

000 001 002 003 004 005 ERASE TO IMPROVE: ERASABLE REINFORCEMENT 006 LEARNING FOR SEARCH-AUGMENTED LLMS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025

ABSTRACT

026 While search-augmented large language models (LLMs) exhibit impressive ca-
027 pabilities, their reliability in complex multi-hop reasoning remains limited. This
028 limitation arises from three fundamental challenges: decomposition errors, where
029 tasks are incorrectly broken down; retrieval missing, where key evidence fails
030 to be retrieved; and reasoning errors, where flawed logic propagates through the
031 reasoning chain. A single failure in any of these stages can derail the final answer.
032 We propose Erasable Reinforcement Learning (ERL), a novel framework that trans-
033 forms fragile reasoning into a robust process. ERL explicitly identifies faulty steps,
034 erases them, and regenerates reasoning in place, preventing defective logic from
035 propagating through the reasoning chain. This targeted correction mechanism turns
036 brittle reasoning into a more resilient process. Models trained with ERL, termed
037 ESearch, achieve substantial improvements on HotpotQA, MuSiQue, 2Wiki, and
038 Bamboogle, with the 3B model achieving +8.48% EM and +11.56% F1, and the 7B
039 model achieving +5.38% EM and +7.22% F1 over previous state-of-the-art(SOTA)
040 results. These findings suggest that erasable reinforcement learning provides a
041 powerful paradigm shift for robust multi-step reasoning in LLMs.
042
043

1 INTRODUCTION

044 Large language models (LLMs) have produced remarkable advances across a broad spectrum of
045 natural language processing tasks, including question answering, reasoning, and code generation
046 (OpenAI, 2025; Meta AI, 2025; Yang et al., 2025). Notwithstanding these advances, inherent
047 limitations in their static pretraining corpora leave them susceptible to hallucination and factual
048 error, especially in knowledge-intensive domains and in tasks that require reasoning over multiple
049 steps (Huang et al., 2025a; 2024). Even the most advanced models tailored for rigorous reasoning,
050 such as OpenAI o1 (Jaech et al., 2024), DeepSeek R1 (Guo et al., 2025) and Kimi k2 (Team et al.,
051 2025), still face substantial difficulty in reliably solving complex multi-hop problems that demand
052 precise decomposition, dependable retrieval, and long-term logical consistency (Xi et al., 2025).
053 To address these difficulties, retrieval-augmented generation (RAG) has emerged as a dominant
054 paradigm, enriching large language models with external knowledge sources (Lewis et al., 2020; Gao
055 et al., 2023). Over time, RAG has evolved into sophisticated research agents that integrate search
056 and reasoning within an autonomous loop. Systems such as OpenAI Deep Research (OpenAI, 2025),
057 Gemini Deep Research (DeepMind, 2025), and Perplexity Deep Research (AI, 2025) mark significant
058 milestones in this trajectory. Reinforcement learning (RL) (Li, 2017) has emerged as a central force
059 driving recent breakthroughs in the field of search-augmented agents. An increasing number of studies
060 explore leveraging RL to guide decomposition, retrieval, and reasoning (Jin et al., 2025b; Song et al.,
061 2025; Zhao et al., 2025b). These approaches employ reward signals to improve sub-query generation,
062 evidence retrieval, and reasoning chains, achieving substantial gains on challenging benchmarks such
063 as HotpotQA (Yang et al., 2018), MuSiQue (Trivedi et al., 2022a), and 2WikiMultiHopQA (Ho et al.,
064 2020b). Despite these impressive advances, current systems remain highly brittle. They can reliably
065 answer simple factual queries, yet even minor errors in decomposition, retrieval, or reasoning can
066 compromise an entire multi-hop trajectory (Huang et al., 2025b; Li et al., 2025). In contrast, humans
067 rarely fail so catastrophically. When we recognize a flaw in a reasoning step, we pause, correct the
068 mistake, and continue from the corrected point. This stark contrast highlights a critical limitation of
069 current search-augmented RL systems: they lack the robust self-correction mechanisms that underlie
070 human reasoning.
071
072

054 Through extensive empirical analysis of current RL-based search agents, we uncover three critical
 055 failure modes that fundamentally limit their capabilities:
 056

- 057 • **Decomposition Errors:** Incorrect subqueries derail the retrieval process entirely, preventing
 058 downstream steps from ever accessing the crucial evidence needed to answer the question.
- 059 • **Retrieval missing:** Retrieved documents that are irrelevant even with appropriate subqueries due
 060 to noise, ambiguity, or incomplete coverage, causing subsequent reasoning to fail.
- 061 • **Reasoning Errors:** LLMs may make mistakes when integrating retrieved information, and these
 062 errors accumulate across steps, systematically undermining the reliability of the final answer.
 063

064 Deeper structural flaws significantly exacerbate these issues. Existing reinforcement learning agents
 065 typically treat the entire search and reasoning trajectory as a single Markov Decision Process (MDP)
 066 (Sutton et al., 1998; Kaelbling et al., 1996), optimizing only via sparse terminal rewards (Jin et al.,
 067 2025b). This monolithic design is fundamentally brittle: a single misstep can compromise the entire
 068 trajectory. As reasoning chains extend (Zhang et al., 2025b; Jin et al., 2025a), this fragility intensifies,
 069 causing performance to degrade precipitously beyond ten steps (Gao et al., 2025).

070 Overcoming these limitations requires a radical paradigm shift: agents must emulate human-like
 071 self-correction by detecting errors, discarding flawed steps, and resuming reasoning from the most
 072 recently corrected state. Analogous to a skilled writer using an eraser to remove a single mistaken
 073 word without discarding the entire manuscript. We introduce Erasable Reinforcement Learning
 074 (ERL), a novel framework that embodies this principle. ERL enables search-augmented LLM
 075 agents to identify errors in decomposition, retrieval, or reasoning precisely, selectively erase the
 076 faulty segments, and regenerate from the last correct state. This fine-grained corrective mechanism
 077 transforms brittle trajectories into resilient ones, allowing agents to recover gracefully from mistakes
 078 rather than collapsing entirely. We conduct extensive evaluations on HotpotQA (Yang et al., 2018),
 079 MuSiQue (Trivedi et al., 2022a), 2WikiMultiHopQA (Ho et al., 2020b), and Bamboogle (Press
 080 et al., 2022). The results show that models trained with ERL not only surpass strong baselines and
 081 state-of-the-art (SOTA) methods but also consistently improve performance; the 3B model achieves
 082 gains of +8.48% EM and +11.56% F1, while the 7B model achieves +5.38% EM and +7.22% F1.
 083

The main contributions are summarized as follows:
 084

- 085 • Systematic identification of three critical failure modes in search-augmented LLMs for complex
 086 multi-hop reasoning.
- 087 • Introduction of ERL, a framework for fine-grained error detection, erasure, and regeneration that
 088 substantially improves reasoning robustness.
- 089 • Establishment of new SOTA results on multiple multi-hop QA benchmarks, validating the effec-
 090 tiveness and generality of ERL.

091 2 PRELIMINARY

093 Previous work often models complex multi-hop question answering, combining search and reasoning,
 094 as a MDP characterized by (Chen et al., 2024):
 095

$$(S, A, P, R, \gamma). \quad (1)$$

097 In this framework, the state s_t represents the reasoning trajectory up to time t , providing context for
 098 subsequent actions (Broekens et al., 2010). We define the state s_t as:
 099

$$s_t = (Q, H_t) = (Q, (a_0, e_0), (a_1, e_1), \dots, (a_{t-1}, e_{t-1})), \quad (2)$$

101 where Q is the original question and H_t is the sequence of interactions up to time t . Each action
 102 $a_i \in \mathcal{A}$ represents reasoning or retrieval, and each environment e_i corresponds to the evidence
 103 information resulting from a_i by calling the tools. The agent's action space $\mathcal{A} = \{o, r, q\}$ includes
 104 atomic operations governing reasoning, Searching and Answering, while the tool corresponding to
 105 the environment will provide searched documents:

- 106 • Search Query (q_t): Produces a query q_t to retrieve relevant evidence e_t .
 107 • Observation (o_t): Reasoning an observation o_t of the evidence e_t and previous status s_{t-1}

108 • Sub Answer (r_t): Yield an intermediate phased conclusion r_t after observation o_t .
 109 • Finish(answer): Produces the final answer A_{final} when sufficient evidence is gathered.
 110

111 The state transition function $\mathcal{P}(s_{t+1} \mid s_t, a_t)$ (Huang, 2022) is driven by two mechanisms: the
 112 stochastic generation by the LLM and the search results from external search engines. For the
 113 convenience of representation and to fit the complex answering mechanism of multi-hop QA, each
 114 action a_t is defined as a fixed and ordered sequence of unit actions of $\langle (o_t, r_t), q_t \rangle$ (no observation
 115 or response to previous evidence in the first round.) for intermediate solving process, or $\langle A_{\text{final}} \rangle$
 116 for the answer to finish. All the action and action sequence is sampled from the LLM’s conditional
 117 distribution:

$$a_t = \text{Act}(s_t) \sim P_\theta(\cdot \mid s_t). \quad (3)$$

118 For the Search Query (q_t) issued by the agent, the environment e_t is the information evidence retrieved
 119 from the search tools:

$$e_t = \text{Search}(q_t). \quad (4)$$

120 The next state s_{t+1} is formed by appending the combination of the new action sequence and environment
 121 to the trajectory H_t :

$$122 s_{t+1} = (Q, H_t \oplus (a_t, e_t)), \quad a_t \in \begin{cases} \langle (o_t, r_t), q_t \rangle, & \text{intermediate step,} \\ \langle A_{\text{final}} \rangle, & \text{final answer.} \end{cases} \quad (5)$$

123 In multi-hop question answering, the reward function \mathcal{R} (Jin et al., 2025b; Song et al., 2025) is
 124 typically sparse, rewarding the agent only upon completing the reasoning trajectory and producing
 125 the final answer A_{final} . The reward is computed by comparing A_{final} with the reference A_{gold} using
 126 metrics like exact match (EM) or F1 score:

$$127 \mathcal{R}(s_t, a_t) = \begin{cases} \text{EVAL}(A_{\text{final}}, A_{\text{gold}}) & \text{if } a_t \text{ is } \langle A_{\text{final}} \rangle, \\ 0 & \text{otherwise.} \end{cases} \quad (6)$$

128 The agent optimizes the expected terminal reward via policy gradient methods:

$$129 J(\phi) = \mathbb{E}_{\tau \sim \pi_\phi} [\mathcal{R}(\tau)], \quad (7)$$

130 where $\tau = (s_0, a_0, e_0, \dots, s_T)$ is the reasoning trajectory. However, treating the entire reasoning
 131 trajectory as a monolithic sequence for optimization introduces a structural vulnerability, known as
 132 catastrophic fragility. In a reasoning trajectory $\tau = (s_0, a_0, e_0, s_1, \dots, a_{T-1}, e_{T-1}, s_T)$, any failure
 133 at a single step can disrupt the entire process, leading to an erroneous final outcome. For instance, an
 134 error at step $t < T$ can result from:

135 • **Decomposition Errors:** The `GenerateQuery` action generates a deviated sub-query q_t .
 136 • **Retrieval Omissions:** The `Search` action fails to retrieve the relevant evidence e_t .
 137 • **Reasoning Errors:** The `Synthesize` action produces an incorrect intermediate conclusion r_t .

138 The error at s_{t+1} contaminates all subsequent states (s_{t+2}, \dots, s_T) , as each following action
 139 (a_{t+1}, \dots, a_{T-1}) depends on this contaminated history. This resembles a domino effect, where
 140 the failure of a single link leads to an entire system collapse. This structural fragility is the core
 141 reason for the unreliability of current search-augmented LLMs when tackling complex, multi-hop
 142 problems.

143 3 METHOD

144 3.1 REINFORCEMENT LEARNING WITH A SEARCH ENGINE

145 We extend reinforcement learning to incorporate search engines into policy optimization. The
 146 objective is

$$147 \max_{\pi_\theta} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot \mid x; \mathcal{R})} [r_\phi(x, y)] - \beta D_{\text{KL}}[\pi_\theta(y \mid x; \mathcal{R}) \parallel \pi_{\text{ref}}(y \mid x; \mathcal{R})],$$

148 where π_θ is the policy, π_{ref} the reference model, and r_ϕ the reward (Jin et al., 2025b). Inputs x contain
 149 both natural language and retrieved results, enabling π_θ to learn retrieval-reasoning integration beyond

prompt-based methods. For training we adopt Proximal Policy Optimization (PPO) (Schulman et al., 2017), yielding

$$J_{\text{PPO}}(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot | x; \mathcal{R})} \left[\frac{1}{L} \sum_{t=1}^L I(y_t) \min \left(\frac{\pi_\theta(y_t | y_{<t}, x; \mathcal{R})}{\pi_{\text{old}}(y_t | y_{<t}, x; \mathcal{R})} A_t, \right. \right. \\ \left. \left. \text{clip} \left(\frac{\pi_\theta(y_t | y_{<t}, x; \mathcal{R})}{\pi_{\text{old}}(y_t | y_{<t}, x; \mathcal{R})}, 1 - \epsilon, 1 + \epsilon \right) A_t \right) \right] \quad (8)$$

with π_{old} the previous policy, $I(y_t)$ masking retrieved tokens, and A_t the advantage from GAE (Schulman et al., 2015).

3.2 ROUND-BASED REASONING

We model reasoning as a sequence of T structured rounds. Each round t produces an interaction pair $\langle a_t, e_t \rangle$, where a_t denotes the action and e_t the retrieved evidence. If $a_t = \langle (o_t, r_t), q_t \rangle$, the agent executes the sequence `<observation> o_t </observation> \rightarrow <sub_answer> r_t </sub_answer> \rightarrow <search> q_t </search>`, and the query q_t is submitted to a search tool to obtain evidence e_t . If $a_t = \langle A_{\text{final}} \rangle$, the process terminates with the final answer. The policy action units can be defined on the original question Q and previous action unit in the dialogue history $h_t = \{(o_i, r_i), q_i, e_i\}_{i=1}^{t-1}$:

$$o_t \sim \pi_\theta(\cdot | Q, h_t) \rightarrow r_t = \pi_\theta(\cdot | Q, \langle h_t, o_t \rangle) \rightarrow q_t = \pi_\theta(\cdot | Q, \langle h_t, (o_t, r_t) \rangle) \rightarrow e_t = \text{Search}(q_t). \quad (9)$$

This structured format allows the agent to alternate between querying and reasoning, tightly coupling retrieval with generation. The episode terminates when the policy outputs $\langle A_{\text{final}} \rangle$ like `<answer> A_{final} </answer>`.

3.3 REWARD DESIGN

Dense stepwise rewards are critical to prevent sparse supervision. ERL introduces two intermediate rewards, R_t^{search} for sub-queries and $R_t^{\text{sub_answer}}$ for intermediate reasoning, in addition to the final reward R^{answer} .

Search reward. Let gold evidence $\mathcal{D}^* = \{d_i^*\}_{i=1}^n$ and retrieved set $D^{(t)} = \{d_j^{(t)}\}_{j=1}^k$. Define TF-IDF cosine similarity $s(d_i^*, d_j^{(t)})$. Maintain coverage vector m_i^t :

$$c_i^t = \max_j s(d_i^*, d_j^{(t)}), \quad \Delta_i^t = \max\{c_i^t - m_i^{t-1}, 0\}, \quad G^t = \frac{1}{n} \sum_{i=1}^n \Delta_i^t, \quad m_i^t = \max\{m_i^{t-1}, c_i^t\}. \quad (10)$$

Redundancy penalty is defined as Eq. (11), and the final search reward is Eq. (12) as below. This design encourages novel evidence retrieval while suppressing repeated queries.

$$P^t = \frac{1}{k} \sum_{j=1}^k \mathbf{1}(d_j^{(t)} \in H^{t-1}), \quad H^t = H^{t-1} \cup D^{(t)}. \quad (11)$$

$$R_t^{\text{search}} = G^t - P^t. \quad (12)$$

Sub-answer reward. Let gold sub-answers $\mathcal{A}^* = \{a_i^*\}_{i=1}^m$. With F1 overlap:

$$f_{i,t} = \text{F1}(r_t, a_i^*), \quad u_i^t = \max\{u_i^{t-1}, f_{i,t}\}, \quad \delta_i^t = \max\{u_i^t - u_i^{t-1}, 0\}, \quad S^t = \max_i \delta_i^t. \quad (13)$$

Reward:

$$R_t^{\text{sub_answer}} = \frac{S^t}{\max\{m, 1\}}. \quad (14)$$

This ensures that only genuine improvements to intermediate reasoning are rewarded.

216 **Final reward.**

217
$$R^{\text{answer}} = \frac{1}{2} \text{EM}(A_{\text{final}}, A_{\text{gold}}) + \frac{1}{2} \text{F1}(A_{\text{final}}, A_{\text{gold}}). \quad (15)$$
 218

219 The token-level attribution aligns R_t^{search} with `</search>`, $R_t^{\text{sub_answer}}$ with `</observation>` 220 and `</sub_answer>`, and R^{answer} with `</answer>`.221

3.4 ERASABLE REINFORCEMENT LEARNING

 222223 Rewards alone cannot prevent compounding errors. ERL introduces erasure operators that surgically 224 remove faulty parts of the trajectory, enabling as shown in Figure 1. We define a trajectory as 225 $\tau = (s_0, s_1, \dots, s_T)$. For any $t \leq T$, we denote the truncated prefix of the trajectory up to step t by 226

227
$$\tau_{0:t} = (s_0, s_1, \dots, s_t). \quad (16)$$
 228

229 We further introduce an erasure operator \mathcal{E} , which modifies the action sequence according to different 230 conditions in each round. Formally,

231
$$\mathcal{E}[a_t, e_t] \in \begin{cases} \langle \text{None} \rangle, & \text{if the sub-answer } r_t \text{ is incorrect,} \\ \langle (o_t, r_t) \rangle, & \text{if the initial or subsequent search results are incorrect,} \\ \langle (o_t, r_t), q_t \rangle, e_t, & \text{if the action sequence is valid.} \end{cases} \quad (17)$$
 232

233
$$s_{t+1} = \tau_{0:t} \oplus \mathcal{E}[\text{Act}(s_t), \text{Search}(q_t)] = \tau_{0:t} \oplus \mathcal{E}[a_t, e_t].$$
 234

235 Different erasure conditions can be explained with two thresholds are introduced: α for local errors 236 and β for plan-level errors. And here goes the details:237 **Sub-Answer Erasure.** If $R_t^{\text{sub_answer}} \leq \alpha$, erase `<observation>`, `<sub_answer>` and all 238 subsequent actions of round t , meaning any actions in the current round are discarded:

239
$$s_{t+1} \leftarrow \tau_{0:t} \oplus \langle \text{None} \rangle = s_t. \quad (18)$$
 240

241 **Subsequent Search Erasure.** If $R_t^{\text{search}} \leq \alpha$ and $t > 1$, erase the query behavior `<search>` 242 issued at round t and keep the correct `<observation>` with `<sub_answer>`:

243
$$s_t \leftarrow \tau_{0:t} \oplus \langle o_t, r_t \rangle. \quad (19)$$
 244

245 **Initial Search/Plan Erasure.** If $R_1^{\text{search}} \leq \beta$ in the first action round of $t = 0$, no observation or 246 sub-answer action unit and erase the query behavior `<search>` (reset the trajectory):

247
$$\tau \leftarrow \tau_{0:0} \oplus \langle \text{None} \rangle = s_0. \quad (20)$$
 248

251

4 EXPERIMENT

253

4.1 EXPERIMENTAL SETUP

255 **Datasets and Evaluation Metrics** We evaluate on four multi-hop QA benchmarks: HotpotQA 256 (Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020b), MuSiQue (Trivedi et al., 2022a), and 257 Bamboogle (Press et al., 2022), which span diverse domains and reasoning complexities. We report 258 performance using canonical word-level F1 and Exact Match (EM) metrics, while refraining from the 259 use of third-party LLM evaluators owing to concerns regarding reproducibility and stability.260 **Baseline Method** We employ various baselines to evaluate our proposed ESearch, including Search- 261 R1 (Jin et al., 2025b), Research (Chen et al., 2025), ZeroSearch (Sun et al., 2025), R-Search (Zhao 262 et al., 2025a), SSRL (Fan et al., 2025), StepSearch (Wang et al., 2025).263 **Implementation Details** We conduct experiments using two model scales: Qwen2.5-3B- 264 base/instruct and Qwen2.5-7B-base/instruct (Qwen et al., 2025). During training, we adopt E5 265 (Wang et al., 2022) as the retriever, with the document corpus built from the Wikipedia 2018 dump 266 (Wiki-18) (Karpukhin et al., 2020a). For offline evaluation, we maintain the same Wikipedia dump as 267 the retrieval corpus to ensure consistency with the training setup. For online evaluation, we employ 268 the Google Search API as the retrieval source.

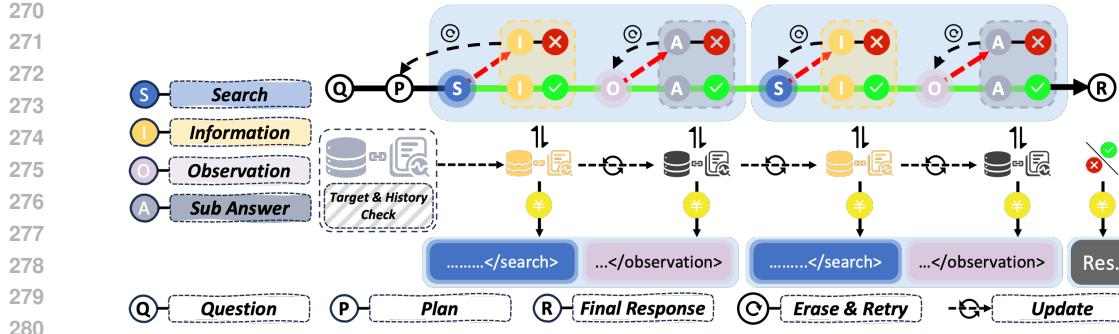


Figure 1: Overview of ESEARCH. Different colors and symbols are used to represent the interactive behaviors S (Search), I (Information), O (Observation), and A (Sub Answer). In the answering process, there are three types of erasure and retry behaviors: (1) incorrect initial search results trigger initialization plan erasure; (2) incorrect subsequent search results trigger search design erasure; (3) incorrect sub-answer triggers observation erasure. In addition, history checking and target set are built for searches and sub-answers respectively to evaluate value gains, which serve as the basis for erasure triggers and reward calculation.

Method	HotpotQA [†]		2Wiki [†]		MuSiQue [†]		Bamboogle [†]		HotpotQA [*]		2Wiki [*]		MuSiQue [*]		Bamboogle [*]	
	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑
Qwen2.5-3b-Base/Instruct																
Search-R1-base	0.272	0.361	0.248	0.296	0.081	0.146	0.176	0.270	0.348	0.431	0.381	0.445	0.120	0.184	0.280	0.400
Search-R1-instruct	0.304	0.401	0.293	0.352	0.120	0.188	0.240	0.344	0.350	0.442	0.371	0.452	0.128	0.195	0.392	0.513
ZeroSearch-base	0.281	0.377	0.253	0.311	0.096	0.164	0.165	0.256	0.324	0.414	0.392	0.473	0.152	0.237	0.361	0.522
ZeroSearch-instruct	0.267	0.353	0.239	0.288	0.088	0.145	0.193	0.299	0.357	0.453	0.355	0.441	0.114	0.176	0.421	0.543
R-Search-instruct-GRPO	0.329	0.427	0.307	0.351	0.131	0.208	0.228	0.327	0.374	0.460	0.457	0.519	0.142	0.227	0.504	0.644
R-Search-instruct-PPO	0.289	0.381	0.277	0.328	0.124	0.187	0.260	0.355	0.398	0.495	0.496	0.558	0.152	0.234	0.496	0.656
SSRL-instruct	0.314	0.408	0.290	0.348	0.093	0.156	0.216	0.287	0.346	0.424	0.365	0.461	0.114	0.195	0.344	0.453
StepSearch-base	0.329	0.434	0.339	0.395	0.181	0.273	0.328	0.419	0.345	0.464	0.434	0.542	0.196	0.291	0.502	0.631
StepSearch-instruct	0.345	0.452	0.320	0.385	0.174	0.261	0.344	0.452	0.394	0.470	0.402	0.496	0.150	0.240	0.520	0.626
ESEARCH-base	0.415	0.548	0.428	0.499	0.236	0.345	0.414	0.529	0.455	0.586	0.581	0.684	0.247	0.367	0.633	0.797
ESEARCH-instruct	0.447	0.587	0.415	0.500	0.232	0.339	0.446	0.587	0.513	0.612	0.521	0.644	0.211	0.311	0.674	0.813
Qwen2.5-7b-Base/Instruct																
Search-R1-base	0.432	0.547	0.350	0.411	0.206	0.290	0.430	0.545	0.508	0.610	0.533	0.607	0.219	0.310	0.577	0.692
Search-R1-instruct	0.394	0.502	0.312	0.376	0.181	0.262	0.384	0.501	0.464	0.570	0.475	0.561	0.182	0.268	0.536	0.660
Research-base	0.294	0.388	0.264	0.313	0.143	0.230	0.373	0.449	0.386	0.486	0.457	0.534	0.176	0.275	0.488	0.582
Research-instruct	0.362	0.471	0.354	0.416	0.184	0.271	0.424	0.544	0.494	0.608	0.539	0.628	0.220	0.321	0.544	0.666
ZeroSearch-base	0.375	0.481	0.297	0.356	0.201	0.286	0.417	0.532	0.431	0.529	0.525	0.593	0.211	0.297	0.505	0.634
ZeroSearch-instruct	0.388	0.497	0.360	0.422	0.219	0.320	0.433	0.540	0.394	0.483	0.431	0.534	0.136	0.225	0.368	0.492
R-Search-instruct-GRPO	0.391	0.500	0.346	0.401	0.179	0.260	0.400	0.517	0.376	0.468	0.470	0.535	0.134	0.225	0.464	0.601
R-Search-instruct-PPO	0.338	0.439	0.274	0.339	0.133	0.209	0.384	0.491	0.358	0.453	0.462	0.527	0.158	0.240	0.464	0.593
SSRL-instruct	0.380	0.489	0.332	0.399	0.153	0.238	0.344	0.466	0.388	0.465	0.358	0.442	0.106	0.184	0.336	0.438
StepSearch-base	0.380	0.493	0.385	0.450	0.216	0.324	0.467	0.573	0.446	0.552	0.561	0.638	0.232	0.325	0.544	0.698
StepSearch-instruct	0.386	0.502	0.366	0.431	0.226	0.312	0.400	0.534	0.462	0.560	0.485	0.570	0.222	0.327	0.600	0.718
ESEARCH-base	0.434	0.564	0.436	0.513	0.244	0.371	0.534	0.656	0.510	0.632	0.635	0.730	0.265	0.372	0.622	0.799
ESEARCH-instruct	0.442	0.576	0.419	0.494	0.241	0.358	0.458	0.612	0.507	0.642	0.550	0.654	0.254	0.375	0.687	0.823

Table 1: The main results. "†" indicates offline retrieval, and "*" indicates online retrieval.

4.2 MAIN RESULTS

Offline evaluation Table 1 shows that ESearch sets a new SOTA on four multi-hop QA datasets, consistently surpassing strong baselines with Qwen2.5; with three billion parameters, it gains +6.06% EM and +9.94% F1 on average, rising to +4.78% EM and +6.56% F1 with seven billion parameters.

Online evaluation We evaluate models using a continuously updated search engine instead of a static knowledge base. Online retrieval improves nearly all methods by providing fresher, more comprehensive information. ESearch consistently surpasses baselines, achieving +10.90% EM and +13.18% F1 for Qwen2.5-3B, and +5.98% EM and +7.88% F1 for Qwen2.5-7B. Across scales, ESearch delivers the largest relative gains, demonstrating superior adaptability and robustness in dynamic environments.

Method	HotpotQA [†]		2Wiki [†]		MuSiQue [†]		Bamboogle [†]		HotpotQA [*]		2Wiki [*]		MuSiQue [*]		Bamboogle [*]	
	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑
Qwen2.5-7b-Base																
ERL	0.434	0.564	0.436	0.513	0.244	0.371	0.534	0.656	0.510	0.632	0.635	0.730	0.265	0.372	0.622	0.799
PPO	0.371	0.475	0.279	0.326	0.196	0.278	0.428	0.545	0.382	0.422	0.475	0.547	0.198	0.277	0.475	0.603
GRPO	0.350	0.462	0.267	0.344	0.203	0.292	0.398	0.514	0.401	0.497	0.499	0.568	0.208	0.292	0.489	0.623
Qwen2.5-3b-Base																
ERL	0.415	0.548	0.428	0.499	0.236	0.345	0.414	0.529	0.435	0.586	0.581	0.684	0.247	0.367	0.633	0.797
PPO	0.264	0.372	0.265	0.322	0.106	0.192	0.206	0.313	0.242	0.326	0.322	0.380	0.137	0.204	0.352	0.443
GRPO	0.258	0.367	0.254	0.321	0.113	0.188	0.223	0.312	0.237	0.319	0.326	0.382	0.134	0.199	0.345	0.437

Table 2: Accuracy performance of models trained by different RL algorithms. "†" indicates offline retrieval using the wiki-18 knowledge base, and "*" indicates online retrieval using Google Search.

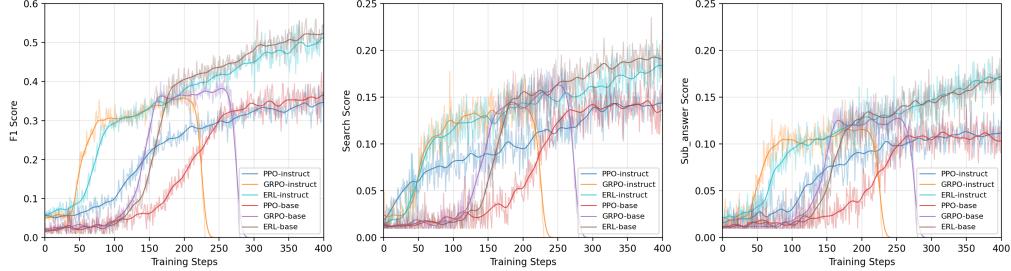


Figure 2: Training dynamics of different RL strategies. Compared to PPO, GRPO demonstrates faster learning speed and reward acquisition during training but tends to suffer from instability and potential collapse in the later stages of Search Agent tasks. In contrast, ERL achieves higher learning efficiency than PPO while maintaining training stability.

Comparison with classical reinforcement learning algorithms To further assess the effectiveness of ERL, we conduct a direct comparison with two classical reinforcement learning algorithms: PPO and GRPO, both of which rely solely on task-level success as the reward signal. Experimental results, summarized in Table 2 and Figure 2, demonstrate that ERL consistently and substantially outperforms PPO and GRPO on both the 3B and 7B models.

5 ANALYSIS

Method	HotpotQA [†]		2Wiki [†]		MuSiQue [†]		Bamboogle [†]		HotpotQA [*]		2Wiki [*]		MuSiQue [*]		Bamboogle [*]	
	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑	EM↑	FI↑
Qwen2.5-7b-Base																
ERL	0.434	0.564	0.436	0.513	0.244	0.371	0.534	0.656	0.510	0.632	0.635	0.730	0.265	0.372	0.622	0.799
w/o ϵ – plan	0.420	0.545	0.421	0.496	0.236	0.359	0.517	0.634	0.494	0.611	0.620	0.706	0.257	0.361	0.602	0.773
w/o ϵ – search	0.410	0.533	0.412	0.485	0.231	0.351	0.505	0.620	0.483	0.598	0.607	0.691	0.256	0.354	0.588	0.755
w/o ϵ – sub_answer	0.392	0.509	0.393	0.463	0.220	0.335	0.482	0.592	0.461	0.570	0.579	0.659	0.241	0.336	0.563	0.721
Qwen2.5-3b-Base																
Base	0.322	0.418	0.323	0.380	0.181	0.275	0.396	0.486	0.378	0.468	0.476	0.541	0.195	0.273	0.461	0.592
o/w ϵ – plan	0.348	0.451	0.349	0.410	0.195	0.297	0.428	0.525	0.408	0.506	0.514	0.584	0.215	0.301	0.498	0.639
o/w ϵ – search	0.362	0.468	0.361	0.426	0.203	0.308	0.443	0.544	0.423	0.524	0.532	0.606	0.218	0.307	0.517	0.663
o/w ϵ – sub_answer	0.377	0.489	0.378	0.445	0.213	0.322	0.463	0.569	0.443	0.548	0.557	0.633	0.229	0.323	0.543	0.693

Table 3: Accuracy on 7b and 3b models. 'w/o' represent 'with out' while 'o/w' for 'only with'. "†" indicates offline retrieval, and "*" indicates online retrieval.

To quantify the relative contributions of each component in the ERL framework, we conducted a systematic ablation study. Table 3 presents the performance of different component combinations. The full ERL framework achieves the best performance across all datasets, confirming our design principle that the three erasure mechanisms are complementary. Plan-triggered erasure proves essential on highly structured datasets, with disabling it leading to a -2.05% F1 on 2Wiki, yet it remains ineffective in addressing missing retrieval. Search-triggered erasure shows clear advantages for retrieval-intensive tasks, where disabling it results in a -2.40% F1 on Bamboogle, but it fails to remedy global reasoning errors. Sub-answer-triggered erasure benefits reasoning-intensive tasks, with disabling it yielding a -1.80% F1 on Musique. Although it alleviates error propagation, it cannot fundamentally prevent erroneous reasoning from emerging.

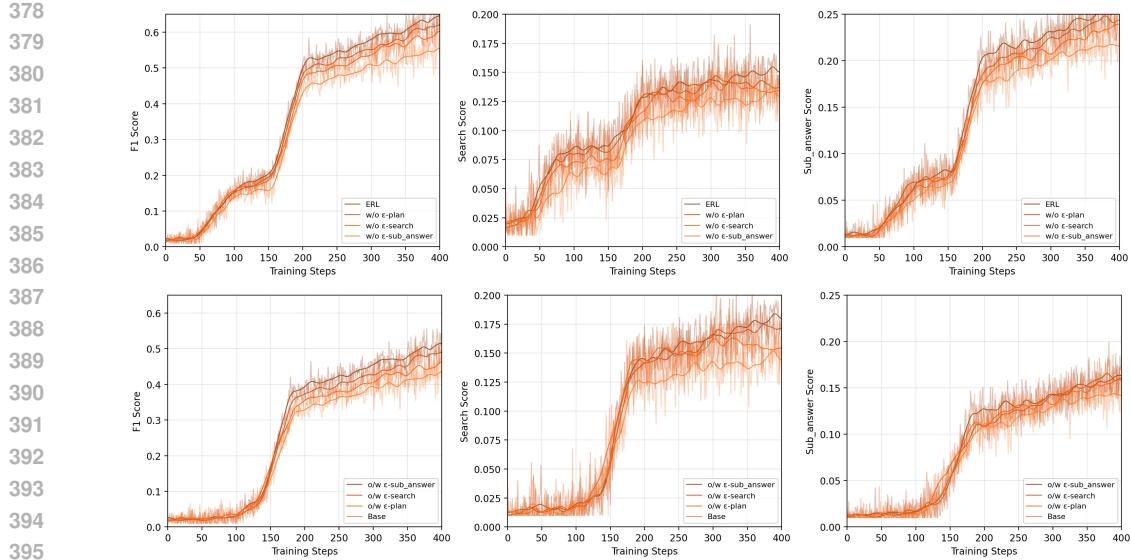


Figure 3: Training dynamics in ablation experiments.

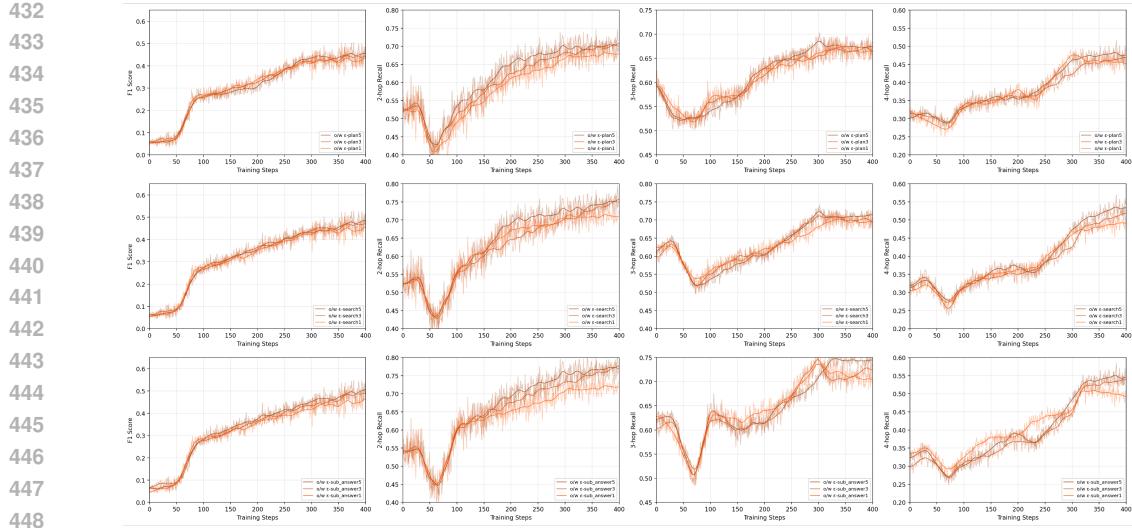
Method	HotpotQA [†]		2Wiki [†]		MuSiQue [†]		Bamboogle [†]		HotpotQA [*]		2Wiki [*]		MuSiQue [*]		Bamboogle [*]	
	EM	FI	EM	FI	EM	FI	EM	FI	EM	FI	EM	FI	EM	FI	EM	FI
Base	0.348	0.457	0.323	0.389	0.181	0.264	0.347	0.457	0.398	0.476	0.406	0.501	0.151	0.242	0.525	0.633
o/w ε - plan1	0.354	0.464	0.328	0.395	0.183	0.268	0.353	0.464	0.405	0.483	0.412	0.509	0.153	0.245	0.534	0.642
o/w ε - plan3	0.358	0.470	0.333	0.401	0.256	0.272	0.358	0.473	0.413	0.491	0.417	0.516	0.156	0.250	0.541	0.652
o/w ε - plan5	0.365	0.477	0.338	0.407	0.189	0.276	0.363	0.478	0.417	0.498	0.425	0.524	0.158	0.253	0.549	0.661
o/w ε - search1	0.363	0.478	0.337	0.405	0.188	0.275	0.361	0.478	0.421	0.499	0.423	0.522	0.156	0.252	0.537	0.655
o/w ε - search3	0.383	0.502	0.355	0.427	0.198	0.290	0.382	0.502	0.438	0.523	0.448	0.550	0.190	0.266	0.576	0.698
o/w ε - search5	0.404	0.529	0.375	0.451	0.201	0.306	0.402	0.527	0.462	0.552	0.471	0.581	0.174	0.280	0.611	0.732
o/w ε - sub_answer1	0.371	0.486	0.344	0.414	0.183	0.281	0.369	0.486	0.410	0.507	0.432	0.533	0.162	0.257	0.559	0.673
o/w ε - sub_answer3	0.399	0.521	0.371	0.445	0.207	0.302	0.398	0.523	0.456	0.545	0.465	0.573	0.175	0.277	0.597	0.724
o/w ε - sub_answer5	0.425	0.561	0.396	0.479	0.221	0.324	0.426	0.561	0.492	0.584	0.502	0.615	0.186	0.297	0.641	0.776
ERL	0.447	0.587	0.415	0.500	0.232	0.339	0.446	0.587	0.513	0.612	0.521	0.644	0.211	0.311	0.674	0.813

Table 4: Qwen2.5-3b-Instruct. 'w/o' represent 'with out' while 'ow' for 'only with', 'sub-answer' represents a process supervision rewards based on intermediate sub-answers. "†" indicates offline retrieval using the Wiki-18 knowledge base, and "*" indicates online retrieval using Google Search.

Table 4 and Figure 4 present the performance of individual erasure mechanisms across different iteration numbers on the Qwen2.5-3b-Instruct model. Plan-triggered erasure shows modest gains with increasing iterations, indicating that planning can reduce localized structural mistakes but is insufficient for errors in longer reasoning chains. Notably, even with an imperfect initial plan, the model can still identify the next required information through further interaction with the external environment. Search-triggered erasure yields more pronounced improvements, especially on retrieval-intensive datasets, highlighting the importance of accurate search queries for maintaining reasoning fidelity. Sub-answer-triggered erasure is the most effective, providing consistent gains that approach the full ERL framework's performance as iterations increase, demonstrating that revising intermediate sub-answers significantly mitigates error propagation. Overall, the mechanisms follow a clear hierarchy: sub-answer erasure > search > plan, emphasizing that error correction during reasoning has greater impact than error prevention. Regarding correction rates, ERL exhibits varied effectiveness across error types, correcting 2.01% of decomposition errors, 6.53% of retrieval failures, and 9.6% of reasoning errors.

6 RELATED WORK

Reinforcement learning has been widely applied to enhance retrieval-augmented reasoning in large language models. Search-R1 (Jin et al., 2025b) and ReSearch (Chen et al., 2025) optimize multi-round query generation, R1-Searcher (Song et al., 2025) adopts a two-stage reward, and StepSearch (Wang et al., 2025) shapes trajectories with stepwise rewards, while DeepResearcher (Zheng et al., 2025), O2-Searcher (Mei et al., 2025), and ZeroSearch (Sun et al., 2025) target real webpages, localized



449
450 Figure 4: Overview of ESearch. In the figure, 'o/w' (only with) indicates that only the current
451 mechanism is added to the base method.
452

453 environments, and retrieval simulation. MaskSearch (Wu et al., 2025) and EvolveSearch (Zhang et al.,
454 2025a) improve multi-hop reasoning through pretraining or iterative self-evolution, and R-Search
455 (Zhao et al., 2025a) and DynaSearcher (Hao et al., 2025) integrate multi-reward signals with dynamic
456 knowledge graphs. ParallelSearch (Zhao et al., 2025b), HybridDeepSearcher (Ko et al., 2025), and
457 SSRL (Fan et al., 2025) further advance retrieval via parallelization, adaptive strategies, or internal
458 knowledge search.

490 7 LIMITATION & FUTURE DISCUSSION

491 The strength of the ERL framework lies in its structured cycle of identification, erasure, and regen-
492 eration, which enables targeted correction of reasoning errors and significantly improves reliability.
493 This sequential design inherently increases computational overhead and may struggle when mul-
494 tiple heterogeneous errors occur simultaneously within a reasoning trajectory. In such cases, the
495 framework often requires repeated iterations to separately repair failures in retrieval, reasoning, and
496 subsequent retrieval stages, which limits scalability and efficiency. Addressing this challenge calls for
497 strategies that can recognize and resolve multiple concurrent errors in a single corrective pass. Such
498 an advance would require moving beyond localized error signals toward a global understanding of
499 the entire reasoning trajectory, enabling coordinated error mitigation rather than piecemeal correction.
500 Developing this global perspective is not only crucial for enhancing the robustness and efficiency of
501 ERL, but also represents a broader step toward equipping search-augmented language models with
502 genuinely resilient reasoning capabilities.

494 8 CONCLUSION

495 This paper introduces erasable reinforcement learning algorithm designed to automatically detect and
496 correct decomposition, retrieval, and reasoning errors in complex multi-hop question answering. The
497 method leverages joint signals from the quality of sub-search and sub-answer processes to identify
498 error types, and erases the corresponding segments for regeneration when errors occur, thereby
499 maximizing the utility of both the model and external knowledge. Experimental results demonstrate
500 that our approach surpasses the current state of the art on multi-hop QA benchmarks including
501 HotpotQA, MuSiQue, 2WikiMultiHopQA, and Bamboogle, validating its effectiveness. Future work
502 may explore extending this mechanism to a broader range of generative tasks, or integrating it with
503 online learning to further enhance the model’s adaptive error-correction capability.

486 ETHICS STATEMENT
487488 This study uses only publicly available benchmark datasets (HotpotQA, MuSiQue, 2WikiMulti-
489 HopQA, and Bamboogle), with knowledge sources limited to Wikipedia and the Google Search API.
490 No private or sensitive data are involved. The proposed Erasable Reinforcement Learning (ERL)
491 substantially enhances multi-hop reasoning capabilities, offering positive value for applications such
492 as information retrieval and educational question answering. However, we also recognize that stronger
493 reasoning ability could be misused to generate deceptive or misleading content. We recommend that
494 future research integrate alignment and bias detection mechanisms prior to deployment to mitigate
495 such risks. Overall, this work adheres to established academic ethical standards, balancing capability
496 advancement with responsible use, and aims to contribute to the development of trustworthy artificial
497 intelligence.
498499 REPRODUCIBILITY
500501 We have taken extensive measures to ensure the reproducibility of our work. All datasets used in
502 this study are publicly available benchmarks, including HotpotQA, MuSiQue, 2WikiMultiHopQA,
503 and Bamboogle. For retrieval, we employ both a fixed Wikipedia dump and the Google Search API,
504 and we describe the retrieval setup in detail to enable consistent replication. Implementation details,
505 such as model architectures (Qwen2.5-3B/7B base and instruct), retriever backbone (E5), training
506 hyperparameters, and evaluation metrics (Exact Match and F1), are fully documented in Section 4.1.
507 To further facilitate reproducibility, we will release the training scripts, evaluation pipelines, and
508 configuration files required to replicate all results reported in this paper. Random seeds and hardware
509 specifications will also be provided to minimize variance across runs. Our methodology does not rely
510 on proprietary or undisclosed components, ensuring that independent researchers can fully verify and
511 extend our findings.
512513 LLM USAGE
514515 We partially used large language models (LLMs) exclusively for non-scientific writing assistance,
516 specifically for language polishing, clarity improvement, and suggestions. No parts of the core
517 methodology, experiments, or results were generated by LLMs.
518519 REFERENCES
520521 Perplexity AI. Introducing perplexity deep research, 2025. URL <https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research>. Accessed: 2025-09-11.
522523 Joost Broekens, Koen Hindriks, and Pascal Wiggers. Reinforcement learning as heuristic for action-
524 rule preferences. In *International Workshop on Programming Multi-Agent Systems*, pp. 25–40.
525 Springer, 2010.
526527 Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z
528 Pan, Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via
529 reinforcement learning. *arXiv preprint arXiv:2503.19470*, 2025.
530531 Zhixun Chen, Yali Du, and David Mguni. All language models large and small. *arXiv preprint
arXiv:2402.12061*, 2024.
532533 Google DeepMind. Gemini deep research – your personal research assistant, 2025. URL <https://gemini.google/overview/deep-research/>. Accessed: 2025-09-11.
534535 Yuchen Fan, Kaiyan Zhang, Heng Zhou, Yuxin Zuo, Yanxu Chen, Yu Fu, Xinwei Long, Xuekai
536 Zhu, Che Jiang, Yuchen Zhang, et al. Ssrl: Self-search reinforcement learning. *arXiv preprint
arXiv:2508.10874*, 2025.
537538 Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu.
539 Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous rl. *arXiv
preprint arXiv:2508.07976*, 2025.
540

540 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
 541 Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
 542 survey. [arXiv preprint arXiv:2312.10997](https://arxiv.org/abs/2312.10997), 2(1), 2023.

543 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 544 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 545 via reinforcement learning. [arXiv preprint arXiv:2501.12948](https://arxiv.org/abs/2501.12948), 2025.

546 Chuzhan Hao, Wenfeng Feng, Yuwei Zhang, and Hao Wang. Dynasearcher: Dynamic knowl-
 547 edge graph augmented search agent via multi-reward reinforcement learning. [arXiv preprint
 548 arXiv:2507.17365](https://arxiv.org/abs/2507.17365), 2025.

549 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a
 550 multi-hop QA dataset for comprehensive evaluation of reasoning steps. In [Proceedings of
 551 the 28th International Conference on Computational Linguistics](https://www.aclweb.org/anthology/2020.coling-main.580), pp. 6609–6625, Barcelona,
 552 Spain (Online), December 2020a. International Committee on Computational Linguistics. URL
 553 <https://www.aclweb.org/anthology/2020.coling-main.580>.

554 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
 555 qa dataset for comprehensive evaluation of reasoning steps. [arXiv preprint arXiv:2011.01060](https://arxiv.org/abs/2011.01060),
 556 2020b.

557 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 558 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
 559 models: Principles, taxonomy, challenges, and open questions. [ACM Transactions on Information
 560 Systems](https://dl.acm.org/doi/10.1145/3555369), 43(2):1–55, 2025a.

561 Tzu-Hao Huang. Reinforcement learning framework for window hardware installation. 2022.

562 Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang,
 563 Wenhan Lyu, Yixuan Zhang, et al. Trustllm: Trustworthiness in large language models. [arXiv
 564 preprint arXiv:2401.05561](https://arxiv.org/abs/2401.05561), 2024.

565 Yuxuan Huang, Yihang Chen, Haozheng Zhang, Kang Li, Meng Fang, Linyi Yang, Xiaoguang Li,
 566 Lifeng Shang, Songcen Xu, Jianye Hao, et al. Deep research agents: A systematic examination
 567 and roadmap. [arXiv preprint arXiv:2506.18096](https://arxiv.org/abs/2506.18096), 2025b.

568 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 569 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. [arXiv preprint
 570 arXiv:2412.16720](https://arxiv.org/abs/2412.16720), 2024.

571 Bowen Jin, Jinsung Yoon, Priyanka Kargupta, Sercan O Arik, and Jiawei Han. An empirical
 572 study on reinforcement learning for reasoning-search interleaved llm agents. [arXiv preprint
 573 arXiv:2505.15117](https://arxiv.org/abs/2505.15117), 2025a.

574 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 575 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 576 learning. [arXiv preprint arXiv:2503.09516](https://arxiv.org/abs/2503.09516), 2025b.

577 Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
 578 [Journal of Artificial Intelligence Research](https://www.jair.org/papers/ps377.pdf), 4:237–285, 1996.

579 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
 580 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In [EMNLP
 581 \(1\)](https://www.aclweb.org/anthology/2020.emnlp-main.1), pp. 6769–6781, 2020a.

582 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 583 Chen, and Wen tau Yih. Dense passage retrieval for open-domain question answering, 2020b. URL
 584 <https://arxiv.org/abs/2004.04906>.

585 Dayoon Ko, Jihyuk Kim, Haeju Park, Sohyeon Kim, Dahyun Lee, Yongrae Jo, Gunhee Kim, Moontae
 586 Lee, and Kyungjae Lee. Hybrid deep searcher: Integrating parallel and sequential search reasoning.
 587 [arXiv preprint arXiv:2508.19113](https://arxiv.org/abs/2508.19113), 2025.

594 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 595 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 596 tion for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 597 9459–9474, 2020.

598 Wenjun Li, Zhi Chen, Jingru Lin, Hannan Cao, Wei Han, Sheng Liang, Zhi Zhang, Kuicai Dong,
 599 Dexun Li, Chen Zhang, et al. Reinforcement learning foundations for deep research systems: A
 600 survey. *arXiv preprint arXiv:2509.06733*, 2025.

602 Yuxi Li. Deep reinforcement learning: An overview. *arXiv preprint arXiv:1701.07274*, 2017.

603 Jianbiao Mei, Tao Hu, Daocheng Fu, Licheng Wen, Xuemeng Yang, Rong Wu, Pinlong Cai, Xinyu
 604 Cai, Xing Gao, Yu Yang, et al. O2-searcher: A searching-based agent model for open-domain
 605 open-ended question answering. *arXiv preprint arXiv:2505.16582*, 2025.

607 Meta AI. The llama 4 herd: The beginning of a new era of natively multimodal intelligence. <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>, apr 2025. Accessed: 2025-09-11.

611 OpenAI. Gpt-5 system card. Technical report, OpenAI, aug 2025. URL <https://cdn.openai.com/gpt-5-system-card.pdf>. Accessed: 2025-09-11.

613 OpenAI. Introducing deep research, 2025. URL <https://openai.com/index/introducing-deep-research/>. Accessed: 2025-09-11.

616 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
 617 and narrowing the compositionality gap in language models. *arXiv preprint arXiv:2210.03350*,
 618 2022.

619 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 620 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 621 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 622 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 623 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 624 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
 625 <https://arxiv.org/abs/2412.15115>.

626 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
 627 continuous control using generalized advantage estimation. *arXiv preprint arXiv:1506.02438*,
 628 2015.

630 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 631 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

633 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 634 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 635 *arXiv:2409.19256*, 2024.

636 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
 637 Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.
 638 *arXiv preprint arXiv:2503.05592*, 2025.

640 Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
 641 Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without
 642 searching. *arXiv preprint arXiv:2505.04588*, 2025.

643 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 644 press Cambridge, 1998.

646 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
 647 Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv preprint*
arXiv:2507.20534, 2025.

648 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 649 questions via single-hop question composition. *Transactions of the Association for Computational
 650 Linguistics*, 10:539–554, 2022a.

651

652 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 653 questions via single-hop question composition, 2022b. URL <https://arxiv.org/abs/2108.00573>.

654

655 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Majumder,
 656 and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv preprint
 657 arXiv:2212.03533*, 2022.

658

659 Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, and Yichao Wu.
 660 Stepsearch: Igniting llms search ability via step-wise proximal policy optimization. *arXiv preprint
 661 arXiv:2505.15107*, 2025.

662

663 Weiqi Wu, Xin Guan, Shen Huang, Yong Jiang, Pengjun Xie, Fei Huang, Jiuxin Cao, Hai Zhao,
 664 and Jingren Zhou. Masksearch: A universal pre-training framework to enhance agentic search
 665 capability. *arXiv preprint arXiv:2505.20285*, 2025.

666

667 Yunjia Xi, Jianghao Lin, Yongzhao Xiao, Zheli Zhou, Rong Shan, Te Gao, Jiachen Zhu, Weiwen Liu,
 668 Yong Yu, and Weinan Zhang. A survey of llm-based deep search agents: Paradigm, optimization,
 669 evaluation, and challenges. *arXiv preprint arXiv:2508.05668*, 2025.

670

671 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 672 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 673 2025.

674

675 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 676 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 677 answering. *arXiv preprint arXiv:1809.09600*, 2018.

678

679 Dingchu Zhang, Yida Zhao, Jialong Wu, Baixuan Li, Wenbiao Yin, Liwen Zhang, Yong Jiang, Yufeng
 680 Li, Kewei Tu, Pengjun Xie, et al. Evolvesearch: An iterative self-evolving search agent. *arXiv
 681 preprint arXiv:2505.22501*, 2025a.

682

683 Yuxiang Zhang, Yuqi Yang, Jiangming Shu, Xinyan Wen, and Jitao Sang. Agent models: Internalizing
 684 chain-of-action generation into reasoning models. *arXiv preprint arXiv:2503.06580*, 2025b.

685

686 Qingfei Zhao, Ruobing Wang, Dingling Xu, Daren Zha, and Limin Liu. R-search: Empowering llm
 687 reasoning with search via multi-reward reinforcement learning. *arXiv preprint arXiv:2506.04185*,
 688 2025a.

689

690 Shu Zhao, Tan Yu, Anbang Xu, Japinder Singh, Aaditya Shukla, and Rama Akkiraju. Parallelsearch:
 691 Train your llms to decompose query and search sub-queries in parallel with reinforcement learning.
 692 *arXiv preprint arXiv:2508.09303*, 2025b.

693

694

695

696

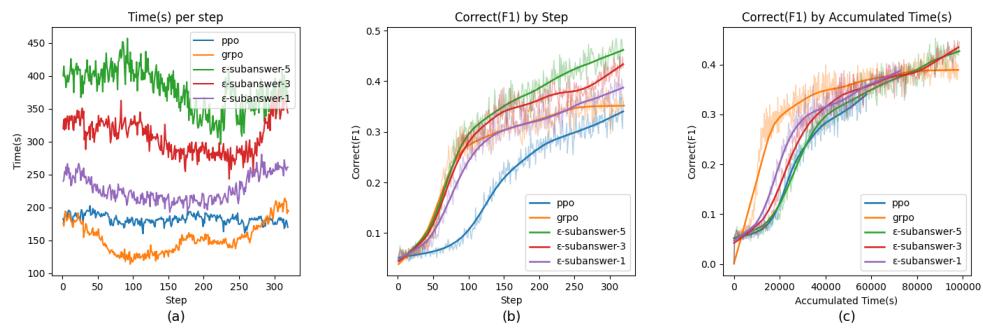
697

698

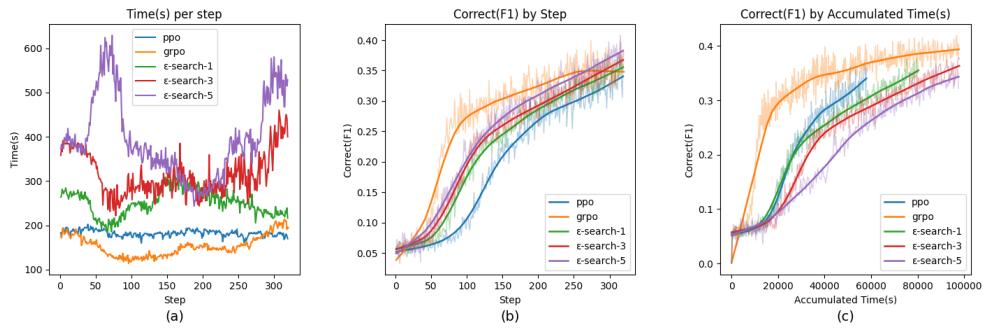
699

700

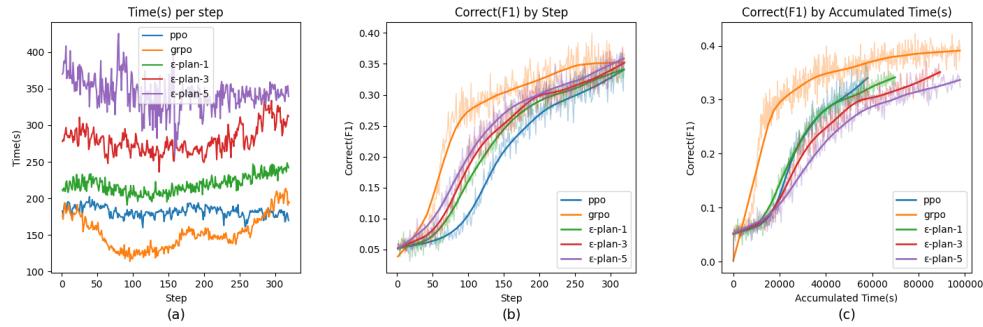
701

702 A COST-EFFECTIVENESS OF INCREASING THE ERASURE-TRY BUDGET
703
704

716 Figure 5: Training efficiency under different **Sub-Answer** retry budgets. (a) Per-step wall-clock time
717 across PPO, GRPO and **Sub-Answer** Erasure under different retry budgets. (b) Model performance
718 over training steps. (c) Model performance over cumulative training time.



733 Figure 6: Training efficiency under different **Search** retry budgets. (a) Per-step wall-clock time across
734 PPO, GRPO and **Search** Erasure under different retry budgets. (b) Model performance over training
735 steps. (c) Model performance over cumulative training time.



749 Figure 7: Training efficiency under different **Plan** retry budgets. (a) Per-step wall-clock time across
750 PPO, GRPO and **Plan** Erasure under different retry budgets. (b) Model performance over training
751 steps. (c) Model performance over cumulative training time.

752 To address the concern regarding the computational overhead introduced by longer rollout horizons
753 and more frequent research queries, we conduct an additional experiment that systematically varies
754 the maximum number of allowed erasure retries for each module (*subanswer*, *plan*, and *search*). Since

756 the erasure mechanism is implemented sequentially, the wall-clock time measured under identical
 757 hardware directly reflects both GPU computation and external querying volume. This provides an
 758 interpretable and implementation-faithful estimate of the cost of expanding the search-and-repair
 759 budget. For each erasure module—**SubAnswer-Erase**, **Plan-Erase**, and **Search-Erase**—we train
 760 the model while capping the erasure-retry budget at

$$761 \quad k \in \{1, 3, 5\}. \quad (21)$$

763 All other training hyper-parameters, random seeds, dataset order, and hardware remain strictly
 764 identical across runs. For each setting we record:

- 765 • Per-step wall-clock time (s/step) — directly reflecting computation + querying cost.
- 766 • Accuracy-per-step curve — training progress with respect to optimization steps.
- 767 • Accuracy-per-time curve — training progress normalized by cumulative runtime, measuring
 768 practical training efficiency.

770 This design allows us to isolate the marginal benefit of higher erasure budgets while quantifying their
 771 real-world cost. The experimental results show that applying erasure at different stages produces
 772 significantly different effects, primarily reflecting the importance of each stage itself in chain-of-
 773 thought reasoning. Applying the erasure mechanism to stages such as "Sub-Answer," which has
 774 the greatest impact on the final answer, leads to the most substantial and noticeable improvement
 775 in training efficiency. Although the computation time per step becomes longer due to the need for
 776 rethinking and responding, the rate of improvement in training metrics per unit of computation time
 777 actually increases compared to the original PPO.

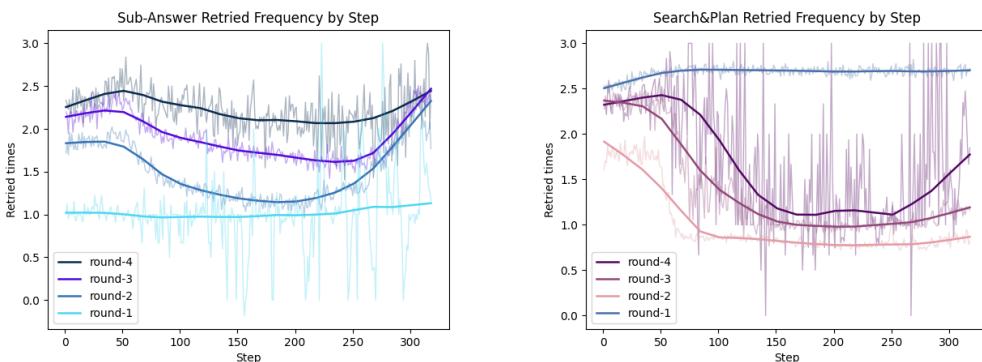
778 Another noteworthy point is that, although GRPO is far more efficient per unit time than the original
 779 PPO and PPO optimization algorithms enhanced with the erasure mechanism, its performance ceiling
 780 is clearly lower.

782 B DYNAMICS OF ERASURE EVENTS ACROSS MULTI-ROUND REASONING

785 To further understand how the ERL framework behaves during training, we conduct an additional
 786 experiment that analyzes **when and how often erasure events occur** within a multi-hop reasoning
 787 trajectory. Specifically, for each training step, we record the **average number of retries** triggered by
 788 the *Sub-Answer*, *Search* and *Plan* modules under different maximum reasoning depths (*i.e.*, number
 789 of rounds). We evaluate four settings with round limits

$$790 \quad R \in \{1, 2, 3, 4\}, \quad (22)$$

791 corresponding to increasingly deeper multi-step decomposition strategies. We find that the average
 792 frequency of erasing subanswers becomes more pronounced as reasoning deepens. This indicates

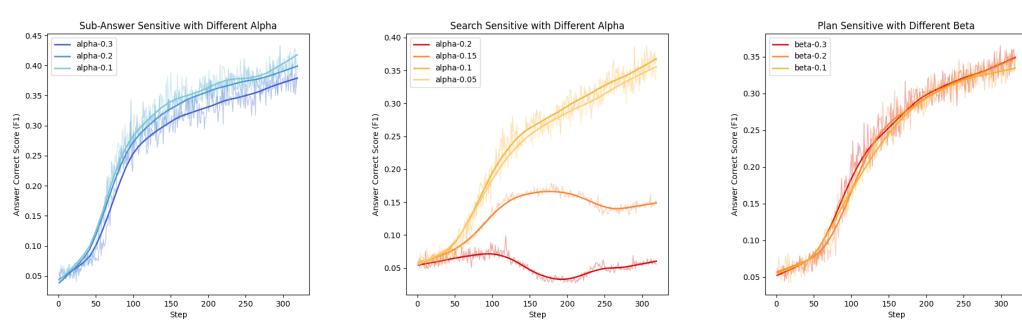


807 (a) Average frequency of Sub-Answer Erasures occur- (b) Average frequency of Search&Plan Erasures occur-
 808 rence per round with max retry set by 3. rence per round with max retry set by 3.

809 Figure 8: Dynamics of erasure events across multi-hop reasoning rounds during training.

810 that the later stages of the reasoning chain are more likely to produce incorrect subanswers and thus
 811 require erasure and retry. Difficult and multistep problems further demonstrate that the accumulation
 812 of earlier errors makes subsequent reasoning more challenging. The increased number of retries
 813 triggered by such cases fully illustrates the value of the ERL mechanism. A similar phenomenon is
 814 observed in the rewriting step during rounds 2, 3, and 4 of the Search process. In contrast, for Plan
 815 which specifically includes an erasure mechanism only in the first round, the erasure phenomenon
 816 tends to remain stable.

C SENSITIVITY OF ERL TO ERASURE TRIGGER THRESHOLDS



833 (a) Model performance over training steps. The thresholds α to trigger the *Sub-Answer* erasure are compared between $\{0.1, 0.2, 0.3\}$
 834 (b) Model performance over training steps. The thresholds α to trigger the *Search* erasure are compared between $\{0.05, 0.10, 0.15, 0.20\}$
 835 (c) Model performance over training steps. The thresholds β to trigger the *Plan* erasure are compared between $\{0.1, 0.2, 0.3\}$
 836

837 Figure 9: Model performance over training steps under different erasure trigger thresholds.
 838

839
 840 To address how sensitive ERL is to the choice of the erasure trigger thresholds, we conduct an
 841 additional sensitivity analysis across the three core modules—**Search**, **Plan**, and **Sub-Answer**. Recall
 842 that ERL triggers an erasure when the module-level confidence, consistency score, or constraint
 843 satisfaction score falls below a predefined threshold. While the main experiments use a fixed
 844 threshold for each module, the robustness of ERL under different threshold values remains an
 845 important empirical question.
 846

847 For each module independently (Search, Plan, Sub-Answer), we vary its erasure-trigger threshold
 848 across a range of values:

$$849 \quad \alpha, \beta \in \{0.05, 0.10, 0.15, 0.20, 0.30\} \quad (23)$$

850
 851 During training, only the target module’s threshold is modified, while all other erasure mechanisms
 852 are blocked. This allows isolating the effect of the threshold on ERL’s behavior. In the experiment, we
 853 adjusted α and β respectively and observed changes in model performance and erasure behavior under
 854 different settings. We found that ERL does exhibit a certain sensitivity to these two parameters, but
 855 this sensitivity is bounded and does not lead to significant fluctuations in performance. In other words,
 856 appropriate threshold selection contributes notably to performance improvement, but even within
 857 a certain range of threshold adjustments, ERL can still stably perform effective erasure operations,
 858 thereby improving results. By analyzing experimental results under different values of α and β , we
 859 found that changes in performance are mainly concentrated in some extreme settings (e.g., excessively
 860 high or low thresholds). In these extreme cases, the model may either over erase useful information
 861 or insufficiently erase invalid information, leading to performance degradation. Overall, although
 862 ERL has a certain sensitivity to threshold settings, adjustments within a reasonable range do not cause
 863 severe negative impacts on the results, and our algorithm demonstrates strong robustness to these
 864 parameters.

864 D MAIN RESULT WITH CONFIDENCE INTERVALS

Method	HotpotQA [†]		2Wiki [†]		MuSiQue [†]		Bamboolge [†]		HotpotQA [*]		2Wiki [*]		MuSiQue [*]		Bamboolge [*]		
	EM [†]	FI [†]	EM [†]	FI [†]	EM [†]	FI [†]	EM [†]	FI [†]	EM [†]	FI [†]	EM [†]	FI [†]	EM [†]	FI [†]	EM [†]	FI [†]	
<i>QsearchModel-2-3-Base/Instruct</i>																	
Search-R1-base	0.268±0.004	0.355±0.008	0.250±0.002	0.298±0.002	0.078±0.002	0.138±0.006	0.188±0.001	0.201±0.002	0.255±0.005	0.429±0.007	0.377±0.003	0.447±0.002	0.118±0.006	0.186±0.006	0.274±0.001	0.397±0.003	
Search-R1-instruct	0.304±0.001	0.402±0.001	0.291±0.002	0.351±0.001	0.116±0.004	0.184±0.004	0.240±0.004	0.347±0.003	0.354±0.004	0.436±0.004	0.370±0.002	0.449±0.002	0.129±0.005	0.197±0.007	0.292±0.004	0.513±0.016	
ZeroSearch-instruct	0.276±0.000	0.374±0.000	0.255±0.002	0.311±0.002	0.091±0.005	0.166±0.004	0.168±0.009	0.252±0.001	0.320±0.007	0.410±0.006	0.381±0.009	0.465±0.011	0.131±0.014	0.231±0.015	0.355±0.014	0.513±0.016	
ZeroSearch-instruct	0.275±0.003	0.363±0.001	0.259±0.000	0.329±0.001	0.089±0.005	0.146±0.002	0.190±0.006	0.303±0.005	0.357±0.004	0.453±0.006	0.351±0.007	0.446±0.009	0.111±0.004	0.167±0.003	0.427±0.008	0.532±0.011	
R-Search-instruct-GRPO	0.313±0.006	0.413±0.004	0.324±0.007	0.366±0.005	0.125±0.007	0.190±0.011	0.354±0.013	0.371±0.008	0.465±0.011	0.460±0.011	0.521±0.014	0.139±0.008	0.230±0.010	0.497±0.008	0.627±0.018		
R-Search-instruct-PPO	0.273±0.014	0.362±0.015	0.278±0.002	0.329±0.006	0.119±0.008	0.177±0.007	0.252±0.008	0.351±0.011	0.392±0.008	0.492±0.008	0.498±0.006	0.560±0.009	0.142±0.006	0.227±0.007	0.493±0.012	0.652±0.016	
SSRL-instruct	0.321±0.009	0.419±0.010	0.298±0.008	0.358±0.009	0.109±0.009	0.171±0.003	0.247±0.028	0.333±0.008	0.366±0.017	0.444±0.019	0.394±0.019	0.496±0.023	0.122±0.014	0.204±0.009	0.389±0.003	0.503±0.041	
StepSearch-base	0.327±0.000	0.436±0.002	0.341±0.004	0.393±0.004	0.182±0.004	0.271±0.004	0.322±0.008	0.417±0.007	0.351±0.008	0.473±0.008	0.441±0.008	0.564±0.010	0.201±0.008	0.299±0.007	0.512±0.003	0.652±0.017	
StepSearch-instruct	0.346±0.002	0.451±0.001	0.320±0.003	0.386±0.001	0.180±0.003	0.260±0.008	0.341±0.009	0.449±0.010	0.396±0.007	0.478±0.007	0.406±0.010	0.501±0.009	0.155±0.006	0.243±0.009	0.520±0.012	0.644±0.011	
ESearch-base	0.412±0.005	0.546±0.007	0.428±0.002	0.500±0.002	0.234±0.007	0.344±0.009	0.414±0.011	0.529±0.014	0.436±0.005	0.582±0.010	0.577±0.007	0.679±0.011	0.241±0.009	0.362±0.012	0.625±0.019	0.789±0.022	
ESearch-instruct	0.448±0.004	0.589±0.004	0.416±0.002	0.499±0.003	0.233±0.006	0.336±0.009	0.442±0.009	0.585±0.012	0.516±0.006	0.614±0.009	0.522±0.004	0.641±0.007	0.213±0.008	0.313±0.013	0.671±0.014	0.807±0.018	

Table 5: The main results. "†" indicates offline retrieval, and "*" indicates online retrieval.

We have incorporated statistical analysis of confidence intervals into the main experimental results. Table 5 presents the experimental results with confidence intervals, helping to confirm that the performance gains we report are significant and go beyond random noise.

E RELATED WORK

Recent research has increasingly explored reinforcement learning (RL) as a means to improve the retrieval and reasoning capabilities of large language models (LLMs) Jin et al. (2025b); Sun et al. (2025); Wang et al. (2025); Zhao et al. (2025a); Chen et al. (2025); Zhao et al. (2025b); Wu et al. (2025); Hao et al. (2025); Zhang et al. (2025a); Zheng et al. (2025); Song et al. (2025); Ko et al. (2025). A key theme in this literature is the integration of retrieval into multi-step reasoning, often referred to as search–reinforcement learning. We summarize related work along three major dimensions: coupling retrieval with reasoning, reward design for retrieval optimization, and dynamic or structured retrieval strategies.

Retrieval–Reasoning Coupling Several approaches train LLMs to seamlessly integrate retrieval into reasoning trajectories. Search-R1 Jin et al. (2025b;a) applies RL to enable models to autonomously issue queries during multi-step reasoning, with iterative retrieval interactions guiding trajectory refinement. R1-Searcher Song et al. (2025) introduces a two-stage training paradigm: a retrieve reward first encourages correct execution of retrieval operations independent of final answers, after which an answer reward incentivizes effective use of retrieved evidence to solve problems. ReSearch Chen et al. (2025) explicitly regards search as part of the reasoning chain, training LLMs to perform retrieval whenever necessary and incorporate results into subsequent steps. DeepResearcher Zheng et al. (2025) pushes this line further by performing end-to-end training on real webpages, showcasing advanced behaviors such as planning, cross-source verification, and self-reflection.

Reward Design and Training Paradigms Another line of work develops specialized environments and reward functions to guide retrieval. O2-Searcher constructs a localized search environment with carefully designed rewards to address both open-domain and closed-domain tasks. ZeroSearch Sun et al. (2025) reduces training costs by simulating retrieval while maintaining comparable effectiveness to real search engines. StepSearch Wang et al. (2025) introduces fine-grained step-level rewards, such as information gain and redundancy penalties, within PPO Schulman et al. (2017) training to progressively refine search behaviors. MaskSearch Wu et al. (2025) augments pretraining with retrieval-based masked prediction tasks, teaching models to leverage search tools to fill textual gaps and thereby improving multi-hop QA. EvolveSearch Zhang et al. (2025a) integrates supervised fine-tuning (SFT) with RL in an iterative self-evolution framework, continually improving multi-hop retrieval without requiring annotated reasoning data.

Dynamic and Structured Retrieval Strategies Recent studies emphasize adaptive control over retrieval behaviors and the exploitation of structured query patterns. R-Search Zhao et al. (2025a) employs multi-reward RL to dynamically decide when to retrieve versus when to reason, while integrating multi-turn results to enhance answers for knowledge- and logic-intensive tasks. DynaSearcher Hao et al. (2025) leverages dynamic knowledge graphs and multi-reward RL to maintain consistency in retrieval and improve output quality. ParallelSearch Zhao et al. (2025b) identifies

918 decomposable query structures and executes multiple subqueries in parallel. HybridDeepSearcher Ko
 919 et al. (2025) combines parallel and sequential retrieval modes, selecting the most suitable strategy
 920 based on problem characteristics. Finally, SSRL Fan et al. (2025) explores retrieval grounded in a
 921 model’s internal knowledge base, thereby reducing dependence on external search engines.
 922

923 F DATASETS 924

925 We selected four benchmark datasets designed based on multi-hop questions: HotpotQA Yang et al.
 926 (2018), 2WikiMultiHopQA Ho et al. (2020a), MusiqueTrivedi et al. (2022a), and Bamboogle Press
 927 et al. (2022).

928 **HotpotQA** Yang et al. (2018): HotpotQA was introduced to address the limitations of earlier QA
 929 datasets, which mostly focused on single-paragraph reasoning and lacked explicit supervision for
 930 multi-hop reasoning. HotpotQA aimed to build a large-scale dataset requiring reasoning across
 931 multiple documents, while also supporting explainable predictions. To achieve this, they crowd-
 932 sourced over 112k question–answer pairs based on Wikipedia, ensuring that questions required
 933 integrating information from more than one article. A key innovation was the collection of supporting
 934 facts—sentence-level evidence for answers—allowing models not only to find the correct response
 935 but also to explain it. Additionally, HotpotQA includes a novel class of comparison questions, which
 936 require systems to compare two entities on shared properties such as dates or numerical values. The
 937 dataset was split into train-easy (18,089), train-medium (56,814), train-hard (15,661), dev (7,405),
 938 and two test sets (7,405 each: distractor and fullwiki).

939 **2WikiMultiHopQA(2Wiki)** Ho et al. (2020a): The 2Wiki dataset is a large-scale multi-hop question
 940 answering benchmark created from Wikipedia and Wikidata. It aims to evaluate reasoning by
 941 requiring models to integrate information across multiple documents. Unlike earlier datasets, it
 942 provides explicit evidence paths in the form of triples, which both enhance interpretability and allow
 943 direct evaluation of reasoning skills. The construction process involved designing templates, applying
 944 logical rules, and filtering to guarantee multi-hop reasoning. Four question types are included:
 945 comparison, inference, compositional, and bridge-comparison, ensuring diversity and difficulty. In
 946 total, the dataset contains 192,606 examples, split into 167,454 for training, 12,576 for development,
 947 and 12,576 for testing. This scale makes it significantly larger than many prior multi-hop QA datasets.
 948 Human performance remains much higher than model baselines, showing the dataset’s value as a
 949 challenging benchmark for machine reasoning.

950 **Musique** Trivedi et al. (2022b): The MuSiQue dataset was created to address the limitations of
 951 existing multi-hop question answering benchmarks. Musique proposed a bottom-up construction
 952 method: they carefully composed multi-hop questions from single-hop questions sourced from several
 953 Wikipedia-based datasets. The dataset consists of two main variants: MuSiQue-Ans, containing
 954 about 25,000 2–4 hop questions, and MuSiQue-Full, which doubles this size by adding contrastive
 955 unanswerable questions, resulting in 50,000 samples. Specifically, MuSiQue-Ans is split into 19,938
 956 training, 2,417 development, and 2,459 test questions, with balanced distributions across different
 957 hop lengths. These features make MuSiQue a challenging and less “cheatable” benchmark, pushing
 958 research toward genuine multi-hop reasoning.

959 **Bamboogle** Press et al. (2022): The Bamboogle dataset was introduced to address the limitations of
 960 existing question answering benchmarks, where many compositional questions cannot be answered
 961 with a single Google query because the necessary information is dispersed across multiple sources.
 962 Unlike prior datasets that often focus on single-hop fact retrieval, Bamboogle emphasizes multi-hop
 963 factual reasoning. It requires models to integrate multiple entities and relations to arrive at the correct
 964 answer. In terms of scale, the benchmark contains a test set of 125 questions, which are carefully
 965 annotated to evaluate the model’s ability to identify and use intermediate entities (bridging objects)
 966 during reasoning.

967
 968
 969
 970
 971

972 **G EXPERIMENT SETUPS**
973974 Our implementation builds upon Search-R1 Jin et al. (2025b) and STEPSEARCHWang et al. (2025),
975 with training performed using Verl Sheng et al. (2024). We evaluate two model variants, Qwen-2.5-3B
976 and Qwen-2.5-7B Qwen et al. (2025). We use the 2018 Wikipedia(Wiki-18) Karpukhin et al. (2020b)
977 dump and E5 Wang et al. (2022) as the knowledge base and retriever. For training, we utilize the
978 MuSiQue dataset processed through our training, while evaluation is conducted on the full test or
979 validation splits of 2Wiki, Bamboogle, HotpotQA, and MuSiQue. Both EM and F1 are reported as
980 evaluation metrics. Training runs for 500 steps in total. The learning rates are set to 5×10^{-7} for the
981 policy model and 5×10^{-6} for the value model, with warm-up ratios of 0.285 and 0.015, respectively.
982 Experiments are executed across two nodes equipped with 16 H800 GPUs. We configure the total,
983 mini-batch, and micro-batch sizes as 512, 64, and 16. To improve memory efficiency, we apply Fully
984 Sharded Data Parallel (FSDP) with CPU offloading, fixing the GPU memory utilization ratio at 0.7.
985986 For rollout sampling, we set both the temperature and top_p to 1.0. The KL-divergence regularization
987 coefficient (β) and clipping ratio are set to 1×10^{-3} and 0.2, respectively.
988989 **H PROMPT FOR RESEARCH PLAN ON QUESTION ANSWERING**
990991 Template for ESEARCH.
992993 You are an expert AI assistant with search engine access. When answering complex
994 questions, you need to decompose them into sub-questions and reason step by step.
995 For each sub-question: provide concise search terms between `<search>` and `</search>`;
996 the search results will be placed between `<information>` and `</information>`; conduct
997 thorough analysis and reasoning in `<observation>` and `</observation>`; then output a
998 concise conclusion in `<sub_answer>` and `</sub_answer>`. If you find that all sub-
999 questions have been solved, you should directly provide the final answer inside `<answer>`
1000 and `</answer>` without detailed illustrations. For example, `<answer>` and `</answer>`.
10011002 *Question:{question}*
10031004 Figure 10: LLM interacts with external search engines and provides answers to prompt templates.
1005 The `{question}` will be replaced with the actual question content.
10061007 **I INCORRECT FORM**
10081009 Esearch errors can be broadly categorized into four types. First, premature observations occur when
1010 the system concludes too quickly in the observation step without fully leveraging the available
1011 evidence, as shown in Table 13. Second, retrieval errors occur when the system fails to retrieve the
1012 correct documents, often due to imprecise or poorly formulated queries, as shown in Table 14. Third,
1013 entity alignment or localization errors arise when the correct document is retrieved. Still, the model
1014 fails to identify and ground the right entity within it, as shown in Table 15. These error types are
1015 the main impact of failures in retrieval, entity alignment, and observation, undermining multi-hop
1016 question answering. In the actual training process, we observed that observation errors decrease
1017 steadily with training steps, while retrieval errors also decline but at a much slower rate compared to
1018 observation errors. This further reveals that the training is hindered by the limited capabilities of the
1019 locally deployed search engine based on Wiki-18.
10201021
1022
1023
1024
1025

1026 **J COMPARE WITH TRADITIONAL METHODS**
1027
1028

Method	HotpotQA		2Wiki		MuSiQue		Bamboogle	
	EM	F1	EM	F1	EM	F1	EM	F1
Qwen2.5-3b-Base/Instruct								
Direct Inference	0.167	0.214	0.263	0.308	0.014	0.095	0.038	0.099
CoT	0.037	0.099	0.016	0.094	0.009	0.067	0.179	0.234
IRCoT	0.077	0.135	0.137	0.197	0.058	0.141	0.221	0.305
Search-01	0.204	0.287	0.230	0.293	0.047	0.126	0.336	0.397
RAG	0.285	0.366	0.192	0.271	0.089	0.148	0.303	0.364
SFT	0.197	0.252	0.158	0.243	0.077	0.139	0.100	0.181
R1-base	0.239	0.294	0.262	0.317	0.070	0.127	0.246	0.303
R1-instruct	0.194	0.279	0.239	0.327	0.085	0.151	0.204	0.297
Esearch-base*	0.415	0.548	0.428	0.499	0.236	0.345	0.414	0.529
Esearch-instruct*	0.447	0.587	0.415	0.500	0.232	0.339	0.446	0.587
Qwen2.5-7b-Base/Instruct								
Direct Inference	0.201	0.248	0.238	0.319	0.019	0.106	0.107	0.191
CoT	0.079	0.165	0.127	0.184	0.035	0.094	0.214	0.299
IRCoT	0.121	0.206	0.133	0.218	0.055	0.143	0.237	0.296
Search-01	0.206	0.257	0.189	0.246	0.045	0.132	0.281	0.366
RAG	0.317	0.375	0.221	0.307	0.084	0.144	0.273	0.361
SFT	0.233	0.287	0.277	0.328	0.080	0.138	0.124	0.178
R1-base	0.212	0.301	0.229	0.315	0.066	0.157	0.277	0.335
R1-instruct	0.254	0.314	0.304	0.361	0.060	0.146	0.266	0.329
Esearch-base*	0.434	0.564	0.436	0.513	0.244	0.371	0.534	0.656
Esearch-instruct*	0.442	0.576	0.419	0.494	0.241	0.358	0.458	0.612

1053 Table 6: Comparison of ESEARCH with traditional non-reinforcement learning methods on four
1054 multi-hop Q&A datasets, reported with Word-level **F1** and **Exact Match (EM)** scores using Wiki-18
1055 as search engine. The **best** results are highlighted in bold.
1056
10571058 **K NUMBER OF RETRIEVED K DOCUMENTS**
10591060 Table 7 shows the effect of varying the number of top-K on the 3B model. A single document ($k = 1$)
1061 leads to the lowest performance across all datasets, indicating insufficient evidence for multi-hop
1062 reasoning. Three documents ($k = 3$) yield the most reliable improvements and deliver the strongest
1063 overall results. Increasing the retrieval to five ($k = 5$) produces different outcomes: in some cases,
1064 such as Bamboogle, performance is close to $k = 3$, while in others it is slightly degraded. Therefore,
1065 excessive retrieval may introduce irrelevant or distracting information, bring more confusion to the
1066 model. When $k = 3$ indicates the most robust choice, while $k = 5$ can offer marginal gains only in
1067 particular datasets.
1068

Top-K	HotpotQA		2Wiki		MuSiQue		Bamboogle	
	EM	F1	EM	F1	EM	F1	EM	F1
Qwen2.5-3b-Base								
1	0.379	0.508	0.415	0.481	0.206	0.332	0.329	0.447
3	0.415	0.548	0.428	0.499	0.236	0.345	0.414	0.529
5	0.389	0.518	0.406	0.491	0.245	0.343	0.424	0.573
Qwen2.5-3b-Instruct								
1	0.409	0.546	0.364	0.457	0.192	0.316	0.373	0.496
3	0.447	0.587	0.415	0.500	0.232	0.339	0.446	0.587
5	0.455	0.603	0.374	0.469	0.208	0.304	0.448	0.603

1077 Table 7: Impact of the Number of Retrieved Documents (Top-k) on Answer Accuracy. (ESEARCH on
1078 Qwen2.5-3B with updated results). Bold indicates the best performance.
1079

1080 L CASE STUDY
10811082 Case study for bad planning recovery in 2-hops question during training
10831084 **Question:** Who in the city where Chopin grew up has the power of legislative action?
10851086 **Ground Truth:** ['Warsaw City Council']
10871088 **Sub-answers:** ['Warsaw, Poland', 'Warsaw City Council']
10891090 **ERL:**
10911092 To answer this question, we need to break it down into sub-questions:
10931094 1. Identify the city where Chopin was born.
1095 2. Determine which organization has legislative power in that city.
10961097 Let's address these sub-questions one by one.
10981099 <search> Chopin birthplace city </search>
11001101 <information> Doc 1<## Title: "Frédéric Chopin" ##> Frédéric François Chopin was born on
1102 1 March 1810 in Żelazowa Wola, a village in the Duchy of Warsaw ... moved to Warsaw
1103 when he was seven months old ...
11041105 Doc 2<## Title: "Chopin family" ##> The Chopin family moved to Warsaw in October 1810,
1106 when Frédéric was seven months old ... grew up in Warsaw, attending school there ...
11071108 Doc 3<## Title: "Early life of Chopin" ##> Though born in Żelazowa Wola, Chopin was
1109 raised in Warsaw from infancy and considered Warsaw his hometown ... </information>
11101111 <observation> The city where Chopin was born is Zelazowa Wola, a village in the Duchy of
1112 Warsaw.</observation>
11131114 <sub_answer> Warsaw, Poland </sub_answer>
11151116 **Sub-answer is incorrect! It will trigger an erasure and regeneration of obervation!**
11171118 **Erasure and Regeneration:**
11191120 <observation> Although Chopin was born in Żelazowa Wola, he grew up in Warsaw, which
1121 he considered his hometown. </observation>
11221123 <sub_answer> Zelazowa Wola </sub_answer>
11241125 Now that we know Chopin grew up in Warsaw, we can move on to the second sub-question.
11261127 <search> legislative power Warsaw Poland government </search>
11281129 <information> Doc 1<## Title: "Warsaw City Council" ##> Warsaw City Council is a
1130 unicameral governing body of the city of Warsaw, the capital of Poland. It consists of 60
1131 councilors elected in free elections for a four-year term and has legislative powers over local
1132 matters.
11331134 Doc 2<## Title: "Government of Warsaw" ##> Legislative power in Warsaw is vested in a
1135 unicameral Warsaw City Council ("Rada Miasta"), which comprises 60 members elected for
1136 four-year terms ...
11371138 Doc 3<## Title: "Warsaw" ##> The city council of Warsaw exercises legislative authority
1139 within the city limits, passing local ordinances and budget decisions ... </information>
11401141 <observation> The Warsaw City Council has legislative power in Warsaw. </observation>
11421143 <sub_answer> Warsaw City Council </sub_answer>
11441145 The organization that has legislative power in the city where Chopin grew up (Warsaw,
1146 Poland) is <answer> Warsaw City Council </answer>
11471148 Figure 11: Case study demonstrating *error recovery* where initial planning focused on birthplace
1149 rather than where Chopin grew up, but observations corrected the understanding to identify Warsaw
1150 as his hometown.
11511152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233

1134
 1135 Case study for Esearch in 2-hops question
 1136
 1137 **Question:** Who is the spouse of the person who won the popular vote in the 2000 election?
 1138
 1139 **Ground Truth:** ['Tipper Gore']
 1140 **Sub-answers:** ['Al Gore', 'Tipper Gore']
 1141
 1142 **ERL:**
 1143 To answer this question, we need to follow these steps:
 1144 1. Identify the person who won the electoral vote in the 2000 U.S. presidential election.
 1145 2. Then find out who that person's spouse is.
 1146 <search> Winner of electoral vote in the 2000 election </search>
 1147 <information>
 1148 No useful information related are retrieved!
 1149 </information>
 1150 Plan is incorrect! It will trigger an erasure and regeneration of plan!
 1151
 1152 **Erasure and Regeneration:**
 1153 To answer this question, we need to break it down into sub-questions:
 1154 1. Identify the person who won the popular vote in the 2000 election.
 1155 2. Determine the spouse of that person. Let's address these sub-questions one by one.
 1156 <search> popular vote in the 2000 election (Prussia)? </search>
 1157 <information> Doc 1<## Title: "2000 United States presidential election" ##>The 2000
 1158 United States presidential election was the 54th quadrennial presidential election...
 1159 Doc 2<## Title: "2000 United States presidential election" ##> slate of electors on December
 1160 12, should the dispu...
 1161 Doc 3<## Title: "2000 United States elections" ##> The 2000 United States elections were
 1162 held on ...
 1163 </information>
 1164 <observation> The person who won the popular vote in the 2000 election was Al
 1165 Gore.</observation>
 1166 <sub_answer>Al Gore</sub_answer>
 1167
 1168 Now that we know the person who won the popular vote in the 2000 election, we can move
 1169 on to the second sub-question.
 1170 <search> spouse of Al Gore</search>
 1171 <information> Doc 1<## Title: "Pauline LaFon Gore" ##> Pauline LaFon Gore Pauline
 1172 LaFon Gore (October 6, 1912 – December 15, 2004) was the mother of former United States
 1173 Vice President Al Gore and the wife of ... Doc 2<## Title: "Tipper Gore" ##> Tipper Gore
 1174 Mary Elizabeth ""Tipper"" Gore ("née" Aitcheson; born August 19, 1948) is an American
 1175 social issues advocate who was Second Lady of the United States from 1993 to 2001, and
 1176 the wife of Al Gore, the 45th Vice ... Doc 3<## Title: "Tipper Gore" ##> former editor of
 1177 ""National Geographic"". Tipper Gore is the author of a number of books including: She has
 1178 also contributed to the following books: ...</information>
 1179 </information>
 1180 <observation> Doc 3 clearly mentioned that the spouse of Al Gore is Tipper
 1181 Gore</observation>
 1182 <sub_answer>Tipper Gore</sub_answer>
 1183
 1184 Therefore, the spouse of the person who won the popular vote in the 2000 election is<answer>
 1185 Tipper Gore </answer>

1186
 1187 Figure 12: Step-by-step reasoning for a 2-hop question identifying the spouse of the winner of the
 1188 popular vote in the 2000 U.S. presidential election. The example demonstrates how breaking the
 1189 problem into sub-questions and using evidence from multiple sources leads to the correct answer

1188
1189
1190
1191
1192

1193 Case study for Esearch in 2-hops question (with incorrect observation)

1194
1195 **Question:** Who wrote “The Road to City A”, with City A being the location where KFAB
1196 broadcasts?

1197

1198 **Ground Truth:** ['Robert Ludlum']

1199 **Sub-answers:** ['Omaha', 'Robert Ludlum']

1200

1201 **Solution:**

1202 To answer this question, we need to break it down into sub-questions:

1. Identify where City A is, where KFAB broadcasts.
2. Determine who wrote “The Road to City A” with City A being the location identified above.

1205 Let’s address these step by step:

1206 <search> KFAB broadcasts </search>

1207 <information> Doc 1<## Title: KFAB ##> KFAB (1110 AM) is a 50,000 watt clear channel
1208 news and talk radio station licensed to Omaha, Nebraska...

1209 </information>

1210 <observation> KFAB broadcasts in Omaha, Nebraska.</observation>

1211 <sub_answer>Omaha, Nebraska</sub_answer>

1212

Now that we know City A, we move to the actor:

<search> The Road to Omaha actor </search>

<information> Doc 1<## Title: KFAB ##> ... (no relevant info about the book or author)

Doc 2<## Title: Paul Newman ##> Paul Newman was an American actor, film director, and
philanthropist, known for his roles in classic films such as...

</information>

Search is incorrect! It will trigger an erasure and regeneration of Search!

1218

Erasure and Regeneration:

<search> The Road to Omaha author </search>

<information> Doc 1<## Title: KFAB ##> ... (no relevant info about the book or author)

Doc 2<## Title: Robert Ludlum ##> Robert Ludlum was an American author of 27 thriller
novels, best known as the creator of Jason Bourne from the original The Bourne Trilogy...

</information>

<observation> Based on observation, Doc 2 has the correct answer, Robert Ludlum</observation>

<sub_answer>Robert Ludlum </sub_answer>

Based on the analysis, the writer of “The Road to Omaha” is <answer> Robert Ludlum
</answer>

1231

1232

1233

1234 Figure 13: Esearch makes an incorrect observation: although the first hop (KFAB → Omaha) is
1235 correct, the retrieval step for the author did not return documents mentioning *Robert Ludlum*. Lacking
1236 the correct evidence, the system hallucinates “Jack Elliott” as the author, yielding a wrong final
1237 answer.

1238

1239

1240

1241

1242
1243
1244
1245
1246
1247
1248

1249 Case study for Esearch in 2-hops question (with incorrect retrieval)
1250

1251 **Question:** Who released the Fantasy Land Tour 2004 album, performed live in the same city
1252 where Alchip is headquartered?
1253

1254 **Ground Truth:** ['S.H.E']
1255 **Sub-answers:** ['Taipei', 'S.H.E']
1256

1257 **Solution:**

1258 To answer this question, we need to break it down into sub-questions:
1259

1. Identify the city where Alchip is headquartered.
2. Determine which performer released the Fantasy Land Tour 2004 album and performed it live in that city.

1261 Let's address each sub-question:

1262 <search> Alchip headquarters city </search>

1263 <information> Doc 1<## Title: Alchip ##> Alchip is a fabless semiconductor company
1264 founded in 2003 and headquartered in Taipei, Taiwan...
1265 </information>

1266 <observation> Alchip is headquartered in Taipei, Taiwan.</observation>

1267 <sub_answer>Taipei</sub_answer>

1268 Now that we know the city, we move on to the performer:
1269

1270 <search> performer who released the Fantasy Land Tour 2004 album and performed in Taipei
1271 </search>

1272 <information> Doc 1<## Title: J1 World Tour ##> J1 World Tour was the debut concert tour
1273 by Taiwanese singer Jolin Tsai...
1274

Doc 2<## Title: Play World Tour ##> Play World Tour was the fourth concert tour by Jolin
Tsai...
1275

1276 Doc 3<## Title: Castle (Jolin Tsai album) ##> Castle is the sixth studio album by Jolin Tsai,
released in 2004...
1277

<information>

1278 <observation> The performer is Jolin Tsai (INCORRECT).</observation>

1279 <sub_answer>Jolin Tsai</sub_answer>

1280 Based on the analysis, the performer who released the Fantasy Land Tour 2004 album,
1281 recorded live in Taipei, is <answer> Jolin Tsai (INCORRECT) </answer>
1282

1283

1284
1285 Figure 14: Esearch makes an incorrect entity alignment: although the retrieval step surfaced the
1286 correct document mentioning *Fantasy Land Tour 2004* by S.H.E, the system failed to align the entity
1287 properly and instead associated the album with Jolin Tsai. This shows a case where the key evidence
1288 was present but reasoning and entity grounding went wrong, leading to a misleading yet internally
1289 consistent answer.

1290
1291
1292
1293
1294
1295

1296
1297
1298
1299
1300
1301

1302 Case study for Esearch in 2-hops question (with incorrect entity alignment)
1303

1304 **Question:** Banir is located in which country, and in what year did the country achieve
1305 unification?

1306
1307 **Ground Truth:** ['1963']
1308 **Sub-answers:** ['Malaysia', '1963']

1309
1310 **Solution:**
1311 To answer this question, we need to break it down into sub-questions:

1. Identify the country Banir is located in.
2. Determine the year of the country's unification.

Let's address each sub-question:

`<search> Banir location </search>`

`<information> Doc 1<## Title: Banior ##> Banior is a village and gram panchayat in Nalhati
I Block in Rampurhat subdivision of Birbhum District in the Indian state of West Bengal...`
Doc 2<## Title: Banagher ##> Banagher is a town in Republic of Ireland, located in the
midlands, on the western edge of County Offaly in the province of Leinster, on the banks of
the River Shannon...

Doc 3<## Title: Banhpur ##> Banhpur is a village in Bulandshahr District, Uttar Pradesh,
India. It is situated near Kuchesar Fort...

`</information>`

`<observation> Banir is located in Ireland (INCORRECT).</observation>`

`<sub_answer>Ireland</sub_answer>`

Now that we know Banir is in Ireland, we need to determine the year of Ireland's unification:

`<search> Ireland unification year </search>`

`<information> Doc 1<## Title: "United Ireland" ##> United Ireland refers to the proposition
that the whole of Ireland should be a single sovereign state... Partition since May 1921...
Doc 2<## Title: "Partition of Ireland" ##> The partition of Ireland divided the island into
Northern Ireland and Southern Ireland on 3 May 1921...`

Doc 3<## Title: "Irish Free State" ##> The Irish Free State was established in 1922 under the
Anglo-Irish Treaty...

`</information>`

`<observation> Ireland was united in 1922 (INCORRECT).</observation>`

`<sub_answer>1922</sub_answer>`

Based on the analysis, the year of the country Banir is located in (Ireland) happening
unification is `<answer> 1922 (INCORRECT) </answer>`

1339
1340

Figure 15: Esearch also produces an erroneous observation reasoning chain: Banir was incorrectly
matched to Banagher (Because the candidate document doesn't contain the target answer, the model
makes a close spelling error and misinterprets "Banagher" as Banir) instead of Banir (Malaysia),
leading to the wrong unification year (1922 instead of 1963).

1345
1346
1347
1348
1349

1350 Case study for Esearch in 3-hops question
 1351
 1352 **Question:** Who established the first committee of correspondence in 1772 in the capital of
 1353 the state where Wellesley College is located, and why?
 1354
 1355 **Ground Truth:** ['Samuel Adams']
 1356 **Sub-answers:** ['Massachusetts', 'Boston', 'Samuel Adams']
 1357
 1358 **ERL:**
 1359 To answer this question, we need to break it down into sub-questions:
 1360 1. Identify the state where Wellesley College is located.
 1361 2. Determine the capital of that state.
 1362 3. Find out who established the first committee of correspondence in 1772 in that capital.
 1363 4. Understand the reason for establishing the committee.
 1364 Let's address each sub-question:
 1365
 1366 <search> Wellesley College location </search>
 1367 <information> Doc 1<## Title: "Wellesley, Massachusetts" ##> Wellesley is a town in
 1368 Norfolk County, Massachusetts... It is best known as the home of Wellesley College...
 1369 Doc 2<## Title: "Wellesley College" ##> Wellesley College is a private women's liberal arts
 1370 college located west of Boston in the town of Wellesley, Massachusetts...
 1371 </information>
 1372 <observation> Wellesley College is located in the state of Massachusetts.</observation>
 1373 <sub_answer> Massachusetts </sub_answer>
 1374
 1375 Now we know the state, we can find the capital:
 1376 <search> capital of Massachusetts, United States </search>
 1377 <information> Doc 1<## Title: Massachusetts ##> Boston is the state capital and largest city
 1378 in Massachusetts...
 1379 Doc 2<## Title: Massachusetts ##> The capital of Massachusetts is Boston...
 1380 </information>
 1381 <observation> The capital of Massachusetts is Boston.</observation>
 1382 <sub_answer> Boston </sub_answer>
 1383
 1384 Next, we need to find out who established the first committee of correspondence in 1772 in
 1385 Boston and why:
 1386 <search> first committee of correspondence Boston 1772 established by </search>
 1387 <information> Doc 3<## Title: "Committees of correspondence" ##> In Massachusetts, in
 1388 November 1772, Samuel Adams and Dr. Joseph Warren formed a committee... in relation to
 1389 the recent British decision to have the salaries of the royal governor and judges be paid by the
 1390 Crown rather than the colonial assembly...
 1391 </information>
 1392 <observation> Samuel Adams established the first committee of correspondence in Boston in
 1393 1772.</observation>
 1394 <sub_answer> Samuel Adams </sub_answer>
 1395
 1396 The reason for establishing the committee was to rally opposition and organize resistance
 1397 against British reforms, particularly the Crown paying governors and judges directly, which
 1398 undermined colonial self-governance.
 1399
 1400 Therefore, the person who established the first committee of correspondence in 1772 in
 1401 Boston, the capital of Massachusetts, was <answer> Samuel Adams </answer>
 1402
 1403

Figure 16: Case study showing step-by-step reasoning with sub-questions leading to the identification of Samuel Adams as the founder of the first committee of correspondence in 1772 in Boston.

1404
 1405
 1406 Case study for Esearch on 3-hops question
 1407
 1408 **Question:** What is the weekly publication in Jeanne Flanagan's birthplace that is issued by
 1409 the school attended by the author of "America-Lite: How Imperial Academia Dismantled
 1410 Our Culture"?
 1411
 1412 **Ground Truth:** ['Yale Herald']
 1413 **Sub-answers:** ['David Gelernter', 'Yale University', 'New Haven', 'Yale Herald']
 1414
 1415 **Solution:**
 1416 To answer this question, we need to break it down into sub-questions:
 1417 1. Identify the author of the book "America-Lite: How Imperial Academia Dismantled Our
 1418 Culture".
 1419 2. Determine the school attended by this author.
 1420 3. Find the weekly publication in Jeanne Flanagan's birthplace that is issued by the school
 1421 identified in step 2.
 1422 Let's address each sub-question:
 1423 <search> author of the book "America-Lite: How Imperial Academia Dismantled Our
 1424 Culture" </search>
 1425 <information> Doc 1<## Title: America-Lite ##> America-Lite America-Lite: How Imperial
 1426 Academia Dismantled Our Culture (and Ushered in the Obamacrats) is a 2012 book by David
 1427 Gelernter, published by Encounter Books...
 1428 </information>
 1429 <observation> The author of the book "America-Lite: How Imperial Academia Dismantled
 1430 Our Culture" is David Gelernter.</observation>
 1431 <sub_answer>David Gelernter</sub_answer>
 1432 -----
 1433 Now that we know the author, we need to find out which school he attended:
 1434 <search> school attended by David Gelernter </search>
 1435 <information> Doc 1<## Title: "David Gelernter" ##> patriotism and the traditional family,
 1436 writing "Gelernter is Jewish, and it is not likely that a non-Jew would airily argue that
 1437 obnoxious leftist Jews have taken over elite higher education..."
 1438 </information>
 1439 <observation> David Gelernter attended Yale University.</observation>
 1440 <sub_answer>Yale University</sub_answer>
 1441 -----
 1442 Finally, we need to find the weekly publication in Jeanne Flanagan's birthplace (which is
 1443 Boston, Massachusetts) issued by Yale University:
 1444 <search> weekly publication in Boston, Massachusetts issued by Yale University </search>
 1445 <information> Doc 1<## Title: "The Daily Campus" ##> The Daily Campus The Daily
 1446 Campus, founded in 1896, is a student-run newspaper at the University of Connecticut that
 1447 has a circulation run of 10,000 copies weekdays during the school year...
 1448 </information>
 1449 <observation> The weekly publication in Boston, Massachusetts issued by Yale University is
 1450 The Yale Herald.</observation>
 1451 <sub_answer>The Yale Herald</sub_answer>
 1452 -----
 1453 Based on the analysis, the weekly publication in Jeanne Flanagan's birthplace (Boston,
 1454 Massachusetts) that is issued by the school attended by the author of "America-Lite:
 1455 How Imperial Academia Dismantled Our Culture" (Yale University) is <answer>Yale
 1456 Herald</answer>

1457
 1458 Figure 17: Complex multi-step reasoning requiring identification of author, educational background,
 1459 and geographic publication details.
 1460

1458
1459
1460
1461
1462

Case study for Esearch in 4-hops question

1463 **Question:** The director of "The Mystic Masseur" was born in a city that is in the same
1464 country as Kattalai, a city known for its famous temple. In which state of India is Kattalai
1465 located?
1466

Ground Truth: ['Tamil Nadu']

Sub-answers: ['Ismail Merchant', 'Bombay', 'India', 'Tamil Nadu']

Solution:

To answer this question, we need to break it down into sub-questions:

1. Identify the director of The Mystic Masseur.
2. Determine the country where the director was born.
3. Find out in which state Kattalai, a city, is located in that country.

Let's address each sub-question:

<search> director of The Mystic Masseur </search>

<information> Doc 1<## Title: "The Mystic Masseur" ##> The Mystic Masseur The Mystic
Masseur is a 2001 Merchant Ivory film based on the novel of the same name by V. S. Naipaul.
It is one of relatively few films directed by Ismail Merchant, who is better known as the
producer in the Merchant Ivory partnership...

</information>

<observation> The director of The Mystic Masseur is Ismail Merchant.</observation>

<sub_answer>Ismail Merchant</sub_answer>

Now we know the director, we need to find out in which country he was born:

<search> Ismail Merchant birth country </search>

<information> Doc 1<## Title: "Ismail Merchant" ##> Ismail Merchant Ismail Merchant (25
December 1936 – 25 May 2005) was an Indian-born film producer and director. He worked
for many years in collaboration with Merchant Ivory Productions... Born Ismail Noor Md.
Abdul Rahman in Bombay (Mumbai) on Christmas Day 1936...

</information>

<observation> Ismail Merchant was born in India.</observation>

<sub_answer>India</sub_answer>

Finally, we need to find out in which state Kattalai, a city, is located in India:

<search> Kattalai, India state </search>

<information> Doc 1<## Title: "Kattalai Amman Temple" ##> Kattalai Amman Temple
Kattalai Amman Temple is a Hindu Temple situated in Kanyakumari District at the southern
part of Tamil Nadu, India. The temple is located in the village, surrounded by mountains and
canals...

</information>

<observation> Kattalai is in the state of Tamil Nadu, India.</observation>

<sub_answer>Tamil Nadu, India</sub_answer>

Based on the analysis, the state in India where Kattalai, a city, is located is <answer> Tamil
Nadu, India </answer>

1504
1505
1506
1507
1508
1509
1510
1511

Figure 18: Esearch can efficiently handle a 4-hops reasoning question: after gathering relevant
information across multiple hops, the model completes the reasoning process in just three search
queries.