
Under review as a conference paper at ICLR 2024

CONTINUOUS MULTI-STEP PREDICTIONS OF HIGHLY
IMBALANCED MULTIVARIATE TIME SERIES VIA DEEP
LEARNING NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-step prediction of multivariate time series has always been a very popu-1

lar research topic across industries. We focus on the scenario in which the data2

with severe imbalance problem caused by the 0 expansion in regression analy-3

sis, and meanwhile the data contains complex textual information. Such data is4

very common in customer’s life time value evaluation tasks in businesses. The5

commonly used two-stage modeling scheme effectively predicts whether or not a6

customer will pay for a product or service at the next moment. However, it is inca-7

pable of continuously forecasting potential payment values due to the strong im-8

balanced and randomness distribution of the data. In this paper, we propose a fea-9

ture learning based deep learning method for imbalanced multivariate time series10

(FLIMTS). The innovative use of a weighted quantile loss in our proposed method11

handles the highly imbalance problem in regression. Furthermore, FLIMTS incor-12

porates both the customer’s payment sequence and the behavioral characteristics13

of their interests which allows for more accurate predictions. Empirical analy-14

sis shows that FLIMTS has significant advantages and performs better than the15

existing two-stage approaches on common model evaluation criteria.16

Keywords: highly imbalanced data, multivariate time series, LTV study, feature learning17

1 INTRODUCTION18

The Multi-step forecasting for multivariate time series has been widely used in daily life, such as19

finance, medicine, meteorology and, and other fields with very great commercial values. With the20

rapid development of computer science, data structure changes significantly. Multivariate time series21

contain complex textual information gradually becomes more common. Such complex multivariate22

time series data is usually accompanied with severe data imbalance problem of 0 expansions, which23

makes the multi-step predictions extremely difficult. We are interested in solving such multi-step24

ahead prediction problem of the informative multivariate time series data with severe imbalance25

problems in the data structure.26

The motivation of our research is from the statistical modeling and multi-step prediction of the cus-27

tomer’s life time value (LTV) sequence in commercial activities. We aim to study the impact of28

the user’s payment habits on the payment amount. The customer’s LTV refers to the total profit29

made from users during the time from product query to terminating the online services. As an30

important business indicator, the predicting the user’s payment values is a critical business require-31

ment. Predicting the user’s payment directly determines the service providers’ revenue capacity and32

their online service quality. The user’s payment value data is a typical extremely imbalanced mul-33

tivariate time series. The highly imbalanced distribution of the response variable yt, which refers34

to the user’s payment label value at the time t, brings extreme difficulties to provide continuously35

multi-step ahead predictions of the multivariate time series data. This problem has been an unsolved36

challenge in industry for a long time.37

In our scenario, the LTV prediction is a typical imbalanced regression analysis problem since the38

user’s payment value follows a highly imbalanced distribution with zero inflated. The proposed39

method should be conducted with the imbalanced learning technique. However, the available solu-40

1



Under review as a conference paper at ICLR 2024

tions for the imbalanced problem are mostly designed for classification purposes. Even though Yang41

et al. (2021) has made some breakthroughs, the imbalance problem in regression is still a challenge42

question, and only a few achievements have been made in the related fields so far. Basically, there43

are two approaches to alleviate the imbalanced problem for classification, the data-based method and44

the model-based method. For the data-based method, undersampling in the majority class (Chawla45

et al., 2002; Han et al., 2005; He et al., 2008; Douzas and Bacao, 2019), and oversampling in the46

minority class (Chawla et al., 2002; Han et al., 2005; He et al., 2008; Douzas and Bacao, 2019)47

were used. However, these methods are not applicable to the regression problem directly, since48

the resampling method will bring strongly inductive bias to the distribution of the continuous label49

values. Compared to the data-based methods, the model-based methods might be applicable to the50

regression problems. For example, Lin et al. (2017); Li et al. (2019; 2020) added weights to samples51

or adjusted the objective (loss) function of the model. Yin et al. (2019); Huang et al. (2016); Yang52

and Xu (2020); Shu et al. (2019) used methods such as transfer learning, metric learning, and meta-53

learning techniques. Currently, the most competitive method for the imbalanced learning is by Kang54

et al. (2019). They decoupled the imbalanced learning into two stages of normal sampling in the55

feature learning stage, and balanced sampling in the Label Learning stage. The decoupled strategy56

achieves optimal modeling results so far.57

Since the prediction of user’s payment values involves both regression and classification, the most58

commonly used solution in the industry is a two-stage approach, where the prediction process is59

disassembled into two sub-tasks: the classification task (stage-I: whether the user pays) and the60

regression task (stage-II: the payment amount of paying users) (Vanderveld et al., 2016; Chamberlain61

et al., 2017; Wang et al., 2019). Machine learning algorithms are adopted in these two tasks. Suppose62

the prediction result of the classification task is p̂i, and the given threshold is ω, and the prediction63

result of the regression task is v̂i, then the model of the predicted paid value is ŷi = I(p̂i > ω) v̂i.64

In the industry, the LightGBM algorithm (Ke et al., 2017) is commonly adopted for engineering65

implementation. We name this type of method as 2Stage-LGBM algorithm. The downside of these66

two-stage algorithms is that the model only can provide one time step ahead prediction due to the67

imbalance problem of the data. The current two-stage approaches achieve the multi-step ahead68

predictions in a clumsy way of that a series of independent predictive models for each target moment69

are established. This independent modeling scheme is not only difficult to conduct, but also a waste70

of time and computational resources. It increases the model maintenance cost with a unsatisfactory71

prediction accuracy. Therefore, we need a more sufficient predictive modeling strategy which allows72

for continuously multi-step ahead predictions in one model. Meanwhile, since we are analyzing the73

sequential data, Time should be included into the feature structure of the desired model.74

In this article, we propose a deep learning algorithm based on the Feature Learning for imbalanced75

multivariate time series (FLIMTS). FLIMTS includes two parts: Representation Learning and La-76

bel Learning. Compared with the commonly used algorithms in industry, FLIMTS has two major77

advantages. First, by innovatively introducing a weighted quantile loss, it successfully eliminates78

the impact of the imbalanced data distributions. Second, FLIMTS fully utilizes the user’s portrait79

features, and deeply analyzes the static features and sequence features of the multivariate sequence80

data via feature learning processes to obtain more comprehensive sequence feature information. In81

the empirical analysis, we compare FLIMTS with the 2Stage-LGBM approach on a public data set.82

The results show that the proposed method performs better than the 2Stage-LGBM algorithm on83

common model evaluation criteria.84

The rest of the article is organized as follows. Section 2 introduces the model and the details of the85

proposed algorithm. Section 3 is the empirical analysis. We compare our proposed algorithm with86

the 2Stage-LGBM algorithm on two data sets. Discussion in Section 4 concludes the article.87

2 METHODOLOGY88

2.1 MODEL AND NOTATION89

The proposed method is a multi-step forecasting deep learning algorithm based on the feature learn-90

ing for multivariate time series with heavy imbalance problem. Suppose that at time t, y(q)
t are91

independent q step observations generated from the following imbalanced multivariate time series92

model:93

2



Under review as a conference paper at ICLR 2024

y
(q)
t = F(xt−p, . . . ,xt−1,xt,y

(p)
t |Θ) + ϵ

(q)
t , (1)

where ϵ(q)t is the random error, F is a unknown nonlinear mapping function, and Θ = {Θrep,Θlab}94

is the parameter set of the Representation Learning module and the Label Learning module.95

p + 1 is the size of the window of the previous data series used for later data series pre-96

diction, and q is the length of the predicted series in the multi-step prediction. y
(p)
t =97

[yt−p yt−p+1 . . . yt ]
T ∈ Rp+1 is the user paid value label sequence from time t − p to98

t. y(q)
t = [yt+1 yt+2 . . . yt+q ]

T ∈ Rq is the user paid value label sequence from time t+ 199

to t + q. xt ∈ Rm is the m-dimensional independent variable related to the feature variables at100

time t. These features can be grouped into two feature vectors, which are the static feature vector101

xs
t ∈ Rm1 and sequence feature vector xh

t ∈ Rm2 , where m = m1 + m2. The static features do102

not change over time. For example, some portrait features, such as gender and age in xt, can be103

regarded as static features, where104

xs
t = xs

t′
= xs =

[
xs
1 xs

2 . . . xs
m1

]T
, ∀ t ̸= t

′
.

Observations of the sequence features change over time. For example, the number of user logins in105

and the user’s historical payment information y
(p)
t are both sequence features, where106

xh
t =

[
xh
t,1 xh

t,2 . . . xh
t,m′ yt−p yt−p+1 . . . yt

]T
=

[
xh
t,1 xh

t,2 . . . xh
t,m2

]T
,

where m2 = m′ + p+ 1. Finally xt converts to107

xt =

[
xs

xh
t

]
=

[
xs
1 xs

2 . . . xs
m1

xh
t,1 xh

t,2 . . . xh
t,m2

]T
.

According to equation 1 we will use the sequence state information (including the static feature108

information, the sequence feature information, and the label information) of the first p moments of109

the data sequence to predict the label information of the following q moments of the data sequence.110

Figure 1: Model Architecture Diagram of FLIMTS

Figure 1 is the computational framework of the FLIMTS algorithm. The key idea of the FLIMTS111

algorithm is to fit a nonlinear mapping F using a deep neural network. The algorithm structure112

includes two parts: the Representation Learning module and the Label Learning Module. In the113

3



Under review as a conference paper at ICLR 2024

Representation Learning part, the deep neural network combines continuous variables and discrete114

variables to achieve a desired analysis effect. The Representation Learning part is to decompose115

the independent variable sequence into static features and sequence features, and then convert them116

into the continuous representation vectors. The Label Learning part includes the Seq2seq module,117

the Attention module and the the Output module. It maps the continuous representation vectors118

generated from the Representation Learning to the target value of the response variables. For each119

sequence data sample, it will be converted into a vector through the Representation Learning module120

firstly, then will be processed by the Seq2seq module, the Attention module and the output module121

to obtain the Multi-step prediction values. The computational workflow of the proposed algorithm122

FLIMTS is summarized in Algorithm 1. The details of our designed deep learning networks are123

introduced in Appendix A.124

Algorithm 1: FLIMTS
Input: {xτ}, for τ ∈ [t− p, t]

Output: the q-step predictions of the sequence lables ŷ(q)
t =

[
ŷt+1, ŷt+2, . . . , ŷt+q

]T
Step 1 Representation Learning:

(a) Obtain the embedded static feature vector ξs of the input variable through the
static feature processing module (Algorithm 2 in Appendix A.1):

ξs ← StaInput(xs);

(b) Obtain the embedded sequence feature vector ξhτ of the input variable through
the sequence feature processing module (Algorithm 3 in Appendix A.1):

ξhτ ← TempInput(xh
τ ), t− p ≤ τ ≤ t.

Step 2 Label Learning:
Step 2.1 process the feature vector through the Seq2seq module (Algorithm 4 in
Appendix A.2.1):[

ht−p . . . ht . . . ht+q

]T
← Seq2seqModule

([
ξs, ξht−p, . . . , ξ

h
t−1, ξ

h
t

]T)
;

Step 2.2 predict the q-step sequence labels vector ŷ(q)
t through the Attention

module (Algorithm 5 in Appendix A.2.2):

ŷ
(q)
t ← AttentionModule

([
ht−p . . . ht, . . . ht+q

]T)
.

2.2 WEIGHTED QUANTILE LOSS AND MODEL OPTIMIZATION125

The proposed deep learning network contains a large number of parameters. We adopt a two-stage126

parameter optimization strategy for the proposed method, where the parameters of the Representa-127

tion Learning model and the Label Learning model are optimized separately and sequentially. In the128

Representation Learning stage, we use the common Quantile Loss function. In the Label Learning129

stage, to deal with the highly imbalanced problems of the multivariate time series, we innovatively130

introduce a Weighted Quantile Loss function, which greatly improves the effect of multi-step fore-131

casting. Then we iteratively update all parameters based on the gradient back propagation technique.132

The Representation Learning is the first stage of the proposed FLIMTS algorithm, since we do not133

have to consider the prior information of the label distribution, we only need to learn the pattern of134

the data distribution. Therefore, we do not have to do subsampling in this modeling stage. Balanced135

subsampling is enough if necessary. In the learning process, the optimal estimates of all parameters136

are obtained by minimizing the following Quantile Loss137

QLoss(η, yi, ŷi) = max
{
η · (ŷi − yi), (1− η) · (yi − ŷi)

}
,

4



Under review as a conference paper at ICLR 2024

where η ∈ (0, 1) adjusts the prediction tendency of the algorithm. If η is large, the algorithm138

parameters will be trained in the direction of underestimating the label value. If η is small, it will139

be trained in the direction of overestimating the label value. When η is set to 0.5, the effect of the140

Quantile Loss will be equivalent to the Absolute Value Loss.141

The Label Learning phase is the second stage of the proposed FLIMTS algorithm. The purpose142

of this stage is to fit the mapping relationship between the feature vectors and the label val-143

ues. Therefore, the prior knowledge of the label distribution will have a significant impact on144

the modeling process. In the Label Learning phase, parameters are optimized by minimizing the145

Weighted Quantile Loss. To construct the Weighted Quantile Loss, we need to obtain its asymp-146

totic distribution of the label value. Suppose that the partition of the range of the label value is147

x(0) < x(2) < · · · < x(j) < · · · < x(N) =∞. We estimate the distribution of the label value F (y)148

by the empirical distribution function GN (y) = 1
N

∑N
j=1 I(Yj ≤ y). The weight of the ith label149

value is150

wi =

N∑
j=0

I(xj ≤ yi < xj+1)∫ xj+1

xj
f(x)dx

, i = 1, . . . , N.

Then the Weighted Quantile Loss is151

WQLoss(η, Y, Ŷ ) =

q∑
i=1

wi ·QLoss(η, yi, ŷi).

The Weighted Quantile Loss function is designed to be sensitive to the skewness of the target label152

distribution and the sensitivity is reinforced for intervals with few samples, since the total loss com-153

ing from these parts are highly likely to be underrated due to its small quantity of samples in the154

optimization process. In reality, in order to improve programming efficiency and reduce the time155

expense caused by the memory exchange in the communication between different devices (CPU156

and GPU), our empirical distribution function GN (y) is usually obtained by integrating the results157

of each batch in the parallel computing process. This method may cause small amount of deviation158

when estimating the distribution of the data with imbalance problem. However, this small deviation159

will gradually converge as the number of training rounds and the sample size increases. Therefore160

it will have little impact on the overall fittings of the model.161

Let Θ = {Θrep,Θlab} is the set of parameters that need to be optimized in the proposed model,162

where Θrep is the parameter set of the Representation Learning part, Θlab is the parameter set of the163

Label Learning part. These two sets of the parameters cannot be completely separated in the training164

process. In the Representation Learning part, Θlab is also updated while optimizing Θrep. Mean165

while, in order to improve the stability of parameter estimation, we need to optimize the collective166

loss under different values of η. In our empirical analysis we use η ∈ {0.3, 0.5, 0.7}. Let Lrep be167

the Quantile Loss of the Representation Learning.168

Lrep =
∑
η

q∑
i=1

QLoss(η, ŷt+i.yt+i),

Θrep is optimized and updated by the minimizer of Lrep.169

Θrep = Θ∗
rep − α

∂Lrep

∂Θ∗
rep

, Θlab(rep) = Θ∗
lab(rep) − α

∂Lrep

∂Θ∗
lab(rep)

,

where Θ∗ is the previous state of the parameters, and Θ is the updated state of the parameters.170

Θlab(rep) is the parameter set of the Label Learning updated in the Representation Learning stage.171

Let Llab be the Weighted Quantile Loss of the Label Learning.172

5



Under review as a conference paper at ICLR 2024

Llab =
∑
η

q∑
i=1

WQLoss(η, ŷt+i, yt+i).

Θlab is firstly initialized by Θlab(rep), that is Θ(0)
lab = Θlab(rep). Then Θlab is optimized and updated173

by174

Θlab = Θ∗
lab − α

∂Llab

∂Θ∗
lab

.

In addition, the generalization performance of the model is improved by controlling the Dropout175

Rate (DPR).176

3 EMPIRICAL ANALYSIS177

We compare the proposed method with the commonly used 2Stage-LGBM algorithm on the public178

dataset AVSC. The 2Stage-LGBM algorithm is implemented based on the LightGBM algorithm179

and is one of the best prediction scheme in the industry for multivariate time series with highly180

imbalanced problems. Notice that, in our experiment we make four step forward predictions from181

time t + 1 to t + 4. FLIMTS only needs to build a single model to generate continuous multi-step182

predictions, while the 2Stage-LGBM has to build four separate prediction models for each target183

moment.184

The AVSC dataset is a desensitized transaction data (Dua and Graff, 2017) from the Acquire Valued185

Shoppers Challenge. This dataset includes transactions of some brick-and-mortar stores over a186

period of time with 11 features for each data record, such as User ID, Store ID, Item Category, Item187

Subcategory, Company ID, Brand ID, Purchase Date, Number of Purchased Item, Measurement188

Unit of the Purchased Item, and Purchase Amount. The original data structure of the AVSC dataset189

is not very suitable for the purpose of our analysis since it does not show out the user’s consumption190

behaviors very well. The data must be preprocessed before performing any further analysis. Let’s191

define the user’s payment value is the amount of repurchase made by a user who has a purchase192

record before. We first clean and aggregate the original data based on the customer ID, and obtain193

the monthly customer’s consumption data, which is the overall paid value of each customer in 8194

months. The reprocessed data has two groups of features, the Payment features and the Context195

features. The Payment features are used to describe the customer’s payment behavior, including196

the number of payments, the frequency of payments, and the average amount of each payment, etc.197

The Context features are the statistical characteristics of existing customers in a store, such as the198

payment amount per capita and the payment frequency per capita, etc. Since this is a monthly data,199

the data at each time point is the cumulative purchase value within each month. Not surprisingly, the200

paid value of is extremely imbalanced, since the ratio of non-paying users to paying users exceeds201

3 : 1. Among these paying users, the number of customers with higher paid value decreases sharply202

as the paid value increases. To conform the data to the real business scenario, we split the dataset203

into the training set and the test set based on the dates. We use the data before Dec, 1st2012 as the204

training set, which has 1,355,880 data records. Then the test set size is 356,980. Their ratio is about205

8 : 2.206

Since the user payment value is a continuous variable, we choose the mean square error (MSE)207

and the mean absolute error (MAE), which are two commonly used model evaluation criteria in208

regression. In reality, the downstream tasks of paid value prediction are usually related to the ranking209

of users (such as selecting TOP-N from users for advertising, etc.). Therefore we adopt the rAUC =210

P (ŷ1 > ŷ2 | y1 > y2) (regression − AUC) criterion, which measures the ranking quality of the211

regression model. A better model can rank samples with larger true label values ahead of samples212

with smaller true label values when sorting the samples according to their predicted values from213

large to small. The larger the rAUC is, the higher the accuracy of the algorithm in sorting users214

according to the predicted value, and vice versa.215

The computational environment of experiments in this article are: CPUInteri7 −216

10700;GPUNvidiaRTX3060;RAM32Gb;SoftwarePython3.9 + CUDA11.1. We use the217

6



Under review as a conference paper at ICLR 2024

open source SQL query engines (Impala and Trino) for data cleaning and feature engineering. The218

implementation of algorithm engineering relies on the Pytorch (Paszke et al., 2019) environment,219

and we also uses the Pytorch-lightning module for parameter optimization.220

3.1 EXPERIMENT RESULTS221

In the experiment we set the parameters p = 6, q = 4 in the model equation 1. The initialization222

settings of hyperparameters are: the learning rate is 0.0001; the number of LSTM layer is 1; the223

dimension of the intermediate and hidden variables in the Seq2seq module is dk = 128; the number224

of heads in the Multi-head Self Attention module is H = 8; the dropout rate is DPR = 0.2.225

The results of the model evaluation criteria on the training set are shown in Figure 2. The trend of226

all criteria drops rapidly in the early stage of training, and tends to be a stable fluctuation later. This227

indicates that the proposed model converges fast in the training stage.228

4

8

12

16

0 500 1000 1500 2000 2500

(a) Training set Loss

1.92

1.94

1.96

0 500 1000 1500 2000 2500

(b) Training set MAPE

1.92

1.94

1.96

0 500 1000 1500 2000 2500

(c) Training set SMAPE

165

170

175

180

185

190

0 500 1000 1500 2000 2500

(d) Training set MSE

Figure 2: The convergence rate of the proposed model on the training stage.

In practice, the predictive quality of those paying users can better reflect the advantages of the229

models, thus attract more attention in business. We compare the model performance of these two230

algorithms in predicting the paid value at the (t+ 1)th moment on two customer groups, which are231

the All User group and the Paying User group. The result is summarized in the Table 1. We see that232

the MSE and MAE of FLIMTS are much smaller than the 2Stage-LGBM approach, which means233

that the mean and median of the predicted paid value by FLIMTS are closer to the true value than234

the 2Stage-LGBM algorithm for both All User group and Paying User group. In terms of the rAUC,235

since both model schemes are based on regression analysis, therefore the rAUC of FLIMTS is very236

close to the 2Stage-LGBM algorithm, which is a reasonable result.237

Table 1: Model Performance Comparison

Algorithm MSE MAE rAUC

All User FLIMTS 51.54 0.85 0.98
2Stage-LGBM 151.05 0.91 0.98

Paying User FLIMTS 208.82 1.55 0.90
2Stage-LGBM 615.32 2.18 0.90

Figure 3 shows the MSE, MAE and rAUC of the FLIMTS and the 2Stage-LGBM algorithms in238

multi-step ahead predictions of the paid values at the next four moments of time t+1 to t+4. In terms239

of the rAUC, the proposed algorithm shows a slight advantage over the 2Stage-LGBM algorithm as240

the size of the prediction time step increases. For the MSE and MAE, the proposed algorithm241

provides much smaller results than that of the 2Stage-LGBM algorithm, and this advantage grows242

as the size of the prediction time step increases.243

7



Under review as a conference paper at ICLR 2024

0
50

0
10

00
15

00
20

00
25

00
30

00

(a) MSE

t+1 t+2 t+3 t+4

2Stage−LGBM
FLIMT

1
2

3
4

(b) MAE

t+1 t+2 t+3 t+4

2Stage−LGBM
FLIMT

0.
97

2
0.

97
4

0.
97

6
0.

97
8

0.
98

0
0.

98
2

(c) rAUC

t+1 t+2 t+3 t+4

2Stage−LGBM
FLIMT

Figure 3: The MSE, MAE and rAUC of different algorithms in multi-step predictions of the paid
value at the next four moments of time t+ 1 to t+ 4.

Figure 4 shows the multi-step prediction results of the paid value from time t+ 1 to t+ 4 based on244

the FLIMTS algorithm and the 2Stage-LGBM algorithm for four types of paying value users, which245

are the High paying value users, Mid paying value users, Low paying value users, and Null paying246

value users. The prediction results at all four moments show that FLIMTS has better predicting247

performance than the 2Stage-LGBM method for all four types of paying value users with much less248

cost of the computational resources, since FLIMTS only needs to build a single model to generate249

multi-step predictions continuously, while the 2Stage-LGBM has to build four separate prediction250

models for each target moment from t+ 1 to t+ 4.251

High Paying value users

t+1 t+2 t+3 t+4

40
80

12
0

2Stage−LGBM
FLIMT
True 0

10
20

30
40

Mid Paying value users

t+1 t+2 t+3 t+4

2Stage−LGBM
FLIMT
True

−
2

2
4

6
8

Low Paying value users

t+1 t+2 t+3 t+4

2Stage−LGBM
FLIMT
True

−
1.

5
0.

0
1.

0
2.

0

Null Paying value users

t+1 t+2 t+3 t+4

2Stage−LGBM
FLIMT
True

Figure 4: Multi-step predictions of the paid value at the next four moments from t + 1 to t + 4 for
four types of paying value users under two methods.

8



Under review as a conference paper at ICLR 2024

4 CONCLUSION252

In this paper we propose a new deep learning algorithm, FLIMTS, for the multi-step forecasting253

of the multivariate time series with severe data imbalance problem. The great advantage of the254

FLIMTS algorithm is that by introducing a weighted quantile loss, we greatly reduce the influence255

of the imbalanced data distribution problem. Therefore, the proposed method only needs to build256

one predictive model to generate multi-step ahead predictions for a sequence of target moments for257

imbalanced multivariate time series. In contrast, the traditional 2Stage-LGBM algorithm must build258

separate predictive models at each target moment to achieve satisfactory multi-step predictions. Ad-259

ditionally, the prediction accuracy is improved by the rigorously designed deep learning networks,260

which combine the Representation Learning and Label Learning based on the Feature Learning261

techniques.262

AUTHOR CONTRIBUTIONS263

ACKNOWLEDGMENTS264

9



Under review as a conference paper at ICLR 2024

REFERENCES265

Chamberlain, B. P., A. Cardoso, C. B. Liu, R. Pagliari, and M. P. Deisenroth (2017). Customer life-266

time value prediction using embeddings. In Proceedings of the 23rd ACM SIGKDD international267

conference on knowledge discovery and data mining, pp. 1753–1762.268

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer (2002). Smote: synthetic minority269

over-sampling technique. Journal of artificial intelligence research 16, 321–357.270

Douzas, G. and F. Bacao (2019). Geometric smote a geometrically enhanced drop-in replacement271

for smote. Information sciences 501, 118–135.272

Dua, D. and C. Graff (2017). Acquire valued shoppers challenge.273

Han, H., W.-Y. Wang, and B.-H. Mao (2005). Borderline-smote: a new over-sampling method in274

imbalanced data sets learning. In International conference on intelligent computing, pp. 878–887.275

Springer.276

He, H., Y. Bai, E. A. Garcia, and S. Li (2008). Adasyn: Adaptive synthetic sampling approach277

for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE278

world congress on computational intelligence), pp. 1322–1328. IEEE.279

He, K., X. Zhang, S. Ren, and J. Sun (2016). Deep residual learning for image recognition. In 2016280

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.281

Huang, C., Y. Li, C. C. Loy, and X. Tang (2016). Learning deep representation for imbalanced282

classification. In Proceedings of the IEEE conference on computer vision and pattern recognition,283

pp. 5375–5384.284

Ioffe, S. and C. Szegedy (2015). Batch normalization: Accelerating deep network training by re-285

ducing internal covariate shift.286

Kang, B., S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and Y. Kalantidis (2019). Decoupling287

representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217.288

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu (2017). Lightgbm: A289

highly efficient gradient boosting decision tree. In Proceedings of the 31st International Confer-290

ence on Neural Information Processing Systems, NIPS’17, Red Hook, NY, USA, pp. 31493157.291

Curran Associates Inc.292

Li, B., Y. Liu, and X. Wang (2019). Gradient harmonized single-stage detector. In Proceedings of293

the AAAI Conference on Artificial Intelligence, Volume 33, pp. 8577–8584.294

Li, X., W. Wang, L. Wu, S. Chen, X. Hu, J. Li, J. Tang, and J. Yang (2020). Generalized focal loss:295

Learning qualified and distributed bounding boxes for dense object detection. arXiv preprint296

arXiv:2006.04388.297

Lin, T., P. Goyal, R. B. Girshick, K. He, and P. Dollár (2017). Focal loss for dense object detection.298

CoRR abs/1708.02002.299

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,300

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,301

B. Steiner, L. Fang, J. Bai, and S. Chintala (2019). Pytorch: An imperative style, high-302

performance deep learning library. In Advances in Neural Information Processing Systems 32,303

pp. 8024–8035. Curran Associates, Inc.304

Shu, J., Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng (2019). Meta-weight-net: Learning an305

explicit mapping for sample weighting. arXiv preprint arXiv:1902.07379.306

Vanderveld, A., A. Pandey, A. Han, and R. Parekh (2016). An engagement-based customer lifetime307

value system for e-commerce. In Proceedings of the 22nd ACM SIGKDD international conference308

on knowledge discovery and data mining, pp. 293–302.309

Wang, X., T. Liu, and J. Miao (2019). A deep probabilistic model for customer lifetime value310

prediction. arXiv preprint arXiv:1912.07753.311

i



Under review as a conference paper at ICLR 2024

Yang, Y. and Z. Xu (2020). Rethinking the value of labels for improving class-imbalanced learning.312

arXiv preprint arXiv:2006.07529.313

Yang, Y., K. Zha, Y.-C. Chen, H. Wang, and D. Katabi (2021). Delving into deep imbalanced314

regression. arXiv preprint arXiv:2102.09554.315

Yin, X., X. Yu, K. Sohn, X. Liu, and M. Chandraker (2019). Feature transfer learning for face recog-316

nition with under-represented data. In Proceedings of the IEEE/CVF Conference on Computer317

Vision and Pattern Recognition, pp. 5704–5713.318

A APPENDIX319

A.1 REPRESENTATION LEARNING NETWORK320

The Representation Learning is designed to learn the information of all features and convert them321

into the representation vectors for the further quantitative analysis. At each time t, the feature vector322

of each sample is xt = (xs
1, x

s
2, . . . , x

s
m1

, xh
t,1, x

h
t,2, . . . , x

h
t,m2

), where each x represents the obser-323

vation of the corresponded feature at time t. The algorithm takes the sequence features as the input324

to the Encoder. In the modeling process, since these features are not necessarily numerical continu-325

ous, and discrete features cannot be directly used in the deep neural network model, it is necessary326

to use the embedding method to convert these features into vectors with specified dimension. And327

this is also the main purpose of using the Representation Learning. In the following content, we use328

ξs and ξht to represent the static feature vectors and the sequence feature vectors that are learned329

from the Representation Learning respectively.330

Figure 5: The operational flow chart of the Representation Learning

Suppose we set the embedding vector ξi at time t to be a dk dimensional vector. For the ith discrete331

feature Xt,i, we encode the feature firstly, and then find the corresponded dk-dimensional embedding332

vector ξi from the Embedding Matrix of xt,i, where dk is a hyperparameter that has to be decided333

in advance. For example, in the following empirical analysis section, we set dk = 128. For the334

jth continuous feature Xt,j , according to the specific situation, we could transform it into a discrete335

variable using the binning technique or convert it into a dk dimensional vector ξj through a dk336

ii



Under review as a conference paper at ICLR 2024

dimensional fully connected network layer. At this stage, both the parameters of the Embedding337

Matrix and the fully connected network can be optimized in the training process.338

Figure 5 is the operational flow chart of the Representation Learning. At time t, the Representation339

Learning divides the input vector xt into the static features and sequence features, and processes340

them separately. For the static features, we designed a static feature processing algorithm, StaInput,341

and its computational workflow is described in the Algorithm 2. For the dynamic sequence features,342

we designed a sequence feature processing algorithm, TempInput, and its computational workflow343

is described in the Algorithm 3. Both algorithms map each feature into a dense embedding vector344

via the embedding process,345

ξsi ← Embi(x
s
i ),

ξht,j ← Embi(x
h
t,j),

where i ∈ [1,m1], ξ
s
i ∈ Rdk×1, and j ∈ [1,m2], ξ

h
t,j ∈ Rdk×1. Then obtain the representation346

vectors by the weighted average of these embedding vectors. The difference is the representation347

learning for the sequence features have an additional temporal information encoding step.348

To more accurately extract the representation information of the sequence, the Representation Learn-349

ing estimates the weight of the embedding vector, and uses the weighted average method to calculate350

the representation vectors ξs and ξht . In this specific process, the linear transformation is firstly per-351

formed after splicing each vector vertically to convert it into a dk dimensional vector. Then calculate352

the weights of the features based on the normalized vector using the Softmax module. If the weight353

of a feature is close to 0, it means the importancy of this feature is very low. Otherwise its importancy354

is very high. The representation vectors are then updated in the following way,355

ξs =
[
ξs1 ξ

s
2 . . . ξsm1

]
Softmax

(
W1

[
ξs1

T ξs2
T . . . ξsm1

T
]T

+ b1

)
,

ξht =
[
ξht,1 ξ

h
t,2 . . . ξht,m2

]
Softmax

(
W2

[
ξht,1

T
ξht,2

T
. . . ξht,m2

T
]T

+ b2

)
,

(2)

where ξs ∈ Rdk×1, W1 ∈ Rm1×(dk·m1), b1 ∈ Rm1×1, and ξht,m ∈ Rdk×1, W2 ∈ Rm2×(dk·m2),356

b2 ∈ Rm2×1.357

When processing the sequence features, since the subsequent structure of the algorithm includes358

the Attention module, it is necessary to assign positional encoding to the input vector, that is, add359

the temporal information of the tth moment to the sequence feature vector ξht . Suppose that the360

temporal information at the tth moment is TimeSeqt, where361

TimeSeqt = (t− p, t− p+ 1, . . . , t, . . . , t+ q).

In our application, the user life cycle sequence is a non-negative monotonic increasing sequence.362

For different products, users’ payment habits show obvious personalized patterns. For example, the363

payment behavior is concentrated in the early or late stage of the customer’s life cycle. Therefore,364

we hope to convert the tth moment’s time tag information TimeSeqt into a representation vector365

of the feature sequence by the Embedding method, and then add it as a position code into ξht . This366

is the major difference of processing static features and sequential features. The popular positional367

encoding composes of sine and cosine functions, which is not suitable here. In our TempInput368

algorithm the positional encoding is obtained via model training. The specific method uses the369

Embedding technique to convert the temporal label sequence TimeSeqt at the tth moment into a370

discrete feature vector, and then superimposes it into the output vector ξht , that is371

ξht = ξ̃ht + Emb(TimeSeqt),

where ξ̃ht is the representation vector obtained from the previous step by equation 2. In addition, the372

position encoding also needs to be added on the Decoder side. The input of the Decoder module is373

denoted by ξft in the later sections.374

iii



Under review as a conference paper at ICLR 2024

Algorithm 2: StaInput
Input: The static feature data of user xs = (xs

1, x
s
2, . . . , x

s
m1

)
Output: ξs the embedding vector of static features

Step 1: For i = 1 : m1, compute embedding vectors:

ξsi ← Embi(x
s
i )

Step 2: Take a weighted average of the embedding vectors:

ξs =
[
ξs1 ξs2 . . . ξsm1

]
Softmax

(
W1

[
ξs1

T ξs2
T . . . ξsm1

T
]T

+ b1

)

Algorithm 3: TempInput

Input: The sequence feature data of the user at time t xt
h = (xh

t,1, x
h
t,2, . . . , x

h
t,m2

),
TimeSeqt = (t− p, t− p+ 1, . . . , t, . . . , t+ q)

Output: ξht the embedding vector of sequence features at time t

Step 1: For j = 1 : m2, computing embedding vectors:

ξht,j ← Embi(x
h
t,j)

Step 2: Take a weighted average of the embedding vectors:

ξ̃ht =
[
ξht,1 ξht,2 . . . ξht,m2

]
Softmax

(
W2

[
ξht,1

T
ξht,2

T
. . . ξht,m2

T
]T

+ b2

)
Step 3: Convert the temporal label sequence TimeSeqt into a discrete feature vector, and
add it to the representation vector:

ξht = ξ̃ht + Emb(TimeSeqt)

A.2 LABEL LEARNING NETWORK375

The Label Learning is designed to obtain the multi step predictions of the sequence label values.376

A.2.1 SEQ2SEQ MODULE377

As shown in Figure 6, the Seq2seq module is composed of an Encoder module and a Decoder378

module. Each module corresponds to a LSTM cell and its subsequent network structure. Similar379

to the Representation Learning, the Seq2seq module also needs to deal with the static features and380

sequence features. In addition, we also need to add the position encoding at the input side of the381

Decoder. The encoded position vector is382

ξft+j = Emb(TimeSeqt+j),

where TimeSeqt+j = (t− p, t− p+ 1, . . . , t, . . . , t+ j).383

Suppose the representation vectors of the static and sequence features at time t from the Represen-384

tation Learning moduleis ξs and ξht . We use ξs to initialize the hidden state hen and the unit state385

cen of the Encoder, where386

hen
t−p−1 = GLU(ξs) = (W3 ξ

s + b3)× σ(W4 ξ
s + b4),

cent−p−1 = GLU(ξs) = (W5 ξ
s + b5)× σ(W6 ξ

s + b6),

iv



Under review as a conference paper at ICLR 2024

Figure 6: The operational structure of the Seq2seq module

where σ(x) = 1
1+exp(−x) is the sigmoid function. Then the Encoder model can calculate the hidden387

state of the current time hen
t and the cell state cent . hen

t is the output of the Encoder at time t. This388

process is different from the common Auto Encoder algorithm and the Seq2seq algorithm, where389

the common Seq2seq algorithm only cares about the last hidden state of the Encoder and the output390

of the Decoder. The main purpose of our Seq2seq module is to store the results of each step and391

pass them to the subsequent structures for further feature extractions of the timing characteristics of392

the data.393

According to the model equation 1, the dimension of the input matrix of the Encoder is (p+1)×dk.394

The GLU (Gated Linear Unit) unit is a shallow back propagation neural network, which is often used395

for transition operations between the output and input of different structures. The computational396

process of the Encoder is397

{hen
t−i, c

en
t−i} = LSTM(ξht−i,h

en
t−i−1, c

en
t−i−1),

h̃t−i ← (W7 h
en
t−i + b7)× σ(W8 h

en
t−i + b8),

ht−i ← h̃t−i +Wglu1 h̃t−i,

where i = p, p− 1, . . . , 0.398

Similarly, on the Decoder side, the hidden state hde
t is the output of the Decoder at time t. The399

Decoder uses the last hidden state and unit state of the Encoder to initialize the hidden state and unit400

state. According to the model equation 1, the length of the input sequence at the Decoder side is q.401

The calculation process of the Decoder is402

hde
t = hen

t , cdet = cent

{hde
t+j , ch

de
t+j} = LSTM(ξft+j ,h

de
t+j−1, c

de
t+j−1),

h̃t+j ← (W9 h
de
t+j + b9)× σ(W10 h

de
t+j + b10)

ht+j ← h̃t+j +Wglu2 h̃t+j

where j = 1, 2, . . . , q.403

v



Under review as a conference paper at ICLR 2024

Algorithm 4 is the computational workflow of our Seq2seq module. Our Seq2seq module adopts404

some common structures, such as GLU and AddNorm, to improve the model training performance.405

The AddNorm layer includes a Skip Connection structure (He et al., 2016) and a Batch Normal-406

ization structure (Ioffe and Szegedy, 2015). The Skip Connection structure is used to reduce the407

non-convexity of the network to protect the model from the gradient problem caused by the deep408

learning structure. The Batch Normalization improves the training speed by normalizing each fea-409

ture of samples within each batch. It is suitable for processing the structural data which has relatively410

strong features independencies. The output of the Seq2seq module will be passed to the Attention411

unit for the further analysis.412

Algorithm 4: Seq2seq Module

Input: {ξs, ξht−p, ξ
h
t−p+1, . . . ξ

h
t } the embeding vectors from the Representation Learning

Output: {ht−p,ht−p+1, . . . ,ht, . . . ,ht+q}

The Encoder stage: Initialize the hidden state and unit state of the Encoder LSTM hen
t−p−1

and cent−p−1,
hen
t−p−1 ← (W3 ξ

s + b3)× σ(W4 ξ
s + b4)

cent−p−1 ← (W5 ξ
s + b5)× σ(W6 ξ

s + b6)

For i = p : 0, compute:

{hen
t−i, c

en
t−i} ← LSTM(ξht−i,h

en
t−i−1, c

en
t−i−1)

h̃t−i ← (W7 h
en
t−i + b7)× σ(W8 h

en
t−i + b8)

ht−i ← h̃t−i +Wglu1 h̃t−i

The Decoder stage: Initialize the hidden state and unit state of the Decoder LSTM unit hde
t

and cdet ,
hde
t ← hen

t , cdet ← cent

ξft+j = Emb(TimeSeqt+j)

For j = 1 : q, compute:

{hde
t+j , c

de
t+j} ← LSTM(ξft+j ,h

de
t+j−1, c

de
t+j−1)

h̃t+j ← (W9 h
de
t+j + b9)× σ(W10 h

de
t+j + b10)

ht+j ← h̃t+j +Wglu2 h̃t+j

A.2.2 ATTENTION MODULE413

The Attention module analyze the sequence information processed by the Seq2seq module. Figure 7414

is the operational structure diagram of the Attention module. First, the Attention module maps the415

output of the Encoder-Decoder {ht+i| − p ≤ i ≤ q} and the static feature vector ξs into the input416

matrix of the Attention module, where the input matrix M is defined as417

M = [mt−p mt−p+1 . . . mt+q]
T
,

mt+i = W
(1)
11 ht+i +W

(2)
11 ξs + b11,

where −p ≤ i ≤ q. Since the proposed algorithm is composed of the self-attention unit, M can be418

used as the K and V matrices in the Attention layer, which means we can set K = V = M . For the419

q-step prediction of time series problem studied in this article, we can only use the corresponding420

input on the Encoder side as the source of Q matrix, and then do the following calculation:421

vi



Under review as a conference paper at ICLR 2024

Figure 7: The operational structure of the Attention module

For the q-step predictions of the time series problem studied in this article, we only need to calculate422

the latent vectors from the moment t + 1 to t + q through the Attention layer. Therefore Q is423

constructed in the following way,424

Q = [mt+1 mt+2 . . . mt+q]
T
.

In this case, the result of the Attention output is the hidden vectors from time t+ 1 to t+ q. We can425

also replace Q by M , then the output of the Attention layer will be the latent vectors from time t−p426

to t + q, which will be a waste of the computing resources since we only need the hidden vectors427

from time t+1 to t+ q. The final output of the Attention layer is the weighted average of the results428

of each self-attention head.429

Oh ← Softmax(
W q

h Q (W k
h K)T√

dk
)W v

h V,

O ←
H∑

h=1

Oh, O ∈ Rq×dk ,

where H is the number of heads of the Self-attention module, W q
h ,W

k
h ,W

v
h are the parameter430

matrices of each self-attention head. The output of the self-attention mechanism is also processed431

by the GLU and AddNorm units. These two operations do not change the dimension of the vectors.432

The output of the Attention layer is then processed by the Position-Wise Feed Forward Network433

Module to obtain the multi-step prediction vector y(q)
t for the next q moments in the future. The434

computational process is435

Õ1 ← O + (OW12 + b12)× σ(OW13 + b13),

Õ2 ← [ht+1 ht+2 · · · ht+q]
T
+ (Õ1W14 + b14)× σ(Õ1W15 + b15),

y
(q)
t = WoutÕ2 + bout.

This network structure comes from the Transformer. It maps the high dimensional vector corre-436

sponding to each time step into a scalar through a shallow network. The scalar is the predicted label437

value. Algorithm 5 is the computational workflow of Attention module.438

vii



Under review as a conference paper at ICLR 2024

Algorithm 5: Attention Module
Input: The output vector of the Seq2seq module (ht−p,ht−p+1, . . . ,ht, . . . ,ht+q)

Output: y(q)
t the vector of the q-step predictions from moment t+ 1 to t+ q

For i = -p: q, compute:

mt+i ←W
(1)
11 ht+i +W

(2)
11 ξs + b11

the parameter matrix of the self-attention mechanism:

Q← [mt+1 mt+2 . . . mt+q]
T

K = V = M ← [mt−p mt−p+1 . . . mt+q]
T
.

For h=1: H, compute:

Oh ← Softmax(
W q

hQ (W k
hK)T√

dk
)W v

hV

Aggregate and compute the output of each attention mechanism head:

O ←
H∑

h=1

Oh

Õ1 ← O + (OW12 + b12)× σ(OW13 + b13)

Õ2 ← [ht+1 ht−2 . . . ht+q]
T
+ (Õ1 W14 + b14)× σ(Õ1 W15 + b15)

Predict the label value for the next q steps in the sequence:

y
(q)
t ←WoutÕ2 + bout

viii


