
Published as a conference paper at ICLR 2024

ACCELERATING DATA GENERATION FOR NEURAL
OPERATORS VIA KRYLOV SUBSPACE RECYCLING

Hong Wang1,2∗, Zhongkai Hao3∗, Jie Wang1,2†, Zijie Geng1,2, Zhen Wang1,2,
Bin Li1,2, Feng Wu1,2

1 CAS Key Laboratory of Technology in GIPAS, University of Science and Technology of China
2 MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Sci-
ence and Technology of China
{wanghong1700,ustcgzj,wangzhen0518}@mail.ustc.edu.cn,
{jiewangx,binli,fengwu}@ustc.edu.cn
3 Tsinghua University
hzj21@mails.tsinghua.edu.cn

ABSTRACT

Learning neural operators for solving partial differential equations (PDEs) has
attracted great attention due to its high inference efficiency. However, training
such operators requires generating a substantial amount of labeled data, i.e., PDE
problems together with their solutions. The data generation process is exception-
ally time-consuming, as it involves solving numerous systems of linear equations
to obtain numerical solutions to the PDEs. Many existing methods solve these
systems independently without considering their inherent similarities, resulting in
extremely redundant computations. To tackle this problem, we propose a novel
method, namely Sorting Krylov Recycling (SKR), to boost the efficiency of solv-
ing these systems, thus significantly accelerating data generation for neural op-
erators training. To the best of our knowledge, SKR is the first attempt to ad-
dress the time-consuming nature of data generation for learning neural operators.
The working horse of SKR is Krylov subspace recycling, a powerful technique
for solving a series of interrelated systems by leveraging their inherent similari-
ties. Specifically, SKR employs a sorting algorithm to arrange these systems in
a sequence, where adjacent systems exhibit high similarities. Then it equips a
solver with Krylov subspace recycling to solve the systems sequentially instead
of independently, thus effectively enhancing the solving efficiency. Both theoret-
ical analysis and extensive experiments demonstrate that SKR can significantly
accelerate neural operator data generation, achieving a remarkable speedup of up
to 13.9 times.

1 INTRODUCTION

Solving Partial Differential Equations (PDEs) plays a fundamental and crucial role in various scien-
tific domains, including physics, chemistry, and biology (Zachmanoglou & Thoe, 1986). However,
traditional PDE solvers like the Finite Element Method (FEM) (Thomas, 2013) often involve sub-
stantial computational costs. Recently, data-driven approaches like neural operators (NOs) (Lu et al.,
2019) have emerged as promising alternatives for rapidly solving PDEs (Zhang et al., 2023). NOs
can be trained on pre-generated datasets as surrogate models. During practical applications, they
only require a straightforward forward pass to predict solutions of PDEs which takes only several
milliseconds. Such efficient methodologies for solving PDEs hold great potential for real-time pre-
dictions and addressing both forward and inverse problems in climate (Pathak et al., 2022), fluid
dynamics (Wen et al., 2022), and electromagnetism (Augenstein et al., 2023).

Despite their high inference efficiency, a primary limitation of NOs is the need for a significant
volume of labeled data during training. For instance, when training a Fourier Neural Operator

∗Equal contribution.
†Corresponding author.

1

Published as a conference paper at ICLR 2024

solver

solver

solver

PDE
generator

DATA
SET

1

2 3 4 5

6

0 1 2 3 4 5
time (s)

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

to
le

ra
nc

e
(2

 n
or

m
)

SKR(ours) None
SKR(ours) Jacobi
SKR(ours) BJacobi
SKR(ours) SOR
SKR(ours) ASM
GMRES None
GMRES Jacobi
GMRES BJacobi
GMRES SOR
GMRES ASM

Figure 1: Left. Generation process of the NO dataset. 1. Generate a set of random parameters from
NO. 2. Export the corresponding PDE based on these parameters. 3. Transform the PDE into a
system of linear equations using discretization methods. 4. Invoke linear equation solvers to solve
these systems independently. 5. Obtain solutions to the linear systems and convert them into PDE
solutions. 6. Assemble into a dataset. Right. The accuracy change over time for our SKR algorithm
and the baseline GMRES algorithm. As seen, the SKR algorithm can significantly accelerate the
solution of the system of linear equations, achieving a speed-up of up to 13.9 times.

(FNO) (Li et al., 2020) for Darcy flow problems, thousands of PDEs and their corresponding
solutions under various initial conditions are often necessary. Acquiring this data typically en-
tails running numerous traditional simulations independently, leading to elevated computational ex-
penses. For solvers such as Finite Element Method (FEM) (LeVeque, 2002), accuracy often in-
creases quadratically or even cubically with the mesh grid count. Depending on the desired accu-
racy, dataset generation can range from several hours to thousands of hours. Furthermore, the field
of PDEs is unique compared to other domains, given the significant disparities between equations
and the general lack of data generalization. Specifically, for each type of PDE, a dedicated dataset
needs recreation when training NOs. The computational cost for generating data for large-scale
problems has become a bottleneck hindering the practical usage of NOs (Zhang et al., 2023). While
certain methodologies propose integrating physical priors or incorporating physics-informed loss to
potentially increase data efficiency, these approaches are still in their primary stages and are not
satisfactory for practical problems (Hao et al., 2022). Consequently, designing efficient strategies to
generate the data for NOs remains a foundational and critical challenge (Geng et al., 2023).

The creation of the NO dataset is depicted in Figure 1. Notably, the computation in the 4-th step
Potentially constitutes approximately 95% of the entire process (Hughes, 2012), underscoring it
as a prime candidate for acceleration. While conventional approaches tackle each linear system
independently during dataset formulation, we posit that there is an inherent interconnectivity among
them. Specifically, as shown in Figure 4 and 9, systems originating from a similar category of PDEs
often exhibit comparable matrix structures, eigenvector subspaces, and solution vectors (Parks et al.,
2006). Addressing them in isolation leads to considerable computational redundancy.

To address the prevalent issue of computational redundancy in conventional linear system solutions,
we introduce a pioneering and efficient algorithm, termed Sorting Krylov Recycling (SKR). SKR
is ingeniously designed to optimize the process from the ground up. Its initial phase involves a
Sorting algorithm, which serializes the linear systems. This serialization strategy is carefully crafted
to augment the correlations between successive systems, setting the stage for enhanced computa-
tional synergy. In its subsequent phase, SKR delves into the Krylov subspace established during
the linear system resolutions. Through the application of a ’Recycling’ technique, it capitalizes on
eigenvectors and invariant subspaces identified from antecedent solutions, thereby accelerating the
convergence rate and substantially reducing the number of iterations and associated computation
time. Central to its design, SKR discerns and leverages the inherent interrelations within these lin-
ear systems. Rather than approaching each system as a discrete entity, SKR adeptly orchestrates
their sequential resolution, eliminating considerable redundant calculations that arise from similar
structures. This refined methodology not only alleviates the computational demands of linear sys-
tem solutions but also markedly hastens the creation of training data for NOs. Codes are available
at https://github.com/wanghong1700/NO-DataGen-SKR.

2

https://github.com/wanghong1700/NO-DataGen-SKR

Published as a conference paper at ICLR 2024

2 RELATED WORK

2.1 DATA-EFFICIENT NEURAL OPERATORS AND LEARNED PDE SOLVERS

Neural operators, such as the Fourier Neural Operator (FNO) (Li et al., 2020) and Deep Operator
Network (DeepONet) (Lu et al., 2019), are effective models for solving PDEs. However, their train-
ing requires large offline paired parametrized PDE datasets. To improve data efficiency, research
has integrated physics-informed loss mechanisms similar to Physics Informed Neural Networks
(PINNs) (Raissi et al., 2017). This loss function guides neural operators to align with PDEs, cutting
down data needs. Moreover, specific architectures have been developed to maintain symmetries and
conservation laws (Brandstetter et al., 2022; Liu et al., 2023), enhancing both generalization and
data efficiency. Yet, these improvements largely focus on neural operators without fundamentally
revising data generation.

Concurrently, there’s a push to create data-driven PDE solvers. For example, Hsieh et al. (2019)
suggests a data-optimized parameterized iterative scheme. Additionally, combining neural operators
with traditional numerical solvers is an emerging trend. An example is the hybrid iterative numerical
transferable solver, merging numerical methods with neural operators for greater accuracy (Zhang
et al., 2022). This model incorporates Temporal Stencil Modeling. Notably, numerical iterations can
also be used as network layers, aiding in solving PDE-constrained optimization and other challenges.

2.2 KRYLOV SUBSPACE RECYCLING

The linear systems produced by the process of generating NOs training data typically exhibit prop-
erties of sparsity and large-scale nature (Hao et al., 2022; Zhang et al., 2023). In general, for non-
symmetric matrices, Generalized minimal residual method (GMRES) (Saad & Schultz, 1986; Qin &
Xu, 2023) of the Krylov algorithm is often employed for generating training data pertinent to NOs.

The concept of recycling in Krylov algorithms has found broad applications across multiple disci-
plines. For instance, the technique has been leveraged to refine various matrix algorithms (Wang
et al., 2007; Mehrmann & Schröder, 2011). Furthermore, it has been deployed for diverse matrix
problems (Parks et al., 2006; Gaul, 2014; Soodhalter et al., 2020). Moreover, the recycling method-
ology has also been adapted to hasten iterative solutions for nonlinear equations (Kelley, 2003;
Deuflhard, 2005; Gaul & Schlömer, 2012; Gaul & Schlömer). Additionally, it has been instrumental
in accelerating the resolution of time-dependent PDE equations (Meurant, 2001; Bertaccini et al.,
2004; Birken et al., 2008). We have designed a sorting algorithm tailored for NO, building upon the
original recycling algorithm, making it more suitable for the generation of NO datasets.

3 PRELIMINARIES

3.1 DISCRETIZATION OF PDES IN NEURAL OPERATOR TRAINING

We primarily focus on PDE NOs for which the time overhead of generating training data is sub-
stantial. As illustrated in Figure 1, the generation of this training data necessitates solving the
corresponding PDEs. Due to the inherent complexity of these PDEs and their intricate boundary
conditions, discretized numerical algorithms like FDM, FEM, and FVM are commonly employed
for their solution (Strikwerda, 2004; Hughes, 2012; Johnson, 2012; LeVeque, 2002; Cheng & Xu,
2023).

These discretized numerical algorithms embed the PDE problem from an infinite-dimensional
Hilbert function space into a suitable finite-dimensional space, thereby transforming the PDE is-
sue into a system of linear equations. We provide a straightforward example to elucidate the process
under discussion. The detailed procedure for generating the linear equation system is available in the
Appendix A. Specifically, we discuss solving a two-dimensional Poisson equation using the FDM
to transform it into a system of linear equation:

∇2u(x, y) = f(x, y),

using a 2×2 internal grid (i.e., Nx = Ny = 2 and ∆x = ∆y), the unknowns ui,j can be arranged in
row-major order as follows: u1,1, u1,2, u2,1, u2,2. For central differencing on a 2×2 grid, the vector

3

Published as a conference paper at ICLR 2024

b will contain the values of f(xi, yj) and the linear equation system Ax = b can be expressed as:−4 1 1 0
1 −4 0 1
1 0 −4 1
0 1 1 −4


u1,1

u1,2

u2,1

u2,2

 =

f(x1, y1)
f(x1, y2)
f(x2, y1)
f(x2, y2)

 .

By employing various parameters to generate f , such as utilizing Gaussian random fields (GRF)
or truncated Chebyshev polynomials, we can derive Poisson equations characterized by distinct
parameters.

Typically, training a NO requires generating between 103 and 105 numerical solutions for PDEs (Lu
et al., 2019). Such a multitude of linear systems, derived from the same distribution of PDEs, nat-
urally exhibit a high degree of similarity. It is precisely this similarity that is key to the effective
acceleration of our SKR algorithm’s recycle module. (Soodhalter et al., 2020). We can conceptu-
alize this as the task of solving a sequential series of linear equations:

A(i)x(i) = b(i) i = 1, 2, · · · , (1)

where the matrix A(i) ∈ Cn×n and the vector b(i) ∈ Cn vary based on different PDEs.

3.2 KRYLOV SUBSPACE METHOD

For solving large-scale sparse linear systems, Krylov subspace methods are typically used (Saad,
2003; Greenbaum, 1997). The core principle behind this technique is leveraging the matrix from
the linear equation system to produce a lower-dimensional subspace, which aptly approximates the
true space. This approach enables the iterative solutions within this subspace to gravitate towards
the actual solution x.

Suppose we now solve the i-th system and remove the superscript of A(i). The m-th Krylov sub-
space associated with the matrix A and the starting vector r as follows:

Km(A, r) = span{r,Ar,A2r, · · · ,Am−1r}. (2)

Typically, r is chosen as the initial residual in linear system problem. The Krylov subspace iteration
process leads to the Arnoldi relation:

AVm = Vm+1Hm, (3)

where Vm ∈ Cn×m and Hm ∈ C(m+1)×m is upper Hessenberg. Let Hm ∈ Cm×m denote the
first m rows of Hm. By solving the linear equation system related to Hm, we obtain the solution
within the Km(A, r), thereby approximating the true solution. If the accuracy threshold is not met,
we’ll expand the dimension of the Krylov subspace. The process will iteratively transitions from
Km(A, r) to Km+1(A, r), continuing until the desired accuracy is achieved (Arnoldi, 1951; Saad,
2003). For the final Krylov subspace, we omit the subscript m and denote it simply as K(A, r).

For any subspace S ⊆ Cn, y ∈ S is a Ritz vector of A with Ritz value θ, if

Ay − θy⊥w ∀w ∈ S.

For iterative methods within the Krylov subspace, we choose S = Km(A, r) and the eigenvalues of
Hm are the Ritz values of A.

Various Krylov algorithms exist for different types of matrices. The linear systems generated by the
NOs we discuss are typically non-symmetric. The most widely applied and successful algorithm for
solving large-scale sparse non-symmetric systems of linear equations is GMRES (Saad & Schultz,
1986; Morgan, 2002), which serves as the baseline for this paper.

4 METHOD

As shown in the Figure 2, we aim to accelerate the solution by harnessing the intrinsic correla-
tion among these linear systems. To elaborate, when consecutive linear systems exhibit significant
correlation, perhaps due to minor perturbations, it’s plausible that certain information from the prior
solution, such as Ritz values and Ritz vectors, might not be fully utilized. This untapped information

4

Published as a conference paper at ICLR 2024

Solution3Solution2Solution1

Solution3Solution2Solution1

b

SKR

c

PDE generator

Linear systems

Krylov algorithm

Recycle Recycle

Data set

Data set

Sort

Krylov algorithm Krylov algorithm

Krylov algorithm Krylov algorithm Krylov algorithm

a

d d d

d1 d2 d3

e

e

Figure 2: Algorithm Flow Diagram: a. Derive the PDEs to be solved from the NO. b. Transform
these PDEs into a system of linear equations. c. Apply the SKR algorithm to sort the linear systems,
obtaining a sequence with strong correlations. d. Traditional algorithms independently solve the
linear systems from step b using Krylov methods. d1, d2, d3. The SKR algorithm utilizes ’recycling’
to sequentially solve the linear systems, reducing the dimension of the Krylov subspace. e. Obtain
the solutions and assemble them into a dataset.

could potentially expedite the resolution of subsequent linear systems. This concept, often termed
’recycling’, has been well-established in linear system algorithms.

While the notion of utilizing the recycling concept is appealing, the PDEs and linear systems de-
rived from NO parameters are intricate and convoluted. This complexity doesn’t guarantee a strong
correlation between sequential linear equations, thereby limiting the effectiveness of this approach.
To address this issue, we’ve formulated a sorting algorithm tailored for the PDE solver. Our algo-
rithm SKR, engineered for efficiency, ensures a sequence of linear equations where preceding and
subsequent systems manifest pertinent correlations. This organized sequence enables the fruitful
application of the recycling concept to expedite the solution process.

4.1 THE SORTING ALGORITHM

For linear systems derived from PDE solvers, the generation of these equations is influenced by
specific parameters. These parameters and their associated linear equations exhibit continuous vari-
ations (Lu et al., 2022; Li et al., 2020). Typically, these parameters are represented as parameter
matrices. Our objective is to utilize these parameters to assess the resemblance among various linear
systems, and then sequence them to strengthen the coherence between successive systems.

Subsequent to our in-depth Theoretical Analysis 5.2, we arrive at the conclusion that the chosen
recycling component is largely resilient to matrix perturbations. It means there is no necessity for
excessive computational resources for sorting. As a result, we incorporated a Sorting Algorithm 1
based on the greedy algorithm, serving as the step c in Figure 1.

In typical training scenarios for NOs, the number of data points, represented as num, can be quite
vast, frequently falling between 103 and 105. To manage this efficiently, one could adopt a cost-
effective sorting strategy. Initially, divide the data points into smaller groups, each containing either

5

Published as a conference paper at ICLR 2024

Algorithm 1: The Sorting Algorithm

Input: Sequence of linear systems to be solved A(i) ∈ Cn×n, b(i) ∈ Cn, corresponding
parameter matrix P (i) ∈ Cp×p and i = 1, 2, · · · , N

Output: Sequence for solving systems of linear equations seqmat
1 Initialize the list with sequence seq0 = {1, 2, · · · , N}, seqmat is an empty list;
2 Set i0 = 1 as the starting point. And remove 1 from seq0 and append 1 to seqmat;
3 for i = 1, · · · , N − 1 do
4 Refresh dis and set it to a large number, e.g., 1000;
5 for each j in seq0 do
6 disj = the Frobenius norm of the difference between P (i0) and P (j);
7 if disj<dis then
8 dis = disj and jmin = j;
9 Remove jmin from seq0 and append jmin to seqmat and set i0 = jmin;

10 Get the sequence for solving linear systems seqmat.

103 to 104 data points, based on their coordinates. Then, use the greedy algorithm to sort within
these groups. Once sorted, these smaller groups can be concatenated.

4.2 KRYLOV SUBSPACE RECYCLING

For a sequence of linear systems, there exists an inherent correlation between successive systems.
Consequently, we posit that by leveraging information from the solution process of prior systems,
we can expedite the iterative convergence of subsequent system, thereby achieving a notable accel-
eration in computational performance.

For various types of PDE problems, the linear systems generated exhibit matrices with distinct struc-
tural characteristics. These unique matrix structures align with specific Krylov recycling algorithms.
To validate our algorithm’s efficacy, we focus primarily on the most prevalent and general scenario
within the domain of NOs, where matrix A is nonsymmetric. Given this context, Generalized Con-
jugate Residual with Deflated Restarting (GCRO-DR) stands out as the optimal Krylov recycling
algorithm. It also forms the core algorithm for steps (d1, d2, d3) in Figure 2.

GCRO-DR employs deflated restarting, building upon the foundational structure of GCRO as illus-
trated in (de Sturler, 1996). Essentially, GCRO-DR integrates the approximate eigenvector derived
from the solution of a preceding linear system into subsequent linear systems. This is achieved
through the incorporation of a deflation space preconditioning group solution, leading to a pro-
nounced acceleration effect (Soodhalter et al., 2020; Nicolaides, 1987; Erlangga & Nabben, 2008).
The detailed procedure is delineated as follows:

Suppose that we have solved the i th system of (1) with GCRO-DR, and we retain k approximate
eigenvectors, Ỹk = [ỹ1, ỹ1, · · · , ỹk]. Then, GCRO-DR computes matrices Uk,Ck ∈ Cn×k from
Ỹk and A(i+1) such that A(i+1)Uk = Ck and CH

k Ck = Ik, The specific algorithm can be found in
Appendix B.1. By removing the superscript of A(i+1) we can get the Arnoldi relation of GCRO-DR:

(I −CkC
H
k)AVm−k = Vm−k+1Hm−k. (4)

Due to the correlation between the two consecutive linear systems, Ck encompasses informa-
tion from the previous system A(i). This means that when constructing a new Krylov subspace
K(A(i+1), r(i+1)), there is no need to start from scratch; the subspace span{Ỹk} composed of
some eigenvectors from A(i) already exists. Building upon this foundation, K(A(i+1), r(i+1)) can
converge more rapidly to the subspace where the solution x lies. This can significantly reduce the
dimensionality of the final Krylov subspace, leading to a marked decrease in the number of iterations
and resulting in accelerated performance.

Compared to the Arnoldi iteration presented in (3) used by GMRES, the way GCRO-DR leverages
solution information from previous systems to accelerate the convergence of a linear sequence be-
comes clear. GMRES can be intuitively conceptualized as the special case of GCRO-DR where k is
initialized at zero (Carvalho et al., 2011; Morgan, 2002; Parks et al., 2006).

6

Published as a conference paper at ICLR 2024

The effectiveness of acceleration within the Krylov subspace recycling is highly dependent on se-
lecting Ỹk in a manner that boosts convergence for the following iterations of the linear systems.
Proper sequencing can amplify the impact of Ỹk, thereby reducing the number of iterations. This
underlines the importance of sorting. For a detailed understanding of GCRO-DR, kindly consult the
pseudocode provided in the Appendix B.2.

5 THEORETICAL ANALYSIS

5.1 CONVERGENCE ANALYSIS

When solving a single linear system, GCRO-DR and GMRES-DR are algebraically equivalent. The
primary advantage of GCRO-DR is its capability for solving sequences of linear systems (Carvalho
et al., 2011; Morgan, 2002; Parks et al., 2006). Stewart (2001); Embree (2022) provide a good
framework to analyze the convergence of this type of Krylov algorithm. Here we quote Theorem 3.1
in Parks et al. (2006) to make a detailed analysis of GCRO-DR. We define the one−sided distance
from the subspace Q to the subspace C as

δ(Q, C) = ∥(I −ΠC)ΠQ∥2, (5)

where Π represents the projection operator for the associated space. Its mathematical interpretation
corresponds to the largest principal angle between the two subspaces Q and C (Beattie et al., 2004),
and defineing PQ as the spectral projector onto Q.
Theorem 1. Given a space C = range(Ck), let V = range(Vm−k+1Hm−k) be the (m−k) dimen-
sional Krylov subspace generated by GCRO-DR as in (4). Let r0 ∈ Cn, and let r1 = (I −ΠC)r0.
Then, for each Q such that δ(Q, C) < 1,

min
d1∈V⊕C

∥r0 − d1∥2 ≤ min
d2∈(I−PQ)V

∥(I − PQ)r1 − d2∥2

+
γ

1− δ
∥PQ∥2 · ∥(I −ΠV)r1∥2,

(6)

where γ = ∥(I −ΠC)PQ∥2.

In the aforementioned bounds, the left-hand side signifies the residual norm subsequent to m−k iter-
ations of GCRO-DR, employing the recycled subspace C. Contrastingly, on the right-hand side, the
initial term epitomizes the convergence of a deflated problem, given that all components within the
subspace Q have been eradicated (Morgan, 2002; Simoncini & Szyld, 2005; Van der Vorst & Vuik,
1993). The subsequent term on the right embodies a constant multiplied by the residual follow-
ing m − k iterations of GCRO-DR, when solving for r1. Should the recycling space C encompass
an invariant subspace Q, then δ = γ = 0 for the given Q, ensuring that the convergence rate of
GCRO-DR matches or surpasses that of the deflated problem. In most cases, ∥PQ∥2 is numerically
stable and not large, therefore a reduced value of δ directly correlates with faster convergence in
GCRO-DR.

5.2 THE RATIONALITY OF SORTING ALGORITHMS

A critical inquiry arises: How much computational effort should be allocated to a sorting algorithm?
Given the plethora of sorting algorithms available, is it necessary to expend significant computational
resources to identify the optimal sorting outcome?

Drawing from Theorem 3.2 as presented in (Kilmer & De Sturler, 2006): ”When the magnitude of
the change is smaller than the gap between smallest and large eigenvalues, then the invariant sub-
space associated with the smallest eigenvalues is not significantly altered.” We derive the following
insights: The perturbation of invariant subspaces associated with the smallest eigenvalues when the
change in the matrix is concentrated in an invariant subspace corresponding to large eigenvalues (Si-
fuentes et al., 2013; Parks et al., 2006). This effectively implies that the pursuit of optimal sorting
isn’t imperative. Because we typically recycle invariant subspaces formed by smaller eigenvec-
tors. As long as discernible correlations persist between consecutive linear equations, appreciable
acceleration effects are attainable (Gaul, 2014). This rationale underpins our decision to develop
a cost-efficient sorting algorithm. Despite its suboptimal nature, the resultant algorithm exhibits
commendable performance.

7

Published as a conference paper at ICLR 2024

6 EXPERIMENT

6.1 SET UP

To comprehensively evaluate the performance of SKR in comparison to another algorithm, we con-
ducted nearly 3,000 experiments. The detailed data is available in the Appendix D.6. Each experi-
ment utilized a data set crafted to emulate an authentic NO training data set. Our analysis centered
on two primary performance metrics viewed through three perspectives. These tests spanned four
different datasets, with SKR consistently delivering commendable results. Specifically, the three
Perspectives are: 1. Matrix preconditioning techniques, spanning 7 to 10 standard methods. 2. Ac-
curacy criteria for linear system solutions, emphasizing 5 to 8 distinct tolerances. 3. Different matrix
sizes, considering 5 to 6 variations. Our primary performance Metrics encompassed: 1. Average
computational time overhead. 2. Mean iteration count. For a deeper dive into the specifics, please
consult the Appendix D.1.

Baselines. As previously alluded to, our focus revolves around a system of linear equations, which
consists of large sparse non-symmetric matrices. The GMRES algorithm serves as the predominant
solution and sets the benchmark for our study. We utilized the latest version from PETSc 3.19.4 for
GMRES.

Datasets. To probe the algorithm’s adaptability across matrix types, we delved into four distinct
linear equation challenges, each rooted in a PDE: 1. Darcy Flow Problem (Li et al., 2020; Rahman
et al., 2022; Kovachki et al., 2021; Lu et al., 2022); 2. Thermal Problem (Sharma et al., 2018; Koric
& Abueidda, 2023); 3. Poisson Equation (Hsieh et al., 2019; Zhang et al., 2022); 4. Helmholtz
Equation (Zhang et al., 2022). For an in-depth exposition of the dataset and its generation, kindly
refer to the Appendix D.2. For the runtime environment, refer to Appendix D.4.

6.2 QUANTITATIVE RESULTS

Table 1: Comparison of our SKR and GMRES computation time and iterations across datasets,
preconditioning, and tolerances. The first column lists datasets with matrix side lengths, the next
details tolerances. The data is displayed as ’computation time speed-up ratio/iteration count speed-
up ratio’. A GMRES/SKR ratio over 1 denotes better SKR performance.

Dataset Time/Iter None Jacobi BJacobi SOR ASM ICC ILU

Darcy
6400

1e-2 2.62/19.2 2.88/22.6 3.21/23.6 2.69/23.3 2.23/13.4 1.97/9.55 1.93/9.44
1e-5 2.92/21.1 3.42/24.5 4.07/28.6 3.45/27.9 3.66/22.2 3.18/14.9 3.08/14.4
1e-8 2.70/19.1 3.09/22.9 4.00/27.5 3.54/27.5 4.53/25.8 4.11/18.9 3.70/17.2

Thermal
11063

1e-5 4.53/20.8 3.32/15.0 2.38/10.3 1.96/8.76 2.46/10.3 2.40/10.3 2.35/10.3
1e-8 5.35/23.6 3.06/13.5 2.73/11.1 2.34/9.30 2.83/11.1 2.77/11.1 2.69/11.1
1e-11 5.47/24.9 2.93/12.8 3.05/11.7 2.62/10.2 3.14/11.7 3.08/11.7 3.01/11.7

Poisson
71313

1e-5 1.27/4.69 1.28/4.68 1.13/3.87 1.19/4.05 1.46/3.93 0.99/3.92 0.98/3.92
1e-8 1.74/6.29 1.75/6.30 1.19/3.97 1.35/4.45 1.94/4.83 1.32/4.83 1.30/4.87
1e-11 1.90/6.83 1.91/6.82 1.19/3.95 1.33/4.35 2.12/5.11 1.42/5.13 1.38/5.13

Helmholtz
10000

1e-2 7.74/17.3 8.44/20.3 8.83/21.5 8.37/22.3 10.6/25.4 4.77/21.4 3.88/17.6
1e-5 7.61/16.5 8.62/20.0 11.4/26.5 10.5/26.2 13.1/29.3 6.38/28.3 6.13/27.2
1e-7 6.47/13.68 7.96/18.1 11.3/26.2 10.6/25.9 13.9/30.0 6.72/29.3 6.34/28.0

Table 1 showcases selected experimental data. From this table, we can infer several conclusions:

Firstly, across almost all accuracy levels and preconditioning techniques, our SKR method consis-
tently delivers impressive acceleration. It is most noticeable in the Helmholtz dataset. Depending
on the convergence accuracy and preconditioning technique, our method reduces wall clock time
by factors of 2 to 14 and requires up to 30 times fewer iterations. This suggests that linear sys-
tems derived from similar PDEs have inherent redundancies in their resolution processes. Our SKR
algorithm effectively minimizes such redundant computations, slashing iteration counts and signifi-
cantly speeding up the solution process, ultimately accelerating the generation of datasets for neural
operators.

Secondly, in most cases, as the demanded solution accuracy intensifies, the acceleration capability of
our algorithm becomes more pronounced. For instance, in the Darcy flow problem, the acceleration

8

Published as a conference paper at ICLR 2024

for a high accuracy level (1e-8) is 50% to 100% more than for a lower accuracy (1e-2). On one hand,
high-precision data demands a larger Krylov subspace and more iterations. SKR’s recycling tech-
nology leverages information from previously similar linear systems, enabling faster convergence
in the Krylov subspace. Thus, its performance is especially superior at higher precisions. Detailed
subsequent analyses further corroborate this observation, as seen in Appendix D.5.1, D.5.2. On the
other hand, Theoretical Analysis 5.2 indicates that the information recycled in the SKR algorithm
possesses strong anti-perturbation capabilities, ensuring maintained precision. Its acceleration effect
becomes even more evident at higher accuracy requirements.

Thirdly, we observe that our SKR algorithm can significantly reduce the number of iterations, with
reductions up to 30 times, indirectly highlighting the strong algorithmic stability of the SKR method.
By analyzing the count of experiments reaching the maximum number of iterations, we can conclude
that the stability of the SKR algorithm is superior to that of GMRES. Detailed experimental analyses
can be found in the Appendix D.5.3.

Lastly, it is worth noting that outcomes vary based on the preconditioning methods applied. Our
algorithm demonstrates remarkable performance when no preconditioner, Jacobian, or Successive
Overrelaxation Preconditioner (SOR) methods are used. However, its efficiency becomes less
prominent for low-accuracy Poisson equations that employ incomplete Cholesky factorization (ICC)
or incomplete lower-upper factorization (ILU) preconditioners. The underlying reason is that al-
gorithms like ICC and ILU naturally operate by omitting smaller matrix elements or those with
negligible impact on the preconditioning decomposition, and then proceed with Cholesky or LU de-
composition. Such an approach somewhat clashes with the recycling method. While SKR leverages
information from prior solutions of similar linear equation systems, ICC and ILU can disrupt this
similarity. As a result, when employing ICC or ILU preconditioning, the improvement in SKR’s
speed is less noticeable at lower accuracy levels. However, at higher precisions, our SKR algorithm
still exhibits significant acceleration benefits with ICC and ILU preconditioning.

6.3 ABLATION STUDY

Table 2: Comparison of algorithm
performance with and without sort in
Darcy flow problem, using SOR precon-
ditioning, matrix size 104, and compu-
tational tolerance 1e− 8.

Time(s) Iter δ

SKR(sort) 0.101 183.9 0.90
SKR(nosort) 0.114 202.5 0.95

To assess the impact of ’sort’ on our SKR algorithm, we
approached the analysis from both theoretical and exper-
imental perspectives:

Theoretical Perspective: Based on previous Theoretical
insights 5.1, the pivotal metric to gauge the convergence
speed of the Krylov recycle algorithm is δ. Hence, we ex-
amined the variations in the δ metric before and after sort-
ing. Experimental Perspective: We tested the SKR algo-
rithm both with and without the ’sort’ feature, examining
the disparities in computation time and iteration count.

As illustrated in the Table 2: 1. The δ metric declined by
5% after employing the ’sort’ algorithm. As illustrated in Figure 8, this effectively demonstrates that
the ’sort’ algorithm can enhance the correlation between consecutive linear equation sets, achieving
the initial design goal of ’sort’. 2. Using ’sort’ enhances the SKR algorithm’s computational speed
by roughly 13% and decreases its iterations by 9.2%. This implies that by increasing the coherence
among sequential linear equation sets, the number of iterations needed is minimized, thus hastening
the system’s solution process.

7 LIMITATION AND CONCLUSIONS

Our paper presents the SKR algorithm as a significant advancement in generating neural operator
datasets, especially for linear PDEs, yet recognizes areas for improvement. Future work could
explore adapting the SKR for non-linear PDEs, refining the sorting algorithm’s distance metrics for
better system correlation, and extending the recycling concept to further data generation realms.
This pioneering effort not only enhances computational efficiency but also makes neural operators
more accessible, indicating a major leap in their development and application.

9

Published as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

For the sake of reproducibility, we have included our codes within the supplementary materials.
However, it’s worth noting that the current code version lacks structured organization. Should this
paper be accepted, we commit to reorganizing the codes for improved clarity. Additionally, in the
Appendix D, we provide an in-depth description of our experimental setups and detailed results.

ACKNOWLEDGEMENTS

The authors would like to thank all the anonymous reviewers for their insightful comments.
This work was supported in part by National Key R&D Program of China under contract
2022ZD0119801, National Nature Science Foundations of China grants U23A20388, U19B2026,
U19B2044, and 62021001.

REFERENCES

Walter Edwin Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue
problem. Quarterly of applied mathematics, 9(1):17–29, 1951.

Yannick Augenstein, Taavi Repan, and Carsten Rockstuhl. Neural operator-based surrogate solver
for free-form electromagnetic inverse design. ACS Photonics, 2023.

Christopher Beattie, Mark Embree, and John Rossi. Convergence of restarted krylov subspaces to
invariant subspaces. SIAM Journal on Matrix Analysis and Applications, 25(4):1074–1109, 2004.

Michele Benzi, Carl D Meyer, and Miroslav Tma. A sparse approximate inverse preconditioner for
the conjugate gradient method. SIAM Journal on Scientific Computing, 17(5):1135–1149, 1996.

Daniele Bertaccini et al. Efficient preconditioning for sequences of parametric complex symmetric
linear systems. Electronic Transactions on Numerical Analysis, 18:49–64, 2004.

Philipp Birken, Jurjen Duintjer Tebbens, Andreas Meister, and Miroslav Tma. Preconditioner up-
dates applied to cfd model problems. Applied Numerical Mathematics, 58(11):1628–1641, 2008.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
layers for pde modeling. arXiv preprint arXiv:2209.04934, 2022.

Luiz Mariano Carvalho, Serge Gratton, Rafael Lago, and Xavier Vasseur. A flexible generalized
conjugate residual method with inner orthogonalization and deflated restarting. SIAM Journal on
Matrix Analysis and Applications, 32(4):1212–1235, 2011.

Lu Cheng and Kuan Xu. Solving time-dependent pdes with the ultraspherical spectral method, 2023.

Philippe G Ciarlet. The finite element method for elliptic problems. SIAM, 2002.

Eric de Sturler. Nested krylov methods based on gcr. Journal of Computational and Applied Math-
ematics, 67(1):15–41, 1996.

Eric De Sturler. Truncation strategies for optimal krylov subspace methods. SIAM Journal on
Numerical Analysis, 36(3):864–889, 1999.

Peter Deuflhard. Newton methods for nonlinear problems: affine invariance and adaptive algo-
rithms, volume 35. Springer Science & Business Media, 2005.

Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide, 2014.

Mark Embree. How descriptive are gmres convergence bounds? arXiv preprint arXiv:2209.01231,
2022.

Yogi A Erlangga and Reinhard Nabben. Deflation and balancing preconditioners for krylov subspace
methods applied to nonsymmetric matrices. SIAM Journal on Matrix Analysis and Applications,
30(2):684–699, 2008.

10

Published as a conference paper at ICLR 2024

A Gaul and N Schlömer. pynosh: Python framework for nonlinear schrödinger equations. july 2013.
URl: https://bitbucket. org/nschloe/pynosh.

André Gaul. Recycling krylov subspace methods for sequences of linear systems. 2014.

André Gaul and Nico Schlömer. Preconditioned recycling krylov subspace methods for self-adjoint
problems. arXiv preprint arXiv:1208.0264, 2012.

André Gaul, Martin H Gutknecht, Jorg Liesen, and Reinhard Nabben. A framework for deflated and
augmented krylov subspace methods. SIAM Journal on Matrix Analysis and Applications, 34(2):
495–518, 2013.

Zijie Geng, Xijun Li, Jie Wang, Xiao Li, Yongdong Zhang, and Feng Wu. A deep in-
stance generative framework for milp solvers under limited data availability. In A. Oh,
T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 26025–26047. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/5297e56ac65ba2bfa70ee9fc4818c042-Paper-Conference.pdf.

Anne Greenbaum. Iterative methods for solving linear systems. SIAM, 1997.

Daniel Greenfeld, Meirav Galun, Ronen Basri, Irad Yavneh, and Ron Kimmel. Learning to optimize
multigrid pde solvers. In International Conference on Machine Learning, pp. 2415–2423. PMLR,
2019.

Arne S Gullerud and Robert H Dodds Jr. Mpi-based implementation of a pcg solver using an ebe
architecture and preconditioner for implicit, 3-d finite element analysis. Computers & Structures,
79(5):553–575, 2001.

Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang Su, and Jun Zhu.
Physics-informed machine learning: A survey on problems, methods and applications. arXiv
preprint arXiv:2211.08064, 2022.

Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning
neural pde solvers with convergence guarantees. arXiv preprint arXiv:1906.01200, 2019.

Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2012.

Claes Johnson. Numerical solution of partial differential equations by the finite element method.
Courier Corporation, 2012.

Carl T Kelley. Solving nonlinear equations with Newton’s method. SIAM, 2003.

Misha E Kilmer and Eric De Sturler. Recycling subspace information for diffuse optical tomography.
SIAM Journal on Scientific Computing, 27(6):2140–2166, 2006.

Dana A Knoll and David E Keyes. Jacobian-free newton–krylov methods: a survey of approaches
and applications. Journal of Computational Physics, 193(2):357–397, 2004.

Seid Koric and Diab W Abueidda. Data-driven and physics-informed deep learning operators for
solution of heat conduction equation with parametric heat source. International Journal of Heat
and Mass Transfer, 203:123809, 2023.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces.
arXiv preprint arXiv:2108.08481, 2021.

Randall J LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge univer-
sity press, 2002.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/5297e56ac65ba2bfa70ee9fc4818c042-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5297e56ac65ba2bfa70ee9fc4818c042-Paper-Conference.pdf

Published as a conference paper at ICLR 2024

Chih-Jen Lin and Jorge J Moré. Incomplete cholesky factorizations with limited memory. SIAM
Journal on Scientific Computing, 21(1):24–45, 1999.

Ning Liu, Yue Yu, Huaiqian You, and Neeraj Tatikola. Ino: Invariant neural operators for learning
complex physical systems with momentum conservation. In International Conference on Artifi-
cial Intelligence and Statistics, pp. 6822–6838. PMLR, 2023.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineer-
ing, 393:114778, 2022.

Volker Mehrmann and Christian Schröder. Nonlinear eigenvalue and frequency response problems
in industrial practice. Journal of Mathematics in Industry, 1:1–18, 2011.

Gérard Meurant. On the incomplete cholesky decomposition of a class of perturbed matrices. SIAM
Journal on Scientific Computing, 23(2):419–429, 2001.

Igor Moret. A note on the superlinear convergence of gmres. SIAM journal on numerical analysis,
34(2):513–516, 1997.

Ronald B Morgan. Gmres with deflated restarting. SIAM Journal on Scientific Computing, 24(1):
20–37, 2002.

Shin Muroya, Atsushi Nakamura, Chiho Nonaka, and Tetsuya Takaishi. Lattice qcd at finite density:
an introductory review. Progress of theoretical physics, 110(4):615–668, 2003.

Roy A Nicolaides. Deflation of conjugate gradients with applications to boundary value problems.
SIAM Journal on Numerical Analysis, 24(2):355–365, 1987.

Michael L Parks, Eric De Sturler, Greg Mackey, Duane D Johnson, and Spandan Maiti. Recycling
krylov subspaces for sequences of linear systems. SIAM Journal on Scientific Computing, 28(5):
1651–1674, 2006.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
tors. arXiv preprint arXiv:2202.11214, 2022.

Ouyuan Qin and Kuan Xu. Solving nonlinear odes with the ultraspherical spectral method. arXiv
preprint arXiv:2306.17688, 2023.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural oper-
ators. arXiv preprint arXiv:2204.11127, 2022.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3):856–
869, 1986.

Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

Rishi Sharma, Amir Barati Farimani, Joe Gomes, Peter Eastman, and Vijay Pande. Weakly-
supervised deep learning of heat transport via physics informed loss. arXiv preprint
arXiv:1807.11374, 2018.

12

Published as a conference paper at ICLR 2024

Josef A Sifuentes, Mark Embree, and Ronald B Morgan. Gmres convergence for perturbed co-
efficient matrices, with application to approximate deflation preconditioning. SIAM Journal on
Matrix Analysis and Applications, 34(3):1066–1088, 2013.

Valeria Simoncini and Daniel B Szyld. On the occurrence of superlinear convergence of exact and
inexact krylov subspace methods. SIAM review, 47(2):247–272, 2005.

Gordon D Smith. Numerical solution of partial differential equations: finite difference methods.
Oxford university press, 1985.

Kirk M Soodhalter, Eric de Sturler, and Misha E Kilmer. A survey of subspace recycling iterative
methods. GAMM-Mitteilungen, 43(4):e202000016, 2020.

Gilbert W Stewart. Matrix Algorithms: Volume II: Eigensystems. SIAM, 2001.

John C Strikwerda. Finite difference schemes and partial differential equations. SIAM, 2004.

James William Thomas. Numerical partial differential equations: finite difference methods, vol-
ume 22. Springer Science & Business Media, 2013.

Andrea Toselli and Olof Widlund. Domain decomposition methods-algorithms and theory, vol-
ume 34. Springer Science & Business Media, 2004.

Henk A Van der Vorst and C Vuik. The superlinear convergence behaviour of gmres. Journal of
computational and applied mathematics, 48(3):327–341, 1993.

Shun Wang, Eric de Sturler, and Glaucio H Paulino. Large-scale topology optimization using pre-
conditioned krylov subspace methods with recycling. International journal for numerical meth-
ods in engineering, 69(12):2441–2468, 2007.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Ad-
vances in Water Resources, 163:104180, 2022.

David Young. Iterative methods for solving partial difference equations of elliptic type. Transactions
of the American Mathematical Society, 76(1):92–111, 1954.

Eleftherios C Zachmanoglou and Dale W Thoe. Introduction to partial differential equations with
applications. Courier Corporation, 1986.

Enrui Zhang, Adar Kahana, Eli Turkel, Rishikesh Ranade, Jay Pathak, and George Em Karniadakis.
A hybrid iterative numerical transferable solver (hints) for pdes based on deep operator network
and relaxation methods. arXiv preprint arXiv:2208.13273, 2022.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang,
Haiyang Yu, YuQing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du, Alexan-
dra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas
Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya
Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chai-
tanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik
Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro Liò,
Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay, Tommi
Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, and Shuiwang Ji. Ar-
tificial intelligence for science in quantum, atomistic, and continuum systems. arXiv preprint
arXiv:2307.08423, 2023.

13

Published as a conference paper at ICLR 2024

A CONVERTING PDES TO LINEAR SYSTEMS: AN EXAMPLE

A.1 OVERVIEW

The general approach for solving Partial Differential Equations (PDEs) using techniques like Finite
Difference Method (FDM), Finite Element Method (FEM), and Finite Volume Method (FVM) can
be broken down into the following key steps (Strikwerda, 2004; Hughes, 2012; Johnson, 2012;
LeVeque, 2002):

1. Mesh Generation: Partition the domain over which the PDE is defined into a grid of specific
shapes, such as squares or triangles. As illustrated, the Figure 3 shows the FEM finite element mesh
for the Poisson equation with a square boundary.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Block With Finite Element Mesh Displayed

Figure 3: FEM mesh for the Poisson equation

2. Equation Discretization: Utilize the differential form of operators or select basis functions com-
patible with the grid to transform the PDE into a discrete problem. Essentially, this maps the PDE
from an infinite-dimensional Hilbert space to a finite-dimensional representation.

3. Matrix Assembly: If dealing with linear PDEs, the discretized PDE and its boundary conditions
can be converted into a system of linear equations in the finite-dimensional space. The system
is assembled based on the chosen grid type. For nonlinear PDEs, methods similar to Newton’s
iteration are typically employed, transforming the problem into a series of linear systems to be
solved iteratively (Ciarlet, 2002; Knoll & Keyes, 2004).

4. Applying Boundary Conditions: Discretize the boundary conditions on the grid and incorporate
them into the linear systems.

5. Solving the System of Linear Equations: This step is generally the most time-consuming part of
the entire algorithm.

6. Obtaining the Numerical Solution: Map the solution of the system of linear equations back onto
the domain of the original PDE using the specific grid and corresponding basis functions, thereby
obtaining the numerical solution.

A.2 SPECIFIC EXAMPLES

To illustrate how the FDM can transform the Poisson equation into a system of linear equations,
let’s consider a concrete and straightforward example (Smith, 1985). Assume we aim to solve the
Poisson equation in a two-dimensional space:

∇2u(x, y) = f(x, y).

14

Published as a conference paper at ICLR 2024

This equation is defined over a square domain [a, b] × [c, d] with given boundary conditions. The
process can be broken down into the following steps:

1. Mesh Generation: In the x-direction, select points xi = a+ i∆x, where i = 0, 1, . . . , Nx. In the
y-direction, select points yj = c+ j∆y, where j = 0, 1, . . . , Ny .

2. Equation Discretization: Discretize the Poisson equation using a central difference scheme. For
a grid point (xi, yj), the discretized equation becomes:

ui+1,j − 2ui,j + ui−1,j

∆x2
+

ui,j+1 − 2ui,j + ui,j−1

∆y2
= fi,j

Here, ui,j is an approximation of u(xi, yj), and fi,j = f(xi, yj). This equation can be rewritten as:

−2ui,j

(
1

∆x2
+

1

∆y2

)
+ ui+1,j

1

∆x2
+ ui−1,j

1

∆x2
+ ui,j+1

1

∆y2
+ ui,j−1

1

∆y2
= fi,j

3. Matrix Assembly: Each equation corresponding to an internal point (i, j) contributes one row to
the matrix A and the vector b. The corresponding row in A contains all the coefficients for ui,j ,
while the element in b is fi,j .

4. Applying Boundary Conditions: Implement the given boundary conditions, which may be of
Dirichlet type (specifying u values) or Neumann type (specifying the derivative of u). Adjust the
corresponding elements in the vector b by adding or subtracting terms related to these boundary
conditions.

5. Solving the System of Linear Equations Ax = b : Due to the large, sparse nature of the matrix,
iterative methods are generally used to solve the system of equations (Saad, 2003; Greenbaum,
1997).

6. Obtaining the Numerical Solution: Based on the difference scheme, map the solution of the sys-
tem of linear equations from the discrete finite-dimensional space to the function space of the PDE
to obtain the numerical solution. In this example, ui,j approximates u(xi, yj), so a interpolation
step can be used to finalize the solution.

B ALGORITHMIC DETAILS

B.1 COMPUTES MATRICES Uk AND Ck

The following computational procedure is adapted from De Sturler (1999); Parks et al. (2006).

GCRO-DR can be modified to solve (1) by carrying over Uk from the i-th system to the (i + 1)-th
system. We have the relation A(i)Uk = Ck. We modify Uk and Ck to satisfy

A(i)Uk = Ck,

CH
k Ck = Ik,

with respect to A(i+1) as follows:

[Q,R] = reduced QR decomposition of A(i+1)Uold
k ,

Cnew
k = Q,

Unew
k = Uold

k R−1.

15

Published as a conference paper at ICLR 2024

B.2 GCRO-DR

The following computational procedure is adapted from Parks et al. (2006).

Algorithm 2: GCRO-DR
1 Choose m, the maximum size of the subspace, and k, the desired number of approximate

eigenvectors. Let tol be the convergence tolerance. Choose an initial guess x0. Compute
r0 = b−Ax0, and set i = 1.

2 if Ỹk is defined (from solving a previous linear system) then
3 Let [Q,R] be the reduced QR-factorization of AỸk.
4 Ck = Q

5 Uk = ỸkR
−1

6 x1 = x0 +UkCk
Hr0

7 r1 = r0 −CkCk
Hr0

8 else
9 v1 = r0

/
∥r0∥2

10 c = ∥r0∥2e1
11 Perform m steps of GMRES, solving min ∥c−Hmy∥2 for y and generating Vm+1 and

Hm.
12 x1 = x0 + Vmy
13 r1 = Vm+1(c−Hmy)

14 Compute the k eigenvectors z̃j of (Hm + h2
m+1,mH−H

m emeHm)z̃j = θ̃j z̃j associated with
the smallest magnitude eigenvalues θ̃j and store in Pk. hm+1,m is the element in row
m+ 1 and column m of matrix Hm.

15 Ỹk = VmPk

16 Let [Q,R] be the reduced QR-factorization of HmPk .
17 Ck = Vm+1Q

18 Uk = ỸkR
−1

19 while ∥ri∥2 > tol do
20 i = i+ 1

21 Perform m− k Arnoldi steps with the linear operator (I −CkC
H
k)A, letting

v1 = ri−1

/
∥ri−1∥2 and generating Vm−k+1, Hm−k and Bm−k .

22 Let Dk be a diagonal scaling matrix such that Ũk = UkDk, where the columns of Ũk have
unit norm.

23 V̂m = [Ũk Vm−k]

24 Ŵm+1 = [Ck Vm−k+1]

25 Gm =

[
Dk Bm−k

0 H̃m−k

]
26 Solve min ∥ŴH

m+1ri−1 −Gmy∥2 for y.
27 xi = xi−1 + V̂my

28 ri = ri−1 − Ŵm+1Gmy

29 Compute the k eigenvectors z̃i of GH
mGmz̃i = θ̃iG

H
mŴH

m+1V̂mz̃i associated with smallest
magnitude eigenvalues θ̃i and store in Pk .

30 Ỹk = V̂mPk

31 Let [Q,R] be the reduced QR-factorization of GmPk.
32 Ck = Ŵm+1Q

33 Uk = ỸkR
−1

34 Let Ỹk = Uk (for the next system)

16

Published as a conference paper at ICLR 2024

C SUPPLEMENTARY THEORETICAL ANALYSIS

C.1 SUPERLINEAR CONVERGENCE PHENOMENON

The phenomenon of superlinear convergence is frequently observed in the iterative processes of
algorithms like GMRES (Van der Vorst & Vuik, 1993; Moret, 1997; Simoncini & Szyld, 2005).
The introduction of a deflation space enables these iterative algorithms to swiftly transition into the
superlinear convergence phase, thereby expediting their performance (Gaul et al., 2013; Nicolaides,
1987). The principle of recycling essentially embodies this concept, leveraging deflation space
for acceleration. This phenomenon has been discerned in algorithms associated with recycling as
well (Gaul, 2014).

For the problem under consideration, when a sequence of linear systems manifests inherent corre-
lations in their sequential order, an apt deflation space can be curated. This ensures a rapid entry
into the superlinear convergence phase, bypassing the initial slower convergence stages, and thereby
enhancing the overall convergence velocity. Empirical data from our experiments underscores this
observation. Theoretically, we can further dissect the potential reductions in iterations offered by
SKR. The specific experimental phenomenon is illustrated in D.5.1 D.5.2.

D DETAILS OF EXPERIMENTAL DATA

D.1 SPECIFIC PARAMETERS OF THE MAIN EXPERIMENT

Baseline: To ensure optimal speed, we first generated PDE linear equation systems using either
Python or Matlab. Then solve them in the c programming environment. We utilized the latest
version from PETSc 3.19.4 for GMRES.

Three Perspectives:

1. Precondition: When solving large matrices, effective preconditioning can greatly accelerate the
resolution process and enhance the stability of the algorithm. Recognizing that different scenarios
require distinct preconditioning approaches, we conducted tests with more than ten of the most
commonly used methods.

2. Tolerance: The tolerance of a solution inherently determines the iteration count and, by ex-
tension, the time required for a solution. Distinct algorithms exhibit varied convergence rates, and
specific NOs hold unique tolerance standards. To ensure an encompassing comparison, we evalu-
ated computational durations at diverse tolerances, zeroing in on 5-8 optimal error precisions for our
tests.

3. Matrix Dimensionality: Algorithmic performance tends to fluctuate based on the matrix’s di-
mensionality. Moreover, varying NOs mandate matrices of disparate dimensions. Hence, our study
incorporated five distinct matrix dimensions.

Two Performance Metrics: 1. Computational Duration: This serves as the most unambiguous
metric to gauge an algorithm’s efficacy. 2. Iteration Count: Algorithmic stability is emblematic of
its numerical sensitivity, with the iteration count offering direct insights into said stability.

D.2 DATA SET

1. Darcy Flow

We consider two-dimensional Darcy flows, which can be described by the following equation (Li
et al., 2020; Rahman et al., 2022; Kovachki et al., 2021; Lu et al., 2022):

−∇ · (K(x, y)∇h(x, y)) = f,

where K is the permeability field, h is the pressure, and f is a source term which can be either a
constant or a space-dependent function. In our experiment, K(x, y) is derived using the Gaussian
Random Field (GRF) method. The parameters inherent to the GRF serve as the foundation for our
sort scheme.

17

Published as a conference paper at ICLR 2024

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

Figure 4: Solutions of Darcy flow equations with close parameters

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

Figure 5: Solutions of Darcy flow equations with divergent parameters

As illustrated, with the matrix two-norm serving as the metric for distance, the first Figure 4 presents
the solution for the Darcy Flow problem with two NO parameters that are very close. The subsequent
Figure 5 depicts the solution for the Darcy Flow problem where the two NO parameters differ
significantly. Clearly, when the parameters are closer, there’s a strong correlation between the PDE
and its solution, which underpins our sorting algorithm.

2. Thermal Problem

We consider a two-dimensional thermal steady state equation, which can be described by the fol-
lowing equation (Sharma et al., 2018; Koric & Abueidda, 2023):

∂2T

∂x2
+

∂2T

∂y2
= 0,

where T is the temperature. We examine the steady-state thermal equation in thermodynamics. The
temperatures on the left and right boundaries are determined by random values ranging from -100
to 0 and 0 to 100, respectively. These temperature values are fundamental to our sort approach.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Block With Finite Element Mesh Displayed

Figure 6: Finite element mesh and solution for the thermal problem

18

Published as a conference paper at ICLR 2024

As shown in the Figure 6, for the ’Thermal Problem’, we chose an irregular boundary to test the
performance of our algorithm. The left image displays the finite element mesh obtained using FEM,
an essential Step A in converting the PDE into a system of linear equations, as previously mentioned.
The right image showcases the solution of one of the PDEs.

3. Poisson Equation

We consider a two-dimensional Poisson equation, which can be described by the following equa-
tion (Hsieh et al., 2019; Zhang et al., 2022):

∇2u = f.

Physical Contexts in which the Poisson Equation Appears: 1. Electrostatics; 2. Gravitation; 3. Fluid
Dynamics.

We address the Poisson equation within a square domain. The boundary conditions on all four sides,
as well as the f value on the left side of the equation, are generated using truncated Chebyshev poly-
nomials. The coefficients of these five Chebyshev polynomials are the basis for our sorting (Driscoll
et al., 2014).

Figure 7: Solution of two PDEs before sorting

Figure 8: Solution of two PDEs after sorting

As depicted in the figure, with the matrix two-norm serving as the metric for distance, we provide
visual representations of the Poisson Equation solutions featured in this study. The first Figure 7
displays the solutions of the two adjacent equations before sorting, while the second Figure 8 shows
the solutions of the two adjacent equations after sorting. It is evident that the sorting algorithm has
enhanced the correlation between the preceding and following PDEs.

4. Helmholtz Equation We consider a two-dimensional Helmholtz equation, which can be described
by the following equation (Zhang et al., 2022):

∇2u+ k2u = 0,

Physical Contexts in which the Helmholtz Equation Appears: 1. Acoustics; 2. Electromagnetism;
3. Quantum Mechanics.

19

Published as a conference paper at ICLR 2024

In Helmholtz Equation, k is the wavenumber, related to the frequency of the wave and the properties
of the medium in which the wave is propagating. In our experiment, k is derived using the GRF
method. The parameters inherent to the GRF serve as the foundation for our sort scheme.

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

Figure 9: Solutions of Helmholtz equations with close parameters

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

Figure 10: Solutions of Helmholtz equations with divergent parameters

As depicted in the Figure 9 10, with the matrix two-norm serving as the metric for distance, a
comparable pattern emerges with the Helmholtz equations. Specifically, when the parameters of the
neural operator are closely matched in Helmholtz equations, a pronounced correlation exists between
the PDE and its solution. In contrast, this correlation diminishes for equations with significantly
differing parameters.

D.3 PRECONDITION

The experiments in this paper involve the following preconditioning techniques.

1. None: When preconditioning is set to ’none’, essentially, no preconditioning operation is per-
formed. This implies that the linear system is iteratively solved as-is, without any prior transforma-
tions or modifications.

2. Diagonal Preconditioning (Jacobi) (Saad, 2003): This is a simple preconditioning approach that
considers only the diagonal elements of the coefficient matrix. The preconditioner matrix is the
inverse of the diagonal elements of the coefficient matrix.

3. Block Jacobi (BJacobi) (Benzi et al., 1996): An extension of the Jacobi preconditioning, where
the coefficient matrix is broken down into smaller blocks, each corresponding to a subdomain or
subproblem. Each block is preconditioned independently using its diagonal part.

4. Successive Over-relaxation (SOR) (Young, 1954): The SOR method is a variant of the Gauss-
Seidel iteration, introducing a relaxation factor to accelerate convergence. The preconditioner trans-
forms the original problem into a weighted new problem, typically aiding in accelerating conver-
gence for some iterative methods.

5. Additive Schwarz Method (ASM) (Toselli & Widlund, 2004): ASM is a domain decomposition
method, where the original problem is split into multiple subdomains or subproblems. Problems of

20

Published as a conference paper at ICLR 2024

each subdomain are solved independently, and these local solutions are then combined into a global
solution.

6. Incomplete Cholesky (ICC) (Lin & Moré, 1999): ICC is a preconditioning method based on the
Cholesky decomposition, but drops certain off-diagonal elements during the decomposition, making
it ”incomplete”. It’s utilized for symmetric positive definite problems.

7. Incomplete LU (ILU) (Saad, 2003): ILU is based on LU decomposition, but like ICC, drops
certain off-diagonal elements during the decomposition. ILU can be applied to nonsymmetric prob-
lems.

D.4 ENVIRONMENT

To ensure consistency in our evaluations, all comparative experiments were conducted under uni-
form computing environments. Specifically, the environments used are detailed as follows:

1. Environment (Env1):

• Platform: Docker version 20.10.0
• Operating System: Ubuntu 22.04.3 LTS
• Processor: Dual-socket Intel® Xeon® Gold 6154 CPU, clocked at 3.00GHz

2. Environment (Env2):

• Platform: Windows 11, version 21H2, WSL
• Operating System: Ubuntu 22.04.3 LTS
• Processor: 13th Gen Intel® Core™ i7-13700KF, clocked at 3.40 GHz

D.5 ANALYSIS OF RELEVANT EXPERIMENTAL RESULTS

D.5.1 CONVERGENCE SPEED ANALYSIS (TIME)

0 1 2 3 4 5
time (s)

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

to
le

ra
nc

e
(2

 n
or

m
)

SKR(ours) None
SKR(ours) Jacobi
SKR(ours) BJacobi
SKR(ours) SOR
SKR(ours) ASM
GMRES None
GMRES Jacobi
GMRES BJacobi
GMRES SOR
GMRES ASM

Solver Precondition Slope

SKR(oures) None −6.80 × 10−5

SKR(oures) Jacobi −1.25 × 10−4

SKR(oures) BJacobi −2.13 × 10−4

SKR(oures) SOR −2.22 × 10−4

SKR(oures) ASM −2.85 × 10−4

GMRES None −6.27 × 10−5

GMRES Jacobi −4.17 × 10−5

GMRES BJacobi −2.27 × 10−5

GMRES SOR −2.03 × 10−5

GMRES ASM −1.38 × 10−5

Figure 11: Illustrating the Helmholtz Equation with a matrix size of 104, the graphic delves into the
relationship between computational accuracy and average computation time. The left plot displays
convergence curves under various preconditions, with the x-axis as average computation time and
the y-axis as computational accuracy. The right plot presents linear fits for the three points with the
minimum tolerance for each precondition, providing slopes as metrics for their convergence trends.

It is evident that the computational speed of our SKR algorithm far exceeds that of the GMRES
algorithm. GMRES and similar Krylov subspace convergence algorithms exhibit a phenomenon
known as superlinear convergence phenomenon in Appendix C.1, which means in a log-error versus
time or iterations graph, the GMRES convergence curve can be interpreted as a combination of
two segments (the first with a smaller absolute slope value, followed by a larger one). Due to the
presence of superlinear convergence, an equitable and objective assessment of our SKR and GMRES
in the high-precision phase requires discarding the data from the low-precision phase. Therefore,

21

Published as a conference paper at ICLR 2024

we selected three high-precision points for each algorithm to perform a linear fit and obtain the
convergence slopes for this phase. A comparative analysis revealed that our algorithm’s slope has
a greater absolute value, indicating that our SKR also converges more quickly than GMRES in the
high-precision stage.

D.5.2 CONVERGENCE SPEED ANALYSIS (ITERATION)

0 2000 4000 6000 8000 10000
Average Iterations

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

to
le

ra
nc

e
(2

 n
or

m
)

SKR(ours) None
SKR(ours) Jacobi
SKR(ours) BJacobi
SKR(ours) SOR
SKR(ours) ASM
GMRES None
GMRES Jacobi
GMRES BJacobi
GMRES SOR
GMRES ASM

Solver Precondition Slope

SKR(oures) None −7.27 × 10−8

SKR(oures) Jacobi −1.44 × 10−7

SKR(oures) BJacobi −2.68 × 10−7

SKR(oures) SOR −2.60 × 10−7

SKR(oures) ASM −4.49 × 10−7

GMRES None −3.31 × 10−8

GMRES Jacobi −2.37 × 10−8

GMRES BJacobi −1.18 × 10−8

GMRES SOR −1.13 × 10−8

GMRES ASM −1.29 × 10−8

Figure 12: Illustrating the Helmholtz Equation with a matrix size of 104, the graphic delves into
the relationship between computational accuracy and average iteration count. The left plot displays
convergence curves under various preconditions, with the x-axis as average iteration count and the
y-axis as computational accuracy. The right plot presents linear fits for the three points with the
minimum tolerance for each precondition, providing slopes as metrics for their convergence trends.

It is evident that, at the same level of precision, our SKR algorithm requires significantly fewer iter-
ations than GMRES. This strongly supports the notion that SKR achieves acceleration by expediting
the convergence of the Krylov subspace, thereby reducing the number of iterations. As mentioned
in Appendix D.5.1, to appraise the convergence rates of both algorithms more equitably during the
high-precision phase, we conducted linear fits using three high-precision data points. The compar-
ison reveals that the absolute value of the slope during the high-precision phase is greater for our
SKR algorithm than for GMRES, indicating a faster rate of convergence. This robustly validates the
superior stability of the SKR algorithm compared to GMRES.

D.5.3 STABILITY ANALYSIS

Based on the Figure 13, we can draw the following conclusions: 1. The use of the SKR algorithm
almost never reaches the maximum iteration count, indicating its excellent iterative stability. 2.
GMRES, on the other hand, frequently reaches the maximum iteration count without converging,
and the effectiveness of different preconditions varies significantly.

Combining these Results D.5.2 with the previous experiment, it is evident that our SKR algorithm
exhibits much greater stability compared to the GMRES algorithm.

D.6 DETAILED EXPERIMENTAL DATA

We conducted nearly 3,000 experiments. Each experiment employed a dataset specifically designed
to mimic genuine NO training data. Below are some actual data from these experiments.

The title of each table below specifies the corresponding experimental dataset, preprocessing
method, experimental environment, and details of MPI parallelization. For instance, ’Table 3: Darcy
Flow, None, Env1, MPI72’ indicates that the experimental results for the Darcy Flow problem are
recorded, with no matrix preprocessing algorithm applied, all within computing environment Env1,
and all experiments utilizing MPI with 72 parallel threads.

As another example, ’Table 17: Poisson Equation, None, Env1, 7153: MPI10, 11237: MPI10,
20245: MPI20, 45337: MPI5, 71313: MPI5’ details that the table records the experimental results

22

Published as a conference paper at ICLR 2024

10 7 10 6 10 5 10 4 10 3 10 2 10 1

Tol

0

20

40

60

80
M

ax
 It

er
 C

ou
nt

 (%
)

SKR(ours) SOR
SKR(ours) None
SKR(ours) BJacobi
SKR(ours) ASM
SKR(ours) Jacobi
GMRES SOR
GMRES None
GMRES BJacobi
GMRES ASM
GMRES Jacobi

Figure 13: Illustrating the proportion of instances where different algorithms reach the maximum
iteration count, the graphic delves into performance under various precisions for the Darcy flow
problem with a matrix size of 104 and a maximum iteration count of 104.

for the Poisson Equation, with no matrix preprocessing selected and all within the computing envi-
ronment Env1. Here, experiments with matrix sizes of 7153 and 11237 were run with MPI using 10
parallel threads, size 20245 with MPI using 20 threads, and sizes 45337 and 71313 with MPI using
5 threads.

These tables are divided into two parts:

• the upper half records the average time to solve each linear system for two different algorithms
under various conditions, in seconds, with smaller numbers indicating faster computation.

• The lower half records the average number of iterations needed to solve each linear system for
the two algorithms under different conditions, with fewer iterations indicating better algorithm
stability and faster convergence.

The first row indicates different required error precisions, and the second column shows the matrix
sizes derived from different grid densities. Each row’s data is composed of two parts, with the upper
half showing the data for the GMRES algorithm—our baseline—and the lower half showing the
corresponding data for our SKR algorithm.

23

Published as a conference paper at ICLR 2024

Table 3: Darcy Flow, None, Env1, MPI72

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08

time

2500
GMRES 0.13 0.20 0.24 0.27 0.29 0.31 0.34 0.36

SKR 0.08 0.09 0.10 0.11 0.11 0.12 0.13 0.13

6400
GMRES 0.28 0.45 0.55 0.61 0.66 0.69 0.71 0.72

SKR 0.14 0.17 0.19 0.21 0.23 0.24 0.25 0.27

10000
GMRES 0.39 0.70 0.79 0.85 0.88 0.89 0.90 0.91

SKR 0.21 0.28 0.32 0.36 0.41 0.45 0.53 0.52

22500
GMRES 3.89 5.62 6.00 6.10 6.19 6.28 – –

SKR 1.10 2.06 2.48 2.97 3.32 3.62 – –

40000
GMRES 26.28 51.20 57.63 60.89 62.88 64.83 – –

SKR 15.19 35.80 32.60 41.01 44.22 42.63 – –

iter

2500
GMRES 1,394 2,575 3,115 3,608 3,983 4,325 4641 4963

SKR 96 131 151 167 183 199 213 227

6400
GMRES 3,192 5,402 6,709 7,617 8,193 8,582 8847 9059

SKR 218 281 321 353 387 415 443 473

10000
GMRES 3,874 7,457 8,426 9,022 9,375 9,596 9713 9775

SKR 313 446 520 588 682 758 898 881

22500
GMRES 6,225 8,971 9,614 9,818 9,891 9,956 – –

SKR 745 1,445 1,763 2,122 2,367 2,600 – –

40000
GMRES 38,896 76,287 85,637 90,043 93,298 95,869 – –

SKR 9,283 21,950 19,994 25,212 27,207 26,177 – –

Table 4: Darcy Flow, Jacobi, Env1, MPI72

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08

time

2500
GMRES 0.13 0.19 0.22 0.24 0.26 0.28 0.30 0.31

SKR 0.07 0.09 0.09 0.10 0.10 0.11 0.11 0.12

6400
GMRES 0.25 0.44 0.52 0.58 0.62 0.65 0.68 0.70

SKR 0.12 0.15 0.17 0.18 0.19 0.20 0.22 0.23

10000
GMRES 0.35 0.64 0.76 0.82 0.85 0.88 0.90 0.91

SKR 0.18 0.23 0.26 0.29 0.31 0.33 0.34 0.38

22500
GMRES 0.70 1.24 1.33 1.38 1.40 1.40 – –

SKR 0.67 0.92 1.26 1.58 1.75 1.95 – –

40000
GMRES 23.72 47.98 53.99 57.54 60.86 62.79 – –

SKR 17.09 25.65 25.81 28.98 29.86 29.45 – –

iter

2500
GMRES 1370 2357 2786 3110 3407 3695 3953 4192

SKR 81 110 126 140 152 164 176 187

6400
GMRES 2741 5235 6271 7074 7621 8037 8355 8622

SKR 173 231 261 286 311 332 356 376

10000
GMRES 3370 6642 7949 8611 8987 9322 9503 9610

SKR 252 347 400 440 477 522 549 613

22500
GMRES 4770 8741 9417 9778 9900 9921 – –

SKR 812 1148 1606 2024 2256 2526 – –

40000
GMRES 35088 70796 80000 85202 89638 92399 – –

SKR 10523 15770 15762 17713 18395 18073 – –

24

Published as a conference paper at ICLR 2024

Table 5: Darcy Flow, BJacobi, Env1, MPI72

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08

time

2500
GMRES 0.09 0.14 0.17 0.20 0.22 0.23 0.25 0.27

SKR 0.07 0.08 0.08 0.08 0.09 0.09 0.10 0.10

6400
GMRES 0.22 0.39 0.49 0.56 0.60 0.64 0.67 0.70

SKR 0.10 0.12 0.13 0.14 0.15 0.16 0.16 0.17

10000
GMRES 0.30 0.59 0.70 0.78 0.85 0.89 0.93 0.97

SKR 0.13 0.16 0.18 0.19 0.21 0.22 0.23 0.24

22500
GMRES 0.49 1.08 1.29 1.41 1.50 1.55 – –

SKR 0.32 0.35 0.55 0.53 0.50 0.54 – –

40000
GMRES 15.43 32.62 32.00 36.61 49.46 51.52 – –

SKR 4.70 9.14 8.35 11.76 12.55 14.58 – –

iter

2500
GMRES 676 1289 1675 1934 2182 2411 2636 2814

SKR 57 76 87 96 104 113 121 129

6400
GMRES 1901 3642 4779 5497 5934 6310 6614 6916

SKR 117 154 175 191 207 222 237 251

10000
GMRES 2380 5015 5926 6712 7266 7705 8030 8347

SKR 145 205 232 256 277 297 317 339

22500
GMRES 2667 6276 7520 8352 8839 9135 – –

SKR 338 378 630 601 568 614 – –

40000
GMRES 21396 44977 44643 51229 68445 71642 – –

SKR 2739 5382 4980 7030 7450 8713 – –

Table 6: Darcy Flow, SOR, Env1, MPI72

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08

time

2500
GMRES 0.08 0.13 0.16 0.18 0.19 0.20 0.21 0.23

SKR 0.06 0.08 0.08 0.08 0.09 0.09 0.09 0.10

6400
GMRES 0.20 0.33 0.41 0.46 0.50 0.54 0.57 0.60

SKR 0.10 0.12 0.13 0.14 0.15 0.15 0.16 0.17

10000
GMRES 0.28 0.53 0.62 0.69 0.74 0.79 0.82 0.85

SKR 0.13 0.16 0.18 0.19 0.20 0.22 0.22 0.24

22500
GMRES 0.44 0.99 1.17 1.30 1.38 1.41 – –

SKR 0.25 0.36 0.41 0.54 0.51 0.63 – –

40000
GMRES 15.72 35.73 41.95 46.75 50.32 52.57 – –

SKR 8.63 8.68 11.27 16.21 11.08 12.65 – –

iter

2500
GMRES 622 1393 1822 2084 2271 2483 2675 2852

SKR 57 76 87 96 105 113 121 129

6400
GMRES 2059 3644 4688 5315 5833 6238 6611 6956

SKR 119 156 175 192 209 224 238 253

10000
GMRES 2439 5120 6028 6718 7246 7778 8136 8467

SKR 150 206 236 259 281 303 320 341

22500
GMRES 2602 6261 7536 8371 8882 9150 – –

SKR 257 391 460 621 592 739 – –

40000
GMRES 22214 50690 59841 66630 71761 74751 – –

SKR 5146 5136 6735 9743 6668 7635 – –

25

Published as a conference paper at ICLR 2024

Table 7: Darcy Flow, ASM, Env1, MPI72

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08

time

2500
GMRES 0.05 0.07 0.08 0.09 0.10 0.11 0.12 0.13

SKR 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.08

6400
GMRES 0.14 0.21 0.30 0.37 0.42 0.48 0.52 0.57

SKR 0.09 0.10 0.10 0.11 0.12 0.12 0.12 0.13

10000
GMRES 0.29 0.56 0.67 0.75 0.82 0.89 0.95 1.01

SKR 0.11 0.13 0.14 0.15 0.16 0.16 0.17 0.18

22500
GMRES 0.51 1.14 1.46 1.69 1.84 1.95 – –

SKR 0.21 0.29 0.33 0.44 0.39 0.42 – –

40000
GMRES 19.54 42.58 50.62 57.46 61.99 66.30 – –

SKR 2.55 7.57 3.64 9.26 6.42 9.41 – –

iter

2500
GMRES 100 233 320 408 500 570 638 726

SKR 32 42 48 53 58 62 67 71

6400
GMRES 679 1199 1761 2215 2608 3003 3316 3631

SKR 69 89 99 109 117 126 133 141

10000
GMRES 1502 3144 3783 4284 4681 5101 5461 5820

SKR 92 125 141 153 166 178 189 201

22500
GMRES 1982 4748 6098 7088 7763 8236 – –

SKR 177 265 306 441 378 414 – –

40000
GMRES 18042 39800 47228 53725 57977 61608 – –

SKR 1204 3664 1735 4526 3112 4611 – –

Table 8: Darcy Flow, ICC, Env2, No MPI

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08

time

2500
GMRES 0.01 0.03 0.03 0.04 0.04 0.04 0.05 0.05

SKR 0.02 0.03 0.04 0.04 0.04 0.05 0.05 0.05

6400
GMRES 0.11 0.29 0.38 0.47 0.60 0.71 0.81 0.91

SKR 0.11 0.15 0.16 0.18 0.19 0.20 0.21 0.22

10000
GMRES 0.63 1.27 1.65 1.97 2.22 2.43 2.64 2.85

SKR 0.24 0.31 0.35 0.37 0.40 0.43 0.45 0.48

22500
GMRES 2.15 3.49 4.46 5.43 6.17 6.76 – –

SKR 0.56 0.77 0.87 0.95 1.03 1.10 – –

40000
GMRES 36.38 53.80 58.95 63.86 69.77 75.75 – –

SKR 1.72 2.70 3.07 14.62 3.65 3.97 – –

iter

2500
GMRES 32 149 172 196 221 245 270 298

SKR 25 32 37 41 44 48 51 54

6400
GMRES 236 629 825 1032 1320 1551 1787 2000

SKR 49 66 74 82 88 94 100 106

10000
GMRES 878 1769 2311 2752 3117 3405 3684 3985

SKR 71 96 108 117 126 135 143 151

22500
GMRES 1208 1964 2506 3051 3460 3797 – –

SKR 72 103 118 130 141 150 – –

40000
GMRES 11479 16958 18618 20189 22018 23811 – –

SKR 130 210 240 1184 288 313 – –

26

Published as a conference paper at ICLR 2024

Table 9: Darcy Flow, ILU, Env2, No MPI

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08

time

2500
GMRES 0.01 0.03 0.03 0.03 0.04 0.04 0.04 0.05

SKR 0.02 0.03 0.03 0.04 0.04 0.04 0.05 0.05

6400
GMRES 0.10 0.27 0.37 0.47 0.56 0.64 0.72 0.80

SKR 0.11 0.14 0.16 0.17 0.18 0.19 0.20 0.22

10000
GMRES 0.63 1.19 1.52 1.88 2.13 2.36 2.55 2.75

SKR 0.23 0.30 0.34 0.37 0.39 0.42 0.44 0.47

22500
GMRES 2.38 3.96 4.86 5.90 6.69 7.42 – –

SKR 0.66 0.89 1.01 1.10 1.19 1.28 – –

40000
GMRES 30.39 53.52 61.25 68.44 72.64 76.58 – –

SKR 1.71 2.65 2.98 3.35 3.59 3.82 – –

iter

2500
GMRES 30 141 157 179 199 219 242 261

SKR 24 30 34 38 42 45 48 51

6400
GMRES 222 599 823 1034 1237 1409 1594 1760

SKR 49 63 72 79 85 92 97 103

10000
GMRES 889 1670 2133 2653 2995 3328 3587 3836

SKR 71 94 105 115 123 132 140 148

22500
GMRES 1414 2361 2896 3521 3997 4419 – –

SKR 89 122 140 154 167 180 – –

40000
GMRES 9768 17195 19676 21936 23358 24658 – –

SKR 127 204 231 256 277 300 – –

Table 10: Thermal Problem, None, Env1, No MPI

n solver\tol 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

2755
GMRES – 0.21 0.29 0.37 0.45 0.54 0.62 0.70

SKR – 0.11 0.14 0.16 0.19 0.22 0.23 0.27

7821
GMRES – 1.74 2.53 3.32 4.12 4.93 5.73 6.53

SKR – 0.44 0.58 0.71 0.85 1.01 1.13 1.26

11063
GMRES – 3.44 5.08 6.71 8.34 9.99 11.60 13.21

SKR – 0.76 1.01 1.30 1.56 1.83 2.05 2.30

17593
GMRES – 7.48 11.29 15.11 18.92 22.57 26.04 26.50

SKR – 1.57 2.04 2.51 3.19 3.70 4.29 4.96

31157
GMRES 9.06 21.84 34.60 46.55 – – – –

SKR 1.86 3.69 5.12 6.97 – – – –

70031
GMRES 27.23 85.47 105.81 106.87 – – – –

SKR 5.54 13.85 20.37 25.65 – – – –

iter

2755
GMRES – 503 693 882 1075 1278 1476 1674

SKR – 50 66 76 91 106 118 133

7821
GMRES – 1468 2140 2819 3500 4181 4864 5547

SKR – 81 104 130 162 190 216 243

11063
GMRES – 2057 3035 4015 4996 5977 6946 7908

SKR – 99 135 176 211 248 283 318

17593
GMRES – 2821 4262 5704 7144 8514 9830 10000

SKR – 130 174 217 278 326 375 439

31157
GMRES 1909 4592 7295 9816 – – – –

SKR 85 178 249 345 – – – –

70031
GMRES 2531 7967 9888 10000 – – – –

SKR 115 300 442 558 – – – –

27

Published as a conference paper at ICLR 2024

Table 11: Thermal Problem, Jacobi, Env1, No MPI

n solver\tol 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

2755
GMRES – 0.20 0.26 0.31 0.37 0.43 0.50 0.58

SKR – 0.11 0.15 0.16 0.19 0.20 0.23 0.26

7821
GMRES – 1.37 1.78 2.14 2.46 2.73 3.04 3.36

SKR – 0.44 0.56 0.71 0.89 1.01 1.13 1.24

11063
GMRES – 2.49 3.35 4.12 4.80 5.42 6.04 6.69

SKR – 0.75 1.01 1.30 1.57 1.77 2.02 2.28

17593
GMRES – 3.58 5.67 7.90 9.55 10.99 12.48 14.68

SKR – 1.59 2.03 2.50 3.02 3.67 4.30 4.90

31157
GMRES 5.72 9.97 17.77 22.71 – – – –

SKR 1.70 3.77 5.18 6.99 – – – –

70031
GMRES 15.67 34.74 68.17 101.00 – – – –

SKR 5.88 13.55 19.76 24.83 – – – –

iter

2755
GMRES – 455 606 732 857 994 1169 1347

SKR – 48 65 76 91 101 114 129

7821
GMRES – 1142 1490 1788 2049 2283 2530 2801

SKR – 81 104 131 164 190 214 238

11063
GMRES – 1471 1982 2435 2841 3202 3569 3960

SKR – 98 134 174 210 242 276 311

17593
GMRES – 1334 2111 2941 3552 4090 4646 5466

SKR – 132 172 214 262 321 379 428

31157
GMRES 1186 2078 3713 4737 – – – –

SKR 77 184 251 343 – – – –

70031
GMRES 1450 3216 5767 8316 – – – –

SKR 122 291 431 541 – – – –

Table 12: Thermal Problem, BJacobi, Env1, No MPI

n solver\tol 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

2755
GMRES – 0.07 0.09 0.11 0.13 0.15 0.17 0.19

SKR – 0.05 0.08 0.08 0.09 0.10 0.12 0.12

7821
GMRES – 0.45 0.58 0.72 0.84 0.97 1.10 1.23

SKR – 0.23 0.31 0.33 0.36 0.43 0.46 0.53

11063
GMRES – 0.85 1.13 1.41 1.69 1.95 2.21 2.46

SKR – 0.36 0.47 0.51 0.62 0.66 0.77 0.81

17593
GMRES – 1.55 2.10 2.65 3.18 3.72 4.27 4.81

SKR – 0.72 0.95 1.03 1.23 1.42 1.50 1.70

31157
GMRES 3.19 5.49 7.33 9.11 – – – –

SKR 1.24 1.49 1.99 2.47 – – – –

70031
GMRES 13.00 21.62 27.71 34.00 – – – –

SKR 2.97 5.09 7.03 8.86 – – – –

iter

2755
GMRES – 114 154 188 228 266 306 344

SKR – 21 26 31 35 40 45 49

7821
GMRES – 289 376 466 549 633 718 802

S SKR – 33 42 50 58 67 74 83

11063
GMRES – 394 525 654 782 908 1026 1142

SKR – 38 50 60 71 79 89 98

17593
GMRES – 454 616 778 936 1094 1256 1418

SKR – 49 67 79 93 107 118 132

31157
GMRES 522 902 1206 1498 – – – –

SKR 46 62 83 103 – – – –

70031
GMRES 832 1383 1793 2132 – – – –

SKR 50 95 136 173 – – – –

28

Published as a conference paper at ICLR 2024

Table 13: Thermal Problem, SOR, Env1, No MPI

n solver\tol 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

2755
GMRES – 0.06 0.09 0.10 0.13 0.14 0.17 0.19

SKR – 0.07 0.08 0.09 0.10 0.12 0.12 0.13

7821
GMRES – 0.58 0.79 1.00 1.20 1.41 1.61 1.79

SKR – 0.25 0.33 0.36 0.44 0.47 0.55 0.58

11063
GMRES – 0.86 1.16 1.45 1.77 2.08 2.41 2.75

SKR – 0.44 0.51 0.62 0.75 0.80 0.92 1.04

17593
GMRES – 2.62 3.70 4.78 5.81 6.83 7.79 8.70

SKR – 0.76 0.96 1.20 1.43 1.55 1.74 1.95

31157
GMRES 3.85 6.96 9.89 12.66 – – – –

SKR 1.16 1.82 2.36 2.99 – – – –

70031
GMRES 12.99 24.30 31.12 37.73 – – – –

SKR 3.91 6.36 7.21 8.83 – – – –

iter

2755
GMRES – 106 151 183 228 255 304 335

SKR – 24 29 36 40 45 50 55

7821
GMRES – 371 505 639 775 907 1035 1158

SKR – 39 49 59 70 80 90 100

11063
GMRES – 386 527 660 805 950 1099 1256

SKR – 44 58 70 86 98 111 124

17593
GMRES – 751 1064 1370 1670 1962 2238 2500

SKR – 54 69 89 107 122 138 154

31157
GMRES 619 1123 1594 2036 – – – –

SKR 45 77 99 129 – – – –

70031
GMRES 807 1600 2182 2637 – – – –

SKR 49 113 145 200 – – – –

Table 14: Thermal Problem, ASM, Env1, No MPI

n solver\tol 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

2755
GMRES – 0.08 0.10 0.12 0.14 0.16 0.18 0.21

SKR – 0.05 0.08 0.09 0.09 0.10 0.12 0.13

7821
GMRES – 0.48 0.62 0.77 0.90 1.03 1.17 1.31

SKR – 0.24 0.32 0.34 0.37 0.44 0.47 0.54

11063
GMRES – 0.92 1.21 1.51 1.81 2.08 2.37 2.61

SKR – 0.37 0.48 0.53 0.64 0.68 0.79 0.83

17593
GMRES – 1.66 2.24 2.82 3.38 3.96 4.54 5.12

SKR – 0.75 0.97 1.06 1.26 1.46 1.54 1.73

31157
GMRES 3.40 5.85 7.81 9.68 – – – –

SKR 1.28 1.53 2.05 2.54 – – – –

70031
GMRES 12.67 21.09 29.90 35.49 – – – –

SKR 3.06 5.23 7.20 9.06 – – – –

iter

2755
GMRES – 114 154 188 228 266 306 344

SKR – 21 26 31 35 40 45 49

7821
GMRES – 289 376 466 549 633 718 802

SKR – 33 42 50 58 67 74 83

11063
GMRES – 394 525 654 782 908 1026 1142

SKR – 38 50 60 71 79 89 98

17593
GMRES – 454 616 778 936 1094 1256 1418

SKR – 49 67 79 93 107 118 132

31157
GMRES 522 902 1206 1498 – – – –

SKR 46 62 83 103 – – – –

70031
GMRES 832 1383 1793 2132 – – – –

SKR 50 95 136 173 – – – –

29

Published as a conference paper at ICLR 2024

Table 15: Thermal Problem, ICC, Env1, No MPI

n solver\tol 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

2755
GMRES – 0.07 0.09 0.11 0.13 0.15 0.17 0.19

SKR – 0.05 0.08 0.09 0.09 0.10 0.12 0.12

7821
GMRES – 0.46 0.59 0.73 0.86 0.99 1.12 1.25

SKR – 0.24 0.31 0.33 0.36 0.43 0.46 0.53

11063
GMRES – 0.87 1.16 1.44 1.72 2.00 2.26 2.50

SKR – 0.36 0.47 0.52 0.62 0.66 0.77 0.81

17593
GMRES – 1.59 2.15 2.71 3.26 3.81 4.37 4.93

SKR – 0.73 0.95 1.04 1.23 1.43 1.51 1.70

31157
GMRES 3.27 5.62 7.51 9.33 – – – –

SKR 1.24 1.51 2.02 2.50 – – – –

70031
GMRES 14.18 22.57 28.99 34.54 – – – –

SKR 3.00 5.10 7.04 8.92 – – – –

iter

2755
GMRES – 114 154 188 228 266 306 344

SKR – 21 26 31 35 40 45 49

7821
GMRES – 289 376 466 549 633 718 802

SKR – 33 42 50 58 67 74 83

11063
GMRES – 394 525 654 782 908 1026 1142

SKR – 38 50 60 71 79 89 98

17593
GMRES – 454 616 778 936 1094 1256 1418

SKR – 49 67 79 93 107 118 132

31157
GMRES 522 902 1206 1498 – – – –

SKR 46 62 83 103 – – – –

70031
GMRES 832 1383 1793 2132 – – – –

SKR 50 95 136 173 – – – –

Table 16: Thermal Problem, ILU, Env1, No MPI

n solver\tol 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

2755
GMRES – 0.07 0.09 0.11 0.13 0.15 0.17 0.19

SKR – 0.05 0.08 0.08 0.09 0.10 0.12 0.12

7821
GMRES – 0.45 0.57 0.71 0.83 0.96 1.09 1.21

SKR – 0.23 0.31 0.33 0.36 0.43 0.45 0.53

11063
GMRES – 0.85 1.12 1.40 1.67 1.94 2.18 2.43

SKR – 0.36 0.47 0.51 0.62 0.66 0.76 0.81

17593
GMRES – 1.54 2.09 2.63 3.16 3.70 4.24 4.79

SKR – 0.72 0.95 1.03 1.22 1.42 1.50 1.69

31157
GMRES 3.17 5.46 7.28 9.03 – – – –

SKR 1.23 1.49 2.00 2.47 – – – –

70031
GMRES 12.99 21.46 29.25 33.26 – – – –

SKR 2.95 5.03 6.96 8.78 – – – –

iter

2755
GMRES – 114 154 188 228 266 306 344

SKR – 21 26 31 35 40 45 49

7821
GMRES – 289 376 466 549 633 718 802

SKR – 33 42 50 58 67 74 83

11063
GMRES – 394 525 654 782 908 1026 1142

SKR – 38 50 60 71 79 89 98

17593
GMRES – 454 616 778 936 1094 1256 1418

SKR – 49 67 79 93 107 118 132

31157
GMRES 522 902 1206 1498 – – – –

SKR 46 62 83 103 – – – –

70031
GMRES 832 1383 1793 2132 – – – –

SKR 50 95 136 173 – – – –

30

Published as a conference paper at ICLR 2024

Table 17: Possion Equation, None, Env1, 7153: MPI10, 11237: MPI10, 20245: MPI20, 45337:
MPI5, 71313: MPI5

n solver\tol 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

7153
GMRES 0.07 0.09 0.11 0.13 0.15 0.17 0.19

SKR 0.07 0.11 0.10 0.11 0.12 0.13 0.15

11237
GMRES 0.24 0.33 0.41 0.50 0.59 0.66 0.75

SKR 0.16 0.19 0.22 0.26 0.29 0.34 0.35

20245
GMRES 0.41 0.57 0.74 0.90 1.06 1.24 1.39

SKR 0.24 0.29 0.33 0.39 0.44 0.50 0.56

45337
GMRES 1.81 2.74 3.69 4.64 5.60 6.56 7.51

SKR 1.46 1.91 2.36 2.79 3.25 3.69 4.15

71313
GMRES 3.89 6.13 8.39 10.74 13.02 15.33 17.68

SKR 3.05 4.10 5.12 6.16 7.20 8.25 9.28

iter

7153
GMRES 274 374 475 576 676 776 878

SKR 70 87 104 122 139 158 176

11237
GMRES 362 506 651 796 942 1088 1234

SKR 89 112 136 160 185 210 235

20245
GMRES 554 804 1054 1306 1558 1810 2062

SKR 128 165 201 239 278 316 355

45337
GMRES 958 1475 1998 2526 3054 3583 4112

SKR 209 279 349 419 489 560 631

71313
GMRES 1359 2158 2980 3810 4641 5472 6303

SKR 289 397 500 606 710 816 922

Table 18: Possion Equation, Jacobi, Env1, 7153: MPI10, 11237: MPI10, 20245: MPI20, 45337:
MPI5, 71313: MPI5

n solver\tol 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

7153
GMRES 0.07 0.09 0.12 0.13 0.16 0.17 0.19

SKR 0.08 0.09 0.10 0.12 0.12 0.14 0.15

11237
GMRES 0.25 0.33 0.42 0.50 0.59 0.68 0.78

SKR 0.18 0.21 0.24 0.27 0.31 0.34 0.37

20245
GMRES 0.41 0.58 0.75 0.91 1.06 1.23 1.40

SKR 0.25 0.30 0.35 0.40 0.46 0.51 0.56

45337
GMRES 1.85 2.78 3.73 4.69 5.65 6.61 7.69

SKR 1.48 1.91 2.37 2.80 3.25 3.69 4.13

71313
GMRES 3.94 6.16 8.41 10.69 12.92 15.18 17.41

SSKR 3.07 4.08 5.09 6.08 7.10 8.10 9.12

iter

7153
GMRES 279 379 482 581 681 782 883

SKR 71 88 106 124 142 160 178

11237
GMRES 368 512 658 802 947 1092 1236

SKR 91 114 138 163 188 212 237

20245
GMRES 558 804 1051 1298 1546 1794 2042

SKR 129 165 201 238 276 314 352

45337
GMRES 970 1484 2003 2526 3049 3571 4094

SKR 211 279 349 418 486 556 625

71313
GMRES 1362 2148 2954 3762 4567 5369 6167

SKR 291 394 495 596 699 800 904

31

Published as a conference paper at ICLR 2024

Table 19: Possion Equation, BJacobi, Env1, 7153: MPI10, 11237: MPI10, 20245: MPI20, 45337:
MPI5, 71313: MPI5

n solver\tol 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

7153
GMRES 0.07 0.08 0.10 0.11 0.13 0.14 0.15

SKR 0.07 0.08 0.09 0.10 0.11 0.12 0.13

11237
GMRES 0.20 0.26 0.31 0.36 0.40 0.46 0.51

SKR 0.14 0.17 0.20 0.22 0.25 0.28 0.30

20245
GMRES 0.34 0.47 0.58 0.71 0.84 0.94 1.06

SKR 0.21 0.26 0.29 0.33 0.38 0.42 0.46

45337
GMRES 1.29 1.77 2.22 2.63 3.02 3.40 3.76

SKR 1.15 1.45 1.78 2.09 2.39 2.70 3.01

71313
GMRES 2.57 3.53 4.34 5.09 5.86 6.62 7.45

SKR 2.26 2.97 3.63 4.27 4.94 5.56 6.24

iter

7153
GMRES 198 262 327 393 458 521 585

SKR 57 71 85 99 114 129 144

11237
GMRES 262 349 432 513 591 668 743

SKR 70 88 106 125 144 163 182

20245
GMRES 419 595 768 940 1111 1279 1446

SKR 102 132 160 191 220 251 280

45337
GMRES 588 823 1041 1241 1434 1614 1795

SKR 152 199 246 294 340 386 434

71313
GMRES 775 1081 1337 1577 1818 2061 2320

SKR 200 269 334 396 462 523 588

Table 20: Possion Equation, SOR, Env1, 7153: MPI10, 11237: MPI10, 20245: MPI20, 45337:
MPI5, 71313: MPI5

n solver\tol 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

7153
GMRES 0.07 0.08 0.09 0.11 0.12 0.14 0.15

S SKR 0.07 0.08 0.09 0.10 0.11 0.12 0.13

11237
GMRES 0.20 0.26 0.32 0.37 0.42 0.47 0.51

SKR 0.15 0.18 0.21 0.23 0.26 0.28 0.31

20245
GMRES 0.33 0.46 0.58 0.70 0.82 0.94 1.08

SKR 0.22 0.26 0.32 0.35 0.39 0.43 0.47

45337
GMRES 1.43 2.04 2.62 3.17 3.68 4.15 4.60

SKR 1.16 1.47 1.80 2.11 2.42 2.73 3.06

71313
GMRES 2.76 3.94 4.98 5.90 6.78 7.64 8.49

SKR 2.31 3.03 3.69 4.37 5.05 5.72 6.37

iter

7153
GMRES 203 271 339 408 477 545 613

SKR 57 72 86 99 115 130 144

11237
GMRES 270 362 450 534 614 692 766

SKR 71 88 107 126 145 164 183

20245
GMRES 421 599 775 953 1129 1305 1480

SKR 102 132 160 191 220 251 280

45337
GMRES 647 942 1221 1484 1729 1960 2174

SKR 153 202 250 298 344 390 439

71313
GMRES 822 1192 1516 1804 2076 2342 2610

SKR 203 272 339 405 470 535 599

32

Published as a conference paper at ICLR 2024

Table 21: Possion Equation, ASM, Env1, 7153: MPI10, 11237: MPI10, 20245: MPI20, 45337:
MPI5, 71313: MPI5

n solver\tol 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

7153
GMRES 0.07 0.09 0.10 0.12 0.14 0.15 0.17

SKR 0.07 0.08 0.10 0.10 0.11 0.13 0.14

11237
GMRES 0.27 0.35 0.42 0.49 0.56 0.63 0.69

SKR 0.17 0.21 0.23 0.27 0.30 0.33 0.36

20245
GMRES 0.48 0.66 0.83 1.01 1.18 1.35 1.53

SKR 0.25 0.31 0.36 0.41 0.46 0.52 0.57

45337
GMRES 1.42 1.93 2.42 2.87 3.32 3.71 4.10

SKR 1.20 1.51 1.85 2.16 2.47 2.79 3.12

71313
GMRES 2.80 3.86 4.71 5.52 6.35 7.18 8.08

SKR 2.35 3.09 3.76 4.42 5.11 5.75 6.44

iter

7153
GMRES 198 262 327 393 458 521 585

SKR 57 71 85 99 114 129 144

11237
GMRES 262 349 432 513 591 668 743

SKR 70 88 106 125 144 163 182

20245
GMRES 419 595 768 940 1111 1279 1446

SKR 102 132 160 191 220 251 280

45337
GMRES 588 823 1041 1241 1434 1614 1795

SKR 152 199 246 294 340 386 434

71313
GMRES 775 1081 1337 1577 1818 2061 2320

SKR 200 269 334 396 462 523 588

Table 22: Possion Equation, ICC, Env1, No MPI

n solver\tol 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

7153
GMRES 0.09 0.10 0.10 0.11 0.12 0.13 0.13

SKR 0.12 0.13 0.14 0.13 0.13 0.14 0.14

11237
GMRES 0.15 0.17 0.19 0.20 0.21 0.23 0.25

SKR 0.21 0.20 0.21 0.21 0.22 0.38 0.39

20245
GMRES 0.32 0.37 0.40 0.45 0.50 0.55 0.59

SKR 0.37 0.38 0.39 0.69 0.72 0.74 0.77

45337
GGMRES 0.91 1.12 1.26 1.41 1.56 1.71 1.90

SKR 0.88 1.58 1.66 1.75 1.83 1.93 2.27

71313
GMRES 2.01 2.19 2.45 2.91 3.35 3.66 3.88

SKR 2.50 2.67 2.86 3.11 3.62 3.81 3.97

iter

7153
GMRES 22 26 30 33 36 39 42

SKR 15 17 19 16 18 19 20

11237
GMRES 26 32 36 40 45 52 59

SKR 20 17 19 18 20 22 24

20245
GMRES 35 42 50 59 67 74 80

SKR 18 20 19 22 25 28 31

45337
GMRES 49 62 75 84 97 110 120

SKR 19 23 27 31 35 39 43

71313
GMRES 73 84 98 118 139 154 167

SKR 24 29 34 39 44 49 54

33

Published as a conference paper at ICLR 2024

Table 23: Possion Equation, ILU, Env1, No MPI

n solver\tol 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11

time

7153
GMRES 0.26 0.26 0.27 0.28 0.28 0.29 0.29

SKR 0.29 0.30 0.32 0.31 0.32 0.32 0.33

11237
GMRES 0.41 0.43 0.44 0.45 0.46 0.49 0.49

SKR 0.48 0.50 0.51 0.51 0.53 0.52 0.53

20245
GMRES 0.84 0.85 0.87 0.91 0.93 0.97 0.99

SKR 0.94 0.96 0.94 0.95 0.97 0.98 1.00

45337
GMRES 2.02 2.18 2.26 2.36 2.54 2.70 2.87

SKR 2.15 2.24 2.22 2.29 2.98 3.02 3.13

71313
MRES 3.46 3.67 3.96 4.27 4.52 4.79 4.93

SKR 3.54 3.63 4.68 4.79 4.94 5.11 5.23

iter

7153
GMRES 15 18 20 22 24 26 27

SKR 10 11 12 13 14 15 16

11237
GMRES 18 22 24 27 29 31 33

SKR 13 14 14 16 17 18 19

20245
GMRES 23 27 31 34 38 40 44

SKR 16 18 15 17 18 20 20

45337
GMRES 32 39 46 53 62 69 76

SKR 17 20 20 21 24 26 29

71313
GMRES 40 49 60 71 78 86 95

SKR 19 20 23 26 29 33 36

Table 24: Helmholtz Equation, None, Env1, MPI72

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07

time

2500
GMRES 0.81 1.37 1.75 2.07 2.36 2.61 2.87

SKR 0.17 0.21 0.22 0.23 0.25 0.27 0.29

6400
GMRES 1.74 3.09 3.72 4.14 4.49 4.77 4.93

SKR 0.29 0.36 0.41 0.45 0.48 0.51 0.54

10000
GMRES 2.44 4.06 4.88 5.22 5.41 5.51 5.57

SKR 0.40 0.52 0.61 0.67 0.71 0.80 0.86

22500
GMRES 16.22 33.05 39.39 43.37 46.67 49.21 –

SKR 3.60 6.73 9.31 6.13 9.04 8.54 –

iter

2500
GMRES 1,305 2,279 2,936 3,520 3,999 4,461 4882

SKR 98 130 151 168 185 199 214

6400
GMRES 3,036 5,436 6,604 7,357 7,978 8,421 8749

SKR 212 277 319 354 388 414 441

10000
GMRES 4,187 7,052 8,478 9,118 9,407 9,574 9713

SKR 303 407 473 538 570 648 710

22500
GMRES 26,565 53,855 64,542 71,353 76,793 80,991 –

SKR 2,647 5,014 6,937 4,557 6,743 6,394 –

34

Published as a conference paper at ICLR 2024

Table 25: Helmholtz Equation, Jacobi, Env1, MPI72

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07

time

2500
GMRES 0.72 1.20 1.45 1.65 1.87 2.07 2.28

SKR 0.16 0.19 0.21 0.23 0.24 0.25 0.27

6400
GMRES 1.45 2.64 3.30 3.71 4.08 4.32 4.54

SKR 0.27 0.33 0.37 0.39 0.42 0.45 0.47

10000
GMRES 2.18 3.82 4.57 5.00 5.15 5.33 5.40

SKR 0.37 0.45 0.51 0.56 0.60 0.64 0.68

22500
GMRES 16.31 29.04 37.38 41.38 43.97 45.58 –

SKR 4.92 4.24 6.01 6.46 5.49 5.66 –

iter

2500
GMRES 1,155 1,988 2,405 2,762 3,136 3,509 3849

SKR 82 110 126 140 153 164 176

6400
GMRES 2,507 4,597 5,791 6,562 7,220 7,637 8028

SKR 176 228 261 289 315 335 356

10000
GMRES 3,726 6,621 7,959 8,630 9,004 9,237 9430

SKR 249 327 373 415 451 489 521

22500
GMRES 26,707 47,340 60,878 67,205 71,418 74,351 –

SKR 3,611 3,113 4,442 4,786 4,054 4,175 –

Table 26: Helmholtz Equation, BJacobi, Env1, MPI72

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07

time

2500
GMRES 0.50 0.75 0.96 1.12 1.23 1.35 1.47

SKR 0.12 0.14 0.15 0.16 0.18 0.18 0.19

6400
GMRES 1.09 2.01 2.48 2.89 3.18 3.48 3.71

SKR 0.19 0.23 0.26 0.28 0.29 0.31 0.33

10000
GMRES 1.49 2.60 3.36 3.86 4.27 4.55 4.72

SKR 0.24 0.29 0.32 0.35 0.37 0.39 0.42

22500
GMRES 13.13 19.82 25.01 28.58 30.87 32.45 –

SKR 2.32 3.51 0.71 0.77 0.85 3.41 –

iter

2500
GMRES 737 1,154 1,513 1,772 1,979 2,168 2352

SKR 58 76 87 96 105 113 122

6400
GMRES 1,766 3,332 4,181 4,853 5,359 5,821 6272

SKR 116 154 175 193 208 223 238

10000
GMRES 2,405 4,227 5,541 6,376 7,019 7,511 7883

SKR 147 197 222 244 265 283 301

22500
GMRES 20,335 30,564 38,699 44,223 47,387 50,197 –

SKR 1,639 2,505 – – – 2,427 –

35

Published as a conference paper at ICLR 2024

Table 27: Helmholtz Equation, SOR, Env1, MPI72

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07

time

2500
GMRES 0.48 0.77 0.93 1.10 1.19 1.30 1.38

SKR 0.14 0.16 0.17 0.18 0.19 0.20 0.21

6400
GMRES 1.17 1.98 2.40 2.77 3.04 3.30 3.59

SKR 0.21 0.25 0.27 0.29 0.31 0.33 0.34

10000
GMRES 1.46 2.60 3.22 3.77 4.16 4.43 4.66

SKR 0.25 0.31 0.34 0.37 0.40 0.42 0.44

22500
GMRES 12.28 18.00 23.99 27.31 30.17 32.18 –

SKR 2.18 0.65 0.75 1.26 3.76 2.93 –

iter

2500
GMRES 719 1,231 1,507 1,782 1,966 2,134 2290

SKR 57 76 88 96 105 114 122

6400
GMRES 1,987 3,414 4,215 4,823 5,339 5,783 6262

SKR 118 156 176 194 210 225 239

10000
GMRES 2,441 4,405 5,503 6,432 7,074 7,595 7976

SKR 149 197 226 248 270 288 308

22500
GMRES 19,540 28,939 38,419 43,545 48,285 51,382 –

SKR 1,545 – – – 2,712 2,094 –

Table 28: Helmholtz Equation, ASM, Env1, MPI72

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07

time

2500
GMRES 0.12 0.34 0.42 0.49 0.55 0.63 0.69

SKR 0.13 0.14 0.15 0.16 0.17 0.18 0.18

6400
GMRES 1.01 1.61 1.95 2.23 2.59 2.84 3.06

SKR 0.19 0.22 0.23 0.25 0.26 0.27 0.28

10000
GMRES 1.55 2.83 3.44 3.98 4.35 4.72 5.07

SKR 0.22 0.27 0.29 0.31 0.33 0.34 0.36

22500
GMRES 15.36 25.21 32.21 35.62 38.32 41.75 –

SKR 0.95 0.56 2.33 0.75 0.77 3.08 –

iter

2500
GMRES 64 306 384 459 531 601 668

SKR 33 42 48 53 58 63 67

6400
GMRES 1,054 1,713 2,118 2,412 2,803 3,081 3328

SKR 68 89 100 110 118 126 134

10000
GMRES 1,611 3,034 3,659 4,264 4,676 5,068 5448

SKR 91 119 136 149 160 170 182

22500
GMRES 15,683 25,566 32,785 36,475 38,992 42,431 –

SKR 498 – 1,310 – – 1,738 –

36

Published as a conference paper at ICLR 2024

Table 29: Helmholtz Equation, ICC, Env2, NoMPI

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07

time

2500
GMRES 0.01 0.02 0.03 0.04 0.05 0.06 0.07

SKR 0.03 0.04 0.04 0.05 0.05 0.05 0.06

6400
GMRES 0.22 0.71 0.93 1.15 1.29 1.43 1.55

SKR 0.13 0.17 0.18 0.20 0.21 0.23 0.24

10000
GMRES 0.65 1.58 2.12 2.50 2.80 3.10 3.32

SKR 0.25 0.33 0.37 0.41 0.44 0.47 0.49

22500
GMRES 2.03 4.77 6.08 6.93 7.66 8.34 –

SKR 0.62 0.90 1.02 1.12 1.21 1.30 –

iter

2500
GMRES 48 97 160 232 294 362 424

SKR 28 38 43 48 52 55 59

6400
GMRES 492 1,578 2,048 2,499 2,866 3,160 3431

SKR 57 78 88 96 103 109 116

10000
GMRES 915 2,229 2,983 3,518 3,942 4,356 4665

SKR 76 104 117 129 139 149 159

22500
GMRES 1,149 2,704 3,442 3,926 4,338 4,733 –

SKR 81 122 140 155 168 181 –

Table 30: Helmholtz Equation, ILU, Env2, NoMPI

n solver\tol 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07

time

2500
GMRES 0.00 0.01 0.01 0.01 0.01 0.01 0.01

SKR 0.01 0.02 0.03 0.03 0.03 0.03 0.04

6400
GMRES 0.20 0.64 0.85 1.02 1.15 1.27 1.37

SKR 0.13 0.16 0.18 0.19 0.21 0.22 0.23

10000
GMRES 0.62 1.29 1.75 2.30 2.63 2.88 3.11

SKR 0.25 0.33 0.37 0.40 0.43 0.46 0.49

22500
GMRES 2.94 5.60 6.74 7.73 8.62 9.28 –

SKR 0.74 1.04 1.19 1.31 1.43 1.52 –

iter

2500
GMRES 20 28 32 36 40 46 56

SKR 17 21 25 28 30 32 34

6400
GMRES 437 1,420 1,875 2,257 2,548 2,822 3056

SKR 57 77 86 93 100 107 114

10000
GMRES 869 1,818 2,483 3,254 3,726 4,085 4401

SKR 76 104 115 127 137 147 157

22500
GMRES 1,768 3,373 4,058 4,649 5,181 5,587 –

SKR 101 147 169 187 203 219 –

37

Published as a conference paper at ICLR 2024

E ADDITIONAL EXPERIMENTS

E.1 OTHER APPLICATION SCENARIOS

Neural operators is not a prerequisite for the application of our SKR algorithm. Indeed, our initial
use of neural operators revealed the time-consuming issue of dataset generation. After an extensive
study of Krylov methods, we developed the SKR algorithm, which has proven to be highly success-
ful. Neural operators are one of the most renowned and efficient data-driven methods for solving
PDE problems, and the time-intensive nature of dataset generation has been a significant hurdle in
the field, which is why our paper is set in this context. However, the SKR algorithm’s utility is not
limited to neural operator problems and can be applied to other areas, such as:

1. Data-Driven PDE Algorithms: There are various data-driven PDE solving or parameter optimiza-
tion algorithms in both traditional heuristics and AI for PDE domains. These algorithms often
require the frequent generation of large volumes of PDE data for datasets, a process that our SKR
algorithm can accelerate. For instance, Greenfeld et al. (2019) Hsieh et al. (2019).

2. Specific Physical Problem Solving: In certain scenarios, modeling the physical problems at hand
translates into solving multiple related linear systems. Our SKR algorithm is adept at efficiently
handling such issues. For instance, this is evident in the modeling of fatigue and fracture through
finite element analysis (Gullerud & Dodds Jr, 2001), which employs dynamic loading across
numerous steps, resulting in a substantial number of interrelated linear systems. Similarly, in the
resolution process of lattice quantum field theory (Muroya et al., 2003), the end goal involves
solving a large collection of correlated linear systems.

E.2 PARALLELIZATION STRATEGIES

The parallelism of our SKR algorithm is indeed a critical component. Typically, matrix algorithms
employ three parallelization strategies.

E.2.1 MPI-BASED PARALLELIZATION

Using MPI to parallelize certain computational processes within the matrix algorithm, such as the
Krylov subspace iteration in GMRES, which often relies on specific matrix preconditioning meth-
ods. Regarding this MPI-based parallel approach, our experiments have conducted numerous com-
parative tests in Appendix D.6, and our SKR algorithm has consistently achieved excellent results.

E.2.2 DECOMPOSE COMPUTATIONAL TASKS

Utilizing MPI to decompose the computational task into several independent parts, each solved
separately. As you rightly mentioned in your question, this is indeed an excellent approach. We
will illustrate the parallelism strategy of our SKR algorithm with a specific example, showcasing its
sustained and notable acceleration impact.

• Imagine we have a server CPU with 72 parallel threads. Our parallel SKR algorithm comprises
the following parts:

1. Sorting: As with the original SKR, we order these data points using a suitable sorting algorithm
into a sequence where consecutive parameters are strongly correlated, meaning the distance
between parameter matrices is minimal (we usually use the 1, 2, or infinity norms of matrices
as the metric in this Banach space). The choice of sorting algorithm varies with the size of the
dataset:
– Greedy Sorting: Simple to implement and negligible in computational cost for smaller

datasets, such as our 7200 data points. However, for larger datasets, say 107 data points,
the computational load of the greedy algorithm increases substantially and cannot be paral-
lelized across multiple CPUs.

– FFT Dimension Reduction + Fractal Division + Greedy Sorting: For very large datasets,
we propose a parallelizable method that first reduces dimensionality via FFT to manage the
high-dimensional coordinates, then applies a fractal division algorithm based on the Hilbert
curve, and finally, performs greedy sorting within each divided section.

38

Published as a conference paper at ICLR 2024

2. Solving Linear Systems: Assuming the task at hand is to generate a dataset comprising 7200
data points, upon sequencing the data to establish a strong correlation, we subsequently parti-
tion these 7200 data points into 72 batches, each containing 100 points, distributing the tasks
of solving the corresponding linear systems to different CPU threads. Each thread employs our
SKR algorithm for solving, achieving parallelism in the process.

• To demonstrate the feasibility of our parallel approach and its effective acceleration, we have
designed the following experiments.

– An experimental simulation was conducted to generate a dataset for the Helmholtz equation,
comprising 7200 data points. Each corresponding matrix has a dimension of 10000, with Suc-
cessive Over-Relaxation (SOR) used uniformly for matrix preconditioning. Both our SKR al-
gorithm and the baseline GMRES algorithm were implemented to distribute the solving of
7200 tasks across 72 threads, with each thread solving 100 linear systems. Due to the potential
variance in computation completion times across threads, the reported computation times and
iteration counts have been averaged for consistency.

– The upper half of the table presents the average computation time taken by both algorithms to
solve each linear system, measured in seconds. The lower half details the average number of
iterations required to solve each linear system. The first row of the table specifies the precision
requirements for solving linear systems.

Table 31: Comparative Experimets of Parallel Versions

1E-03 1E-05 1E-07

time(s) Parallel GMRES 0.08 0.105 0.122

time(s) Parallel SKR(ours) 0.011 0.013 0.015

iter Parallel GMRES 3734 4906 5715

iter Parallel SKR(ours) 126 148 167

– The experimental results reveal that our SKR algorithm achieves a 6.7-8.0 fold acceleration
in computation time and a 30-34 fold reduction in the number of iterations compared to the
baseline.

E.2.3 BLOCK PARALLE

The block concept is a strategy for parallelizing large matrices and reducing memory overhead.
Drawing from the idea of Krylov blocks, we have redesigned a block version of our SKR algorithm
to facilitate parallel processing. The fundamental principle involves transforming the conventional
matrix algorithm into a block matrix variant, where each block is computed on a distinct CPU,
thereby achieving parallel execution of the matrix algorithm. This parallel approach significantly
reduces memory usage, making the algorithm suitable for extremely large matrix computations.
We will now demonstrate the remarkable acceleration achieved by our block version of the SKR
algorithm through experimental results:

• An experimental simulation was conducted to generate a dataset for the Helmholtz equation. Each
corresponding matrix has a dimension of 10000, with Successive Over-Relaxation (SOR) used
uniformly for matrix preconditioning, running on 72 parallel MPI threads.

• The upper half of the table presents the average computation time taken by both algorithms to
solve each linear system, measured in seconds. The lower half details the average number of
iterations required to solve each linear system. The first row of the table specifies the precision
requirements for solving linear systems.

• The experimental results reveal that our SKR algorithm achieves a 150-200 fold acceleration in
computation time and a 24-26 fold reduction in the number of iterations compared to the base-
line. The significant improvement in computation time is mainly attributed to the effects of MPI
parallelization.

39

Published as a conference paper at ICLR 2024

Table 32: Comparative Experimets of Block Versions

1E-03 1E-05 1E-07

time(s) GMRES 3.22 4.16 4.66

time(s) Block SKR(ours) 0.015 0.025 0.03

iter GMRES 5503 7074 7976

iter Block SKR(ours) 224 269 305

E.3 DATASET VALIDITY

we will explain from both theoretical and experimental perspectives that the data set generated using
our SKR algorithm will not affect the training of neural operators.

E.3.1 THEORETICAL PERSPECTIVE

From the theoretical perspective, under specific error tolerances, our SKR algorithm does not alter
the outcome of the generated dataset. As detailed in Section 5.1, our SKR algorithm is backed
by rigorous convergence analysis, ensuring accurate convergence to the true solution. Especially
for linear systems with high correlation, our SKR algorithm demonstrates a superior theoretical
convergence rate over GMRES.

In the field of numerical solutions for large matrices, there are generally no true solutions without
error, only numerical solutions with errors smaller than an acceptable threshold. We consider the
numerical solution satisfactory when the error of the computed linear system’s solution is below the
acceptable threshold, which we believe accurately represents the true solution.

E.3.2 EXPERIMENTAL PERSPECTIVE

Experimentally, we found that our SKR algorithm does not affect the effectiveness of the generated
dataset when training neural operators.

For the Darcy flow dataset, we simultaneously generated 5256 data points with a precision of 10−8

using both our SKR algorithm and GMRES, of which 5000 were designated for the training set and
256 for the test set, with the matrix size being 2500. The data in the table represent the relative error
under the two-norm during the training process, where the first row indicates the number of training
epochs and the rightmost column shows the final convergence error.

Table 33: Comparative Efficacy of Neural Operators Trained on Datasets Generated by Different
Algorithms

0 100 200 300 400 final

GMRES 1 0.912 0.127 0.096 0.055 0.025 0.02

GMRES 2 0.927 0.144 0.094 0.054 0.026 0.02

SKR(ours) 1 0.886 0.132 0.085 0.055 0.026 0.02

SKR(ours) 2 0.912 0.145 0.088 0.051 0.028 0.02

To mitigate the impact of randomness during the training process, we trained the neural network
models twice using datasets generated by GMRES and SKR respectively to compare their train-
ing dynamics. The results of this experiment demonstrate that the datasets generated by our SKR
algorithm and GMRES yield identical outcomes when used to train neural operators.

Based on the aforementioned theoretical analysis and experimental validation, we can confidently
state that the datasets generated by our SKR algorithm and the baseline GMRES algorithm have no
impact on the training of neural operators. That is, the performance of the datasets they generate is
equivalent.

40

	Introduction
	Related Work
	Data-Efficient Neural Operators and Learned PDE Solvers
	Krylov Subspace Recycling

	Preliminaries
	Discretization of PDEs in Neural Operator Training
	Krylov Subspace Method

	Method
	The Sorting Algorithm
	Krylov Subspace Recycling

	Theoretical Analysis
	Convergence Analysis
	The Rationality of Sorting Algorithms

	Experiment
	Set up
	Quantitative Results
	Ablation Study

	Limitation and Conclusions
	Converting PDEs to Linear Systems: An Example
	Overview
	Specific examples

	Algorithmic Details
	computes matrices U and C
	GCRO-DR

	Supplementary Theoretical Analysis
	Superlinear Convergence Phenomenon

	Details of Experimental Data
	Specific parameters of the main experiment
	Data Set
	Precondition
	environment
	Analysis of relevant experimental results
	Convergence speed analysis (time)
	Convergence speed analysis (iteration)
	Stability analysis

	Detailed experimental data

	Additional Experiments
	Other Application Scenarios
	Parallelization Strategies
	MPI-Based Parallelization
	Decompose Computational Tasks
	Block Paralle

	Dataset Validity
	Theoretical Perspective
	Experimental Perspective

