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ABSTRACT

While search-augmented large language models (LLMs) exhibit impressive ca-
pabilities, their reliability in complex multi-hop reasoning remains limited. This
limitation arises from three fundamental challenges: decomposition errors, where
tasks are incorrectly broken down; retrieval missing, where key evidence fails
to be retrieved; and reasoning errors, where flawed logic propagates through the
reasoning chain. A single failure in any of these stages can derail the final answer.
We propose Erasable Reinforcement Learning (ERL), a novel framework that trans-
forms fragile reasoning into a robust process. ERL explicitly identifies faulty steps,
erases them, and regenerates reasoning in place, preventing defective logic from
propagating through the reasoning chain. This targeted correction mechanism turns
brittle reasoning into a more resilient process. Models trained with ERL, termed
ESearch, achieve substantial improvements on HotpotQA, MuSiQue, 2Wiki, and
Bamboogle, with the 3B model achieving +8.48% EM and +11.56% F1, and the 7B
model achieving +5.38% EM and +7.22% F1 over previous state-of-the-art(SOTA)
results. These findings suggest that erasable reinforcement learning provides a
powerful paradigm shift for robust multi-step reasoning in LLMs.

1 INTRODUCTION

Large language models (LLMs) have produced remarkable advances across a broad spectrum of
natural language processing tasks, including question answering, reasoning, and code generation
(OpenAlL 2025; Meta Al [2025; |Yang et al., [2025). Notwithstanding these advances, inherent
limitations in their static pretraining corpora leave them susceptible to hallucination and factual
error, especially in knowledge-intensive domains and in tasks that require reasoning over multiple
steps (Huang et al.,2025a;[2024). Even the most advanced models tailored for rigorous reasoning,
such as OpenAl ol (Jaech et al., [2024)), DeepSeek R1 (Guo et al.,[2025) and Kimi k2 (Team et al.,
2025), still face substantial difficulty in reliably solving complex multi-hop problems that demand
precise decomposition, dependable retrieval, and long-term logical consistency (Xi et al.| [2025]).
To address these difficulties, retrieval-augmented generation (RAG) has emerged as a dominant
paradigm, enriching large language models with external knowledge sources (Lewis et al., 2020} Gao
et al.} 2023)). Over time, RAG has evolved into sophisticated research agents that integrate search
and reasoning within an autonomous loop. Systems such as OpenAl Deep Research (OpenAll [2025)),
Gemini Deep Research (DeepMind, 2025), and Perplexity Deep Research (Al 2025) mark significant
milestones in this trajectory. Reinforcement learning (RL) (Li,|2017) has emerged as a central force
driving recent breakthroughs in the field of search-augmented agents. An increasing number of studies
explore leveraging RL to guide decomposition, retrieval, and reasoning (Jin et al.| [2025b; Song et al.|
2025} |Zhao et al., [2025b)). These approaches employ reward signals to improve sub-query generation,
evidence retrieval, and reasoning chains, achieving substantial gains on challenging benchmarks such
as HotpotQA (Yang et al., |2018)), MuSiQue (Trivedi et al.,[2022a)), and 2WikiMultiHopQA (Ho et al.|
2020b). Despite these impressive advances, current systems remain highly brittle. They can reliably
answer simple factual queries, yet even minor errors in decomposition, retrieval, or reasoning can
compromise an entire multi-hop trajectory (Huang et al., 2025bj [Li et al.| 2025). In contrast, humans
rarely fail so catastrophically. When we recognize a flaw in a reasoning step, we pause, correct the
mistake, and continue from the corrected point. This stark contrast highlights a critical limitation of
current search-augmented RL systems: they lack the robust self-correction mechanisms that underlie
human reasoning.
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Through extensive empirical analysis of current RL-based search agents, we uncover three critical
failure modes that fundamentally limit their capabilities:

* Decomposition Errors: Incorrect subqueries derail the retrieval process entirely, preventing
downstream steps from ever accessing the crucial evidence needed to answer the question.

* Retrieval missing: Retrieved documents that are irrelevant even with appropriate subqueries due
to noise, ambiguity, or incomplete coverage, causing subsequent reasoning to fail.

* Reasoning Errors: LLMs may make mistakes when integrating retrieved information, and these
errors accumulate across steps, systematically undermining the reliability of the final answer.

Deeper structural flaws significantly exacerbate these issues. Existing reinforcement learning agents
typically treat the entire search and reasoning trajectory as a single Markov Decision Process (MDP)
(Sutton et al.l 1998} |Kaelbling et al.| [ 1996)), optimizing only via sparse terminal rewards (Jin et al.,
2025b). This monolithic design is fundamentally brittle: a single misstep can compromise the entire
trajectory. As reasoning chains extend (Zhang et al., 2025bj Jin et al[2025a)), this fragility intensifies,
causing performance to degrade precipitously beyond ten steps (Gao et al., [2025)).

Overcoming these limitations requires a radical paradigm shift: agents must emulate human-like
self-correction by detecting errors, discarding flawed steps, and resuming reasoning from the most
recently corrected state. Analogous to a skilled writer using an eraser to remove a single mistaken
word without discarding the entire manuscript. We introduce Erasable Reinforcement Learning
(ERL), a novel framework that embodies this principle. ERL enables search-augmented LLM
agents to identify errors in decomposition, retrieval, or reasoning precisely, selectively erase the
faulty segments, and regenerate from the last correct state. This fine-grained corrective mechanism
transforms brittle trajectories into resilient ones, allowing agents to recover gracefully from mistakes
rather than collapsing entirely. We conduct extensive evaluations on HotpotQA (Yang et al.,2018)),
MuSiQue (Trivedi et al., [2022a)), 2WikiMultiHopQA (Ho et al.| 2020b), and Bamboogle (Press
et al.}2022). The results show that models trained with ERL not only surpass strong baselines and
state-of-the-art (SOTA) methods but also consistently improve performance; the 3B model achieves
gains of +8.48% EM and +11.56% F1, while the 7B model achieves +5.38% EM and +7.22% F1.

The main contributions are summarized as follows:

» Systematic identification of three critical failure modes in search-augmented LL.Ms for complex
multi-hop reasoning.

* Introduction of ERL, a framework for fine-grained error detection, erasure, and regeneration that
substantially improves reasoning robustness.

* Establishment of new SOTA results on multiple multi-hop QA benchmarks, validating the effec-
tiveness and generality of ERL.

2 PRELIMINARY

Previous work often models complex multi-hop question answering, combining search and reasoning,
as a MDP characterized by (Chen et al., 2024):

(S,A,P,R,7). ey

In this framework, the state s; represents the reasoning trajectory up to time ¢, providing context for
subsequent actions (Broekens et al.,|2010). We define the state s; as:

st = (Q, Hy) = (Q, (ao, €0), (a1,€1), ..., (ar—1,€t-1)) , )

where () is the original question and H; is the sequence of interactions up to time ¢. Each action
a; € A represents reasoning or retrieval, and each environment e; corresponds to the evidence
information resulting from a; by calling the tools. The agent’s action space A = {o, r, ¢} includes
atomic operations governing reasoning, Searching and Answering, while the tool corresponding to
the environment will provide searched documents:

 Search Query (q;): Produces a query ¢, to retrieve relevant evidence e;.

* Observation (o;): Reasoning an observation o, of the evidence e; and previous status s;_1
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* Sub Answer (1;): Yield an intermediate phased conclusion 7; after observation oy.
* Finish(answer): Produces the final answer Ag,, when sufficient evidence is gathered.

The state transition function P(s¢+1 | st,a:) (Huang, |2022) is driven by two mechanisms: the
stochastic generation by the LLM and the search results from external search engines. For the
convenience of representation and to fit the complex answering mechanism of multi-hop QA, each
action a; is defined as a fixed and ordered sequence of unit actions of ((o,¢), ¢:) (no observation
or response to previous evidence in the first round.) for intermediate solving process, or (A finai)
for the answer to finish. All the action and action sequence is sampled from the LLM’s conditional
distribution:

a; = Act(ss) ~ Py(- | s¢)- 3)
For the Search Query (g;) issued by the agent, the environment e, is the information evidence retrieved

from the search tools:
et = Search(gq;). @

The next state sy is formed by appending the combination of the new action sequence and environ-
ment to the trajectory Hy:

{(04,7¢),q:), intermediate step,

Si1 = (Q, Hy ® (as,er)), ar € { (5)

(Afinar), final answer.

In multi-hop question answering, the reward function R (Jin et al., [2025b; |Song et al., [2025)is
typically sparse, rewarding the agent only upon completing the reasoning trajectory and producing
the final answer Agna. The reward is computed by comparing Ajgna with the reference Agoq using
metrics like exact match (EM) or F1 score:

EVAL(Afgpar, Ag if a; is (Ay;

R(St, at) _ ( final y g,old) t < fmal>7 (6)

0 otherwise.

The agent optimizes the expected terminal reward via policy gradient methods:

J(¢) = ]E‘r~7r¢ [R(T)]a @)
where 7 = (s, ao, €, - - -, S7) is the reasoning trajectory. However, treating the entire reasoning
trajectory as a monolithic sequence for optimization introduces a structural vulnerability, known as
catastrophic fragility. In a reasoning trajectory 7 = (sg, ag, €0, 81, - - - , AT7—1, €7—1, ST ), any failure

at a single step can disrupt the entire process, leading to an erroneous final outcome. For instance, an
error at step ¢ < 7' can result from:

* Decomposition Errors: The GenerateQuery action generates a deviated sub-query g¢;.

¢ Retrieval Omissions: The Search action fails to retrieve the relevant evidence e;.

* Reasoning Errors: The Synthesize action produces an incorrect intermediate conclusion r;.

The error at s;11 contaminates all subsequent states (s¢42,...,Sr), as each following action
(at41,-..,ar—1) depends on this contaminated history. This resembles a domino effect, where
the failure of a single link leads to an entire system collapse. This structural fragility is the core
reason for the unreliability of current search-augmented LLMs when tackling complex, multi-hop
problems.

3 METHOD

3.1 REINFORCEMENT LEARNING WITH A SEARCH ENGINE

We extend reinforcement learning to incorporate search engines into policy optimization. The
objective is

H}T%XEJ/’ND, y~7o(-|zR) [’I"Qs(ﬂj, y)] - BDKL[T(O(y | €T R) || ﬂref(y ‘ Z; R)}a

where 7y is the policy, mef the reference model, and 7, the reward (Jin et al., 2025b). Inputs & contain
both natural language and retrieved results, enabling 7y to learn retrieval-reasoning integration beyond
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prompt-based methods. For training we adopt Proximal Policy Optimization (PPO) (Schulman et al.}
2017), yielding

L
1 . 7oyt | y<t, 73 R)
Jero(f) = Eond, yrrmo (faiR) lL Zl(yt) mm(w 1Yt | y<t, 75 R) Ao
t=1 (o) ) Y
@

Told (Yt |y<,2;R)’

clip( Zeldicre®) g ¢ 1 46)4,)

with 7,1q the previous policy, I(y;) masking retrieved tokens, and A; the advantage from GAE
(Schulman et al., [2015).

3.2 ROUND-BASED REASONING

We model reasoning as a sequence of 7 structured rounds. Each round ¢ produces an in-
teraction pair (as,e;), where a; denotes the action and e; the retrieved evidence. If a; =
{(0¢,74),q¢), the agent executes the sequence <observation> o; </observation> —
<sub_answer> 1 </sub_answer> — <search> ¢; </search>, and the query ¢, is sub-
mitted to a search tool to obtain evidence e;. If a; = (Agnal), the process terminates with the final
answer. The policy action units can be defined on the original question () and previous action unit in
the dialogue history h; = {((0:,7:), qi, ;) }i_1:

i=1"

op ~mo(+ | Q@ he) = 1 =mo (- | Q, (hey0r)) = qe = mo(- | Q, (he, (01,71))) — ex = Search(qy).

©))
This structured format allows the agent to alternate between querying and reasoning, tightly cou-
pling retrieval with generation. The episode terminates when the policy outputs (Afnq) like
<answer> Agpa </answer>.

3.3 REWARD DESIGN

Dense stepwise rewards are critical to prevent sparse supervision. ERL introduces two intermediate

rewards, R5°¥°I for sub-queries and Rf”b—answcr for intermediate reasoning, in addition to the final
reward RA"SWer,

Search reward. Let gold evidence D* = {d}}7_, and retrieved set D) = {d;t)}llle. Define
TF-IDF cosine similarity s(d}, d;t)). Maintain coverage vector m!:
n
¢t = max s(d, d;t)), Al = max{ci —m!™' 0}, G'= %Z Al mb = max{m!™!, cl}.
J
i=1

(10
Redundancy penalty is defined as Eq. (IT)), and the final search reward is Eq. (I2)) as below. This
design encourages novel evidence retrieval while suppressing repeated queries.

k
P =1%N"1(d" e H*"Y), H'=H"'UDW. (1)
j=1

Riearch _ Gt _ Pt. (12)

Sub-answer reward. Let gold sub-answers A* = {a7}7~,. With F1 overlap:

fi = Fl(re, af), uf = max{ui™", fii}, 6] = max{uj —uj~},0}, §" = maxdf. (13)
Reward:
R:ub_answer _ m. (14)

This ensures that only genuine improvements to intermediate reasoning are rewarded.
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Final reward.
Ranswer _ %EM(Aﬁnah Agold) + %Fl(Aﬁnah Agold)- (15)

The token-level attribution aligns R$***! with </search>, R{"P-""V" with </observation>
and </sub_answer>, and R*™WV°" with </answer>.

3.4 ERASABLE REINFORCEMENT LEARNING

Rewards alone cannot prevent compounding errors. ERL introduces erasure operators that surgically
remove faulty parts of the trajectory, enabling as shown in Figure [T, We define a trajectory as
7 =(80,81,...,87). Forany ¢t < T, we denote the truncated prefix of the trajectory up to step ¢ by

To:t = (SOaslw"ast)' (16)
We further introduce an erasure operator £, which modifies the action sequence according to different
conditions in each round. Formally,

(None), if the sub-answer r; is incorrect,
Elas, er] €4 {(or,74)), if the initial or subsequent search results are incorrect, (17
((0¢,71), qt), er, if the action sequence is valid.

St41 = To:x D E[Act(st), Search(q:)] = 1o+ © Elar, €]

Different erasure conditions can be explained with two thresholds are introduced: « for local errors
and g for plan-level errors. And here goes the details:

Sub-Answer Erasure. If RS'P-2"S%er <  erase <observation>, <sub_answer> and all
t
subsequent actions of round ¢, meaning any actions in the current round are discarded:

St11 < To.e @ (None) = s;. (18)

Subsequent Search Erasure. If R} < o and t > 1, erase the query behavior <search>
issued at round ¢ and keep the correct <observation> with <sub_answer>:

St < Toit D (0g,7). (19)

Initial Search/Plan Erasure. If Rﬁea“h < (in the first action round of ¢ = 0, no observation or
sub-answer action unit and erase the query behavior <search> (reset the trajectory):

T 4 To.0 P <None> = Sp. (20)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets and Evallution Metrics We evaluate on four multi-hop QA benchmarks: HotpotQA
(Yang et al.|, [2018)), 2WikiMultihopQA (Ho et al., 2020b), MuSiQue (Trivedi et al.,|2022a), and
Bamboogle (Press et al.|[2022), which span diverse domains and reasoning complexities. We report
performance using canonical word-level F1 and Exact Match (EM) metrics, while refraining from the
use of third-party LLM evaluators owing to concerns regarding reproducibility and stability.

Baseline Method We employ various baselines to evaluate our proposed ESearch, including Search-
R1 (Jin et al.} |2025b)), Research (Chen et al., |2025), ZeroSearch (Sun et al., [2025), R-Search (Zhao
et al.| 2025a), SSRL (Fan et al.| 2025), StepSearch (Wang et al., [2025).

Implementation Details We conduct experiments using two model scales: Qwen2.5-3B-
base/instruct and Qwen2.5-7B-base/instruct (Qwen et al., [2025)). During training, we adopt ES
(Wang et al.,[2022) as the retriever, with the document corpus built from the Wikipedia 2018 dump
(Wiki-18) (Karpukhin et al.,2020a). For offline evaluation, we maintain the same Wikipedia dump as
the retrieval corpus to ensure consistency with the training setup. For online evaluation, we employ
the Google Search API as the retrieval source.
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Figure 1: Overview of ESEARCH. Different colors and symbols are used to represent the interactive
behaviors S (Search), I (Information), O (Observation), and A (Sub Answer). In the answering
process, there are three types of erasure and retry behaviors: (1) incorrect initial search results trigger
initialization plan erasure; (2) incorrect subsequent search results trigger search design erasure; (3)
incorrect sub-answer triggers observation erasure. In addition, history checking and target set are
built for searches and sub-answers respectively to evaluate value gains, which serve as the basis for
erasure triggers and reward calculation.

Method HotpotQA 2Wiki " MuSiQue’ Bamboogle!  HotpotQA* 2Wiki* MuSiQue* Bamboogle*

EMt FIt EMT FIt EM{ FIt EM{ FIt EMT FIt EM{ FIt EM{ FIf EMT FIt
Qwen2.5-3b-Base/Instruct

Search-R1-base 0.272 0361 0248 0296 0.081 0.146 0.176 0270 0.348 0431 0381 0445 0.120 0.184 0.280 0.400
Search-R1-instruct 0304 0401 0.293 0352 0.120 0.188 0240 0.344 0350 0442 0371 0452 0.128 0.195 0.392 0.513
ZeroSearch-base 0.281 0377 0253 0311 0.096 0.164 0.165 0256 0.324 0414 0392 0473 0.152 0.237 0.361 0.522
ZeroSearch-instruct 0.267 0353 0.239 0.288 0.088 0.145 0.193 0299 0.357 0453 0355 0441 0.114 0.176 0421 0.543

R-Search-instruct-GRPO ~ 0.329  0.427 0.307 0351 0.131 0.208 0.228 0.327 0374 0460 0457 0519 0.142 0227 0.504 0.644
R-Search-instruct-PPO 0.289 0381 0.277 0328 0.124 0.187 0260 0.355 0.398 0495 0496 0.558 0.152 0234 0496 0.656

SSRL-instruct 0.314 0408 0290 0348 0.093 0.156 0216 0.287 0346 0424 0365 0461 0.114 0.195 0344 0453
StepSearch-base 0329 0434 0339 0395 0.181 0.273 0.328 0419 0345 0464 0434 0542 0.196 0291 0502 0.631
StepSearch-instruct 0.345 0452 0320 0385 0.174 0261 0344 0452 0394 0470 0402 0496 0.150 0.240 0520 0.626
" ESearch-base 0415 0548 0428 0499 0236 0345 0414 0529 0435 0586 0581 0.684 0247 0367 0633 0797

ESearch-instruct 0.447 0587 0415 0500 0232 0339 0446 0587 0.513 0.612 0521 0.644 0211 0311 0.674 0.813
Qwen2.5-7b-Base/Instruct

Search-R1-base 0432 0.547 0350 0411 0206 0290 0430 0.545 0508 0.610 0533 0.607 0219 0310 0577 0.692
Search-R1-instruct 0.394 0502 0312 0376 0.181 0262 0.384 0501 0464 0570 0475 0561 0182 0.268 0536 0.660
Research-base 0294 0.388 0264 0313 0.143 0.230 0373 0449 0386 0486 0457 0.534 0.176 0275 0488 0.582
Research-instruct 0362 0471 0354 0416 0.184 0271 0424 0544 0494 0.608 0.539 0.628 0.220 0.321 0.544 0.666
ZeroSearch-base 0375 0481 0297 0356 0201 028 0417 0532 0431 0529 0525 0593 0211 0297 0505 0.634
ZeroSearch-instruct 0.388 0497 0360 0422 0219 0320 0433 0540 0394 0483 0431 0534 0136 0225 0368 0.492

R-Search-instruct-GRPO ~ 0.391  0.500 0.346  0.401 0.179 0.260 0.400 0.517 0.376 0468 0470 0535 0.134 0225 0464 0.601
R-Search-instruct-PPO 0.338 0439 0274 0339 0.133 0209 0384 0491 0.358 0453 0462 0527 0.158 0.240 0464 0.593

SSRL-instruct 0380 0489 0332 0399 0153 0238 0344 0466 0388 0465 0358 0442 0.106 0.184 0336 0438
StepSearch-base 0380 0493 0385 0450 0216 0324 0467 0573 0446 0552 0561 0638 0232 0325 0544 0.698
StepSearch-instruct 038 0502 0366 0431 0226 0312 0400 0534 0462 0560 0485 0570 0222 0327 0600 0718

" ESearch-base 0434 0564 0436 0513 0244 0371 0534 0.656 0510 0632 0.635 0730 0265 0372 0622 0.799
ESearch-instruct 0442 0576 0419 0494 0241 0358 0458 0612 0507 0.642 0550 0654 0254 0375 0.687 0.823

Table 1: The main results. "{" indicates offline retrieval, and "x" indicates online retrieval.

4.2 MAIN RESULTS

Offline evaluation Table |I| shows that ESearch sets a new SOTA on four multi-hop QA datasets,
consistently surpassing strong baselines with Qwen?2.5; with three billion parameters, it gains +6.06%
EM and +9.94% F1 on average, rising to +4.78% EM and +6.56% F1 with seven billion parameters.

Online evaluation We evaluate models using a continuously updated search engine instead of
a static knowledge base. Online retrieval improves nearly all methods by providing fresher, more
comprehensive information. ESearch consistently surpasses baselines, achieving +10.90% EM and
+13.18% F1 for Qwen2.5-3B, and +5.98% EM and +7.88% F1 for Qwen2.5-7B. Across scales,
ESearch delivers the largest relative gains, demonstrating superior adaptability and robustness in
dynamic environments.
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HotpotQAT 2Wiki' MuSiQue’ Bamboogle’  HotpotQA* 2Wiki* MuSiQue* Bamboogle*

EM{ FIt EMt FIt EM{ FI1 EM{ FIt EMt FItf EM{ FIt EM{ FIt EMt FIt
Qwen2.5-7b-Base
ERL 0.434 0.564 0436 0.513 0.244 0.371 0.534 0.656 0.510 0.632 0.635 0.730 0.265 0.372 0.622 0.799
PPO 0371 0475 0279 0326 0.196 0.278 0.428 0.545 0.382 0422 0475 0.547 0.198 0277 0475 0.603
GRPO 0350 0462 0267 0344 0.203 0292 0398 0.514 0401 0497 0499 0.568 0208 0.292 0489 0.623

Qwen2.5-3b-Base

ERL 0415 0.548 0.428 0.499 0.236 0.345 0414 0.529 0435 0.586 0.581 0.684 0.247 0.367 0.633 0.797
PPO 0.264 0372 0265 0.322 0.106 0.192 0.206 0313 0.242 0.326 0322 0.380 0.137 0.204 0.352 0443
GRPO 0258 0.367 0.254 0321 0.113 0.188 0223 0312 0237 0319 0326 0382 0.134 0.199 0345 0437

Method

Table 2: Accuracy performance of models trained by different RL algorithms."{" indicates offline
retrieval using the wiki-18 knowledge base, and "+" indicates online retrieval using Google Search.
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Figure 2: Training dynamics of different RL strategies. Compared to PPO, GRPO demonstrates
faster learning speed and reward acquisition during training but tends to suffer from instability and
potential collapse in the later stages of Search Agent tasks. In contrast, ERL achieves higher learning
efficiency than PPO while maintaining training stability.

Comparison with classical reinforcement learning algorithms To further assess the effectiveness
of ERL, we conduct a direct comparison with two classical reinforcement learning algorithms: PPO
and GRPO, both of which rely solely on task-level success as the reward signal. Experimental results,
summarized in Table[2)and Figure 2] demonstrate that ERL consistently and substantially outperforms
PPO and GRPO on both the 3B and 7B models.

5 ANALYSIS

Method HotpotQAT 2Wiki' MuSiQue’ Bambooglef HotpotQA™ 2Wiki* MuSiQue* Bamboogle*
EMt FIt EM{ FIt EM{ FIt EMt FIt EM{ FIt EM{ FIt EM} FIt EM{ FIf

Qwen2.5-7b-Base

ERL 0.434 0.564 0436 0.513 0244 0371 0.534 0.656 0.510 0.632 0.635 0.730 0.265 0.372 0.622 0.799
w/o e — plan 0.420 0545 0421 049 0.236 0359 0517 0.634 0494 0.611 0.620 0.706 0.257 0.361 0.602 0.773
w/o e — search 0.410 0533 0.412 0485 0.231 0351 0505 0.620 0483 0.598 0.607 0.691 0.256 0.354 0.588 0.755

w/o e — sub_answer 0392 0509 0.393 0463 0220 0335 0482 0.592 0461 0570 0579 0.659 0.241 0.336 0.563 0.721
Qwen2.5-3b-Base

Base 0322 0418 0.323 0380 0.181 0275 0396 0486 0378 0468 0476 0.541 0.195 0273 0461 0.592
o/w & — plan 0.348 0451 0.349 0410 0.195 0297 0428 0.525 0408 0506 0514 0.584 0215 0301 0498 0.639
o/w & — search 0.362 0468 0.361 0426 0203 0308 0443 0.544 0423 0524 0532 0.606 0218 0.307 0517 0.663

o/w e — sub_answer 0377 0.489 0.378 0.445 0.213 0.322 0.463 0.569 0.443 0.548 0.557 0.633 0.229 0.323 0.543 0.693

Table 3: Accuracy on 7b and 3b models. *w/0’ represent ‘with out” while ‘o/w’ for *only with’."{"
indicates offline retrieval, and "+" indicates online retrieval.

To quantify the relative contributions of each component in the ERL framework, we conducted a
systematic ablation study. Table [3| presents the performance of different component combinations.
The full ERL framework achieves the best performance across all datasets, confirming our design
principle that the three erasure mechanisms are complementary. Plan-triggered erasure proves
essential on highly structured datasets, with disabling it leading to a -2.05% F1 on 2Wiki, yet it
remains ineffective in addressing missing retrieval. Search-triggered erasure shows clear advantages
for retrieval-intensive tasks, where disabling it results in a -2.40% F1 on Bamboogle, but it fails to
remedy global reasoning errors. Sub-answer-triggered erasure benefits reasoning-intensive tasks,
with disabling it yielding a -1.80% F1 on Musique. Although it alleviates error propagation, it cannot
fundamentally prevent erroneous reasoning from emerging.
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Figure 3: Training dynamics in ablation experiments.

Method HotpotQA ' 2Wikif MuSiQue' Bamboogle! HotpotQA* 2Wiki* MuSiQue* Bamboogle*
EM Fl EM F1 EM Fl EM Fl EM F1 EM Fl EM F1 EM Fl
Base 0348 0.457 0323 0.389 0.181 0.264 0347 0457 0398 0476 0.406 0501 0.151 0242 0.525 0.633
ofw e — planl 0354 0464 0328 0.395 0.183 0268 0353 0464 0405 0483 0412 0509 0.153 0245 0534 0.642
o/w e — plan3 0.358 0470 0.333 0401 0256 0272 0358 0473 0413 0491 0417 0516 0.156 0.250 0.541 0.652
o/w € — planb 0365 0477 0338 0407 0.189 0.276 0363 0478 0417 0498 0425 0524 0.158 0253 0.549 0.661
o/w £ — searchl 0363 0478 0337 0405 0.18 0275 0361 0478 0421 0499 0423 0522 0.156 0252 0.537 0.655
o/w e — search3 0.383 0.502 0.355 0427 0.198 0290 0.382 0.502 0438 0.523 0448 0.550 0.190 0.266 0.576 0.698
o/w € — searchb 0.404 0.529 0375 0451 0201 0306 0402 0.527 0462 0552 0471 0581 0.174 0280 0.611 0.732

o/w e — sub_answerl 0371 0486 0344 0414 0.183 0281 0369 0486 0.410 0.507 0432 0.533 0.162 0257 0559 0.673
o/w e — sub_answer3 0399 0.521 0371 0445 0207 0302 0398 0.523 0456 0.545 0465 0.573 0.175 0277 0.597 0.724
o/w e — sub_answer5 0425 0.561 0396 0479 0221 0324 0426 0.561 0492 0.584 0.502 0.615 0.186 0.297 0.641 0.776
ERL 0.447 0.587 0415 0.500 0232 0339 0446 0.587 0.513 0.612 0.521 0.644 0.211 0311 0.674 0.813

Table 4: Qwen2.5-3b-Instruct. *w/o’ represent ‘with out’ while ‘ow’ for ’only with’, sub-answer’
represents a process supervision rewards based on intermediate sub-answers."{" indicates offline
retrieval using the Wiki-18 knowledge base, and "*" indicates online retrieval using Google Search.

Table [ and Figure [ present the performance of individual erasure mechanisms across different
iteration numbers on the Qwen2.5-3b-Instruct model. Plan-triggered erasure shows modest gains
with increasing iterations, indicating that planning can reduce localized structural mistakes but is
insufficient for errors in longer reasoning chains. Notably, even with an imperfect initial plan, the
model can still identify the next required information through further interaction with the external
environment. Search-triggered erasure yields more pronounced improvements, especially on retrieval-
intensive datasets, highlighting the importance of accurate search queries for maintaining reasoning
fidelity. Sub-answer-triggered erasure is the most effective, providing consistent gains that approach
the full ERL framework’s performance as iterations increase, demonstrating that revising intermediate
sub-answers significantly mitigates error propagation. Overall, the mechanisms follow a clear
hierarchy: sub-answer erasure > search > plan, emphasizing that error correction during reasoning has
greater impact than error prevention. Regarding correction rates, ERL exhibits varied effectiveness
across error types, correcting 2.01% of decomposition errors, 6.53% of retrieval failures, and 9.6% of
reasoning errors.

6 RELATED WORK

Reinforcement learning has been widely applied to enhance retrieval-augmented reasoning in large
language models. Search-R1 (Jin et al.,[2025b)) and ReSearch (Chen et al.,[2025) optimize multi-round
query generation, R1-Searcher (Song et al.| 2025) adopts a two-stage reward, and StepSearch (Wang
et al.,|2025)shapes trajectories with stepwise rewards, while DeepResearcher (Zheng et al.| [2025]),
02-Searcher (Mei et al.| 2025)), and ZeroSearch (Sun et al.,|2025) target real webpages, localized
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Figure 4: Overview of ESearch. In the figure, *o/w’ (only with) indicates that only the current
mechanism is added to the base method.

environments, and retrieval simulation. MaskSearch (Wu et al.,[2025)and EvolveSearch (Zhang et al.,
2025a) improve multi-hop reasoning through pretraining or iterative self-evolution, and R-Search
(Zhao et al.}[2025a)) and DynaSearcher (Hao et al., 2025)) integrate multi-reward signals with dynamic
knowledge graphs. ParallelSearch (Zhao et al.||2025b), HybridDeepSearcher (Ko et al., 2025), and
SSRL (Fan et al., 2025)) further advance retrieval via parallelization, adaptive strategies, or internal
knowledge search.

7 LIMITATION & FUTURE DISCUSSION

The strength of the ERL framework lies in its structured cycle of identification, erasure, and regen-
eration, which enables targeted correction of reasoning errors and significantly improves reliability.
This sequential design inherently increases computational overhead and may struggle when mul-
tiple heterogeneous errors occur simultaneously within a reasoning trajectory. In such cases, the
framework often requires repeated iterations to separately repair failures in retrieval, reasoning, and
subsequent retrieval stages, which limits scalability and efficiency. Addressing this challenge calls for
strategies that can recognize and resolve multiple concurrent errors in a single corrective pass. Such
an advance would require moving beyond localized error signals toward a global understanding of
the entire reasoning trajectory, enabling coordinated error mitigation rather than piecemeal correction.
Developing this global perspective is not only crucial for enhancing the robustness and efficiency of
ERL, but also represents a broader step toward equipping search-augmented language models with
genuinely resilient reasoning capabilities.

8 CONCLUSION

This paper introduces erasable reinforcement learning algorithm designed to automatically detect and
correct decomposition, retrieval, and reasoning errors in complex multi-hop question answering. The
method leverages joint signals from the quality of sub-search and sub-answer processes to identify
error types, and erases the corresponding segments for regeneration when errors occur, thereby
maximizing the utility of both the model and external knowledge. Experimental results demonstrate
that our approach surpasses the current state of the art on multi-hop QA benchmarks including
HotpotQA, MuSiQue, 2WikiMultiHopQA, and Bamboogle, validating its effectiveness. Future work
may explore extending this mechanism to a broader range of generative tasks, or integrating it with
online learning to further enhance the model’s adaptive error-correction capability.
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ETHICS STATEMENT

This study uses only publicly available benchmark datasets (HotpotQA, MuSiQue, 2WikiMulti-
HopQA, and Bamboogle), with knowledge sources limited to Wikipedia and the Google Search API.
No private or sensitive data are involved. The proposed Erasable Reinforcement Learning (ERL)
substantially enhances multi-hop reasoning capabilities, offering positive value for applications such
as information retrieval and educational question answering. However, we also recognize that stronger
reasoning ability could be misused to generate deceptive or misleading content. We recommend that
future research integrate alignment and bias detection mechanisms prior to deployment to mitigate
such risks. Overall, this work adheres to established academic ethical standards, balancing capability
advancement with responsible use, and aims to contribute to the development of trustworthy artificial
intelligence.

REPRODUCIBILITY

We have taken extensive measures to ensure the reproducibility of our work. All datasets used in
this study are publicly available benchmarks, including HotpotQA, MuSiQue, 2WikiMultiHopQA,
and Bamboogle. For retrieval, we employ both a fixed Wikipedia dump and the Google Search API,
and we describe the retrieval setup in detail to enable consistent replication. Implementation details,
such as model architectures (Qwen2.5-3B/7B base and instruct), retriever backbone (ES), training
hyperparameters, and evaluation metrics (Exact Match and F1), are fully documented in Section 4.1.
To further facilitate reproducibility, we will release the training scripts, evaluation pipelines, and
configuration files required to replicate all results reported in this paper. Random seeds and hardware
specifications will also be provided to minimize variance across runs. Our methodology does not rely
on proprietary or undisclosed components, ensuring that independent researchers can fully verify and
extend our findings.

LLM USAGE

We partially used large language models (LLMs) exclusively for non-scientific writing assistance,
specifically for language polishing, clarity improvement, and suggestions. No parts of the core
methodology, experiments, or results were generated by LLMs.
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A COST-EFFECTIVENESS OF INCREASING THE ERASURE-RETRY BUDGET
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Figure 5: Training efficiency under different Sub-Answer retry budgets. (a) Per-step wall-clock time
across PPO, GRPO and Sub-Answer Erasure under different retry budgets. (b) Model performance
over training steps. (¢c) Model performance over cumulative training time.
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Figure 6: Training efficiency under different Search retry budgets. (a) Per-step wall-clock time across
PPO, GRPO and Search Erasure under different retry budgets. (b) Model performance over training
steps. (c¢) Model performance over cumulative training time.
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Figure 7: Training efficiency under different Plan retry budgets. (a) Per-step wall-clock time across
PPO, GRPO and Plan Erasure under different retry budgets. (b) Model performance over training
steps. (c) Model performance over cumulative training time.

To address the concern regarding the computational overhead introduced by longer rollout horizons
and more frequent research queries, we conduct an additional experiment that systematically varies
the maximum number of allowed erasure retries for each module (subanswer, plan, and search). Since
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the erasure mechanism is implemented sequentially, the wall-clock time measured under identical
hardware directly reflects both GPU computation and external querying volume. This provides an
interpretable and implementation-faithful estimate of the cost of expanding the search-and-repair
budget. For each erasure module—SubAnswer-Erase, Plan-Erase, and Search-Erase—we train
the model while capping the erasure-retry budget at

ke {1,3,5}. 1)

All other training hyper-parameters, random seeds, dataset order, and hardware remain strictly
identical across runs. For each setting we record:

* Per-step wall-clock time (s/step) — directly reflecting computation + querying cost.
* Accuracy-per-step curve — training progress with respect to optimization steps.

* Accuracy-per-time curve — training progress normalized by cumulative runtime, measuring
practical training efficiency.

This design allows us to isolate the marginal benefit of higher erasure budgets while quantifying their
real-world cost. The experimental results show that applying erasure at different stages produces
significantly different effects, primarily reflecting the importance of each stage itself in chain-of-
thought reasoning. Applying the erasure mechanism to stages such as "Sub-Answer," which has
the greatest impact on the final answer, leads to the most substantial and noticeable improvement
in training efficiency. Although the computation time per step becomes longer due to the need for
rethinking and responding, the rate of improvement in training metrics per unit of computation time
actually increases compared to the original PPO.

Another noteworthy point is that, although GRPO is far more efficient per unit time than the original
PPO and PPO optimization algorithms enhanced with the erasure mechanism, its performance ceiling
is clearly lower.

B DyYNAMICS OF ERASURE EVENTS ACROSS MULTI-ROUND REASONING

To further understand how the ERL framework behaves during training, we conduct an additional
experiment that analyzes when and how often erasure events occur within a multi-hop reasoning
trajectory. Specifically, for each training step, we record the average number of retries triggered by
the Sub-Answer, Search and Plan modules under different maximum reasoning depths (i.e., number
of rounds). We evaluate four settings with round limits

Re{1,2,3,4}, (22)

corresponding to increasingly deeper multi-step decomposition strategies. We find that the average
frequency of erasing subanswers becomes more pronounced as reasoning deepens. This indicates

Sub-Answer Retried Frequency by Step Search&Plan Retried Frequency by Step

w
5
w
o

~
n

~
o

I
T

Retried times
Retried times
-

«

g
)

=
El
L

e
o

7 =— round-4 0sd ™ round-4
—— round-3 : —— round-3
| = round-2 round-2

e
5]

round-1 0.0{ — round-1

T T T T T T T T T ; r T r T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Step step

(a) Average frequency of Sub-Answer Erasures occur- (b) Average frequency of Search&Plan Erasures occur-
rence per round with max retry set by 3. rence per round with max retry set by 3.

Figure 8: Dynamics of erasure events across multi-hop reasoning rounds during training.
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that the later stages of the reasoning chain are more likely to produce incorrect subanswers and thus
require erasure and retry. Difficult and multistep problems further demonstrate that the accumulation
of earlier errors makes subsequent reasoning more challenging. The increased number of retries
triggered by such cases fully illustrates the value of the ERL mechanism. A similar phenomenon is
observed in the rewriting step during rounds 2, 3, and 4 of the Search process. In contrast, for Plan
which specifically includes an erasure mechanism only in the first round, the erasure phenomenon
tends to remain stable.

C SENSITIVITY OF ERL TO ERASURE TRIGGER THRESHOLDS

Sub-Answer Sensitive with Different Alpha Search Sensitive with Different Alpha Plan Sensitive with Different Beta

— alpha-03 — alpha-0.2 — beta-0.3
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alpha-0.1 035 alpha-0.1 beta-0.1
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(a) Model performance over train- (b) Model performance over train- (c) Model performance over train-
ing steps. The thresholds « to trig- ing steps. The thresholds « to trig- ing steps. The thresholds S to trig-
ger the Sub-Answer erasure are com- ger the Search erasure are compared ger the Plan erasure are compared
pared between {0.1,0.2,0.3} between {0.05,0.10,0.15,0.20}  between {0.1,0.2,0.3}

Figure 9: Model performance over training steps under different erasure trigger thresholds.

To address how sensitive ERL is to the choice of the erasure trigger thresholds, we conduct an
additional sensitivity analysis across the three core modules—Search, Plan, and Sub-Answer. Recall
that ERL triggers an erasure when the module-level confidence, consistency score, or constraint
satisfaction score falls below a predefined threshold. While the main experiments use a fixed
threshold for each module, the robustness of ERL under different threshold values remains an
important empirical question.

For each module independently (Search, Plan, Sub-Answer), we vary its erasure-trigger threshold
across a range of values:

a, B € {0.05,0.10,0.15,0.20, 0.30} (23)

During training, only the target module’s threshold is modified, while all other erasure mechanisms
are blocked. This allows isolating the effect of the threshold on ERL’s behavior. In the experiment, we
adjusted «v and 3 respectively and observed changes in model performance and erasure behavior under
different settings. We found that ERL does exhibit a certain sensitivity to these two parameters, but
this sensitivity is bounded and does not lead to significant fluctuations in performance. In other words,
appropriate threshold selection contributes notably to performance improvement, but even within
a certain range of threshold adjustments, ERL can still stably perform effective erasure operations,
thereby improving results. By analyzing experimental results under different values of « and 3, we
found that changes in performance are mainly concentrated in some extreme settings (e.g., excessively
high or low thresholds). In these extreme cases, the model may either over erase useful information
or insufficiently erase invalid information, leading to performance degradation. Overall, although
ERL has a certain sensitivity to threshold settings, adjustments within a reasonable range do not cause
severe negative impacts on the results, and our algorithm demonstrates strong robustness to these
parameters.
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D MAIN RESULT WITH CONFIDENCE INTERVALS

Method HotpotQA' 2Wikit MuSiQue’ Bamboogle" HotpotQA ™ 2Wiki™ MuSiQue” Bamboogle™
EMT FIT EMT FIT EMT FIT EMT FIT EM1 FIt EMT FIt EMT Fit EMT FIt

Qwen25-3b-Base/lnstruct

Search: ¢ 026820004 0355£0005 025040002 02980002 0078:£0002 0.138:0006  0.188:£0011 028120012 0255£0005 042940007 037760003 0447£0002 0.118£0006  0.186:£0006  0.274:£0011  0397£0013
030430001 040230001 02910002 035130001 011630004 018430005 02400004 03470003 03540002 04360004 03700002 04490002 012930005  0.197:£0004 03920007  0.513:£0.008
02760002 037420005 025540002 031150002 009120005  0.166+0004  0.168:£0009 02520010  0320£0007 041040006 038160009 0465£0011  0.131£0018 023140015 035520014 05130016
027550003 036320001 0250+0003 02910001 0.089:+0003 0.14630002 0.190:0006 03030005 0357+0004 04530006 035120007 044630009 011120004 0.I67H0003 042720008 05320011
031340006 041320004 032430017 036630015 012540007 019030011 024630013 035430015 03710008 04650011 04600011 052140014 01390008 02300010 04970015  0.627£0018

027340014 03620015 02780002 2 011940006 017740007 02520008 03510011 039240006 04920008 0.498£0006 056040000 0.142£0006 022760007 0493+0012  0.652£0016
032160000 041950010  0298£0008 03580009 010940009 0.171£0013 024740026 033320040  0366:£0017 04440019 039420019 04960023 01220014  0.204£0016  0.389£0033 05030041
032740003 043620002 0341£0004 039320002 0.182£0003 02710004 032240006 041720007 035140006 047340008 044120008  0.564:£0010 020140004  0.299£0007 05120011 0.65240017
034640002 045120001 0.320£0003 03860001 0.180:0.003 £0005 034140009 044920010 0396:£0007 047840007 04060010 0.501£0009 0.155+0006  0.243£0009 05200012 06440011
041240005 054620007 042850002  0500£0002 023420007 034450009 041420011 052950014 04360005 058230010 05770007 067940011 024150009 03620012 062550019 0.789+0022
ESearch-instruct 044860004 0.58050004 04160002 04990003 02330006 03360009 04420000 0.58540012 05160006 06140000  0.5220004 064150007 0.213+0.008 03130013 067130014 0.807+0018

Table 5: The main results. "{" indicates offline retrieval, and "«" indicates online retrieval.

We have incorporated statistical analysis of confidence intervals into the main experimental results.
Table [3] presents the experimental results with confidence intervals, helping to confirm that the
performance gains we report are significant and go beyond random noise.

E RELATED WORK

Recent research has increasingly explored reinforcement learning (RL) as a means to improve the
retrieval and reasoning capabilities of large language models (LLMs)Jin et al.| (2025b)); |[Sun et al.
(2025); 'Wang et al.|(2025); Zhao et al.|(2025a); |Chen et al.| (2025); Zhao et al.[(2025b)); /Wu et al.
(2025)); Hao et al.|(2025)); Zhang et al.|(2025a)); Zheng et al.|(2025));|Song et al.|(2025)); Ko et al.[(2025).
A key theme in this literature is the integration of retrieval into multi-step reasoning, often referred
to as search—-reinforcement learning. We summarize related work along three major dimensions:
coupling retrieval with reasoning, reward design for retrieval optimization, and dynamic or structured
retrieval strategies.

Retrieval-Reasoning Coupling Several approaches train LLMs to seamlessly integrate retrieval
into reasoning trajectories. Search-R1 Jin et al.| (2025bja) applies RL to enable models to au-
tonomously issue queries during multi-step reasoning, with iterative retrieval interactions guiding
trajectory refinement. R1-Searcher |Song et al.| (2025) introduces a two-stage training paradigm:
a retrieve reward first encourages correct execution of retrieval operations independent of final
answers, after which an answer reward incentivizes effective use of retrieved evidence to solve
problems. ReSearch |Chen et al.| (2025) explicitly regards search as part of the reasoning chain,
training LLMs to perform retrieval whenever necessary and incorporate results into subsequent steps.
DeepResearcher|Zheng et al.| (2025) pushes this line further by performing end-to-end training on
real webpages, showcasing advanced behaviors such as planning, cross-source verification, and
self-reflection.

Reward Design and Training Paradigms Another line of work develops specialized environments
and reward functions to guide retrieval. O2-Searcher constructs a localized search environment with
carefully designed rewards to address both open-domain and closed-domain tasks. ZeroSearch Sun
et al.|(2025) reduces training costs by simulating retrieval while maintaining comparable effectiveness
to real search engines. StepSearch Wang et al|(2025)) introduces fine-grained step-level rewards,
such as information gain and redundancy penalties, within PPO Schulman et al.| (2017)) training
to progressively refine search behaviors. MaskSearch |Wu et al.| (2025) augments pretraining with
retrieval-based masked prediction tasks, teaching models to leverage search tools to fill textual gaps
and thereby improving multi-hop QA. EvolveSearch [Zhang et al.| (2025a) integrates supervised
fine-tuning (SFT) with RL in an iterative self-evolution framework, continually improving multi-hop
retrieval without requiring annotated reasoning data.

Dynamic and Structured Retrieval Strategies Recent studies emphasize adaptive control over
retrieval behaviors and the exploitation of structured query patterns. R-Search|Zhao et al.| (2025a)
employs multi-reward RL to dynamically decide when to retrieve versus when to reason, while
integrating multi-turn results to enhance answers for knowledge- and logic-intensive tasks. Dy-
naSearcher |Hao et al.| (2025) leverages dynamic knowledge graphs and multi-reward RL to maintain
consistency in retrieval and improve output quality. ParallelSearch |Zhao et al.| (2025b) identifies
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decomposable query structures and executes multiple subqueries in parallel. HybridDeepSearcher Ko
et al.| (2025) combines parallel and sequential retrieval modes, selecting the most suitable strategy
based on problem characteristics. Finally, SSRL [Fan et al.|(2025) explores retrieval grounded in a
model’s internal knowledge base, thereby reducing dependence on external search engines.

F DATASETS

We selected four benchmark datasets designed based on multi-hop questions: HotpotQA |Yang et al.
(2018)), 2WikiMultiHopQA Ho et al.| (2020al), MusiqueTrivedi et al.|(2022a), and Bamboogle Press
et al.[(2022).

HotpotQAYang et al.|(2018): HotpotQA was introduced to address the limitations of earlier QA
datasets, which mostly focused on single-paragraph reasoning and lacked explicit supervision for
multi-hop reasoning. HotpotQA aimed to build a large-scale dataset requiring reasoning across
multiple documents, while also supporting explainable predictions. To achieve this, they crowd-
sourced over 112k question—answer pairs based on Wikipedia, ensuring that questions required
integrating information from more than one article. A key innovation was the collection of supporting
facts—sentence-level evidence for answers—allowing models not only to find the correct response
but also to explain it. Additionally, HotpotQA includes a novel class of comparison questions, which
require systems to compare two entities on shared properties such as dates or numerical values. The
dataset was split into train-easy (18,089), train-medium (56,814), train-hard (15,661), dev (7,405),
and two test sets (7,405 each: distractor and fullwiki).

2WikiMultiHopQA (2Wiki)Ho et al.[(2020a): The 2Wiki dataset is a large-scale multi-hop question
answering benchmark created from Wikipedia and Wikidata. It aims to evaluate reasoning by
requiring models to integrate information across multiple documents. Unlike earlier datasets, it
provides explicit evidence paths in the form of triples, which both enhance interpretability and allow
direct evaluation of reasoning skills. The construction process involved designing templates, applying
logical rules, and filtering to guarantee multi-hop reasoning. Four question types are included:
comparison, inference, compositional, and bridge-comparison, ensuring diversity and difficulty. In
total, the dataset contains 192,606 examples, split into 167,454 for training, 12,576 for development,
and 12,576 for testing. This scale makes it significantly larger than many prior multi-hop QA datasets.
Human performance remains much higher than model baselines, showing the dataset’s value as a
challenging benchmark for machine reasoning.

MusiqueTrivedi et al.| (2022b): The MuSiQue dataset was created to address the limitations of
existing multi-hop question answering benchmarks. Musique proposed a bottom-up construction
method: they carefully composed multi-hop questions from single-hop questions sourced from several
Wikipedia-based datasets. The dataset consists of two main variants: MuSiQue-Ans, containing
about 25,000 2—4 hop questions, and MuSiQue-Full, which doubles this size by adding contrastive
unanswerable questions, resulting in 50,000 samples. Specifically, MuSiQue-Ans is split into 19,938
training, 2,417 development, and 2,459 test questions, with balanced distributions across different
hop lengths. These features make MuSiQue a challenging and less “cheatable” benchmark, pushing
research toward genuine multi-hop reasoning.

BambooglePress et al.|(2022): The Bamboogle dataset was introduced to address the limitations of
existing question answering benchmarks, where many compositional questions cannot be answered
with a single Google query because the necessary information is dispersed across multiple sources.
Unlike prior datasets that often focus on single-hop fact retrieval, Bamboogle emphasizes multi-hop
factual reasoning. It requires models to integrate multiple entities and relations to arrive at the correct
answer. In terms of scale, the benchmark contains a test set of 125 questions, which are carefully
annotated to evaluate the model’s ability to identify and use intermediate entities (bridging objects)
during reasoning.
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G EXPERIMENT SETUPS

Our implementation builds upon Search-R1 Jin et al.| (2025b) and STEPSEARCHWang et al.| (2025),
with training performed using Verl Sheng et al.| (2024). We evaluate two model variants, Qwen-2.5-3B
and Qwen-2.5-7B |Qwen et al.| (2025). We use the 2018 Wikipedia(Wiki-18) [Karpukhin et al.| (2020b)
dump and ES5 Wang et al.| (2022)) as the knowledge base and retriever. For training, we utilize the
MuSiQue dataset processed through our training, while evaluation is conducted on the full test or
validation splits of 2Wiki, Bamboogle, HotpotQA, and MuSiQue. Both EM and F1 are reported as
evaluation metrics. Training runs for 500 steps in total. The learning rates are set to 5 x 10~ for the
policy model and 5 x 10~9 for the value model, with warm-up ratios of 0.285 and 0.015, respectively.
Experiments are executed across two nodes equipped with 16 H800 GPUs. We configure the total,
mini-batch, and micro-batch sizes as 512, 64, and 16. To improve memory efficiency, we apply Fully
Sharded Data Parallel (FSDP) with CPU offloading, fixing the GPU memory utilization ratio at 0.7.

For rollout sampling, we set both the temperature and top_p to 1.0. The KL-divergence regularization
coefficient (3) and clipping ratio are set to 1 x 1072 and 0.2, respectively.

H PROMPT FOR RESEARCH PLAN ON QUESTION ANSWERING

Template for ESEARCH.

You are an expert Al assistant with search engine access. When answering complex
questions, you need to decompose them into sub-questions and reason step by step.
For each sub-question: provide concise search terms between <search> and </search>;
the search results will be placed between and ; conduct
thorough analysis and reasoning in <observation> and </observation>; then output a
concise conclusion in <sub_answer> and </sub_answer>. If you find that all sub-
questions have been solved, you should directly provide the final answer inside <answer>
and </answer> without detailed illustrations. For example, <answer> and </answer>.

Question:{question}

Figure 10: LLM interacts with external search engines and provides answers to prompt templates.
The {question} will be replaced with the actual question content.

I INCORRECT FORM

Esearch errors can be broadly categorized into four types. First, premature observations occur when
the system concludes too quickly in the observation step without fully leveraging the available
evidence, as shown in Table @ Second, retrieval errors occur when the system fails to retrieve the
correct documents, often due to imprecise or poorly formulated queries, as shown in Table[I4] Third,
entity alignment or localization errors arise when the correct document is retrieved. Still, the model
fails to identify and ground the right entity within it, as shown in Table[I3] These error types are
the main impact of failures in retrieval, entity alignment, and observation, undermining multi-hop
question answering. In the actual training process, we observed that observation errors decrease
steadily with training steps, while retrieval errors also decline but at a much slower rate compared to
observation errors. This further reveals that the training is hindered by the limited capabilities of the
locally deployed search engine based on Wiki-18.
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J COMPARE WITH TRADITIONAL METHODS

Method HotpotQA 2Wiki MuSiQue Bamboogle

EM FI EM FI EM FI EM FI
Qwen2.5-3b-Base/Instruct
Direct Inference 0.167 0.214 0.263 0.308 0.014 0.095 0.038 0.099

CoT 0.037 0.099 0.016 0.094 0.009 0.067 0.179 0.234
IRCoT 0.077 0.135 0.137 0.197 0.058 0.141 0.221 0.305
Search-ol 0.204 0.287 0.230 0.293 0.047 0.126 0336 0.397
RAG 0.285 0366 0.192 0.271 0.089 0.148 0.303 0.364
SFT 0.197 0.252 0.158 0.243 0.077 0.139 0.100 0.181
R1-base 0239 0294 0262 0317 0.070 0.127 0.246 0.303
R1-instruct 0.194 0279 0239 0.327 0.085 0.151 0.204 0.297

Esearch-base™ 0415 0548 0428 0499 0.236 0.345 0414 0.529
Esearch-instruct™  0.447 0.587 0415 0500 0232 0.339 0.446 0.587

Qwen2.5-7b-Base/Instruct
Direct Inference 0201 0248 0.238 0.319 0.019 0.106 0.107 0.191

CoT 0.079 0.165 0.127 0.184 0.035 0.094 0.214 0.299
IRCoT 0.121 0206 0.133 0.218 0.055 0.143 0.237 0.296
Search-ol 0206 0.257 0.189 0.246 0.045 0.132 0.281 0.366
RAG 0317 0375 0221 0307 0.084 0.144 0273 0.361
SFT 0.233 0287 0277 0328 0.080 0.138 0.124 0.178
R1-base 0212 0301 0229 0315 0.066 0.157 0277 0.335
R1-instruct 0254 0314 0304 0361 0.060 0.146 0.266 0.329

Esearch-base™ 0434 0.564 0436 0.513 0.244 0.371 0.534 0.656
Esearch-instruct®  0.442 0.576 0419 0.494 0241 0.358 0458 0.612

Table 6: Comparison of ESEARCH with traditional non-reinforcement learning methods on four
multi-hop Q&A datasets, reported with Word-level F1 and Exact Match (EM) scores using Wiki-18
as search engine. The best results are highlighted in bold.

K NUMBER OF RETRIEVED K DOCUMENTS

Table[7]shows the effect of varying the number of top-K on the 3B model. A single document (k = 1)
leads to the lowest performance across all datasets, indicating insufficient evidence for multi-hop
reasoning. Three documents (k = 3) yield the most reliable improvements and deliver the strongest
overall results. Increasing the retrieval to five (k = 5) produces different outcomes: in some cases,
such as Bamboogle, performance is close to k£ = 3, while in others it is slightly degraded. Therefore,
excessive retrieval may introduce irrelevant or distracting information, bring more confusion to the
model. When k£ = 3 indicates the most robust choice, while £ = 5 can offer marginal gains only in
particular datasets.

HotpotQA 2Wiki MuSiQue Bamboogle

EM FI EM FI EM FI EM FI
Qwen2.5-3b-Base

Top-K

1 0379 0.508 0.415 0481 0.206 0.332 0.329 0.447
3 0415 0.548 0.428 0.499 0.236 0.345 0414 0.529
5 0389 0518 0.406 0.491 0.245 0.343 0424 0.573

" Qwen25-3b-Instruct T
1 0.409 0.546 0364 0.457 0.192 0316 0.373 0.496
3 0.447 0.587 0.415 0500 0.232 0339 0446 0.587
5 0.455 0.603 0374 0469 0.208 0.304 0.448 0.603

Table 7: Impact of the Number of Retrieved Documents (Top-k) on Answer Accuracy. (ESEARCH on
Qwen2.5-3B with updated results). Bold indicates the best performance.
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L CASE STUDY

Case study for bad planning recovery in 2-hops question during training

Question: Who in the city where Chopin grew up has the power of legislative action?

Ground Truth: ["Warsaw City Council’]
Sub-answers: [’Warsaw, Poland’,”Warsaw City Council’]

ERL:
To answer this question, we need to break it down into sub-questions:
1. Identify the city where Chopin was born.
2. Determine which organization has legislative power in that city.
Let’s address these sub-questions one by one.
<search> Chopin birthplace city </search>

Doc 1<## Title: "Frédéric Chopin" ##> Frédéric Francois Chopin was born on
1 March 1810 in Zelazowa Wola, a village in the Duchy of Warsaw ... moved to Warsaw
when he was seven months old ...
Doc 2<## Title: "Chopin family" ##> The Chopin family moved to Warsaw in October 1810,
when Frédéric was seven months old ... grew up in Warsaw, attending school there ...
Doc 3<## Title: "Early life of Chopin" ##> Though born in Zelazowa Wola, Chopin was
raised in Warsaw from infancy and considered Warsaw his hometown ...
<observation> The city where Chopin was born is Zelazowa Wola, a village in the Duchy of
Warsaw.</observation>
<sub_answer> Warsaw, Poland </sub_answer>

Sub-answer is incorrect! It will trigger an erasure and regeneration of obervation!
Erasure and Regeneration:
<observation> Although Chopin was born in Zelazowa Wola, he grew up in Warsaw, which
he considered his hometown. </observation>
<sub_answer> Zelazowa Wola </sub_answer>
Now that we know Chopin grew up in Warsaw, we can move on to the second sub-question.
<search> legislative power Warsaw Poland government </search>
Doc 1<#i# Title: "Warsaw City Council" ##> Warsaw City Council is a

unicameral governing body of the city of Warsaw, the capital of Poland. It consists of 60
councilors elected in free elections for a four-year term and has legislative powers over local
matters.
Doc 2<## Title: "Government of Warsaw" ##> Legislative power in Warsaw is vested in a
unicameral Warsaw City Council ("Rada Miasta"), which comprises 60 members elected for
four-year terms ...
Doc 3<## Title: "Warsaw" ##> The city council of Warsaw exercises legislative authority
within the city limits, passing local ordinances and budget decisions ...
<observation> The Warsaw City Council has legislative power in Warsaw. </observation>
<sub_answer> Warsaw City Council </sub_answer>
The organization that has legislative power in the city where Chopin grew up (Warsaw,
Poland) is <answer> Warsaw City Council </answer>

Figure 11: Case study demonstrating error recovery where initial planning focused on birthplace
rather than where Chopin grew up, but observations corrected the understanding to identify Warsaw
as his hometown.
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Case study for Esearch in 2-hops question

Question: Who is the spouse of the person who won the popular vote in the 2000 election?

Ground Truth: [’ Tipper Gore’]
Sub-answers: [’ Al Gore’, *Tipper Gore’]

ERL:

To answer this question, we need to follow these steps:

1. Identify the person who won the electoral vote in the 2000 U.S. presidential election.
2. Then find out who that person’s spouse is.

<search> Winner of electoral vote in the 2000 election </search>

No useful information related are retrieved!

Plan is incorrect! It will trigger an erasure and regeneration of plan!
Erasure and Regeneration:
To answer this question, we need to break it down into sub-questions:
1. Identify the person who won the popular vote in the 2000 election.
2. Determine the spouse of that person. Let’s address these sub-questions one by one.
<search> popular vote in the 2000 election (Prussia)? </search>
Doc 1<## Title: "2000 United States presidential election" ##>The 2000
United States presidential election was the 54th quadrennial presidential election...
Doc 2<## Title: "2000 United States presidential election” ##> slate of electors on December
12, should the dispu...
Doc 3<## Title: "2000 United States elections" ##> The 2000 United States elections were
held on ...

<observation> The person who won the popular vote in the 2000 election was Al
Gore.</observation>
<sub_answer>Al Gore</sub_answer>
Now that we know the person who won the popular vote in the 2000 election, we can move
on to the second sub-question.
<search> spouse of Al Gore</search>

Doc 1<# Title: "Pauline LaFon Gore" ##> Pauline LaFon Gore Pauline
LaFon Gore (October 6, 1912 — December 15, 2004) was the mother of former United States
Vice President Al Gore and the wife of ... Doc 2<## Title: "Tipper Gore" ##> Tipper Gore
Mary Elizabeth ""Tipper"" Gore (""née"" Aitcheson; born August 19, 1948) is an American
social issues advocate who was Second Lady of the United States from 1993 to 2001, and
the wife of Al Gore, the 45th Vice ... Doc 3<## Title: "Tipper Gore" ##> former editor of
""National Geographic"". Tipper Gore is the author of a number of books including: She has
also contributed to the following books: ...</information>

<observation> Doc 3 clearly mentioned that the spouse of Al Gore is Tipper
Gore</observation>

<sub_answer>Tipper Gore</sub_answer>

Therefore, the spouse of the person who won the popular vote in the 2000 election is<answer>
Tipper Gore </answer>

Figure 12: Step-by-step reasoning for a 2-hop question identifying the spouse of the winner of the
popular vote in the 2000 U.S. presidential election. The example demonstrates how breaking the
problem into sub-questions and using evidence from multiple sources leads to the correct answer
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Case study for Esearch in 2-hops question (with incorrect observation)

Question: Who wrote “The Road to City A”, with City A being the location where KFAB
broadcasts?

Ground Truth: [’Robert Ludlum’]
Sub-answers: [’Omaha’, ’Robert Ludlum’]

Solution:
To answer this question, we need to break it down into sub-questions:
1. Identify where City A is, where KFAB broadcasts.
2. Determine who wrote “The Road to City A” with City A being the location identified
above.
Let’s address these step by step:
<search> KFAB broadcasts </search>
Doc 1<## Title: KFAB ##> KFAB (1110 AM) is a 50,000 watt clear channel
news and talk radio station licensed to Omaha, Nebraska...

<observation> KFAB broadcasts in Omaha, Nebraska.</observation>
<sub_answer>Omaha, Nebraska</sub_answer>
Now that we know City A, we move to the actor:
<search> The Road to Omaha actor </search>

Doc 1<## Title: KFAB ##> ... (no relevant info about the book or author)
Doc 2<## Title: Paul Newman ##> Paul Newman was an American actor, film director, and
philanthropist, known for his roles in classic films such as...

Search is incorrect! It will trigger an erasure and regeneration of Search!
Erasure and Regeneration:
<search> The Road to Omaha author </search>
Doc 1<## Title: KFAB ##> ... (no relevant info about the book or author)
Doc 2<#i# Title: Robert Ludlum ##> Robert Ludlum was an American author of 27 thriller
novels, best known as the creator of Jason Bourne from the original The Bourne Trilogy...

<observation> Based on observation, Doc 2 has the correct answer, Robert Lud-
lum</observation>

<sub_answer>Robert Ludlum </sub_answer>

Based on the analysis, the writer of “The Road to Omaha” is <answer> Robert Ludlum
</answer>

Figure 13: Esearch makes an incorrect observation: although the first hop (KFAB — Omaha) is
correct, the retrieval step for the author did not return documents mentioning Robert Ludlum. Lacking
the correct evidence, the system hallucinates “Jack Elliott” as the author, yielding a wrong final
answer.

23



Under review as a conference paper at ICLR 2026

Case study for Esearch in 2-hops question (with incorrect retrieval)

Question: Who released the Fantasy L.and Tour 2004 album, performed live in the same city
where Alchip is headquartered?

Ground Truth: [’S.H.E’]
Sub-answers: ['Taipei’, ’S.H.E’]

Solution:
To answer this question, we need to break it down into sub-questions:
1. Identify the city where Alchip is headquartered.
2. Determine which performer released the Fantasy Land Tour 2004 album and performed it
live in that city.
Let’s address each sub-question:
<search> Alchip headquarters city </search>
Doc 1<## Title: Alchip ##> Alchip is a fabless semiconductor company
founded in 2003 and headquartered in Taipei, Taiwan...

<observation> Alchip is headquartered in Taipei, Taiwan.</observation>
<sub_answer>Taipei</sub_answer>
Now that we know the city, we move on to the performer:
<search> performer who released the Fantasy Land Tour 2004 album and performed in Taipei
</search>

Doc 1<## Title: J1 World Tour ##> J1 World Tour was the debut concert tour
by Taiwanese singer Jolin Tsai...
Doc 2<## Title: Play World Tour ##> Play World Tour was the fourth concert tour by Jolin
Tsai...
Doc 3<## Title: Castle (Jolin Tsai album) ##> Castle is the sixth studio album by Jolin Tsai,
released in 2004...

<observation> The performer is Jolin Tsai (INCORRECT).</observation>
<sub_answer>Jolin Tsai</sub_answer>

Based on the analysis, the performer who released the Fantasy Land Tour 2004 album,
recorded live in Taipei, is <answer> Jolin Tsai INCORRECT) </answer>

Figure 14: Esearch makes an incorrect entity alignment: although the retrieval step surfaced the
correct document mentioning Fantasy Land Tour 2004 by S.H.E, the system failed to align the entity
properly and instead associated the album with Jolin Tsai. This shows a case where the key evidence
was present but reasoning and entity grounding went wrong, leading to a misleading yet internally
consistent answer.
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Case study for Esearch in 2-hops question (with incorrect entity alignment)

Question: Banir is located in which country, and in what year did the country achieve
unification?

Ground Truth: ["1963°]
Sub-answers: [’Malaysia’, *1963’]

Solution:
To answer this question, we need to break it down into sub-questions:
1. Identify the country Banir is located in.
2. Determine the year of the country’s unification.
Let’s address each sub-question:
<search> Banir location </search>

Doc 1<## Title: Banior ##> Banior is a village and gram panchayat in Nalhati
I Block in Rampurhat subdivision of Birbhum District in the Indian state of West Bengal...
Doc 2<#i Title: Banagher ##> Banagher is a town in Republic of Ireland, located in the
midlands, on the western edge of County Offaly in the province of Leinster, on the banks of
the River Shannon...
Doc 3<## Title: Banhpur ##> Banhpur is a village in Bulandshahr District, Uttar Pradesh,
India. It is situated near Kuchesar Fort...

<observation> Banir is located in Ireland (INCORRECT).</observation>
<sub_answer>Ireland</sub_answer>

Now that we know Banir is in Ireland, we need to determine the year of Ireland’s unification:
<search> Ireland unification year </search>

Doc 1<## Title: "United Ireland" ##> United Ireland refers to the proposition
that the whole of Ireland should be a single sovereign state... Partition since May 1921...
Doc 2<## Title: "Partition of Ireland" ##> The partition of Ireland divided the island into
Northern Ireland and Southern Ireland on 3 May 1921...
Doc 3<## Title: "Irish Free State" ##> The Irish Free State was established in 1922 under the
Anglo-Irish Treaty...

<observation> Ireland was united in 1922 (INCORRECT).</observation>
<sub_answer>1922</sub_answer>

Based on the analysis, the year of the country Banir is located in (Ireland) happening
unification is <answer> 1922 (INCORRECT) </answer>

Figure 15: Esearch also produces an erroneous observation reasoning chain: Banir was incorrectly
matched to Banagher (Because the candidate document doesn’t contain the target answer, the model
makes a close spelling error and misinterprets "Banagher" as Banir) instead of Banir (Malaysia),
leading to the wrong unification year (1922 instead of 1963).
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Case study for Esearch in 3-hops question

Question: Who established the first committee of correspondence in 1772 in the capital of
the state where Wellesley College is located, and why?

Ground Truth: [’Samuel Adams’]
Sub-answers: [’Massachusetts’, ’Boston’, ’Samuel Adams’]

ERL:

To answer this question, we need to break it down into sub-questions:

1. Identify the state where Wellesley College is located.

2. Determine the capital of that state.

3. Find out who established the first committee of correspondence in 1772 in that capital.
4. Understand the reason for establishing the committee.

Let’s address each sub-question:

<search> Wellesley College location </search>

Doc 1<#i# Title: "Wellesley, Massachusetts" ##> Wellesley is a town in
Norfolk County, Massachusetts... It is best known as the home of Wellesley College...
Doc 2<## Title: "Wellesley College" ##> Wellesley College is a private women’s liberal arts
college located west of Boston in the town of Wellesley, Massachusetts...

<observation> Wellesley College is located in the state of Massachusetts.</observation>
<sub_answer> Massachusetts </sub_answer>

Now we know the state, we can find the capital:
<search> capital of Massachusetts, United States </search>
Doc 1<# Title: Massachusetts ##> Boston is the state capital and largest city
in Massachusetts...
Doc 2<## Title: Massachusetts ##> The capital of Massachusetts is Boston...

<observation> The capital of Massachusetts is Boston.</observation>
<sub_answer> Boston </sub_answer>

Next, we need to find out who established the first committee of correspondence in 1772 in
Boston and why:
<search> first committee of correspondence Boston 1772 established by </search>

Doc 3<## Title: "Committees of correspondence" ##> In Massachusetts, in
November 1772, Samuel Adams and Dr. Joseph Warren formed a committee... in relation to
the recent British decision to have the salaries of the royal governor and judges be paid by the
Crown rather than the colonial assembly...

<observation> Samuel Adams established the first committee of correspondence in Boston in
1772.</observation>
<sub_answer> Samuel Adams </sub_answer>

The reason for establishing the committee was to rally opposition and organize resistance
against British reforms, particularly the Crown paying governors and judges directly, which
undermined colonial self-governance.

Therefore, the person who established the first committee of correspondence in 1772 in
Boston, the capital of Massachusetts, was <answer> Samuel Adams </answer>

Figure 16: Case study showing step-by-step reasoning with sub-questions leading to the identification
of Samuel Adams as the founder of the first committee of correspondence in 1772 in Boston.
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Case study for Esearch on 3-hops question

Question: What is the weekly publication in Jeanne Flanagan’s birthplace that is issued by
the school attended by the author of "America-Lite: How Imperial Academia Dismantled
Our Culture"?

Ground Truth: [’Yale Herald’]
Sub-answers: [’David Gelernter’, ’Yale University’, "New Haven’, *Yale Herald’]

Solution:
To answer this question, we need to break it down into sub-questions:
1. Identify the author of the book "America-Lite: How Imperial Academia Dismantled Our
Culture".
2. Determine the school attended by this author.
3. Find the weekly publication in Jeanne Flanagan’s birthplace that is issued by the school
identified in step 2.
Let’s address each sub-question:
<search> author of the book "America-Lite: How Imperial Academia Dismantled Our
Culture" </search>

Doc 1<## Title: America-Lite ##> America-Lite America-Lite: How Imperial
Academia Dismantled Our Culture (and Ushered in the Obamacrats) is a 2012 book by David
Gelernter, published by Encounter Books...

<observation> The author of the book "America-Lite: How Imperial Academia Dismantled
Our Culture" is David Gelernter.</observation>
<sub_answer>David Gelernter</sub_answer>
Now that we know the author, we need to find out which school he attended:
<search> school attended by David Gelernter </search>

Doc 1<## Title: "David Gelernter" ##> patriotism and the traditional family,
writing "Gelernter is Jewish, and it is not likely that a non-Jew would airily argue that
obnoxious leftist Jews have taken over elite higher education..."

<observation> David Gelernter attended Yale University.</observation>

<sub_answer>Yale University</sub_answer>

Finally, we need to find the weekly publication in Jeanne Flanagan’s birthplace (which is

Boston, Massachusetts) issued by Yale University:

<search> weekly publication in Boston, Massachusetts issued by Yale University </search>
Doc 1<## Title: "The Daily Campus" ##> The Daily Campus The Daily

Campus, founded in 1896, is a student-run newspaper at the University of Connecticut that

has a circulation run of 10,000 copies weekdays during the school year...

<observation> The weekly publication in Boston, Massachusetts issued by Yale University is
The Yale Herald.</observation>

<sub_answer>The Yale Herald</sub_answer>

Based on the analysis, the weekly publication in Jeanne Flanagan’s birthplace (Boston,
Massachusetts) that is issued by the school attended by the author of "America-Lite:
How Imperial Academia Dismantled Our Culture" (Yale University) is <answer>Yale
Herald</answer>

Figure 17: Complex multi-step reasoning requiring identification of author, educational background,
and geographic publication details.
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Case study for Esearch in 4-hops question

Question: The director of "The Mystic Masseur" was born in a city that is in the same
country as Kattalai, a city known for its famous temple. In which state of India is Kattalai
located?

Ground Truth: ["Tamil Nadu’]
Sub-answers: [’Ismail Merchant’, ’Bombay’, ’India’, ’Tamil Nadu’]

Solution:
To answer this question, we need to break it down into sub-questions:
1. Identify the director of The Mystic Masseur.
2. Determine the country where the director was born.
3. Find out in which state Kattalai, a city, is located in that country.
Let’s address each sub-question:
<search> director of The Mystic Masseur </search>
Doc 1<## Title: "The Mystic Masseur" ##> The Mystic Masseur The Mystic
Masseur is a 2001 Merchant Ivory film based on the novel of the same name by V. S. Naipaul.
It is one of relatively few films directed by Ismail Merchant, who is better known as the
producer in the Merchant Ivory partnership...

<observation> The director of The Mystic Masseur is Ismail Merchant.</observation>
<sub_answer>Ismail Merchant</sub_answer>
Now we know the director, we need to find out in which country he was born:
<search> Ismail Merchant birth country </search>

Doc 1<## Title: "Ismail Merchant" ##> Ismail Merchant Ismail Merchant (25
December 1936 — 25 May 2005) was an Indian-born film producer and director. He worked
for many years in collaboration with Merchant Ivory Productions... Born Ismail Noor Md.
Abdul Rahman in Bombay (Mumbai) on Christmas Day 1936...

<observation> Ismail Merchant was born in India.</observation>
<sub_answer>India</sub_answer>
Finally, we need to find out in which state Kattalai, a city, is located in India:
<search> Kattalai, India state </search>

Doc 1<## Title: "Kattalai Amman Temple" ##> Kattalai Amman Temple
Kattalai Amman Temple is a Hindu Temple situated in Kanyakumari District at the southern
part of Tamil Nadu, India. The temple is located in the village, surrounded by mountains and
canals...

<observation> Kattalai is in the state of Tamil Nadu, India.</observation>
<sub_answer>Tamil Nadu, India</sub_answer>

Based on the analysis, the state in India where Kattalai, a city, is located is <answer> Tamil
Nadu, India </answer>

Figure 18: Esearch can efficiently handle a 4-hops reasoning question: after gathering relevant
information across multiple hops, the model completes the reasoning process in just three search
queries.
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