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ABSTRACT
Environmental, Social, and Governance (ESG) has been crucial in
investment decision-making in recent years, with an increase of
ESG-centric research emerging. Concurrently, Natural Language
Processing (NLP) has emerged in analyzing ESG-related texts. How-
ever, there is a lack of models and datasets specifically tailored for
ESG categorization. This study presents a novel approach lever-
aging Pretrained Language Models (PLMs) and Large Language
Models (LLMs) to tackle ESG text classification tasks. We intro-
duce a pipeline for creating specialized datasets for ESG analysis
by using keyword search and LLMs APIs to label data. Through
the strategic extension of PLMs such as BERT, DistilRoBERTa, and
RoBERTa, via continued pre-training on our datasets, our approach
significantly surpasses traditional baseline performances. We also
introduce ESGLlama and FinLlama, domain-specific models derived
from Llama2, with FinLlama demonstrating exceptional efficacy in
financial benchmarks and ESG text comprehensions. Final evalua-
tions reveal that our models achieve significant advancements in
ESG classification, outperforming established baselines.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
• Applied computing→ Enterprise computing.

KEYWORDS
ESG, pre-trained language model, text classification

1 INTRODUCTION
Environmental, Social, and Governance (ESG) considerations rep-
resent the cornerstone of contemporary sustainable or responsible
investment strategies. Over the past decade, ESG has become the
preeminent framework for socially responsible investments and
decision-making within the financial sector. However, a significant
challenge remains relying on voluminous annual sustainability re-
ports for informed decision-making. The comprehensive nature of
these reports necessitates substantial effort for thorough analysis,
highlighting the critical demand for automated solutions. In this
context, Natural Language Processing (NLP) emerges as an indis-
pensable tool, enabling navigating through extensive sustainability
narratives and extracting pivotal ESG insights precisely. Machine
learning (ML) and NLP technologies are emerging as a linchpin in
refining ESG investment strategies in this evolving investment land-
scape. The synergy of ML and NLP does not merely expedite the
analytical process. It also carves out novel corridors for academic
and practical exploration into the development of systems adept at
distilling pertinent insights from the vast seas of ESG reports.

Recent advancements in NLP have streamlined the identification
and interpretation of ESG information, enabling real-time track-
ing of ESG dynamics and more nuanced analysis. This research
background sets the stage for exploring the integration of NLP in
enhancing the efficiency and depth of ESG analysis. Additionally,

existing research has applied pre-trained language models in ESG-
related NLP tasks such as climate change-related text detection
and controversy detection [12, 22, 28, 34]. Despite the notable ad-
vancements in applying PLMs for analyzing ESG-related data, a
significant gap exists in the processing and collecting textual ESG
data. This results in a scarcity of publicly accessible, high-quality
ESG textual datasets, especially for established text categorization
tasks within the ESG domain. Recent developments in large lan-
guage models (LLMs) are more powerful than small PLMs and have
demonstrated their potential in performing various NLP tasks like
language understanding and generation. However, no such research
focuses on using LLMs to solve ESG-related tasks. To address the
shortfall of labeled ESG data, our approach employs a Large Lan-
guage Model (LLM) as an annotator to get labeled ESG data and
apply them in ESG-related tasks. This strategy aims to augment
the availability of categorized ESG data and explores the potential
of LLMs in ESG text classification tasks.

In this study, we tackle the significant gap in the availability
of ESG-related datasets and apply our models to challenging ESG
classification tasks. Utilizing a continuous pre-training strategy,
we enhanced BERT, DistilRoBERTa, and RoBERTa models with a
specifically curated ESG corpus, effectively tailoring them to the
nuances of the ESG domain. We also leveraged keyword searches
and APIs from large language models to meticulously annotate
datasets for both 4-class and 9-class ESG classification. Further, we
enriched our dataset collection with conversational history data,
which proved crucial for Supervised Fine-Tuning (SFT) processes.
This comprehensive fine-tuning involved both Pre-trained Lan-
guage Models (PLMs) and Large Language Models (LLMs), signifi-
cantly boosting their performance in ESG-specific tasks. Moreover,
we developed two fine-tuend LLMs, ESGLlama and FinLlama, based
on the Llama2, which demonstrated substantial improvements over
baseline models. FinLlama also excelled in financial benchmarks,
highlighting its utility in financial contexts. The empirical results
from our study indicate a marked improvement in our models’
ability to classify ESG-related content, consistently outperforming
established benchmarks. In summary, our key contributions are the
following:

• We propose a pipeline by utilizing keyword search and
LLMs APIs to annotate data and construct three kinds of
datasets for ESG analysis: pre-training corpus, classification
dataset, ESG Supervised Fine-Tuning (SFT) dataset.

• We introduce three domain-specific PLMs: ESG-BERT, ESG-
DistilRoBERTa, and ESG-RoBERTa. These models notably
surpass their base models and our baseline.

• We conduct two fine-tuned Llama2 models: ESGLlama and
FinLlama. FinLlama exhibits remarkable improvements in
financial benchmarks.

• We extensively compare PLMs and LLMs across various
experimental settings, providing a comprehensive analysis
of their performance.
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2 RELATEDWORK
2.1 ESG Related NLP
The exploration of textual data in ESG reports has seen a marked
increase in interest, covering various research topics. Recent studies
have expanded beyond traditional analyses by adopting machine
learning models to address societal issues such as stereotypes and
inclusivity [20]. Furthermore, diachronic distributional techniques
have been utilized to trace the evolution of ESG terminology, re-
vealing shifts in discourse [24]. Traditional research often employs
keyword-based analysis methods [27], which lack contextual sensi-
tivity [32]. Recent shifts toward context-aware machine learning
models have improved performance in diverse tasks such as climate
content classification [34], topic detection [32], Q&A systems [21],
and claim detection and verification [29]. However, this increase
in climate-focused research starkly contrasts with the minimal at-
tention given to broader ESG aspects. Deploying fine-tuned BERT
models, especially those trained on extensive business and financial
news corpora like the Reuters News Archive, has effectively iden-
tified ESG controversies [22]. Nevertheless, a significant research
gap remains in the comprehensive analysis of ESG communication
across all three domains.

2.2 Pre-trained Language Models
The advent of robust Pre-trained Language Models (PLMs) such
as BERT [9], ELMo [23], RoBERTa [17] has significantly boosted
NLP task performance across diverse domains. While domain-
specific pre-training further augments their performance in spe-
cialized fields [11], with dedicated models like BioBERT [15] for
biomedicine, ClinicalBERT [1] for clinical care, and SciBERT [5] for
scientific texts demonstrating targeted advancements. Additionally,
ClimateBERT [6] specifically addresses climate risk assessment.
The landscape of Large Language Models (LLMs) encompasses
models like T5 [25], which employs a unique Encoder-Decoder
Transformer structure, and the OpenAI GPT series, beginning with
GPT-3 [7], renowned for setting benchmarks in generative tasks.
Other notable GPT-style models include PaLM [8], and GPT-NeoX
[2], alongside GLM [10]. Despite many LLMs being proprietary,
open-source models like OPT [40] and LLaMA [31] foster extensive
research and practical applications. Despite these advances, the
application of PLMs in the nuanced ESG domain remains nascent,
representing a significant research opportunity to employ PLMs
and instruction-tuning techniques for nuanced and contextually
informed ESG text analysis. Our work seeks to bridge this gap,
leveraging PLMs to enhance ESG analysis and categorization.

2.3 Financial Language Models
The application of language models in finance is rapidly expand-
ing, as these models are increasingly used for specialized functions
such as risk assessment and information extraction [16]. These
financial language models are developed either from scratch or
through fine-tuning existing models. For instance, BloombergGPT
[36] was initially trained with a mix of general and finance-specific
datasets using BLOOM176B, while Xuan Yuan 2.0 [41] and Fin-T5
[19] focus on the Chinese financial market, leveraging specialized

pre-training. Fine-tuning for financial models predominantly tar-
gets sentiment analysis, news categorization, question-answering,
summarization, and entity recognition. Noteworthy adaptations
include FinBERT [3, 12, 18, 38]. Emerging models like PIXIU [37],
and FinGPT [39] exemplify the advanced application of LLaMA
architectures tailored for financial tasks, with PIXIU using 136K
task-specific instructions and FinGPT employing LoRA for efficient
fine-tuning. However, despite these advancements, the domain
lacks specific models optimized for ESG-related tasks within fi-
nance, highlighting a significant opportunity for development. This
gap underscores the potential for deploying fine-tuned LLMs to
address ESG classification in finance, a promising area for future
exploration and model innovation.

3 DATASETS
In response to the notable scarcity of datasets tailored for ESG
domain analysis, we propose a pipeline, as illustrated in Figure 1,
which encompasses data preprocessing, labeling procedures, and
model training to enhance ESG data analysis capabilities system-
atically. Initially, data is sourced from various open sources and
cleansed according to predefined rules. During the preprocessing
phase, data is preliminarily categorized using keyword searches.
Subsequent labeling employs APIs from LLMs to ensure high classi-
fication accuracy. Human evaluations are conducted to validate the
labeled data, which then facilitates the construction of specialized
datasets for further model pre-training and fine-tuning.

Specifically, we have constructed three types of datasets to en-
hance the accuracy of ESG prediction tasks: (1) Pre-training Dataset.
This expansive corpus of ESG-related texts is designed to bolster
the initial training of domain-specific models, thereby improving
their ability to interpret ESG contexts accurately. (2) Classifica-
tion Datasets. These datasets are segmented into four-class and
nine-class categories for ESG texts, playing a pivotal role in the
fine-tuning process to enhance model precision in ESG categoriza-
tion. (3) SFT Dataset. Tailored for the Supervised Fine-Tuning (SFT)
of Large Language Models (LLMs), this dataset incorporates con-
versational data generated by LLMs during the labeling procedure
to boost the models’ proficiency in ESG classification tasks.

3.1 Data Collection and Processing
For data collection, we searched and collected datasets mainly from
two resources: huggingface 1 and kaggle 2. Refer to more details of
our collected data in Appendix A. After data collection, we extract
textual content pertinent to ESG analysis. In the initial data process-
ing phase, we standardized the datasets to a sentence-level format,
facilitating uniform analysis across diverse data sources. This step
was crucial in preparing the data for subsequent machine learning
and natural language processing tasks. Following the standardiza-
tion, a data-cleaning procedure was implemented. This involved
the removal of URLs and special characters from the text, ensur-
ing that the datasets were devoid of extraneous information that
could potentially skew the analysis. These preprocessing steps were
essential in refining the data and enhancing the quality and relia-
bility of the insights derived from our ESG subdomain language

1https://huggingface.co/
2https://www.kaggle.com/
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Figure 1: The work pipeline encompasses data collection, preprocessing, and labeling, followed by model training. Data is
initially collected from open sources and cleansed. Using keyword searches and enhancing label accuracy through LLM’s APIs,
with further validation by human evaluation. The resultant dataset is used for pre-training and fine-tuning classification tasks.

models. The processed data amounted to approximately 18 million
sentences, reflecting our dataset preparation efforts’ comprehensive
scope and scale.

3.2 Data Labeling
The data labeling phase was critical in constructing our ESG classi-
fication dataset, adhering to the four-class and nine-class catego-
rization criteria defined by Huang et al. [12]. This phase involved
two strategies: keyword search and labeling utilizing LLMs APIs.

Keyword Search. The keyword search initiates data identifi-
cation across ESG subdomains, segregating text relevant to Envi-
ronmental, Social, and Governance (ESG) areas and distinguishing
Non-ESG content. This meticulous process enabled us to partition
the corpus into distinct segments, each corresponding to a spe-
cific aspect of ESG, laying the groundwork for compiling domain-
specific datasets. These datasets were then optimized for training
models on targeted ESG categorization tasks, ensuring the rele-
vance and specificity of the training material. While this method
predominantly isolated relevant ESG-related text, it is essential to
acknowledge that it might not entirely preclude the presence of
Non-ESG data within these preliminary datasets. We argue that
Non-ESG data within the pre-training phase could inadvertently en-
hance the model’s robustness by exposing it to a broader spectrum
of textual content. Details of keywords are in Appendix B.

After filtering the texts by keyword searching, we got the prelim-
inary results shown in Table 8. To validate the effectiveness of our
classification approach, these visualizations effectively confirm the
appropriateness of the categorized data, with predominant terms
such as "GHG emission" and "climate change" in the Environmental
domain, "human rights" and "customer" in Social, and "director"
and "financial statement" in Governance, reflecting the accurate
representation of domain-specific high-frequency words. Our next
objective was to refine the accuracy of our labeled data further. To
achieve this, we planned to leverage LLMs for an additional layer
of filtering and validation. Through this process, we aim to ensure

Figure 2: Representation of task decomposition and the task
descriptions alongside exemplar responses from LLM

that our final datasets reflect the essential themes of each ESG do-
main and are also meticulously curated for subsequent analysis and
model training. Details of visualizations are in Appendix C.

Labeling Data Using LLMs. Before labeling the data, we rec-
ognized a complexity gradient in categorization tasks, where tasks
with fewer categories are inherently simpler than those with more.
Studies such as Bang et al. (2023) [4] suggest that LLMs may under-
perform in specific, challenging downstream tasks, including multi-
class classification tasks. To address this, we devised a structured
approach to simplify the ESG classification challenge, as depicted in
Figure 2. In this stage, the overall task is divided into three simpler
tasks, where Task1 and Task2 comprise the four-class task (Env,
Soc, Gov, Non-ESG), and an additional Task3 is required to con-
struct the nine-class task. Specifically, the nine-class classification

3
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involves three environmental categories (Climate Change, Natu-
ral Capital, Pollution and Waste), three social categories (Human
Capital, Product Liability, Community Relations), two governance
categories (Corporate Governance, Business Ethics and Values), and
one Non-ESG category. The final three categories of the nine-class
task are unified into a single ternary (3-class) task, applying the
same categorization principles as the four-class task but with an
added layer of specificity. Significantly, this ternary categorization
is based on data already classified under the four-class schema,
further refining the process.

For each sub-task, we employed APIs from three different LLMs:
Qwen (qwen-max), GLM (glm-4), andGPT-3.5 (gpt-3.5-turbo-instruct).
This multi-model strategy was underpinned by several rationales:
Firstly, LLMs are prone to ’hallucination’, often generating less
reliable outputs due to their randomness. Utilizing multiple models
helps mitigate significant data bias and enhances the diversity of
the labeled data. Secondly, the decision to leverage several LLMs’
APIs was economically driven, aiming to reduce costs associated
with extensive data filtering and labeling tasks. Lastly, employing
multiple models concurrently significantly enhances the efficiency
of the data labeling process. Details regarding the prompt design
and an example of LLM response are in Appendix E.

3.3 Data Construction and Analysis
Pre-training Dataset. In constructing the pre-training dataset,

we initially aggregated datasets categorized as Environmental (Env),
Social (Soc), and Governance (Gov) based on keyword searches. Rec-
ognizing the challenges associated with processing excessively long
texts, we implemented a filtration step to exclude these from the
dataset. Long texts can detrimentally affect the efficiency of a com-
pact language model since their extensive length can overwhelm
the model’s capacity to process and learn from them effectively.
This limitation can lead to prolonged training times and potential
overfitting on less representative data samples. Then, we executed
a 90-10 split to segregate the data into training and evaluation sub-
sets. The evaluation set is crucial in monitoring the training loss
and establishing an early stop during the pre-training phase.

Classification Dataset. The development of the labeled clas-
sification dataset involved multiple meticulous steps. Initially, we
processed the outputs from the Large LanguageModels (LLMs) used
for each classification task and subjected these to a rigorous human
review to verify the LLM-generated classifications. This review
process was crucial as it helped refine the data for the four-class
and nine-class categorizations, specifically excluding Non-ESG data
due to its inherent complexities and the limitations of LLM out-
puts, which may not always guarantee the absolute accuracy of
the responses. Consequently, the Non-ESG dataset was compiled
in a two-fold approach: approximately 8,500 samples were selected
from the LLM responses, and an additional 5,500 samples were
isolated following a keyword search, cumulatively amounting to
around 14,000 Non-ESG samples. A notable issue identified was the
class imbalance within the nine-class dataset. To rectify this, we
implemented a normalization strategy by capping the maximum
number of instances per class at 3,000, leading to a more balanced
distribution. Furthermore, we applied stratified sampling for both
datasets to ensure equitable class representation. This approach

used a 70:15:15 split ratio for the four-class dataset and an 81:09:10
ratio for the nine-class dataset to create train-dev-test sets. Details
of datasets distribution are in Appendix D.

Supervised Fine-TuningDataset. Supervised Fine Tuning (SFT)
is a critical refinement process in Natural Language Processing
(NLP), enhancing a large language model’s adaptability to specific
tasks. Unlike the general language focus of the pre-training phase,
SFT introduces targeted supervision to adjust the model’s weights
by comparing its predictions against actual labels. This alignment
improves the model’s precision and adaptability for specific tasks,
such as ESG text classification. In line with best practices like those
demonstrated by the Alpaca model [30], which refined the LLaMA-
7B into an instruction-following language model, we have con-
structed a Supervised Fine Tuning Dataset for ESG classification
tasks with the following instructional categories:

(1) Identification of ESG-related text: "If the following text is
ESG related data."

(2) Four-Class classification: "Classify the following text into
one of the four ESG categories: Environmental (Env), Social
(Soc), Governance (Gov), or Non-ESG."

(3) Nine-category Class: "Classify the following text into one
of the nine ESG categories: Climate Change, Natural Capi-
tal, Pollution and Waste, Human Capital, Product Liability,
Community Relations, Corporate Governance, Business
Ethics and Values, or Non-ESG."

The dataset preparation involved reformatting existing four-class
and nine-class datasets to align with these instructions, generating
95,412 data points. We also employed stratified sampling to select
about 28,000 data points, ensuring diverse and balanced coverage
across the instructions for effective SFT.

4 METHODOLOGY
4.1 Pre-trained Based Method

Baseline. Our baseline employs FinBERT [12], a model adapted
from BERT for the financial sector. FinBERT is pre-trained on a
corpus of financial documents, including annual filings and financial
reports. Additionally, FinBERT has been extended to address ESG-
related classifications. The FinBERT-esg variant is fine-tuned to
categorize texts into four broad ESG themes (E, S, G, or None).
Meanwhile, the FinBERT-esg-9-categories model is fine-tuned
to distinguish between nine detailed ESG topics.

Datasets. The dataset used for pre-training, detailed in Section
3.3, comprises 5,257,347 training sentences and 584,150 validation
sentences, obtained via keyword search. While keyword searches
are prone to including non-ESG phrases, resulting in false positives,
this is beneficial for pre-training. It allows the model to learn the
broader context of sustainability topics by exposing it to relevant
and irrelevant samples.

Training Models. As detailed in Section 3.3, we utilized this
dataset to pre-train models including BERT [9], DistilRoBERTa [26],
and RoBERTa [17], leveraging their varying capacities—125 mil-
lion parameters for RoBERTa and 85 million for DistilRoBERTa.
Instead of starting from scratch, we engaged in Continual Pre-
Training (CPT), a strategy that allows amodel to assimilate new data

4
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while preserving previously acquired knowledge. This approach
is advantageous for adapting models to evolving data streams or
new, unseen data. By continuing to pre-train on an established
model’s checkpoint, we infused domain-specific ESG knowledge
into the models. This continual learning process is critical for do-
main adaptation tasks, such as enhancing a general model with
domain-specific capabilities. The main experiments were conducted
on 8 NVIDIA V100 Tensor Core GPUs. Consequently, we selected
the model with the smallest validation loss as our final pretrain-
ingmodels: ESG-BERT, ESG-DistilRoBERTa, and ESG-RoBERTa. De-
tails regarding pre-training process are in Appendix F.

4.2 LLM Based Method
Baseline. Llama2 [31], a generative text model with variants

ranging from 7 to 70 billion parameters, excels in benchmarks, out-
performing many open-source chat models. Selected versions of
Llama2 were further optimized through five rounds of Reinforce-
ment Learning from Human Feedback (RLHF), utilizing rejection
sampling and Proximal Policy Optimization (PPO) to refine the re-
ward model. These architectural improvements and their validated
effectiveness in RLHF make Llama2 (Llama2-7b-chat-hf) an ideal
baseline for our ESG classification task.

Datasets. Our LLM-based methods utilize two main types of
datasets: the pre-training corpus and Supervised Fine-Tuning (SFT)
datasets. The pre-training corpus has been substantially expanded
to include not only the ESG-related texts discussed in Section 3.3
but also a significant volume of financial texts, primarily sourced
from financial reports, totaling 5,282,943 sentences. For SFT, we
employed two distinct datasets. The first SFT dataset, as introduced
in Section 3.3, consists of conversational data generated during
the labeling of ESG data using LLMs. The second SFT dataset is
more extensive, integrating the conversational data and additional
financial instruction tuning data as outlined in FinGPT [33] and the
ESG_Chat dataset 3. The ESG_Chat dataset comprises dialogues
between humans and LLMs, focusing on strategies to enhance ESG
scores. Then, we adopted a targeted sampling strategy, producing
a refined subset of 86,425 sentences.

Fine-tuning Models. To enhance the LLM’s understanding
of ESG-related themes, we enriched the model with ESG-related
knowledge, resulting in the creation of two specialized models: ES-
GLlama and FinLlama. ESGLlama underwent fine-tuning through
Supervised Fine-Tuning (SFT) using conversational data tailored for
ESG classification tasks, notably improving its accuracy within ESG
contexts (as discussed in datasets, the first SFT dataset). Meanwhile,
FinLlama was developed to tackle a broader spectrum of financial
tasks, integrating extensive financial texts and targeted instruction-
tuning data, ranging from sentiment analysis to financial Question
Answering (QA). For fine-tuning FinLlama, we employed a two-
stage training approach. Initially, the Llama2 model underwent
Continual Pre-Training (CPT) using a combined corpus of ESG-
centric texts and additional financial documents, including financial
news and annual reports. Subsequently, in the second stage, we
conducted supervised fine-tuning on the model pre-trained in the
initial phase using the second SFT dataset (as discussed in datasets).

3https://huggingface.co/datasets/zadhart/ESG_Chat

Implementation. Due to LLMs’ substantial parameter size and
complex structure, fine-tuning and inference can be particularly
time-intensive. To enhance efficiency, we employed Parameter-
Efficient Fine-Tuning (PEFT) techniques such as Low-Rank Adap-
tation (LoRA) and freeze during SFT phases. Additionally, we uti-
lized LLaMA-Factory [42] framework and vLLM [14] to accelerate
pre-training SFT and inference processes. All experiments were
conducted on NVIDIA V100 Tensor Core GPUs, with a learning
rate set at 5× 10−5 and a duration of 3 epochs for both pre-training
and SFT phases. Training details are available in Appendix G.

5 EXPERIMENTS
5.1 Test on Public Dataset
To evaluate the generalizability of our trained models for ESG-
related tasks, we conducted tests using publicly available datasets:
environmental_2k 4, social_2k5 and governance_2k6 which are pub-
lished by chatclimate.ai 7 and derived from annual reports spanning
2017-2021. Each dataset is expertly annotated for binary classifi-
cation, where ’0’ indicates "No" and ’1’ denotes "Yes" outcomes.
We fine-tuned our models ESG-BERT, ESG-RoBERTa, and ESG-
DistilRoBERTa on these datasets with a partitioning scheme of 64%
training, 16% validation, and 20% testing. This meticulous approach
allowed for optimal performance tuning, with the best models se-
lected based on validation results for further testing.

Figure 3: Overall performance of models on public datasets

To evaluate the effectiveness of our models, Table 1 provides a de-
tailed comparative analysis of key performance metrics—Precision
(P), Recall (R), and F1 Score (F1)—across three critical domains:
Environmental, Social, and Governance. The table juxtaposes the
baseline models with enhanced versions that have undergone addi-
tional pre-training. Generally, the pre-trained models demonstrate
superior performance compared to the baselines across the pub-
licly accessible dataset. Notably, all pre-trained models consistently
outperform their corresponding baseline models within the So-
cial domain shown in Figure 3. Among them, ESG-DistilRoBERTa
stands out with the highest precision (0.9415), recall (0.9449), and F1
score (0.9431), indicating robust performance. In the Environmental
4https://huggingface.co/datasets/ESGBERT/environmental_2k
5https://huggingface.co/datasets/ESGBERT/social_2k
6https://huggingface.co/datasets/ESGBERT/governance_2k
7https://huggingface.co/ESGBERT
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Environmental Social Governance
Model Precision Recall F1 Precision Recall F1 Precision Recall F1

BERT 0.9207 0.9285 0.9244 0.8960 0.8899 0.8927 0.8048 0.8168 0.8104
ESG-BERT 0.9300 0.9284 0.9292 0.9354 0.9345 0.935 0.8141 0.8085 0.8112

DistilRoBERTa 0.9340 0.9436 0.9385 0.9035 0.9044 0.9039 0.8404 0.8444 0.8424
ESG-DistilRoBERTa 0.9364 0.9397 0.9380 0.9415 0.9449 0.9431 0.8252 0.8271 0.8261

RoBERTa 0.9279 0.9246 0.9262 0.9041 0.9135 0.9076 0.8292 0.8421 0.8352
ESG-RoBERTa 0.9340 0.9436 0.9385 0.9311 0.9345 0.9327 0.8048 0.7976 0.8011

Table 1: Performance metrics across environmental, social, and governance domains on public datasets. Bold shows the best
results among baseline and corresponding pre-trained model, and underlined indicates the best results in each column.

domain, ESG-RoBERTa shows remarkable precision (0.9436) and
an equivalent F1 score, underscoring its effectiveness.

However, the Governance domain exhibits a contrasting scenario,
with mixed results despite pre-training enhancements. The baseline
DistilRoBERTa model outperforms the pre-trained versions in this
domain, achieving the highest metrics with a precision of 0.8404,
recall of 0.8444, and F1 score of 0.8424. This discrepancy suggests
that while pre-training generally enhances model capabilities, its
impact is less pronounced in the Governance domain. The observed
variance may stem from misalignments between the pre-training
content and the specifics of the publicly available governance data,
suggesting a need to refine the fine-tuning parameters better to
tailor the models to this domain’s nuances.

5.2 Test on Classification Datasets
5.2.1 Evaluate PLMs. We fine-tuned our pre-trained models on
ESG classification tasks (four-class and nine-class) using our con-
structed classification data. The training parameters were standard-
ized at a batch size of 32 across 50 epochs while learning rates were
adjusted based on model and task specifics. For the four-class clas-
sification, the learning rates were set at 3e-6 for the BERT model
and 1.25e-6 for both DistilRoBERTa and RoBERTa. For the nine-
class task, BERT was fine-tuned at 3e-6, DistilRoBERTa at 1.75e-6,
and RoBERTa at 1.15e-6. These rates were meticulously selected to
optimize each model’s performance on its respective task. An early
stopping mechanism was implemented during fine-tuning to curb
overfitting and enhance computational efficiency. The models cho-
sen for further utilization demonstrated the best performance on
the validation set across the 50 epochs, specifically those achieving
the lowest validation loss.

Table 2: Four-Class Evaluation Results of PLMs

Model P R F1 Acc

FinBERT 0.7357 0.7150 0.7165 0.7222

BERT 0.8668 0.8658 0.8641 0.8667
DistillRoBERTa 0.8672 0.8687 0.8662 0.8684
RoBERTa 0.8610 0.8596 0.8582 0.8602

ESG-BERT 0.9074 0.9077 0.9071 0.9083
ESG-DistillRoBERTa 0.9027 0.9040 0.9014 0.9034
ESG-RoBERTa 0.9086 0.9100 0.9086 0.9102

Table 3: Nine-Class Evaluation Results of PLMs

Model P R F1 Acc

FinBERT 0.7160 0.7154 0.7081 0.7273

BERT 0.8393 0.8357 0.8361 0.8419
DistillRoBERTa 0.8240 0.8153 0.8179 0.8239
RoBERTa 0.8187 0.8196 0.8174 0.8275

ESG-BERT 0.8606 0.8637 0.8617 0.8693
ESG-DistillRoBERTa 0.8575 0.8552 0.8556 0.8616
ESG-RoBERTa 0.8611 0.8591 0.8592 0.8662

To assess the effectiveness of our pretrained models, we con-
ducted tests on two sets: a four-class and a nine-class classifi-
cation task, with results detailed in Table 2 and Table 3, respec-
tively. The evaluations included baseline models, our specifically
pre-trained models, and their base models. For the four-class task,
ESG-RoBERTa excelled, achieving the highest metrics with a pre-
cision of 0.9086, a recall of 0.9100, an F1 score of 0.9086, and an
accuracy of 0.9102, significantly surpassing the baseline finbert-esg
model, which only reached an accuracy of 0.7222. This demon-
strates a clear superiority over the baseline, with even the base
models outperforming finbert-esg when fine-tuned. In the nine-
class task, ESG-BERT led with the highest recall of 0.8637 and an F1
score of 0.8617, while ESG-RoBERTa achieved the top accuracy of
0.8662. These results highlight the advantages of our ESG-specific
pretraining and fine-tuning strategy, markedly improving upon the
performance of the baseline finbert-esg-9-categories model.

5.2.2 Evaluate LLMs. Wewill evaluate the performance of the base-
line and our fine-tuned models across six different experimental
settings: Zero-Shot, One-Shot, In-Context Learning (ICL), Zero-Shot
with Chain of Thought (CoT) [13], One-Shot with CoT, and ICL
with CoT. The dataset used for SFT in ESG text classification was
constructed from ESG SFT data, as detailed in Section 3.3. It was
refined by selecting only the classification data and simplifying the
format to retain the text and label without additional explanations.
More details about the ESG classification SFT dataset can be found
in Appendix H. To process the results from our models, particularly
the baseline, we utilized a regular expression matching technique
to extract predicted labels from model outputs. The regular expres-
sion patterns provide a flexible and effective method to handle the
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diverse outputs from the LLMs, ensuring alignment with our pre-
defined SFT data and system prompt formats. Details regarding
classification prompts design are in Appendix I.

Figure 4: Four-Class Precision of LLMs

Figure 5: Nour-Class Precisions of LLMs

For four-class classification, we assessed our models, ESGLlama
and FinLlama, using Precision as the primary performance metric.
Analysis of precision scores in Figure 4 shows that both models
consistently outperform the baseline across most experimental set-
tings. Notably, even the baseline model improves significantly when
subjected to SFT with our tailored ESG classification dataset. In-
terestingly, the Freeze fine-tuning method generally surpasses the
LoRA approach, except in zero-shot scenarios where LoRA excels,
possibly indicating its tendency to overfit slightly. This overfitting
suggests that external examples, absent from the training data,
might disrupt LoRA’s inference, while the Freeze method maintains
better generalization and reasoning capabilities. The integration
of CoT prompts typically reduces performance in zero-shot and
one-shot settings, except for ICL tasks. This reduction may stem
from CoT’s incompatibility with classification tasks, which require
straightforward decision-making rather than stepwise logic pro-
cessing. However, incorporating demonstration examples in ICL
tasks enhances themodel’s grasp of classification logic, significantly
improving outcomes in ICL-CoT settings by providing richer con-
text and sample diversity. Furthermore, FinLlama achieves superior
precision over ESGLlama with the addition of CoT.

In the nine-class classification, the increase in category complex-
ity and diversity presents more significant challenges, as indicated
by lower overall performance metrics than in the four-class sce-
nario. This trend highlights the difficulty in distinguishing among
a more substantial number of classes. Performance visualizations
in Figure 5 show that both ESGLlama and FinLlama substantially
outperform the baseline across most configurations, affirming the
enhanced capability of our fine-tuned models in handling ESG-
related texts. FinLlama excels in ICL, mainly when provided with
ample examples, showcasing its deep understanding of the financial
domain. Conversely, the performance notably drops in one-shot
learning scenarios, where providing a single instance per class
introduces significant bias and variability, impairing the model’s
accuracy. However, increasing the number of examples markedly
improves performance, underscoring the benefits of more exten-
sive training datasets. The comparison between LoRA and Freeze
methods reveals that LoRA outperforms Freeze in one-shot settings,
suggesting that LoRA’s parameter adjustments are better suited for
absorbing limited class-specific information efficiently. Additional
analyses are in Appendix J.

5.3 Test on Financial Benchmark
To assess the FinLlama model’s performance in financial NLP tasks,
we evaluate it on FinGPT benchmark [33]. Our evaluation concen-
trated on two critical tasks: financial text sentiment analysis and
headline classification, utilizing the fingpt-headline dataset 8.

This comprehensive benchmarking demonstrates FinLlama’s ro-
bust capabilities in understanding and classifying financial texts,
highlighting its utility in sentiment analysis and headline catego-
rization. Results, presented in Table 4, clearly show that FinLlama
significantly outperforms the baseline Llama2 model across these
tasks. This superior performance across financial sentiment analysis
and headline classification tasks validates the effectiveness of our
targeted pre-training and Supervised Fine-Tuning (SFT) strategy.
By incorporating domain-specific knowledge, FinLlama has shown
notable improvements in analyzing financial texts, confirming its
advanced proficiency in financial NLP.

Table 4: Performance of models on Financial Benchmarks

Llama2 FinLlama

Dataset Acc F1 Acc F1

FPB 0.4703 0.4140 0.7855 0.7838
FiQA 0.7964 0.7744 0.7782 0.8096
TFNS 0.3811 0.3037 0.8405 0.8408
NWGI 0.5656 0.4833 0.6501 0.6445

Headline 0.4314 0.6182 0.8783 0.6975

6 RESULTS ANALYSIS
Performance of Pre-trained Models. Our analysis highlighted

that classification task complexity increases with the number of
categories. This was evident from the lower convergence rates in
the nine-class task compared to the four-class task. ESG-RoBERTa
8https://huggingface.co/datasets/FinGPT/fingpt-headline
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excelled in the four-class task due to its larger parameter set, which
enhances its text understanding capabilities. In contrast, ESG-BERT
performed better in the nine-class task, suggesting that its pretrain-
ing objectives and architecture might offer superior generalization
across more diverse categories. Performance evaluations on a pub-
licly available dataset confirmed the effectiveness of our pre-trained
models, as shown in Table 1. Particularly in the Social domain, mod-
els like ESG-DistilRoBERTa demonstrated exceptional precision,
recall, and F1 scores, reflecting the quality of our pretraining and
the model’s ability to generalize well. The extensive testing on
a public dataset validated our pretraining dataset’s quality and
demonstrated our models’ improved comprehension of ESG-related
content, enhancing classification accuracy. Furthermore, the per-
formance variation in the Governance domain highlights the need
for additional optimizations in data curation and model training
strategies to ensure robust model efficacy across diverse domains.

Performance of Large Models. Both ESGLlama and FinLlama
consistently outperform the baseline across most testing scenarios,
with notable improvements in the baseline model following SFT
with our ESG classification dataset. This enhancement highlights
the dataset’s quality and the effectiveness of SFT. A distinct observa-
tion is Freeze is generally better than LoRA because the trend of line
changes in its results is consistent with those of other experimental
setups, and more examples can improve its results. The integration
of CoT typically reduces performance in zero-shot and one-shot
scenarios. Still, it improves outcomes in ICL tasks due to additional
context and examples provided. Transitioning to a nine-class frame-
work increases task complexity, generally lowering performance
metrics. In ICL tasks, FinLlama shows superior proficiency, particu-
larly when additional samples are included, reflecting its adeptness
at navigating complex classification landscapes. Conversely, per-
formance drops in one-shot scenarios, underscoring the challenges
of minimal data learning. Our experimental results illustrate the
models’ capabilities in complex settings and superior performance,
particularly in ICL with CoT configurations. Moreover, testing Fin-
Llama on financial benchmark further validates its superiority in
financial NLP, highlighting FinLlama’s effectiveness in financial dis-
course analysis. This comprehensive testing confirms our models’
advanced capabilities in financial domains and indicates potential
areas for further enhancements.

Hallucination. LLMs can sometimes generate inaccurate or
misleading information, a phenomenon known as hallucination. In
our experiments, we observed several hallucination manifestations
that impact model outputs’ reliability. One common form of hal-
lucination was the generation of outputs that introduced entirely
new labels, complete with plausible justifications, which deviated
from expected outcomes. This was especially pronounced when
models were given more examples, suggesting that they may overly
rely on specific examples rather than interpreting the actual input.
Furthermore, models occasionally produced outputs that did not
adhere to the specified formats.

Case Study. In this analysis, we compare the performance of
ESG-RoBERTa and FinLlama in deciphering complex ESG-related
texts. An example from Table 5 shows ESG-RoBERTa misclassifying
a case as "Business Ethics and Values," likely due to its reliance on

keywords such as "reputation" and "financial costs" associated with
ethical issues. This keyword-centric approach struggles with nu-
anced texts, particularly longer ones, which can lead to bias or loss
of information. Conversely, FinLlama employs ICL with CoT rea-
soning to accurately categorize the exact text as "Product Liability."
It provides a detailed rationale, dissecting the text to link it to prod-
uct liability issues and showcasing its ability to perform stepwise,
human-like reasoning for accurate and interpretable results.

FinLlama’s response highlights its adeptness at integrating exten-
sive contextual information, outperforming conventional PLMs in
complex scenarios. This case study underscores fine-tuned LLMs’
advanced comprehension and reasoning capabilities in detailed,
context-rich environments. Despite some limitations, it demon-
strates that there is considerable scope to further enhance LLMs
for more effective ESG text categorization.

Text: A warranty or product liability claim whether or not meritorious
could harm our reputation result in substantial financial costs or divert
managements attention which could have an adverse effect on our
business operating results and financial condition.
True Label: Product Liability

ESG-RoBERTa
Answer: Business Ethics and Values ✗

FinLlama (ICL-CoT):
Response: Label: Product Liability\n\nExplanation: The text men-
tions the potential for a warranty or product liability claim to harm
the company’s reputation, result in financial costs, and divert man-
agement’s attention, which could have an adverse effect on the
company’s business operations and financial condition. This falls
under the category of Product Liability, as it relates to the potential
legal liability of a company for any defects or hazards in its products.
Answer: Product Liability ✓

Table 5: An example of comparing results of PLM and LLM.

Cross-Comparison of Results. Comparing the performance
of PLMs with LLMs, we observe that the pre-trained models excel
in domain-specific tasks. Our results reveal that while specialized
models often focus primarily on keywords, potentially overlooking
broader contextual cues, large models are more adept at integrating
context and avoiding keyword-based misinterpretations. Moreover,
the inference process of large models tends to be more interpretable,
providing clearer justifications for their decisions. This indicates
that integrating the strengths of both specialized and large models,
remarkably when fine-tuned with domain-specific data, could offer
a promising research direction.

7 CONCLUSION AND FUTUREWORK
We proposed a pipeline to address the lack of ESG-related datasets,
utilizing keyword searches and LLM APIs to annotate and con-
struct three types of data for ESG text classification tasks. This ap-
proach has significantly enhanced the performance of pre-trained
models on ESG classification tasks. We introduced domain-specific
LLMs, ESGLlama and FinLlama, which were fine-tuned on our
datasets, marking a major advancement in applying LLMs to ESG-
related challenges. Notably, FinLlama has surpassed existing fi-
nancial benchmarks. Our methodology not only improves the ca-
pabilities of PLMs and LLMs within ESG contexts but also lays
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a foundation for ongoing innovation and practical applications
in this vital area. Comparative analysis reveals that while PLMs
generally perform better, LLMs offer greater interpretability and
adeptly handle complex contexts by integrating contextual infor-
mation. Moving forward, we will further evaluate our developed
datasets, and leverage the superior classification accuracy of PLMs
to enhance and refine LLMs’ performance in ESG analysis.
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A DETAILS OF COLLECTED DATA
Below are the descriptions of the datasets we collected:

• ESG-Prospectus-Clarity-Category9: This dataset comprising
1,155 entries categorized into four ESG language classes:
Specific, Ambiguous, Generic, and Risk. These entries were
systematically extracted from the "Principal Investment
Strategy" sections of sustainable (ESG) fund prospectuses
through a specialized data extraction pipeline.

• Esg-sentiment10: Featuring text across nine emotion classes
within the ESG spectrum (<Environmental, Social, Gover-
nance> * <Negative, Neutral, Positive>), each emotion assigns
binary labels (0/1).

• ESGBERT base-data11: This dataset extracted 13,846,000
sentences from annual reports (13,079,890 sentences), re-
sponsibility reports (695,631 sentences), sustainable reports
(259,163 sentences) and articles (143,289 sentences).

• Environmental_claims12: This dataset focuses on the binary
classification of environmental claims made by publicly
listed companies, containing 2,647 entries. It is designed to
detect real-world environmental assertions.

• DAX ESG Media Dataset 13: Comprising approximately 11k
recent English language ESG documents (text is document
level) related to German DAX companies, this dataset in-
cludes both company issued reports and third party data,
alongside an auxiliary file detailing the Sustainable Devel-
opment Goals (SDGs).

• CLIMATE-FEVER 14: This dataset consists of 1,535 real-
world climate change claims. Each claim is supported by
five Wikipedia-sourced evidence sentences annotated to
either support, refute, resulting in a total of 7,675 claim-
evidence pairs.

Our data extraction involved the retrieval of the ’text’ field
across datasets, except the DAX ESG Media Dataset, from which
the ’content’ field was extracted, and the CLIMATE-FEVER, where
both the ’claim’ and the ’evidence’ fieldswithin the ’evidences’
array were extracted. The summary of datasets is shown in Table 6.

B ESG KEYWORDS
All keywords we used shown in Table 7 refer to [28].

C WORD CLOUDS OF KEYWORD SEARCH
After filtering the texts by keywords searching. The texts are cate-
gorized into Environmental (Env), Social (Soc), Governance (Gov),
and Non-ESG groups. The word clouds generated from these texts
shown in Figure 6 offer a visual representation of the predomi-
nant themes within each category. In the Environmental domain,
the word cloud prominently features terms such as "GHG emis-
sion" and "climate change," highlighting the focus on environmen-
tal impact. Socially oriented texts are characterized by frequent
mentions of "human rights," "product," and "customer," reflecting

9https://huggingface.co/Abhijeet3922
10https://huggingface.co/datasets/TrajanovRisto/esg-sentiment
11https://huggingface.co/datasets/ESGBERT/base_data
12https://huggingface.co/datasets/climatebert/environmental_claims
13https://www.kaggle.com/datasets/equintel/dax-esg-media-dataset
14https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html

the emphasis on societal concerns and stakeholder welfare. In the
Governance category, words like "director," "financial statement,"
"management," and "shareholder" dominate, aligning with expecta-
tions for governance-related discourse. These visual insights from
the word clouds roughly correspond with our anticipated high-
frequency words for each ESG classification, underscoring the ef-
fectiveness of our keyword-based filtering approach. we got the
preliminary results shown in Table 8.

Table 8: Summary of Processed Data

Domain Num. of Sentences Avg. Num. of Words

Q1 Mean Q3

Environment 2,143,453 19 30.43 36
Social 2,796,077 20 31.46 37
Governance 1,851,303 20 31.75 38
Non-ESG 11,392,832 - - -

Total 18,183,665 - - -

D DATA DISTRIBUTION
Pre-training Dataset. We performed a 90-10 train-eval split to
create the training and evaluation datasets, as shown in Table 9.

Table 9: Pre-training Dataset Statistics

Dataset Num. of Sentences

Train 5,257,347
Valid 584,150

Total 5,841,497

For the four-class dataset.We used a 70:15:15 splitting ratio to
construct the train-dev-test sets. The training set consisted of 37,155
instances, with 10,144 ’Soc’, 9,799 ’Non-ESG’, 9,192 ’Env’, and 8,020
’Gov’. The validation and test set each contained 7,962 instances,
with 2,174 ’Soc’, 2,100 ’Non-ESG’, 1,969 ’Env’, and 1,719 ’Gov’ for
validation, and 2,174 ’Soc’, 2,100 ’Non-ESG’, 1,970 ’Env’, and 1,718
’Gov’ for testing. Results are shown in Figure 7.

Figure 7: Four-class Label Distribution in Train, Val, Test Sets
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Table 6: Summary of Collected ESG-Related Datasets

Dataset Name Content Format Size

ESG-Prospectus-Clarity-Category <Text, Label> 2310 rows (546 kB)

Esg-sentiment <Text, Environmental
Negative,...,Social Positive>

679 rows (80.1 kB)

ESGBERT base-data <Text> 13,846,000 rows (2.33 GB)

Environmental_claims <text, label> 2647 rows (272 kB)

DAX ESG Media <company, content, datatype, data,
domain, esg_topics, internal, symbol,
title>

11455 rows (130.11 MB)

CLIMATE-FEVER <claim_id, claim, claim_label,
evidences>

1,535 rows (3 MB)

Table 7: ESG Keywords Across Domains

Domain Keywords

Environmental adaptation, agricultural, air quality, biodiversity, biomass, climate, CO2, conservation, consumption,
diversity, ecosystem, emissions, energy, environmental, flood, forest, fossil fuel, GHG, global warming,
green, greenhouse, land use, methane, mitigation, nature, ozone, pollution, renewable, soil, solar,
sustainability, water, recycling, clean energy, natural

Social age, culture, race, accessibility, accident, accountability, awareness, charity, community, consumer
protection, cyber security, data privacy, discrimination, diversity, education, employee benefit,
empowerment, equality, ethics, fairness, gender, health, inclusion, mental well-being, parity, privacy,
quality of life, religion, safety, social impact, volunteerism, welfare, wellbeing, workforce

Governance audit, authority, bribery, compliance, corporate governance, corruption, crisis management, due diligence,
ethics, framework, integrity, legal, lobby, oversight, policy, regulation, reporting, risk management,
stakeholder engagement, transparency, whistleblower, board diversity, executive pay, shareholder rights,
sustainable governance, corporate transparency, anti-corruption, business ethics

(a) Environmental (b) Social (c) Governance

Figure 6: ESG Domain Word Clouds After Keywords Search

For the nine-class dataset. We applied an 81:09:10 splitting ratio.
The training set had 17,419 instances, with each label (’Human
Capital’, ’Product Liability’, ’Pollution and Waste’, ’Business Ethics

and Values’, ’Corporate Governance’, ’Community Relations’, ’Non-
ESG’, ’Climate Change’, ’Natural Capital’). The validation set con-
tained 2,151 instances. Similarly, the test set had 1,936 instances.
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These datasets were constructed using stratified sampling to en-
sure a balanced representation of each class in the train-dev-test
splits. Lastly, we fine-tuned our pre-trained models on these two
datasets to adapt them for the four-class and nine-class ESG text
classification tasks. Results are shown in Figure 8.

Figure 8: Nine-class Label Distribution in Train, Val, Test Sets

E LLM LABELING PROMPTS DESIGN
We primarily utilize a combination of few-shot learning and
Chain of Thought (CoT) in prompts design. Few-shot learning
enables the model to learn from a limited quantity of text to align
the acquired knowledge with our specific purpose. CoT [35] is a
reasoning strategy that involves breaking down a problem into sub-
problems and connecting them in a specific logical order based on
a chain structure. The purpose of using a few shots is to familiarize
the model with the ESG classification strategy using a small sample.
Using CoT is intended to enhance the model’s reasoning process.
Meanwhile, using CoT is intended to enhance the model’s reasoning
process in its responses, thereby improving its reasoning ability
and enabling it to produce more data on the reasoning process for
future SFT data construction.

For task 1: Classify whether the text is high-quality ESG data: Yes
or No. The {Criteria} will be replaced by certain criteria, which
are generated by GPT-4, and {Data} will be replaced by certain
text we want to be classified.

You are a helpful assistant in data managing, and

good at using high-quality data criteria for

ESG content selection. To identify high-quality

ESG data, we should consider the following criteria:

{Criteria}

The following sentence is the data needed to define:

{Data}

Answer ’Yes’ or ’No’ first, then give an explanation.

Let’s think step by step.

For task 2: Classify whether the text is Env/Soc/Gov data: Yes or
No. The Demonstrations are a few pairs of texts with their answer,

and {Type} can be environmental, social, and governance.

You are an expert in ESG data classification,

especially {Type} ESG data classification.

To identify {Type} ESG data, we should consider

the following criteria:

{Criteria}

Answer ’Yes’ or ’No’ first, then give an explanation.

Demonstrations:

{Demonstrations}

Text: {Data}

Answer: Let’s think step by step.

For task 3: Assign texts to one of the following labels based on
their domain. The {Classes} are corresponding to {Type}, which
are defined previously. This work involves further subdividing the
four-class data into nine classes.

You are an expert in classifying {Type} ESG data into

finer categories such as {Classes}.

For {Type} ESG data classification, consider:

{Criteria}

First assign a class label based on these categories,

or ’other’ if uncertain. Then give an explanation.

Demonstrations:

{Demonstrations}

Text: {Data}

Answer: Let’s think step by step.

E.1 Annotation Examples
To illustrate the LLM’s responses to each task, we use text "The
possible threat of natural disasters affecting the ability to trade." as
an example, the responses are shown in Table 10.

F CPT PLMS DETAILS
The continue pre-training parameters for our models were set as
follows: a batch size of 16 for both training and evaluation, a total
of 25 epochs, a seed value of 42 for reproducibility, and a maximum
sequence length of 512. The models were trained with a gradient
accumulation step of 2, weight decay of 0.01, and 16-bit precision
(fp16) to optimizememory usage and accelerate the training process.
The model checkpoints were saved and evaluated at the end of each
epoch, as specified by the evaluation_strategy and save_strategy
parameters set to ’epoch’. We conducted experiments on BERT,
DistilRoBERTa, and RoBERTa at three different stages: epoch 5,
epoch 15, and epoch 25. The results indicated that the models per-
formed best at epoch 25. We utilized torch.distributed.launch
for single-machine multi-GPU training. The pretraining of BERT,
DistilRoBERTa, and RoBERTa took approximately 27 hours, 23.5
hours, and 33 hours, respectively. The training loss, validation loss,
and validation accuracy during the training process are visualized
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Table 10: Example of Data Through Three Tasks

Item Content

Text The possible threat of natural disasters affecting the ability to trade.

Task 1 Response Yes.
1. Relevance: The sentence is directly related to environmental issues, specifically the potential impact of
natural disasters on trade.
2. Accuracy: It is difficult to determine the accuracy of this statement without additional context or
information about the specific location and type of natural disaster being referred to. However, in general,
natural disasters can disrupt trade and supply chains, so the statement is plausible.
3. Source Credibility: Without knowing the source of this statement, it is difficult to assess its credibility.
4. Specificity: The statement provides a general idea of the potential threat posed by natural disasters to
trade, but does not provide detailed insights or examples.
5. Objectivity: The statement appears to be objective and presents a balanced view of the potential impact
of natural disasters on trade.

Task 2 Response Answer: Yes, the possible threat of natural disasters affecting the ability to trade is an environmental
factor. Natural disasters can have a significant impact on the environment, including infrastructure,
supply chains, and the ability to conduct business operations.

Task 3 Response Label: Climate Change.
Explanation: The text mentions the possible threat of natural disasters affecting the ability to trade. This
indicates a concern related to climate change, as natural disasters such as hurricanes, floods, and wildfires
are often associated with climate-related events. Climate change can disrupt trade by damaging
infrastructure, disrupting supply chains, and impacting transportation systems. Therefore, the text falls
under the category of Climate Change.

in Figure 9. The smooth decrease in the loss curve and the gentle
rise in the accuracy curve suggest that the models were converging
and the training process was proceeding as expected. Consequently,
we selected the model with the smallest validation loss at epoch
25 as our final pretraining models: ESG-BERT, ESG-DistilRoBERTa,
and ESG-RoBERTa.

G FINLLAMA TRAINING DETAILS
Datasets.This fine-tuningwas conducted on a specialized instruction-
tuning dataset on financial domain delineated in FinGPT [33]. Fur-
thermore, we enhanced the dataset by incorporating the ESG_Chat
dataset, which consists of dialogues between humans and Large
Language Models (LLMs) focusing on methodologies to improve
ESG scores. These conversations are structured to provide step-by-
step guidance, with the LLM responses specifically tailored to offer
structured, actionable advice. The characteristics of these datasets
are detailed in Table 11.
Hyperparameters. Each stagewasmeticulously conducted through-
out the training regimen over 3 epochs to ensure the models’ robust
assimilation of the task-specific nuances. A consistent set of hy-
perparameters characterized the training to maintain uniformity
across the models. Specifically, the batch size per device was set
to 4, coupled with a gradient accumulation strategy involving four
steps. This setup facilitated optimal resource utilization and stable
training dynamics. The learning rate scheduler employed was of
the cosine type, which aided in gradual learning rate adjustments,
contributing to smoother convergence. For monitoring and model
checkpointing, logging intervals were established at every 10 steps,

and model states were preserved at every 100 steps, ensuring de-
tailed progress tracking and the ability to revert to themost effective
model state. The learning rate was judiciously chosen as 5 × 10−5,
balancing rapid adaptation and the preservation of pre-learned
representations.

The training progression for both models was visually docu-
mented through loss curves, providing insightful glimpses into the
models’ learning trajectories. Notably, a significant loss reduction
was observed after the initial epoch for both models, indicative
of their swift adaptation to the training objectives. For ESGLlama,
the training culminated with the loss stabilizing around 0.4, shown
in Figure 10a, suggesting effective learning. Conversely, FinLlama
exhibited a distinct two-phase training dynamic; the initial pretrain-
ing phase concluded with a loss of around 2.4, shown in Figure 10b,
which, upon undergoing the subsequent Supervised Fine-Tuning
(SFT) phase, settled at approximately 1.15 shown in Figure 10c. This
delineation in training phases for FinLlama underscores the layered
approach to model refinement, first broadening its financial domain
comprehension, followed by targeted instruction-based fine-tuning
to hone its capabilities for specific financial tasks. These models
will be tested on our labeled ESG classification data.

1https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train
2https://huggingface.co/datasets/FinGPT/fingpt-finred
3https://huggingface.co/datasets/FinGPT/fingpt-headline
4https://huggingface.co/datasets/FinGPT/fingpt-ner
5https://huggingface.co/datasets/FinGPT/fingpt-fiqa_qa
6https://huggingface.co/datasets/FinGPT/fingpt-fineval
7https://huggingface.co/datasets/zadhart/ESG_Chat
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Figure 9: Continue Pre-training Log Loss and Accuracy across epochs

Table 11: Instruction Financial Dataset Overview

Datasets Train Rows Test Rows Description

fingpt-sentiment-train1 76.8K N/A Sentiment Analysis Training
Instructions

fingpt-finred2 27.6K 5.11K Financial Relation Extraction
Instructions

fingpt-headline3 82.2K 20.5K Financial Headline Analysis
Instructions

fingpt-ner4 511 98 Financial Named-Entity
Recognition Instructions

fingpt-fiqa_qa5 17.1K N/A Financial Q&A Instructions
fingpt-fineval6 1.06K 265 Chinese Multiple-Choice

Questions Instructions
ESG_Chat7 914 N/A Chat History about Improve

ESG Score step-by-step

(a) ESGLlama Training Loss (b) FinLlama Training Loss S1 (c) FinLlama Training Loss S2

Figure 10: Training loss analysis during each stage of fine-tuning

H ESG CLASSIFICATION SFT DATASET
The dataset we used for supervised fine-tuning is constructed from
ESG SFT data in Section 3.3. The ESG classification SFT data was
sampled and reconstructed from ESG SFT data by only selecting

classification data and straight-forward simplifying the result by
retaining the text label without any additional explanations. There
are two main classification tasks contained in this dataset: four-
class classification and nine-class classification. Finally, we obtained
approximately 24k ESG Classification SFT Data. An example of the
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ESG classification SFT dataset regarding these two tasks is shown
in Table 12. Using this dataset, we aim to enhance the baseline’s
ESG text classification capability. This is because the baseline’s
pre-training data may include financial text data that is partially
related to ESG. We intend to modify the baseline for this task and
evaluate its performance during the SFT training phase.

Format: [{"instruction": "...", "input": "...", "output": "..."]}]

Four-class Classification:
instruction: Classify the following text into one of the four ESG
categories, choose an answer from {Env/Soc/Gov/Non-ESG}.
input: We maintain a health and safety management system aligned
to ISO legal requirements in Australia and New Zealand.
output: Soc

Nine-class Classification:
instruction: Classify the following text into one of the nine
ESG categories, choose an answer from {Climate Change/Natu-
ral Capital/Pollution and Waste/Human Capital/Product Liability/-
Community Relations/Corporate Governance/Business Ethics and
Values/Non-ESG}.
input: Grievance mechanisms forms an important part of our stake-
holder engagement process, and our human rights policy states that
we will provide, or cooperate in providing, appropriate remediation
if we have caused or contributed to adverse human rights impacts.
output: Human Capital

Table 12: An example of ESG classification SFT dataset.

I CLASSIFICATION PROMPTS

System Prompt: "You are an expert in classifying ESG

data. You will start your response with ’Label:’."

User Prompt: "Classify the following text into one of

the four ESG categories, choose an answer from

{Categories}

Demonstrations:

{Demonstrations}

Text: {Text}

Label: So, the answer is"

For Four-Class classification task, we should specify the
{Categories} by:

{Env/Soc/Gov/Non-ESG}

For Nine-Class classification task, we should specify the
{Categories} by:

{Climate Change/Natural Capital/Pollution and Waste/

Human Capital/Product Liability/Community Relations/

Corporate Governance/Business Ethics&Values/Non-ESG}

To employ a chain-of-thought (CoT) setting, we need to slightly
modify the system prompt and add let’s think step by step at the

end of the user prompt:

System Prompt: "You are an expert in classifying ESG

data. You will response in this format:

’Label:xxx. Explanation:xxx’.

Your responses should be precise and concise."

User Prompt: "...

Label: Let’s think step by step. So, the answer is"

J ADDITIONAL LLM CLASSIFICATION
ANALYSIS

For Four-class classification. In evaluating our models, ESGLlama
and FinLlama, within our experimental framework, we employed
Precision, Recall, F1 Score, and Accuracy as our performance met-
rics. Initially, let us delve into the precision aspect, which serves
to illustrate the models’ exactness in classification tasks. Through
the analysis of precision scores and the accompanying graphical
representations shown in Figure 4, it becomes evident that both
ESGLlama and FinLlama surpass the baseline model across most
experimental configurations. Furthermore, even the baseline model,
when subjected to Supervised Fine-Tuning (SFT) using our con-
structed ESG classification dataset, demonstrates enhanced per-
formance compared to its original state. Interestingly, the Freeze
fine-tuning approach generally outperforms the LoRA method, ex-
cept in zero-shot settings. This observation could be attributed to
the Freeze technique requiring a broader range of parameters for
fine-tuning, thereby facilitating a deeper understanding of down-
stream tasks. In contrast, LoRA’s superior performance in zero-shot
scenarios might hint at a slight overfitting issue; external demon-
stration examples, not included in the training set, could potentially
disrupt the model’s inference processes. The Freeze approach, in
this context, better preserves the model’s generalization capabilities
and intrinsic reasoning faculties.

The incorporation of Chain of Thought (CoT) prompts leads
to a performance decline in zero-shot and one-shot settings, ex-
cept for the Iterated Chain of Learning (ICL) tasks. This decline
could stem from the absence of stepwise reasoning chains in our
training data, coupled with the inherent incompatibility of the
CoT methodology with classification tasks—CoT primarily suits
logic-based problem-solving. Nevertheless, the addition of demon-
strations in ICL tasks enriches the model’s learning of classification
logic through increased sample exposure, culminating in the most
favorable outcomes under ICL CoT configurations.

Further examination of performance metrics, as detailed in the
corresponding table shown in Table 13, reveals that the LoRA
method, applied directly to the baseline on our ESG classification
dataset, achieves the highest precision (0.6928), recall (0.5557), F1
score (0.5488), and accuracy (0.5697) in zero-shot tasks. This out-
come not only underscores the constructed dataset’s validity but
also establishes a benchmark for subsequent comparisons. Fur-
thermore, the bold formatting in the table highlights the highest
precision scores across six method settings for each model, under-
scoring the best-performing configurations. The underlined values
denote the top performance metrics across all models and settings,
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establishing a benchmark for comparison. The star symbol (*) iden-
tifies the best baseline result for the LoRA and Freeze fine-tuning
methods, serving as a reference point for assessing the fine-tuned
models’ enhancements. The directional arrows (↑↓) provide a visual
cue for performance fluctuations in comparison to the baseline,
elucidating the impact of our fine-tuning strategies on model preci-
sion. Against this backdrop, both ESGLlama and FinLlama exhibit
a decline, albeit still outperforming the baseline, especially in ICL
settings. Notably, FinLlama achieves superior precision over ES-
GLlama with the addition of CoT, underscoring the nuanced impact
of our training methodologies on model performance. In summary,
the table elucidates the nuanced interplay between fine-tuning
methodologies, the inclusion of CoT prompts, and the iterative
learning approach on model precision. The discernible improve-
ment in precision with ESGLlama and FinLlama, particularly in
ICL settings, reaffirms the efficacy of our fine-tuning strategies in
embedding ESG-specific knowledge into large language models.

For Nine-class classification, the analysis of performance met-
rics, particularly precision, elucidates a notable trend: as the com-
plexity and diversity of classification categories increase, the task
inherently becomes more challenging, as evidenced by the overall
diminished performance compared to the four-class scenario. This
trend underscores the escalated difficulty in distinguishing among
a greater number of classes.

The precision score visualization (Figure 5) demonstrates that
both ESGLlama and FinLlama significantly outperform the base-
line model across most methodological settings. This superiority
highlights our fine-tuned models’ enhanced understanding and clas-
sification capability in the context of ESG-related texts. FinLlama

demonstrates superior proficiency in iterative contrastive learning
(ICL), particularly in scenarios with increased sample availability,
indicating a profound comprehension of financial texts and their
nuances. The analysis further reveals a pronounced decrement in
performance for the one-shot learning setting across more granular
classification tasks. Providing only one example per class intro-
duces considerable bias and may confound the model’s judgment
due to the high variance associated with minimal data. Conversely,
enriching the model with a broader set of examples significantly
ameliorates performance, aligning with the expected benefits of
expanded training data. This intricate classification landscape ob-
serves a notable divergence in the efficacy of the LoRA and Freeze
fine-tuning methods. Interestingly, The LoRA approach exhibits
superior performance in the one-shot setting compared to Freeze,
suggesting that LoRA’s parameter adaptation might be more con-
ducive to effectively assimilating sparse class-specific information.

Delving deeper into the details presented in the accompany-
ing Table 14, the most commendable performance is attributed to
FinLlama under the ICL with Chain of Thought (CoT) augmenta-
tion, achieving a precision score of 0.6654. This result significantly
surpasses the baseline precision of 0.6164 and even outstrips the
baseline model fine-tuned with LoRA on the ESG classification data,
which scored 0.6544. This evidence conclusively demonstrates the
potent efficacy of FinLlama, particularly when augmented with
CoT in complex classification scenarios, further substantiating the
model’s refined comprehension of financial discourse and its impli-
cations for ESG classification tasks.
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Model Methods Overall

Precision Recall F1 Score Accuracy

Llama2

Zero Shot 0.5778 0.5025 0.4815 0.5093
w/ CoT 0.5527 0.4613 0.4252 0.4776

One Shot 0.6012 0.5056 0.4706 0.5109
w/ CoT 0.5370 0.3767 0.2680 0.3931

ICL 0.6687 0.5408 0.5077 0.5446
w/ CoT 0.6794 0.5193 0.4803 0.5229

LoRA

Zero Shot 0.6928* 0.5557* 0.5488* 0.5697*
w/ CoT 0.6381 0.4973 0.5128 0.5053

One Shot 0.5265 0.3896 0.2924 0.3976
w/ CoT 0.5646 0.3291 0.2442 0.3360

ICL 0.6148 0.5157 0.4821 0.5232
w/ CoT 0.6213 0.3971 0.3247 0.4019

Freeze

Zero Shot 0.5741 0.5000 0.4787 0.5068
w/ CoT 0.5480 0.4613 0.4276 0.4775

One Shot 0.6085 0.5113 0.4761 0.5168
w/ CoT 0.6168 0.3932 0.2873 0.4073

ICL 0.6611 0.5382 0.5036 0.5422
w/ CoT 0.6749 0.5181 0.4767 0.5216

ESGLlama

Zero Shot 0.5770 0.4997 0.4768 0.5054
w/ CoT 0.5502 0.4594 0.4205 0.4753

One Shot 0.6106 0.5373 0.5140 0.5389
w/ CoT 0.6064 0.3984 0.3128 0.4147

ICL 0.6738 0.5508↓ 0.5203↓ 0.5548↓
w/ CoT 0.6746↓ 0.4882 0.4323 0.4935

FinLlama

Zero Shot 0.5766 0.4961 0.4745 0.5024
w/ CoT 0.5665 0.4669 0.4297 0.4828

One Shot 0.6139 0.5375 0.5139 0.5394
w/ CoT 0.5724 0.3856 0.3011 0.4017

ICL 0.6698 0.5497↓ 0.5174↓ 0.5535↓
w/ CoT 0.6797↓ 0.4917 0.4365 0.4971

Table 13: Four-class evaluation results compare with baseline and our fine-tuned LLMs. Blod shows the best results in six
method settings according to each model, and underline illustrates the best performance in each column. Star (*) is the best
baseline result for two fine-tuning methods (LoRA and Freeze). Arrow (↑↓) signifies performance compared with Star (*).
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Model Methods Overall

Precision Recall F1 Score Accuracy

Llama2

Zero Shot 0.5875 0.4404 0.4454 0.4886
w/ CoT 0.5826 0.4106 0.4171 0.4654

One Shot 0.5049 0.4322 0.3877 0.4737
w/ CoT 0.4314 0.3556 0.2895 0.3838

ICL 0.6108 0.4029 0.4017 0.4411
w/ CoT 0.6164 0.4624 0.4932 0.5057

LoRA

Zero Shot 0.5681 0.4901 0.4759 0.5294*
w/ CoT 0.5180 0.4112 0.3895 0.4473

One Shot 0.6256 0.5347* 0.4795* 0.5186
w/ CoT 0.5751 0.3915 0.3450 0.3972

ICL 0.6242 0.1946 0.1340 0.2257
w/ CoT 0.6544* 0.1834 0.1465 0.2123

Freeze

Zero Shot 0.5911 0.4458 0.4488 0.4974
w/ CoT 0.5799 0.4122 0.4161 0.4664

One Shot 0.5258 0.4445 0.4148 0.4866
w/ CoT 0.4922 0.4005 0.3353 0.4323

ICL 0.6285 0.4189 0.4265 0.4649
w/ CoT 0.5719 0.2432 0.2337 0.2862

ESGLlama

Zero Shot 0.5866 0.4271 0.4340↓ 0.4778
w/ CoT 0.5914 0.4190 0.4258 0.4726

One Shot 0.5138 0.4446↓ 0.4136 0.4855↓
w/ CoT 0.4785 0.4031 0.3373 0.4318

ICL 0.6201↓ 0.4143 0.4235 0.4576
w/ CoT 0.5773 0.2533 0.2470 0.2965

FinLlama

Zero Shot 0.5608 0.4293 0.4301↓ 0.4830↓
w/ CoT 0.5750 0.4123 0.4164 0.4664

One Shot 0.5219 0.4376↓ 0.4069 0.4757
w/ CoT 0.4886 0.4062 0.3399 0.4349

ICL 0.6168 0.4127 0.4163 0.4638
w/ CoT 0.6654↑ 0.2504 0.2478 0.2908

Table 14: Nine-class evaluation results compare with baseline and our fine-tuned LLMs. Bold shows the best results in six
method settings according to each model, and underline illustrates the best performance in each column. Star (*) is the best
baseline result for two fine-tuning methods (LoRA and Freeze). Arrow (↑↓) signifies performance compared with Star (*).
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