 43.3
Our result 210M 30.2 44.3

Back-translation i.Edunov et al. (2018a) 213M 35.0 45.6
Our result 213M 35.4 -

by bitext data. Other baselines refer to different methods of generating back-translated sentences,
including beam search with beam size 5, greedy search, restricting sampling to the 10 highest scoring
outputs, unrestricted sampling from the model distribution and adding noise to the beam outputs. Our
network morphism fine-tuning model is based on the trained model where back-translated sentences
are generated by sampling method.

The experiments show that skip connections added by network morphism can improve the per-
formance of transformer model trained by additional back-translation dataset. Although we only
use the bitext data for fine-tuning, the network morphism fine-tuning model outperforms baseline
back-translation models on various test datasets except newstest 2013.

We also report results on WMT newstest2014 En-De and En-Fr where we compare to the best results
trained by the same or smaller datasets. Table 2 shows that our network morphism fine-tuning models
outperform all baselines by 0.3 to 1 BLEU, including the models trained by bitext sentences and
model trained by En-De back-translation sentences. Our work doesn’t include the En-Fr model
trained by back-translation sentences since the corresponding pre-trained model hasn’t been released.
The results show that with skip connections added by network morphism, the models reach the best
results on same or smaller datasets.

We also notice that the released pre-trained models have few differences with the results in Ott et al.
(2018); Edunov et al. (2018a). To better show the performances of skip connections added by network
morphism, we report the fine-tuning improvements in Table 3. As shown in Table 3, the pre-trained
models on WMT’16 En-De and WMT’14 En-Fr have better performances than they are reported
in Ott et al. (2018). On the other hand, the performance of pre-trained model on WMT’18 En-De
is lower than the result in Edunov et al. (2018a), probably because Edunov et al. (2018a) uses the
average of different checkpoints and we only select one checkpoint for fine-tuning.

The fine-tuning of skip connections added by network morphism improves WMT’18 En-De with
back-translation model by 0.9 BLEU, WMT’16 En-De by 0.4 BLEU and WMT’14 En-Fr by 0.2
BLEU. The differences maybe due to the utilization of different models on different datasets. In
common sense, the models with similar model structure and same dataset have an upper bound of
evaluation score. Comparing BLEU of pre-trained model in Table 3 to the baselines in Table 2,
we find that the WMT’16 En-De pre-trained model has nearly the best performance in 8 baselines,
which indicates the potential improvement of fine-tuning is not so significant. The WMT’14 En-Fr
pre-trained model outperforms the best of model in 8 baselines by 0.8 BLEU, which indicates the
pre-trained model takes nearly full advantage of the dataset and there is little potential improvement
of fine-tuning. For WMT’18 En-De with back-translation, the pre-trained model has lower BLEU
than the baseline in Table 2, which indicates the potential improvement of fine-tuning is significant.
Besides, the back-translation dataset is about 40 times larger than bitext dataset, which makes the
model harder to take full advantage of the dataset.

4.2 TIME COMPLEXITY

Searching time complexity Unlike other neural architecture search methods, network morphism
retains model performance while searching, which significantly reduces the searching time. For a
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Table 3: Tokenized BLEU of adding skip connections by network morphism on three pre-trained
models. The first two models correspond to bitext models in Ott et al. (2018). The third model
corresponds to back-translation (BT) model in Edunov et al. (2018a).

Pre-trained Network morphism fine-tuning ∆ BLEU
WMT’16 En-De 29.8 30.2 +0.4
WMT’14 En-Fr 44.1 44.3 +0.2
WMT’18 En-De + BT 34.5 35.4 +0.9

Table 4: The sentence numbers that network morphism fine-tuning needs on various datasets. Fine-
tuning subset denotes how many sentences are used for fine-tuning. Each sentence is used only once.
Total sentence denotes the total sentence number of a dataset. Fine-tuning rate corresponds to the rate
when fine-tuning subset number is divided by total sentence number. Back-translation sentences are
not used in fine-tuning.

Fine-tuning subset Total sentence Fine-tuning rate
WMT’16 En-De 1.5M 4.5M 0.33
WMT’14 En-Fr 2M 36M 0.05
WMT’18 En-De 2M 5.18M 0.39
En-De BT - 226M -

new architecture, other methods need to train the whole model from the beginning while our method
works as a fine-tuning for an existed model.

In the experiments, we find that fine-tuning doesn’t need the whole dataset to reach the best BLEU in
valid set. As shown in Table 4, after adding skip connections to a model, we only needs 1.5M-2M
sentences for fine-tuning (train each sentence one time). Comparatively small fine-tuning subset also
means we don’t need back-translation sentences for fine-tuning the WMT’18 En-De model. Adding
skip connections by hill climbing strategy needs to repeat fine-tuning procedure several times. In our
experiments with hill climbing strategy, fine-tuning procedure is repeated 9 times, which corresponds
to 0.45-3.51 times sentence number of bitext datasets. Since the training epochs can be larger than
20 in training transformer, the time complexity for searching architectures by network morphism
is acceptable. We also notice fine-tuning subsets have similar sizes corresponding to different
total dataset sizes, which means fine-tuning won’t spend more time when training dataset expends.
Therefore, when comparing to the models trained by back-translation sentences and WMT’14 En-Fr,
the time complexity of fine-tuning is a relatively small value.

Running time complexity Adding new skip connections will make a model more complex but
it won’t highly influence the speed of running the model. According to Eq.(8, 11-12), a new skip
connection only adds one parameter a to the model. Besides, each skip connection corresponds to
1-2 add operation, which doesn’t occupy many computing resources.

4.3 ARCHITECTURE TRANSFER

The performance of skip connections generalized by network morphism is related to the parameters
of the neural network such as weight values. To discover whether the architecture searched from a
network works for a different neural network, we make another experiment on IWSLT’14 De-En. We
use the small transformer in fairseq-py toolkit hyper-parameters for baseline transformer model.

The added skip connections in a fine-tuned model consist of skip connection relationships such
as the sender & receiver of a skip connection and the factor a. Then we can extract only the skip
connection relationships of the fine-tuned model and train a new transformer model initialized with
that architecture in IWSLT’14 De-En. The transformer models we used in IWSLT’14 De-En consist
of 6 encoder and decoder blocks and 512 dim word representation. Since the number of encoder
and decoder blocks is the same with the big transformer models used in WMT datasets, the skip
connection relationships generated by network morphism in WMT datasets can be transferred to the
transformer models in IWSLT’14 De-En. We transfer two architectures, including the architecture
searched in WMT’18 En-De dataset with back-translation and the architecture searched in IWSLT’14
De-En dataset. There are also two ways of applying new skip connection relationships to a new model:
Adding new connections as dynamic connection and adding them as static connection. Dynamic
connection means initializing new connections with a small factor a as it is done in Eq. (4) and a
is trainable. Static connection means initializing new connections as it is done in Eq.(3) in classic
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transformer model. We also test the improvement of network morphism fine-tuning on the transferred
transformer models. The results are shown in Table 5. We provide an example of skip connection
architecture in Appendix.

Table 5: Detokenized BLEU of different transformer models on IWSLT’14 De-En. Different rows
correspond to different architectures used to train new transferred models in IWSLT’14 De-En.
Different columns correspond to different procedure of training new models, including basically
training the models with different architectures and fine-tuning new skip connections by network
morphism.

Basic + fine-tuning
Transformer 34.6 34.8
+ dynamic connection from IWSLT’14 34.8 34.9
+ static connection from IWSLT’14 34.2 34.3
+ dynamic connection from WMT’18 (BT) 34.4 34.6
+ static connection from WMT’18 (BT) 32.6 32.7

From the results we notice that different datasets have different suitable architectures: The architecture
searched in IWSLT’14 De-En improves the new model in IWSLT’14 De-En while the architecture
searched in WMT’18 En-De with back-translation decreases the model performances in IWSLT’14
De-En. Besides, adding new connections as dynamic connection works much better than adding them
as static connection. Actually adding new connections as static connection decreases the performance
of models, probably because the searched skip connections only improve the model when a connection
has the factor a with special value and dynamic connection can search a automatically. In addition,
some useless skip connections can be disabled with a very small a in dynamic connection, which is
supported by the performance of dynamic connection comparing to static connection when applying
the relationship searched in WMT’18.

5 RELATED WORKS

Our work follows the idea of network morphism (Elsken et al., 2018; Chen et al., 2016; Wei et al.,
2016; Cai et al., 2018), which can automatically search several different architectures such as wider
network, deeper network and skip connection. The architecture search of network morphism is based
on the former network parameters so that it works as fine-tuning and saves computing resources
comparing to other neural architecture search methods. We apply network morphism of adding skip
connections to transformer model and our method can automatically search different combinations
of skip connections efficiently. Similar to Elsken et al. (2018), we also use hill climbing strategy
to search skip connections from several candidates. Unlike Elsken et al. (2018), we propose faster
gradient trick to accelerate the influence of added skip connections. We also propose the network
morphism way of adding encoder-encoder residual connection, decoder-decoder residual connection
and encoder-decoder attention connection to a transformer model.

So et al. (2019) also apply the idea of neural architecture search in transformer models, which
is called Evolved Transformer. Evolved Transformer searches transformer architectures based on
different blocks, which consists of two branches with different layer types (such as convolution) and
activations. However, the Evolved Transformer pays less attention to the skip connections between
different layers, which is the aim of our work. In Evolved Transformer, parameters of different
architectures have no relationship with each other, which means a new architecture needs to be trained
from the beginning. In our work, parameters of a new architecture inherits the parameters of the
former architecture, which saves most computing resources.

6 CONCLUSION

To discover the performance of adding skip connections in transformer with high efficiency, we
apply the idea of network morphism to transformer skip connection architecture as a method of
fine-tuning. Our fine-tuning method outperforms the best models trained by the same or smaller
datasets in different situations. We also test the performance of transferred architectures and show
that different skip connection architectures suit different datasets. In the future, we want to find a
better universal transformer architecture by using larger datasets and with more iterations in searching
and transferring architectures.
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A APPENDIX

A.1 ITERATION OF SEARCHING ARCHITECTURES

Encoder Decoder

Encoder Decoder
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Inputs

Outputs

Encoder Decoder

Encoder Decoder
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Outputs

Encoder Decoder

Encoder Decoder

Encoder Decoder

Inputs
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Hill climbing Hill climbing

Figure 2: The sketch map of adding skip connections through hill climbing strategy steps. The figure
contains a simplified transformer which only has three encoder and decoder layers. At each step,
new skip connections are searched and added to the current model structure. Dashed lines denote the
skip connections added by network morphism. The three kinds of skip connections are added to the
transformer in the figure.

In a transformer model with 6 encoder and decoder layers, there are 2 ∗
∑6

i=1 i+ 62 = 78 different
possible single skip connections. If we don’t restrict the number of skip connections each layer
receives and sends, there are 278 ≈ 3× 1023 different combinations of skip connections. Searching
all architectures is not practical, so we apply hill climbing strategy in Russell & Norvig (2002);
Elsken et al. (2018) to search a temporarily better model architecture by iteration.
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Algorithm 2 Skip connection search by hill climbing

# model0 , transformer model to start with.
# Initialize best current model structure.
modelbest = model0
# Start hill climbing steps.
for i = 1 to nsteps do

# In each step, try nneigh different model structures.
for j = 1 to nneigh do

# Apply network morphism with nNM

connections. nE , nD, nED=RandomSplit(nNM )
# nE + nD + nED = nNM modelj =AddE(modelbest, nE) modelj =AddD(modelj , nD)
modelj =AddED(modelj , nED) modelj =Train(modelj ,data)

end for
# Get best model on validation set. modelbest = argmax

j=1...nneigh,best
(vaild(modelj))

end for

As illustrated in Algorithm 2, hill climbing contains nsteps steps of search, where each step inherits
the best skip connection structure of the last step and adds new skip connections. At each step, hill
climbing strategy searches nneigh different new skip connection combinations and selects the best in
validation set. Each new skip connection combination contains nNM new skip connections, each of
which is randomly split into three parts: nE , nD, nED. AddE, AddD and AddED are three functions
that randomly add a number of connections in three kinds of skip connections (encoder-encoder,
decoder-decoder and encoder-decoder) by network morphism. Figure 2 also visualizes the adding skip
connections procedure through network morphism where model structure becomes more complex
step by step. In experiments, we set nsteps and nneigh to 3, nNM to 5.

A.2 SKIP CONNECTION ARCHITECTURE

Encoder Decoder

Encoder Decoder

Encoder Decoder

Inputs

Outputs

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

Figure 3: The figure of skip connection architecture trained in IWSLT’14. Dashed lines denote the
skip connections added by network morphism.
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