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Camouflaged object detection (COD) is important as it has various potential applications. Unlike salient object detection (SOD),

which tries to identify visually salient objects, COD tries to detect objects that are visually very similar to the surrounding

background. We observe that recent COD methods try to fuse features from different levels using some context aggregation

strategies originally developed for SOD. Such an approach, however, may not be appropriate for COD as these existing context

aggregation strategies are good at detecting distinctive objects while weakening the features from less discriminative objects. To

address this problem, we propose in this paper to exploit frequency learning to suppress the confusing high-frequency texture

information, to help separate camouflaged objects from their surrounding background, and a frequency-based method, called

FBNet, for camouflaged object detection. Specifically, we design a frequency-aware context aggregation (FACA) module to

suppress high-frequency information and aggregate multi-scale features from a frequency perspective, an adaptive frequency

attention (AFA) module to enhance the features of the learned important frequency components, and a gradient-weighted loss

function to guide the proposed method to pay more attention to contour details. Experimental results show that our model

outperforms relevant state-of-the-art methods.

CCS Concepts: • Computing methodologies → Computer vision tasks.

Additional Key Words and Phrases: Camouflaged object detection, frequency learning

1 INTRODUCTION

Camouflaged object detection (COD) aims to detect objects with similar patterns to their surroundings. It has many

potential applications in various fields, e.g., medical image segmentation of polyps and COVID-19 infected regions.

Works in art and information forensics [12, 52] attempt to hide information in natural images, and COD techniques

may help reveal this camouflaged information.

The COD problem was first addressed using deep-learning in [20], which adopted a two-stream network for

classification and COD segmentation. Recently, Fan et al. [10] proposed a SINet model for COD and achieved a

significant performance improvement over existing methods. It uses a modified Receptive Field Block (RFB) [28]

to search for camouflaged objects. RFB was first proposed for object detection [28], to enhance the deep features

of discriminative regions, and then extended for salient object detection (SOD) [45]. The objective of SOD is
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Input GT SINet [10] Ours

Fig. 1. Two common scenarios where the state-of-the-art COD method [10] fails. Top row: as SINet can be easily

affected by high-frequency information due to the use of a context aggregation strategy developed for SOD, it

mistakenly recognizes the background (with a similar pattern to the object) as part of the object. Bottom row: SINet

fails to detect the complete object as it is not able to gather sufficient low-frequency shape information. In contrast,

our method can detect these objects accurately by exploiting frequency learning in context aggregation.

to identify discriminative objects in the input image, and RFB can obtain discriminative features through (i)

concatenation of multi-scale features and (ii) addition (i.e., short connection) between input and output features.

However, we observe that detecting camouflaged objects is very different from detecting generic or salient objects.

Since camouflaged objects would deliberately conceal themselves by changing their own appearances to match

with their surroundings, simply adopting these existing context aggregation strategies for COD may lead to a lower

performance. As shown in the first row of Figure 1, although SINet can recognize part of the camouflaged object, it

over-predicts the object region and mis-recognizes part of the background to belong to the object, as confused by

the high-frequency texture shared by the camouflaged object and its surrounding. In the second row of Figure 1,

SINet fails to detect the camouflaged object correctly, as it is unable to learn and aggregate sufficient low-frequency

shape information of the camouflaged object during context aggregation. In this work, we aim to address this

context aggregation problem for COD from a frequency-based perspective.

As pointed out by [6], information extracted from less discriminative objects may be weakened during context

aggregation, e.g., using Atrous Spatial Pyramid Pooling (ASPP) [3] or RFB [28]. Geirhos et al. [13] also observed

that CNNs would bias towards high-frequency information like textures in images. Such a bias can affect the

performance of existing context aggregation strategies when they are applied to COD, as the patterns of camouflaged

objects are similar to those of their surroundings. It may also make it more difficult for the network to detect

accurate boundaries of camouflaged objects. These observation inspire us to consider a better design for COD with

suppressing the confusing high-frequency texture feature and enhancing the low-frequency shape information from

images with camouflaged objects.

To tackle the above problems, we propose in this paper a novel frequency-based method, named FBNet, to both

reduce the bias caused by high-frequency texture information and gather low-frequency shape information from

camouflaged images. Our FBNet is based on two novel modules. First, we propose a Frequency-aware Context

Aggregation (FACA) module to suppress confusing high-frequency texture information and aggregate multi-scale

features via frequency modeling, which can benefit the learning of the differences between camouflaged objects and

their surrounding backgrounds from a frequency perspective. Second, we propose an Adaptive Frequency Attention
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(AFA) mechanism to enhance the features of the learned important frequency components. Besides, we note that

camouflaged objects usually have complex boundaries, we further design a gradient-weighted loss function to help

our model focus on the contours of camouflaged objects.

Our main contribution can be summarized as follows:

• We propose a frequency-based approach to address the limitation of existing context aggregation strategies

when used in COD. Based on this frequency-based approach, we propose FBNet to exploit frequency learning

for COD.

• We propose two novel blocks for FBNet: a frequency-aware context aggregation (FACA) module to disen-

tangle frequency modeling in context aggregation, and an adaptive frequency attention (AFA) mechanism

to learn to enhance the features of the learned important frequency components. We further propose a

gradient-weighted loss function to guide FBNet to focus on the contours of camouflaged objects.

• Our extensive experimental evaluations demonstrate the superiority of the proposed model over state-of-the-

art methods from relevant fields.

2 RELATED WORK

In this section, we first briefly survey related works on context aggregation strategies. We then summarize recent

works on camouflaged object detection (COD) and salient object detection (SOD).

Context Aggregation. This aims to aggregate contextual features for different tasks, including object detection

and semantic segmentation. PSPNet [54] uses the Pyramid Pooling Module (PPM) to extract multi-scale contextual

representations for semantic segmentation. Chen et al. [3] proposed Atrous Spatial Pyramid Pooling (ASPP) to

concatenate spatial features extracted by convolutional kernels with different dilation rates. Liu et al. [28] proposed

the Receptive Field Block (RFB) to adopt suitable kernel sizes of different dilation rates to improve ASPP [3].

Due to the success of the context aggregation strategies applied to general detection tasks, recent SOD methods

also adopt a similar approach in their network design. For example, Zhao et al. [56] proposed a Context-aware

Pyramid Feature Extraction module (CPFE) based on ASPP. Wu et al. [46] explored how to aggregate segmentation

features and edge features for SOD. The state-of-the-art method for COD [10] also proposed a modified RFB [28]

module for context aggregation.

However, as CNNs would bias towards extracting high-frequency information (e.g., textures) [13] while context

aggregation tends to weaken the features from less discriminative objects [6], existing context aggregation strategies

may not be suitable for COD. In this work, we propose a new context aggregation strategy that focuses more on

extracting low-frequency shape information for COD.

Camouflaged Object Detection (COD). It aims to detect objects with similar patterns (e.g., textures and colors)

to their natural habitats. Early methods [36, 48, 51] were mostly based on hand-crafted, low-level features, and

they mainly focused on detecting camouflaged regions in the given images. COD has lots of potential applications,

including mirror detection [14, 24, 41] and glass surface detection [23, 35].

Recent CNN-based methods [10, 20] have achieved significant improvement on COD. Le et al. [20] proposed

the first CNN-based model, ANet-SRM, and a benchmark dataset (consisting of 2500 images with pixel-level

annotations) for COD. Fan et al. [10] proposed the largest dataset COD10K with 10K images and a state-of-the-art

model, SINet, for COD. Mei et al.[34] proposed a bio-inspired network, PFNet, for COD. However, these latest

COD methods [10, 20] are based on some context aggregation strategies, which may not be suitable for COD. In

addition, these COD methods have complex frameworks. While ANet-SRM [20] uses a classification-segmentation

pipeline, SINet [10] uses a search-identification pipeline.

To address these limitations, we propose in this work to exploit frequency learning to suppress the confusing high-

frequency texture information and a new context aggregation strategy to extract low-frequency shape information,

enabling efficient and accurate camouflaged object detection.

ACM Trans. Multimedia Comput. Commun. Appl.
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Salient Object Detection (SOD). It aims to detect objects that are most salient to humans. While early methods

relied heavily on hand-craft features and saliency priors [49, 60], recent methods are mostly based on CNNs to

enhance feature extraction [43, 53]. Zhang et al. [53] proposed a progressive attention based network for adaptive

multi-scale context integration. Wang et al. [43] presented a new pyramid pooling module as well as a multi-stage

refinement mechanism to capture detailed spatial information. Zhao et al. [56] proposed a context-aware pyramid

feature extraction module to extract pyramid context features. BASNet [38] and SCRN [46] leveraged boundaries

of salient objects as explicit guidance to encourage a finer segmentation. Pang et al. [37] proposed a multi-scale

network to integrate features in an interactive way. GateNet [58] explored a gating method for SOD to adaptively

control the information flow in a balanced way.

However, camouflaged objects are very different from salient objects. While salient objects have very different

appearances from their surroundings, camouflaged objects tend to have very similar appearances in order to conceal

themselves. Hence, we argue that SOD methods are not suitable for COD.

3 OUR METHOD

Input

Backbone
Features

FACA

Frequency-aware 
Features

FACA

Decoder

Decoder

Output Masks

...

...

...

AFA

AFA

FACA DecoderAFA

Fig. 2. The pipeline of our proposed FBNet. It leverages the frequency-aware context aggregation (FACA) module to

disentangle frequency modeling in context aggregation, and the adaptive frequency attention (AFA) mechanism to

enhance the features of the learned important frequency components, for the COD task.

In this paper, we propose a novel frequency-based method for camouflaged object detection. Our method aims to

both reduce the bias caused by high-frequency texture information and adaptively enhance the feature representation

from learned important frequency components for camouflaged object detection.

Figure 2 illustrates the pipeline of our proposed FBNet. We first feed the input image to a backbone network [17]

to extract multi-scale backbone features. Specifically, we use the outputs of four stages of the network, i.e., res2c,

res3b3, res4b22 and res5c, as our backbone features. The deepest features from the final stage (i.e., res5c) are

first fed into the proposed FACA module to capture the frequency-aware features while suppressing the confusing

high-frequency texture information. The output features are then fed into an adaptive frequency attention (AFA)

module to enhance the features of the learned important frequency components in an adaptive way. The enhanced

features are further fed into a decoder to generate a coarse binary mask of the potential camouflaged objects.

This coarse mask serves as an attention map to the previous stage (i.e., res4b22) to guide the refinement of the

camouflaged object mask. We use the predicted mask of the first stage as the final output. In this way, the output

mask is progressively refined by integrating with the earlier backbone features.
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3.1 Frequency-aware Context Aggregation (FACA)

To suppress the confusing high-frequency texture information in camouflaged images, we propose a frequency-

aware context aggregation (FACA) module to aggregate multi-scale features while preserving the information of

less discriminative regions from the input image.

Figure 3 shows the structure of our proposed FACA. We first define the input features to the FACA module as ��� ,

and each set of intermediate features as �� = Conv�� ,�� (���), where �� is the kernel size and �� is the dilation rate of

the “��ℎ” convolution kernel. In the original ASPP [3], all convolution kernels Conv� corresponding to �� have

the same kernel size but different dilation rates. As discussed in [28], such a design probably leads to confusion

between the object and its context. RFB [28] improves ASPP by adjusting the kernel size �� for Conv� and adding

shortcut connections between the input features ��� and output features �� , after aggregating all intermediate features

�� . However, it still treats all �� equally, and directly concatenates all �� without any enhancement or filtering. As a

result, the information of a less discriminative object would be weakened during the aggregation.

Unlike ASPP and RFB, our FACA computes the intermediate features �� by feeding the input features ��� into a

learnable low-pass layer ��� , followed by the convolution kernel Conv�� ,�� . All permuted pairs of �� are aggregated

by a subtraction operator and then concatenated channel-wise. The low-pass layer can help filter the confusing

high-frequency texture information in the image features and preserve the important information from ��� in ��
across different levels. In our FACA, inspired by [61], we design a convolution kernel as low-pass layer ��� for each

spatial location of the input feature to filter high-frequency information and learn to preserve important information

in a feature level. Following [61], we apply a softmax layer on the weights of the low-pass layer to constrict them

as positive values, and we initialize the weights of ��� by Kaiming Normal initialization [16] to ensure ��� be

Gaussian-like.

Specifically, given a set of input feature X , we construct a low-pass filter �ℎ,� by a 3 × 3 convolution kernel for

each spatial location (ℎ,�) on X. The predicted �ℎ,� is then applied to X to produce the high-frequency suppressed

feature F as:

F =

�−1︁

ℎ=0

� −1︁

�=0

︁

�,�∈Ω

�
�,�

ℎ,�
· �ℎ+�,�+�, (1)

where F denotes output features at location (ℎ,�) and Ω denotes the region surrounding (ℎ,�) on which we apply

the predicted �ℎ,� .

Finally, existing context aggregation strategies, such as ASPP and RFB, typically use an addition operator to

capture the features from discriminative regions. In contrast, we use the subtraction operator here in order to

suppress the features representing high-frequency camouflaged textures. Formally, we can compute the output

features �� as:

�� = Conv�� ,�� (��� (���)),

�� =

�⊗

�=1

�⊗

�=�+1

(�� − �� ),
(2)

where � = 4 in Figure 3.
⊗

represents concatenation followed by a 1 × 1 convolution. �� is the kernel size. �� is

the dilation rate of the corresponding ��ℎ convolution kernel. For each FACA module in each stage, we set �, ��
and �� to 4, {3, 3, 3, 3} and {2, 4, 6, 8}, respectively.

3.2 Adaptive Frequency Attention (AFA)

The benefit of attention mechanisms has been shown in different vision tasks. One of the most widely used attention

mechanisms is the SE-block [18], which aims to explore attention in a channel-wise manner. However, as proven

by [7], the SE-block only models the lowest frequency components by applying global average pooling (GAP) on
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Fig. 3. The structure of our proposed FACA. It aims to aggregate multi-scale features and preserve the information

of less discriminative regions from the input feature.

the input features. As such, it may not be suitable for COD, due to the lack of frequency modeling. Recently, a

frequency channel attention mechanism (FCA) [39] was proposed to extend the SE-block by replacing GAP with

multiple frequency components. However, FCA requires a heavy pre-computation on the selection of frequency

components, and the selection of frequency components is empirical and fixed before training. Thus, it is difficult to

generalize FCA to different datasets, especially to the camouflaged object datasets, which have a large distribution

gap with the general object datasets (e.g., ImageNet [22]). To address these limitations of the attention mechanisms

when used on COD, we propose an adaptive frequency attention (AFA) mechanism here. Unlike FCA, our proposed

AFA selects frequency components in an adaptive way.

Formally, given the input features F ∈ R�×�×� , our AFA first computes the discrete cosine transform (DCT)

weight Γ
�, �

ℎ,�
for each spatial pixel (ℎ,�) in the input features F, where (�, �) is the index of the frequency components

in the DCT matrix. We also design a learnable parameter � to learn the importance of each frequency component:

Γ
�, �

ℎ,�
= cos

(
�ℎ

�

(
� +

1

2

))
cos

(
��

�

(
� +

1

2

))
,

M =

�−1︁

�=0

�−1︁

�=0

�−1︁

ℎ=0

� −1︁

�=0

���−�+�Fℎ,�Γ
�, �

ℎ,�
,

(3)

where � ×� is the size of the DCT square matrix. Typically, we adopt a 8×8 DCT matrix to represent the frequency

space. Finally, the output features F̃ are obtained by following a similar structure as the SE-block:

F̃ = � (W2 (� (W1M))), (4)

where � , � , W1 ∈ R
�

�
×� and W2 ∈ R�×

�

� denote the sigmoid function, the ReLU function and two learnable

weights, respectively. Following [18], we set � to 16 for a good tradeoff between accuracy and complexity.
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3.3 Gradient-Weighted Loss

Most CNN-based existing methods [10, 20] for COD adopt cross entropy (CE) as their training loss function.

However, as CE treats all pixels equally, the boundaries of camouflaged objects can be easily missed or blurred by

the methods trained with CE, especially when the boundaries are complex.

To tackle this problem, we propose a weighted loss that puts more attention on the boundary details. We denote

the predicted mask as � and the ground truth mask as � . To obtain the spatial importance of each location in � ,

we apply a Laplacian filter ∇ on � and compute the difference between the normalized ∇� and � . The weight of

spatial importance� can be computed as (with � representing the sigmoid function):

� = |� (∇�) −� | , (5)

ℓ��� = −� [� · log� (�) + (1 −�) · log(1 − � (�))] . (6)

Our final loss function is then:

ℓ =

�︁

�=1

ℓ���� + ℓ
�
��� , (7)

where ℓ�
���

is the weighted loss and ℓ�
���

is the IoU loss [38] for the ��ℎ predicted camouflaged object mask.

4 EXPERIMENTS

4.1 Datasets and Evaluation Metrics

Following SINet [10], we train our model on the combined dataset with 4,640 images and evaluate our method on

three datasets: CHAMELEON [1] with 76 images, CAMO-Test [20] with 250 images, and COD10K-Test [10]

with 2,066 images.

We employ four popular metrics to evaluate the performance of our model quantitatively: S-measure (�� ) [8],

mean E-measure (�� ) [9], weighted F-measure (��
�

) [33], and Mean Absolute Error (MAE). MAE is the average

pixel-wise error between the predicted mask and ground truth as:

��� =

1

��

�︁

�=1

�︁

�=1

|� (�, �) −� (�, �) |, (8)

where � is the predicted mask. � is the ground truth. � and� are the width and height of the input image.

4.2 Implementation Details

We use ResNet-50 [17] pre-trained on ImageNet as our backbone, and the remaining layers are initialized randomly

with the default setting in PyTorch. All training and test images are uniformly resized to 352 × 352. We use

stochastic gradient descent (SGD) as the optimizer with a momentum of 0.9 and a weight decay of 5 × 10−4.

We adopt the “Poly” decay strategy [29], where the current learning rate is the base learning rate multiplied by

(1 − �����������
�������

)
�����

. The base learning rate is 0.001 and Power is 0.9. The batch size is 32. We run 40 epochs in

the training.

4.3 Comparison with the State-of-the-Arts

Quantitative Evaluation. We compare our proposed method with the state-of-the-art methods from relevant

fields, including SINet [10] and PFNet [34] for camouflaged object detection; MINet [37], GCPA [4], F3Net [44],

SCRN [46], DeepCRF [47], BANet [40], EGNet [55], CPD [45], PFANet [57], BASNet [38], PoolNet [26] and

PiCANet [27] for saliency object detection; FPN [25], PSPNet [54] and UNet++ [59] for semantic segmentation;

MaskRCNN [15], MSRCNN [19] and HTC [2] for instance segmentation. For fair comparison, all methods use
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ResNet50 [17] as the backbone network for feature extraction, and are trained in the same way as SINet [10] on

their combined training set.

Table 1 shows the quantitative comparison on the four metrics. We can see that our proposed method outperforms

all the other methods on most metrics and all three datasets, except for two results are the second best. It is

interesting to note that although SINet is designed for COD, some recent SOD methods such as F3Net [44] and

SCRN [46] outperform it. This shows that context aggregation strategies used in these two methods may be more

effective in COD than the one used in SINet.

Table 1. Quantitative results on three COD datasets. The best three results are shown in red (best), green (second),

and blue (third). The first group of methods are semantic and instance segmentation methods. The second group of

methods are SOD methods. The last group of methods are COD methods. For fair comparison, all methods are

trained in the same way as SINet [10] on their combined training set.

Baseline Models
CHAMELEON [1] CAMO-Test [20] COD10K-Test [10]

�� ↑ �� ↑ ��
�
↑ MAE↓ �� ↑ �� ↑ ��

�
↑ MAE↓ �� ↑ �� ↑ ��

�
↑ MAE↓

2017 FPN [25] 0.794 0.783 0.590 0.075 0.684 0.677 0.483 0.131 0.697 0.691 0.411 0.075

2017 MaskRCNN [15] 0.643 0.778 0.518 0.099 0.574 0.715 0.430 0.151 0.613 0.748 0.402 0.080

2017 PSPNet [54] 0.773 0.758 0.555 0.085 0.663 0.659 0.455 0.139 0.678 0.680 0.377 0.080

2018 UNet++ [59] 0.695 0.762 0.501 0.094 0.599 0.653 0.392 0.149 0.623 0.672 0.350 0.086

2019 MSRCNN [19] 0.637 0.686 0.443 0.091 0.617 0.669 0.454 0.133 0.641 0.706 0.419 0.073

2019 HTC [2] 0.517 0.489 0.204 0.129 0.476 0.442 0.174 0.172 0.548 0.520 0.221 0.088

2018 PiCANet [27] 0.769 0.749 0.536 0.085 0.609 0.584 0.356 0.156 0.649 0.643 0.322 0.090

2019 PoolNet [26] 0.776 0.779 0.555 0.081 0.702 0.698 0.494 0.129 0.705 0.713 0.416 0.074

2019 BASNet [38] 0.687 0.721 0.474 0.118 0.618 0.661 0.413 0.159 0.634 0.678 0.365 0.105

2019 PFANet [57] 0.679 0.648 0.378 0.144 0.659 0.622 0.391 0.172 0.636 0.618 0.286 0.128

2019 CPD [45] 0.853 0.866 0.706 0.052 0.726 0.729 0.550 0.115 0.747 0.770 0.508 0.059

2019 EGNet [55] 0.872 0.895 0.749 0.040 0.754 0.773 0.625 0.098 0.780 0.813 0.581 0.048

2019 BANet [40] 0.647 0.739 0.447 0.115 0.632 0.711 0.471 0.149 0.663 0.734 0.434 0.090

2019 DeepCRF [47] 0.560 0.535 0.270 0.142 0.607 0.601 0.379 0.167 0.606 0.591 0.296 0.108

2019 SCRN [46] 0.878 0.894 0.751 0.041 0.777 0.795 0.644 0.090 0.791 0.820 0.588 0.046

2020 F3Net [44] 0.854 0.901 0.747 0.046 0.779 0.825 0.666 0.092 0.784 0.851 0.611 0.047

2020 GCPA [5] 0.851 0.842 0.687 0.051 0.744 0.727 0.563 0.109 0.763 0.748 0.520 0.055

2020 MINet [37] 0.847 0.895 0.749 0.042 0.731 0.759 0.604 0.096 0.767 0.816 0.598 0.042

2021 Swin-T [30] 0.873 0.916 0.795 0.035 0.744 0.800 0.634 0.090 0.761 0.821 0.586 0.045

2021 Swin-B [30] 0.906 0.938 0.854 0.021 0.860 0.912 0.811 0.048 0.851 0.906 0.748 0.026

2020 SINet [10] 0.869 0.891 0.740 0.044 0.751 0.771 0.606 0.100 0.771 0.806 0.551 0.051

2021 RankNet [32] 0.846 0.913 0.767 0.045 0.712 0.791 0.583 0.104 0.767 0.861 0.611 0.045

2021 JCOD [21] 0.870 0.924 NA 0.039 0.792 0.839 NA 0.082 0.800 0.872 NA 0.041

2021 PFNet [34] 0.882 0.942 0.810 0.033 0.782 0.852 0.695 0.085 0.800 0.868 0.660 0.040

Ours 0.888 0.939 0.828 0.032 0.783 0.839 0.702 0.081 0.809 0.889 0.684 0.035

Qualitative Evaluation. Figure 4 shows visual comparison on some challenging images from the test sets of the

three COD datasets. We can see that the proposed method outperforms current state-of-the-art methods in these

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 2. Ablation Study on using different context aggregation strategies. All ablation models are trained on the

combined training set in [10] and tested on COD10K-test.

Ablation �� ↑ �� ↑ ��
�
↑ MAE↓

ASPP [3] 0.666 0.708 0.449 0.092

RFB [28] 0.754 0.813 0.547 0.055

FACA (ours) 0.809 0.889 0.684 0.035

Table 3. Ablation Study on using different attention mechanisms. All ablation models are trained on the combined

training set in [10] and tested on COD10K-test.

Ablation �� ↑ �� ↑ ��
�
↑ MAE↓

SE-Block [18] 0.790 0.879 0.652 0.041

FCA [39] 0.777 0.864 0.632 0.044

AFA (Ours) 0.809 0.889 0.684 0.035

challenging cases. In particular, the first seven row shows a camouflaged object with patterns very similar to its

surrounding. Our method produces the sharpest and most accurate boundary. The eighth and ninth rows show

two partially occluded camouflaged objects. Both objects have two parts. The object in the second row requires

long-range context information to detect, as it covers a large extent, while the one in the third row has a larger body

but a smaller tail. Our method can correctly detect both parts in both cases. The tenth to sixth rows show images

with multiple camouflaged objects, where the sizes of the camouflaged objects include medium, small and mixed,

respectively. While other methods tend to miss some objects in some cases but overpredict them in other cases, our

method can detect all objects in different scales correctly. The final row is an extremely challenging case, as the

target object is difficult to see even for humans. Only our method can detect it successfully.

Computation Time. We compare the inferring time of our method and the state-of-the-art COD method (SINet)

on a 352 × 352 image. While SINet takes 0.10s, our method takes only 0.03s. Hence, our method is roughly 3.3

times faster than SINet, due to the simpler structure of our model.

4.4 Ablation Study

Context Aggregation Strategies. To evaluate how different context aggregation strategies perform under the same

setting, we have experimented three strategies on our FBNet framework: ASPP [3], RFB [28] and our FACA. Table

2 shows the experimental results. We can see that our FACA performs better than ASPP and RFB. This is because

FACA can aggregate contextual features with the suppression of redundant high-frequency information by its

low-pass filters and subtraction aggregation operator. Figure 5 shows a visual example to compare the three context

aggregation strategies in resolving an ambiguous scene.

Attention Mechanisms. Table 3 compare our proposed AFA with two other attention mechanisms: SE-Block [18]

and FCA [39]. It may be interesting to see that although FCA has shown to outperform the SE-Block in many other

research problems, such as image recognition and object detection, it degenerates on COD and performs worse than

the SE-Block, which only models the lowest frequency components in its squeezing operation. The main reason

is that FCA lacks adaptive frequency learning on COD and is more susceptible to the high-frequency textures in

camouflaged images. We can see that our proposed AFA outperforms other attention mechanisms, due to the proper

and adaptive frequency modeling.

ACM Trans. Multimedia Comput. Commun. Appl.



10 • J. Lin and X. Tan, et al.

Image F3Net [44] MINet [37] SCRN [46] EG-

Net [55]

GCPA [4] SINet [10] Ours GT

Fig. 4. Visual comparison with state-of-the-art methods. For fair comparison, all methods are trained in the same

way as SINet [10] on their combined training set.
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Image ASPP [3] RFB [28] Ours GT

Fig. 5. A visual example of the ablation study.

Operator for Context Aggregation. To directly compare how the operators affect the performances of different

context aggregation strategies, we perform a experiments based on our FACA-Net in Table 4. We experiment with

four operators: addition, concatenation, subtraction and multiplication. We can find that using subtraction as the

contextual aggregation FACA outperforms among all ablation models.

Table 4. Ablation Study. All ablation models are trained on the combined training set in [10] and tested on COD10K-

test. We denote that Add, Cat, Sub, Mul is addition, concatenation, subtraction, multiplication operator.

Ablation �� ↑ �� ↑ ��
�
↑ MAE↓

FACA Add 0.788 0.871 0.641 0.041

FACA Cat 0.782 0.874 0.650 0.042

FACA Mul 0.785 0.867 0.632 0.044

FACA Sub (ours) 0.809 0.889 0.684 0.035

Visualization of ERFs of Different Context Aggregation Strategies. Figure 6 visualizes the ERFs [31] of

different back-propagated positions in the input image. Comparing with other methods, the ERFs of our method

focus on the target object especially on its low-frequency shape information. In the second row of Figure 6, although

the back-propagated position moves out of the object, the ERFs of our proposed FACA are still compact and less

interfered by the background texture due to the suppression of high-frequency texture information in FACA.

Loss Functions. Table 5 shows the experimental results of different loss functions. We select binary cross

entropy and IoU loss [38] as baseline loss functions. Our proposed loss function outperforms the others. Figure 7

shows a visual example to compare the results of the models trained by three different loss functions.

5 DISCUSSION

Adding an explicit edge detection module to various detection tasks has been shown to be very effective [46, 55],

and is becoming very popular in recent works. In our model, a straightforward way to learn the edge and shape

information is to apply an edge detection module as an explicit guidance during network training. As such, we add

an edge guidance module derived from EGNet [55], which has been shown to help improve the SOD performance,

in our FBNet to study if adding this edge guidance may help improve the COD performance. We then compare our

model with two strong baselines EGNet [55] and SCRN [46] (from Table 1), which use explicit edge guidance

ACM Trans. Multimedia Comput. Commun. Appl.
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GT

Image ASPP [3] RFB [28] FACA Mul Ours (FACA Sub)

Fig. 6. Visualization of the effective receptive fields (ERFs) of specific back-propagated positions, i.e., inside, outside

and on the edge of the target object (red dots). While other strategies have messy ERFs, the ERFs of our method

are more compact and focus on the object.

Table 5. Ablation Study on using different loss functions. All ablation models are trained on the combined training

set in [10] and tested on COD10K-test.

Ablation �� ↑ �� ↑ ��
�
↑ MAE↓

BCE 0.775 0.784 0.551 0.051

IOU [38] 0.777 0.857 0.654 0.038

Ours 0.809 0.889 0.684 0.035

Image BCE IoU [38] Ours GT

Fig. 7. A visual example of the ablation study on using different loss functions. The method trained by our proposed

loss function predicts more precise contours and shapes of the camouflaged objects.

during their network training. Table 6 shows the results of EGNet, SCRN, and our model with and without the

edge guidance module. It is interesting to see that the edge guidance module does not really help improve the COD

performances in all three cases. We believe that this is because camouflaged objects deliberately conceal their

boundaries, so that they cannot be easily detected by their predictors. As such, explicitly supervising the networks

with edge guidance does not benefit too much for COD.

6 CONCLUSION

In this paper, we have investigated different context aggregation strategies for camouflaged object detection (COD),

and proposed a new frequency-aware context aggregation (FACA) module and adaptive frequency attention (AFA)

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 6. Evaluation of the effectiveness of edge guidance on COD. All baselines are trained on the training dataset

provided by [10] and tested on COD10K-test. EG stands for explicit edge guidance.

Ablation models �� ↑ �� ↑ ��
�
↑ MAE↓

EGNet (with EG) [55] 0.780 0.813 0.581 0.048

EGNet (without EG) 0.779 0.814 0.580 0.047

SCRN (with EG) [46] 0.791 0.820 0.588 0.046

SCRN (without EG) 0.790 0.819 0.584 0.046

Ours (with EG) 0.807 0.884 0.687 0.037

Ours (without EG) 0.809 0.889 0.684 0.035

mechanism to aggregate multi-scale features broadly but selectively from important frequency components. Based

on FACA and AFA, we present the FBNet model for COD. We have also proposed a novel gradient-weighted

loss function to learn the complex contours of camouflaged objects. We have conducted extensive experiments to

evaluate the performance of the proposed model against state-of-the-art methods from relevant fields. Our results

demonstrate the superiority of the proposed model for COD.

Our method does have limitations. As shown in Figure 8, if a camouflaged object has very complex contours

due to occlusion, our method may not be able to predict it well. As a future work, we would like to consider

incorporating techniques such as object de-occlusion to address the camouflaged object detection problem. In

addition, COD is potentially useful for night-time semantic segmentation [42] since many objects are camouflaged

in under-exposed regions, even with semi-supervised [11] and noisy-label [50] settings.

Image GT Ours

Fig. 8. A failure case from COD10K (with a black cat hidden behind the leaves). Our method may fail to detect the

camouflaged object with extremely complex contours caused by occlusion.
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