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Abstract

Aspect-Based Sentiment Analysis (ABSA) fo-001
cuses on extracting opinions about specific002
aspects, with Aspect Sentiment Quad Predic-003
tion (ASQP) being the most complex sub-004
task. Large language models (LLMs) like005
GPT4 exhibit strong generalization yet strug-006
gle with ASQP due to a lack of task-specific007
alignment. Supervised small language mod-008
els (SLMs), while effective in capturing task-009
specific patterns, lack the extensive knowledge010
of LLMs. To address this, we propose a frame-011
work that combines SLMs and LLMs using012
supervised in-context learning to align LLM013
outputs with human preferences. One SLM014
is supervised to generate candidate answers015
and guide LLMs with task-specific instructions,016
while another SLM acts as a reward model it-017
eratively evaluates and refines LLM outputs.018
Experiments show that our framework signif-019
icantly improves ASQP performance, demon-020
strating robustness, scalability, and potential for021
advancing alignment techniques in sentiment022
analysis.023

1 Introduction024

Aspect-Based Sentiment Analysis (ABSA) is a fine-025

grained sentiment analysis task that aims to extract026

opinions expressed toward specific aspects of a027

given target (Hu and Liu, 2004). Among its sub-028

tasks, Aspect Sentiment Quad Prediction (ASQP)029

represents the most challenging task, requiring the030

identification of aspect-category-opinion-sentiment031

quads from the text (Zhang et al., 2021b; Cai et al.,032

2021a).033

Common methods for solving ASQP often rely034

on structured extraction techniques (Zhang et al.,035

2021b; Bao et al., 2023, 2022; Cai et al., 2021a; Hu036

et al., 2022b). However, with the rise of large lan-037

guage models (LLMs) such as ChatGPT (Ouyang038

et al., 2022) and Claude (Anthropic, 2024), there039

is increasing interest in leveraging their strong gen-040

eralization capabilities for ASQP. These LLMs041
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Figure 1: An illustration of the zero-shot approach and
our proposed framework.

have demonstrated remarkable performance across 042

diverse applications (Kojima et al., 2022; Wang 043

et al., 2023), but directly applying them to ASQP 044

remains challenge (Zhang et al., 2023, 2024a). 045

One common approach to align language models 046

with human preferences is supervised fine-tuning. 047

While effective, fine-tuning huge LLMs (e.g.,GPT- 048

4, Claude) is infeasible for ASQP due to their black- 049

box nature and the prohibitive computational costs 050

of updating such massive models. Alternatively, in- 051

context learning (Brown et al., 2020) has emerged 052

as a practical strategy to guide black-box LLMs for 053

downstream tasks. 054

As shown in Figure 1(a), LLMs can follow in- 055

structions and generate outputs in forms that hu- 056

mans prefer. However, their answers often dif- 057

fer from what humans consider correct. This dif- 058

ference appears because LLMs rely on their pre- 059

trained knowledge, which may not include the spe- 060

cific details required for ASQP. As a result, their 061

outputs tend to be biased or incomplete. In contrast, 062
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as shown in Figure 1(b), supervised SLMs can learn063

patterns that align well with human preferences for064

ASQP. Yet, SLMs have limited world knowledge,065

so their single-pass answers may still be incorrect066

or incomplete. Surprisingly, we observe that by067

increasing the number of samples from one to ten,068

the probability of including a correct answer grows069

substantially, ultimately boosting the F1-score by070

more than 10% (see Section 3.2).071

Based on these observations, we propose a072

framework that combines the strengths of super-073

vised SLMs and black-box LLMs to address ASQP.074

Specifically, we use SLMs to learn human pref-075

erences and transfer them to LLMs through in-076

context learning. We firstly supervise fine-tuning a077

SLM to learn from human-annotated data and gen-078

erates candidate answers during testing. By com-079

bining these candidate answers with well-designed080

instructions, we use the rich human supervision081

signals to guide LLMs toward aligning their out-082

puts with human intent. Secondly, we supervised083

fine-tuning another SLM to act as a reward model084

to evaluate whether the LLMs’ outputs align with085

human preferences (Ouyang et al., 2022; Rafailov086

et al., 2023). In particular, the LLM can perform087

multiple rounds of sampling, and the reward model088

evaluates the correctness of its outputs, adding cor-089

rect answers to the candidate answer list. By it-090

eratively repeating this process, the LLM can be091

effectively aligned with human preferences and pro-092

gressively improve its ability to generate human-093

desired aspect sentiment quad predictions.094

We conduct extensive experiments to evaluate095

the proposed framework across various dimensions.096

Our results reveal that directly applying in-context097

learning with black-box LLMs struggles to gen-098

erate human-aligned ASQP answers, while super-099

vised fine-tuning of SLMs effectively captures hu-100

man preferences. Furthermore, integrating super-101

vised signals of SLM into context for guiding black-102

box LLMs demonstrates significant improvements103

without requiring additional training data. Com-104

parative studies highlight the advantages of our105

candidate answer strategy and iterative alignment106

approach.107

The main contributions of this work can be sum-108

marized as follows:109

• We introduce a framework combining super-110

vised SLMs and in context learning to align111

black-box LLM outputs with human prefer-112

ences for aspect sentiment quad prediction.113

• We design a reward model to iteratively eval- 114

uate and refine LLM outputs, progressively 115

improving their alignment with aspect senti- 116

ment quad prediction. 117

• Extensive experiments demonstrate the effec- 118

tiveness of our framework in improving as- 119

pect sentiment quad prediction performance, 120

highlighting its robustness, scalability, and po- 121

tential for advancing alignment techniques. 122

2 Related Work 123

2.1 Aspect Sentiment Quad Prediction 124

Aspect-Based Sentiment Analysis (ABSA) has 125

been extensively studied as a fine-grained senti- 126

ment analysis task (Ben-David et al., 2022; Li et al., 127

2022; Cai et al., 2021b; Zhang et al., 2022). The 128

recently proposed Aspect Sentiment Quads Predic- 129

tion (ASQP) extends ABSA by identifying four 130

elements: the aspect, its category, the associated 131

opinion, and the sentiment polarity. One line of 132

research explores it by incorporating syntax and se- 133

mantics to assist models in addressing this task (Su 134

et al., 2025). 135

With the advent of pre-trained generative mod- 136

els, methods such as GAS (Zhang et al., 2021b) 137

and OTG (Bao et al., 2022) have been developed 138

to address ASQP in an end-to-end manner, lever- 139

aging the power of generative models to predict 140

all components simultaneously (Ma et al., 2024). 141

Recently, the rise of LLMs has further advanced 142

ASQP. Previous work, such as Zhang et al. (2024b), 143

utilized LLMs as scoring mechanisms to generate 144

pseudo-labeled data for data augmentation. In our 145

work, we simplify this process. Since LLMs are 146

already strong scorers (Zhang et al., 2024b), we 147

propose directly leveraging them with the guide 148

of supervised SLMs to predict the final answers 149

without additional domain-specific, unlabeled data 150

and additional computational costs to retrain the 151

supervised model. 152

2.2 In-context Learning Methods 153

In-Context Learning (ICL) is a practical approach 154

for using LLMs like GPT-4 in tasks with limited 155

labeled data (Brown et al., 2020; Kojima et al., 156

2022). By providing examples directly in the in- 157

put, ICL allows the model to make predictions 158

without needing to retrain, making it useful for 159

zero-shot and few-shot tasks. However, ASQP 160

introduces unique challenges. It requires identi- 161

fying complex relationships, following predefined 162
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Figure 2: Illustration about the ASQP task and our framework. (a) shows a case of the ASQP task; (b) demonstrates
the flowchart of our proposed framework for aligning a black-box LLM through supervised SLMs for ASQP.

categories, and ensuring outputs match human an-163

notations. Simply applying ICL often produces164

inconsistent predictions because it depends heav-165

ily on the model’s existing knowledge, which may166

not be well-suited to the task (Zhang et al., 2024a).167

Recent advancements, such as retrieval-augmented168

generation (Lewis et al., 2020; Liu et al., 2022)169

and knowledge-enhanced context methods (Yang170

et al., 2024b; Ma et al., 2023; Xu et al., 2024;171

Shen et al., 2023) address this by integrating task-172

specific knowledge retrieval into ICL, improving173

alignment with human preferences. These develop-174

ments highlight promising directions for enhancing175

LLM-based in-context learning in complex struc-176

tured prediction tasks.177

Our framework differs from traditional ASQP178

and ICL methods by combining LLMs for predic-179

tion with supervised SLMs for dynamic guidance.180

Unlike ASQP methods that use small models (e.g.,181

T5) for prediction and large models only for of-182

fline data augmentation, our framework enables183

dynamically interaction. In contrast to ICL meth-184

ods that rely on static prompts without supervision,185

our framework provides adaptive inference.186

3 Methods187

In this section, we first introduce the aspect sen-188

timent quad prediction problem definition, then189

quantitatively analyze the zero-shot black-box190

LLMs compared with supervised SLM. Finally,191

based on the insights of the analysis, we explore192

aligning the black-box LLMs through supervised 193

and reinforcement-enhanced context for aspect sen- 194

timent quad prediction as shown in Figure 2(b). 195

3.1 Problem Definition 196

Aspect sentiment quad prediction is a fine-grained 197

task in aspect-based sentiment analysis that aims 198

to extract and classify quadruples. Formally, given 199

an input text T = {w1, w2, . . . , ws}, where wi 200

represents the i-th token in a sequence of s tokens, 201

the aspect sentiment quad prediction task aims to 202

extract a set of quadruples: 203

Q = {(ai, ci, oi, si) | i = 1, 2, . . . , q}, (1) 204

where ai is the aspect term, ci is the prede- 205

fined category, oi is the opinion term, and si ∈ 206

{positive, neutral, negative} is the sentiment polar- 207

ity associated with the aspect. The number of 208

quadruples q depends on the content of the input 209

text. If ai and oi are implicit, then ai = NULL 210

and oi = NULL. The ASQP task requires a model 211

to predict the set Q for any given input text T 212

while maintaining alignment between the extracted 213

aspects, categories, opinions, and sentiments as 214

shown in Figure 2(a). 215

3.2 Zero-Shot LLMs vs. Supervised SLMs 216

This section provides a quantitative analysis of the 217

phenomenon that LLMs struggle with ASQP, while 218

supervised small models perform better. It also 219

shows that supervised small models sampling mul- 220

tiple outputs can effectively cover correct answers. 221
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Figure 3: Analysis of the supervised SLMs using Top@1
and Top@10 metrics.

We use Top@1 and Top@10 as evaluation met-222

rics to compare the effectiveness of SLMs with223

zero-shot LLMs. Top@1 measures the F1-score of224

the model’s first prediction, while Top@10 consid-225

ers whether the correct answer is present within the226

top 10 predictions. Figure 3 compares the average227

F1-score of zero-shot LLM, Top@1 (SLM), and228

Top@10 (SLM) across various datasets. Specifi-229

cally, we select two powerful foundation models,230

as shown in Figure 3 (a) and (b), which can be231

deployed on a consumer-grade GPU as the SLM,232

while using the commonly adopted GPT-4o-mini as233

the LLM. The results show that zero-shot LLM per-234

form poorly, while Top@1 predictions from super-235

vised SLMs provide moderate improvements. In236

contrast, Top@10 predictions from SLMs achieve237

significantly higher F1-scores, aligning with ear-238

lier observations. This finding demonstrates that239

SLMs, by generating multiple outputs, can effec-240

tively cover correct answers aligned with human241

preferences.242

Motivated by these findings, we propose aligning243

the powerful but less task-specific LLM through in-244

context learning using supervised SLM-generated245

candidate answers. Specifically, instead of di-246

rectly prompting the LLM for open-domain an-247

swers, we prompt it to select the best answer248

from a set of SLM-generated candidates. These249

candidates inherently encode human-preferred re-250

sponses, thereby bridging the alignment gap be-251

tween the LLM’s outputs and human expectations.252

Next, we introduce our proposed two-stage253

framework, which leverages SLM-generated out-254

puts to effectively guide and align the LLM.255

3.3 Stage-1: Supervised Context256

In-context learning refers to the capability of a257

model to infer patterns or generate answers based258

on the input prompt, without explicit parameter 259

updates. Our framework begins by training a su- 260

pervised SLM on labeled data to learn human pref- 261

erences and act as a candidate answers generator 262

of the given samples. Specifically, we fine-tune 263

the SLM with supervision and then use it to per- 264

form multiple samplings with a high-temperature 265

setting. The sampled outputs are subsequently used 266

as candidate answers for in-context learning in a 267

black-box LLM. 268

Formally, let D = {(xi, yi)}Di=1 represent the 269

test dataset, where xi is an input, and yi is the 270

corresponding ground truth. Given an test in- 271

put xi, a supervised SLM generates candidate an- 272

swers Ai = {a1i , . . . , ani }, where i ∈ [1..|D|] and 273

n ∈ [1..N ]. N is empirically set as 10. Then, the 274

probability of the LLM generating the answer yi 275

by our method is defined as: 276

pLLM (yi | I∗, Ai, xi) , (2) 277

where I∗ represents a specific instruction guiding 278

the LLM to identify the most suitable answer. 279

3.4 Stage-2: Reinforcement-Enhanced 280

Context 281

Reinforcement learning methods, such as Direct 282

Preference Optimization (Rafailov et al., 2023) 283

and Proximal Policy Optimization (Schulman 284

et al., 2017), have demonstrated their effective- 285

ness in fine-tuning models based on reward sig- 286

nals (Ouyang et al., 2022; Anthropic, 2024). How- 287

ever, these approaches require updating model pa- 288

rameters, making them unsuitable for black-box 289

LLMs where parameter access is restricted. 290

To address this limitation, we propose to build 291

reinforcement-enhanced context. Specifically, we 292

first train a reward model to guide the reinforce- 293

ment process. The training data for the reward 294

model is constructed as follows: we use the super- 295

vised SLM trained in the initial stage to perform 296

sampling on the training set to generate candidate 297

answers. These candidates are then provided to the 298

black-box LLM for predictions on the training set. 299

Incorrect answers from the LLM are paired with 300

the corresponding ground-truth answers to form a 301

labeled dataset containing both positive and nega- 302

tive examples, which is subsequently used to train 303

the reward model. 304

Once the reward model is trained, it evalu- 305

ates the outputs of the black-box LLM to refine 306

candidate answers. Formally, for each test in- 307
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put xi, the LLM generates multiple predictions308

M = {y1i , . . . ymi }. The reward model then evalu-309

ates each pair {xi, ymi } and assigns a reward score310

Rθ(xi, y
m
i ) for each ymi ∈ M , where |M | is empir-311

ically set as 10.312

In stage-2, the reward model outputs statements313

such as "the answer is X." and we focus on the314

logit at the position X corresponding to the word315

"right" to determine correctness. Specifically, we316

maintain an answer only when the logit of the word317

"right" exceeds 0.8. This threshold (τ = 0.8) is318

empirically set to ensure that the reward model319

confidently recognizes the answer as correct. If320

the logit is below 0.8, we classify the answer as321

incorrect and disregard it as shown in Figure 4.322

Formally, the new candidates with scores above323

a predefined threshold τ is defined:324

ami = {ymi |Rθ({xi, ymi }) ≥ τ}, (3)325

where τ is the predefined threshold.326

The selected candidates are added to the in-327

context candidate answers A∗
i , forming an updated328

candidate set:329

A∗
i = {a1i , . . . , ani , an+1

i , . . . , a
|M |
i }. (4)330

This process is iterative, refining the candidate331

examples over multiple steps to improve alignment332

with the task objectives. At each iteration t, the333

candidate set is updated as follows:334

A∗
i [t+ 1] = A∗

i [t] ∪ {aT [t]+1
i [t], a

T [t]+2
i [t],

. . . , a
T [t]+∆T [t]
i [t]},

(5)335

where T [t] is the number of candidates at iteration t,336

and ∆T [t] represents the number of newly selected337

candidates in that iteration.338

Datasets
Train Dev Test

#S #Q #S #Q #S #Q

ACOS-Laptop 2934 4172 326 440 816 1161
ACOS-Rest 1530 2484 171 261 583 916
Rest-15 834 1354 209 347 537 795
Rest-16 1264 1989 316 507 544 799

Table 1: Statistics of four ASQP datasets (Cai et al.,
2021a; Zhang et al., 2021a). #S and #Q represent the
number of sentences and quads.

The newly selected candidates at iteration t are 339

defined as: 340

aki [t] = {y∗i |Rθ({xi, y∗i }) > τ},
∀k ∈ {T [t] + 1, . . . , T [t] + ∆T [t]}.

(6) 341

Finally, the probability of the LLM generating 342

the correct answer yi under the refined candidate 343

set is defined as: 344

pLLM(yi | I∗, A∗
i [X ], xi), (7) 345

where X denotes the total number of iterations, 346

empirically set to 2. 347

4 Experiments 348

In this section, we introduce our experimental setup 349

and implementation details, present our frame- 350

works’ performance on several standard datasets 351

compared to competitive baselines. 352

4.1 Setup 353

We conduct experiments on four aspect sentiment 354

quad prediction datasets: ACOS-Laptop, ACOS- 355

Restaurant, Rest15, and Rest16. These datasets are 356

based on the SemEval Challenges (Pontiki et al., 357

2015, 2016), while the quad-level annotations are 358

introduced in Cai et al. (2021a) and Zhang et al. 359

(2021b). Table 1 provides detailed statistics for 360

each dataset, including the number of sentences (S) 361

and quads (Q) in the train, development, and test 362

splits. 363

In this section, we select two powerful founda- 364

tion models (T5-large, Qwen-2.5) that can be de- 365

ployed on a consumer-grade GPU (e.g., NVIDIA 366

RTX 3090, 4090) as the SLM. Specifically, we 367

use SCORER-GAS (Zhang et al., 2024b), which 368

is based on T5-large and additionally trained with 369

pseudo-labeled data generated by the LLMs, and 370

7B-Instruct version (Yang et al., 2024a) for LoRA- 371

based (Hu et al., 2022a) supervised fine-tuning. 372

5



Methods LLMs
F1-score (↑)

ACOS-Rest ACOS-Laptop Rest-15 Rest-16 Avg.

In-context Learning
ZERO-SHOT (Brown et al., 2020) GPT4O-MINI 31.28 11.18 25.24 34.31 25.50
ZERO-SHOT COT (Kojima et al., 2022) GPT4O-MINI 23.01 7.56 21.55 26.73 19.71
FEW-SHOT(N=5) (Brown et al., 2020) GPT4O-MINI 32.76 13.69 30.28 35.39 28.03
MAJORITY-VOTE(N=5, K=8) GPT4O-MINI 34.09 15.22 31.62 36.40 29.33
RETRIEVAL-AUGMENTED(N=5) GPT4O-MINI 42.15 21.87 38.46 41.27 35.94

Supervised Learning w/o LLM
EXTRACT-CLASSIFY (Cai et al., 2021a) — 38.54 35.80 52.96 44.61 42.98
GAS (Zhang et al., 2021b) — 58.63 43.07 46.57 57.55 51.46
DLO (Hu et al., 2022b) — 59.18 43.60 48.48 59.79 52.76
ILO (Hu et al., 2022b) — 58.69 44.35 49.05 59.32 52.85
MVP (Gou et al., 2023) — 61.54 43.92 51.04 60.39 54.22
MUL (Hu et al., 2023) — 60.53 44.01 49.75 60.47 53.69

Supervised Learning w/ LLM
SCORER (Zhang et al., 2024b) GPT4 62.47 46.01 51.74 63.51 56.41
SUPERCONTEXT* (Yang et al., 2024b) GPT4O 61.43 41.28 52.17 62.48 54.34
SCORER-GAS (Zhang et al., 2024b) GPT4 61.44 45.19 50.38 61.08 54.52
SCORER-GAS* GPT4 61.28 44.57 49.63 60.49 53.99

+ STAGE-1 GPT4O 62.86 45.72 51.88 61.77 55.56
+ STAGE-1 GPT4O-MINI 62.50 44.87 51.56 61.58 55.13
+ STAGE-1 & STAGE-2 GPT4O-MINI 63.58 45.22 52.34 62.88 56.01

QWEN2.5 (Yang et al., 2024a) — 62.03 43.12 52.89 63.30 55.34
+ STAGE-1 GPT4O 64.67 44.78 54.22 65.37 57.09
+ STAGE-1 GPT4O-MINI 64.41 43.48 53.85 64.97 56.68
+ STAGE-1 & STAGE-2 GPT4O-MINI 66.78 45.68 55.94 66.83 58.81

Table 2: Performance comparison of different methods on ACOS-Rest, ACOS-Laptop, Rest-15, and Rest-16
datasets. The final column shows the average F1-Score across all datasets. * denotes the method we reproduced.

Additionally, the 0.5B-Instruct version is full-373

parameter fine-tuned to serve as the reward model.374

For black-box LLMs, we include the commonly375

used GPT-4o and GPT-4o-mini. Since the or-376

der of options may influence the experimental re-377

sults (Pezeshkpour and Hruschka, 2024), we report378

results averaged over three runs for experiments379

involving candidate selection, with the candidate380

answers randomly shuffled in each run. Thus, due381

to resource constraints, we perform the complete382

experimental pipeline only on GPT-4o-mini.383

For baseline comparison, we evaluate sev-384

eral commonly used supervised learning meth-385

ods (Yang et al., 2024a; Cai et al., 2021a; Hu et al.,386

2022b; Gou et al., 2023; Hu et al., 2023) as well as387

in-context learning techniques (Brown et al., 2020;388

Wang et al., 2023; Kojima et al., 2022; Liu et al.,389

2022; Yang et al., 2024b). The baseline results390

in the supervised learning w/o LLM section are391

derived from Zhang et al. (2024b).392

4.2 Main Results393

As shown in Table 2, simply relying on in-context394

learning fails to effectively guide LLMs output an-395

swers that align with human expectations and thus 396

have a poor performance. On the other hand, su- 397

pervised fine-tuning with human-annotated labels 398

allows models to learn the preferred types of pre- 399

dictions efficiently, resulting in better performance. 400

Moreover, leveraging supervised models and LLMs 401

leads to further improvements, highlighting the po- 402

tential of leveraging LLMs for this task. Notably, 403

SCORER-GAS based on our framework achieves 404

competitive results with SCORER (Zhang et al., 405

2024b) relying on GPT-4o-mini and requiring no 406

additional data for training a AI-reranker. Further- 407

more, as task performance improves, achieving 408

further gains becomes increasingly difficult. While 409

Qwen2.5-Instruct already performs well, our frame- 410

work enhances it even further, demonstrating the 411

effectiveness of our framework. Surprisingly, Su- 412

perContext (Yang et al., 2024b) still has certain 413

limitations in addressing the ASQP task. A possi- 414

ble reason is that it provides only a single answer 415

generated by the SLM in the prompt, leaving the 416

search space for the LLM too broad. The results in- 417

dicate that our framework by integrating supervised 418

signals of SLM into context for guiding black-box 419
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Methods Rest Laptop Rest15 Rest16

Zero-shot 28.74 10.18 24.33 28.16
Same 62.14 43.10 53.12 63.81
Ours (N = 5) 63.78 42.82 53.35 64.12
Ours (N = 10) 64.41 43.48 53.85 64.97
Ours (N = 20) 64.52 43.44 53.67 64.88

Table 3: Performance comparison of different methods
across datasets. Bold values indicate the best perfor-
mance for each dataset. N denotes the number of candi-
date answers generated by SLM.

LLMs demonstrates significant improvements and420

paves a new way to combine LLMs and supervised421

SMLs for ASQP.422

5 Analysis and Discussion423

The experiments showed that while Qwen2.5 had424

a Top@1 performance similar to SCORER-GAS,425

its larger gap between Top@1 and Top@10 led426

to better results within our framework. Moreover,427

leveraging PEFT techniques like LoRA (Hu et al.,428

2022a) and well-deigned inference framework like429

vLLM (Kwon et al., 2023a), it can achieve T5-430

large-level GPU efficiency. Therefore, we consider431

it a more promising SLM backbone and select it432

for further analysis in this section.433

5.1 Impact of Candidate Answer Strategy434

We evaluate the impact of different candidate an-435

swer strategies on model performance, as shown436

in Table 3. The methods include Zero-shot (no437

options), Same (replicates Top@1 prediction at 10438

times), and Ours. The results show that methods439

with candidate answers outperform Zero-shot, high-440

lighting that providing supervised context helps441

narrow the search space of LLMs, leading to more442

accurate predictions. Compared to N = 5 and443

N = 20, N = 10 achieved relatively better re-444

sults. Therefore, we select the number of candidate445

answers to ten. The reason why the performance446

does not improve significantly when increasing N447

beyond ten might be that the outputs of the SLM re-448

main highly similar. Additionally, a longer prompt449

resulting from larger number of candidate answers450

could negatively impact the LLM’s judgment.451

5.2 Influence of Answer Selection Strategy452

In this section, we compare our proposed frame-453

work with different answer selection strategies.454

“Random” selects the final answer randomly from455

the candidate answers. “Reward” refers to first456
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Figure 5: Influence of different answer selection strate-
gies. “Maj” refers to the Majority-vote strategy, where
“Maj@10” indicates the selection of the majority answer
from 10 candidate answers.

filtering the 10 candidate outputs using a reward 457

model, and then applying majority voting over the 458

filtered candidates to obtain the final answer, with- 459

out using the LLM. The majority-vote approach 460

selects the answer that appears most frequently 461

among the candidates. our framework uses su- 462

pervised context (S1) and reinforcement-enhanced 463

context (S1&S2) along with LLMs to make the 464

final prediction. 465

Majority-vote is a simple but effective baseline, 466

as it aggregates repeated predictions to reflect the 467

performance of the supervised model. As demon- 468

strated in Figure 5, majority-vote achieves strong 469

results across all datasets, while increasing the 470

number of aggregated predictions from Maj@10 to 471

Maj@20 only lead to a marginal improvement. Ad- 472

ditionally, the results of “Reward” show that this ap- 473

proach performs comparably to the Maj@10 base- 474

line, suggesting that a simple combination of multi- 475

ple models does not inherently guarantee improve- 476

ments. However, our method surpasses majority- 477

vote and other methods by combining supervised 478

context and reinforcement-enhanced context with 479

LLM. This highlights the advantages of our frame- 480

work and the essence of the LLM. 481
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Figure 6: Analysis of the iterative alignment of the
LLM. Maj@N indicates the selection of the majority
answer from the current candidate answer pool. S1 and
S2 denotes stage-1 and stage-2.

5.3 Analysis of Iterative Alignment482

In this section, we utilize the ACOS-Rest dataset483

as the benchmark to explore the impact of rein-484

forcement context on LLM outputs across multiple485

iterations.486

As shown in Figure 6, methods incorporating487

Stage-2 consistently outperform other methods at488

each iteration. Furthermore, as the Reinforcement489

Context evolves in each iteration, both the Maj@N490

(S1&S2) and Maj@N (S1) improve, indicating that491

our framework effectively increases the proportion492

of correct answers among the candidate answers.493

However, the gap between Maj@N (S1&S2) and494

Maj@N (S1) suggests that there are still many un-495

certain candidates. Our proposed reward model496

helps filter out these uncertain candidate answers,497

leading to better performance in Maj@N (S1&S2).498

Notably, skipping the Stage-2 leads to performance499

degradation in Top@1. This is likely due to low-500

precision candidate answers affecting LLM judg-501

ment or rapid context growth causing the LLM502

misunderstanding of the instructions.503

5.4 Case Study504

In this section, we present a case study, where Ta-505

ble 4 illustrates one of the most common cases506

in which the proposed framework has led to im-507

provements. Additionally, more detailed examples508

and error analysis can be found in Appendix A.4.509

As shown in Table 4, both the zero-shot method510

and Ours (Stage-1) produced outputs that appeared511

correct but did not align with human preferences.512

However, by leveraging a reward model to con-513

struct a refinement context, our framework was514

Case Study

ZERO-SHOT
Task Definition: {Task Definition}
Input: This is a great place to get a delicious meal
Final output:
((meal, FOOD#QUALITY, delicious, positive),
(a place, RESTAURANT#GENERAL, great, positive)) ✗

OURS (Stage-1)
Task Definition: {Task Definition}
Input: This is a great place to get a delicious meal
Candidate answers:
a) ((meal, FOOD#QUALITY, delicious, positive),

(place, RESTAURANT#GENERAL, great, positive)) ×3
b) (meal, FOOD#QUALITY, delicious, positive) ×4
c) (place, RESTAURANT#GENERAL, great, positive) ×3
Final output:
(place, RESTAURANT#GENERAL, great, positive) ✗

OURS (Stage-1 & Stage-2)
Task Definition: {Task Definition}
Input: This is a great place to get a delicious meal
Candidate answers:
a) ((meal, FOOD#QUALITY, delicious, positive),

(place, RESTAURANT#GENERAL, great, positive)) ×11
b) (meal, FOOD#QUALITY, delicious, positive) ×5
c) (place, RESTAURANT#GENERAL, great, positive) ×8
Final output:
((meal, FOOD#QUALITY, delicious, positive),
(place, RESTAURANT#GENERAL, great, positive)) ✓

Table 4: An example of case study. The symbol ×X
(e.g., ×3) indicates the number of identical candidate
answers.

able to preserve more of the correct answers in the 515

candidate pool. This iterative refinement process 516

enabled the model to correct the error and output 517

the correct prediction, thus demonstrating the ef- 518

fectiveness of our framework. 519

6 Conclusion 520

We proposes a framework that integrates super- 521

vised SLMs with black-box LLMs to address 522

the challenges of aspect sentiment quad predic- 523

tion. Motivated by the complementary strengths 524

of SLMs in capturing task-specific knowledge and 525

LLMs in generalization, we designed a framework 526

to align LLM outputs with human preferences 527

through in-context learning and iterative refine- 528

ment. Experimental results demonstrate that our 529

framework significantly improves aspect sentiment 530

quad prediction performance compared with in- 531

context learning and supervised learning methods. 532

In the future, we will explore extending this align- 533

ment framework to other fine-grained sentiment 534

analysis tasks and further enhancing its adaptabil- 535

ity to diverse datasets and tasks. 536
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7 Limitations537

Despite its effectiveness, our framework has certain538

limitations. First, the in-context learning process539

heavily relies on carefully designed instructions540

and high-quality candidate answers from SLMs.541

If these inputs are not well-crafted, the LLMs542

may fail to align with human preferences. Sec-543

ond, while the framework allows flexible combi-544

nations of large and small models, it is not effec-545

tive when the smaller model is underperformant,546

such as a simple perceptron, which cannot pro-547

vide meaningful guidance for alignment. However,548

we observe that as long as the SLM possesses a549

certain level of ASQP capability, the lower its per-550

formance, the greater the performance gain from551

our framework. Third, our framework involves552

multiple sampling steps, which may increase ad-553

ditional inference time. However, this issue can554

be effectively mitigated by adopting efficient in-555

ference frameworks (e.g., Vllm, SGLang). Future556

research could explore optimizing the efficiency of557

in-context learning setups and developing methods558

to enhance the robustness of instruction designs.559

References560

Anthropic. 2024. The claude 3 model family: Opus,561
sonnet, haiku.562

Xiaoyi Bao, Xiaotong Jiang, Zhongqing Wang, Yue563
Zhang, and Guodong Zhou. 2023. Opinion tree pars-564
ing for aspect-based sentiment analysis. In Findings565
of ACL.566

Xiaoyi Bao, Zhongqing Wang, Xiaotong Jiang, Rong567
Xiao, and Shoushan Li. 2022. Aspect-based senti-568
ment analysis with opinion tree generation. In Pro-569
ceedings of IJCAI.570

Eyal Ben-David, Nadav Oved, and Roi Reichart. 2022.571
PADA: example-based prompt learning for on-the-fly572
adaptation to unseen domains. Trans. Assoc. Comput.573
Linguistics.574

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie575
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind576
Neelakantan, Pranav Shyam, Girish Sastry, Amanda577
Askell, Sandhini Agarwal, Ariel Herbert-Voss,578
Gretchen Krueger, Tom Henighan, Rewon Child,579
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,580
Clemens Winter, Christopher Hesse, Mark Chen, Eric581
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,582
Jack Clark, Christopher Berner, Sam McCandlish,583
Alec Radford, Ilya Sutskever, and Dario Amodei.584
2020. Language models are few-shot learners. In585
Proceedings of NeuralIPS.586

Hongjie Cai, Rui Xia, and Jianfei Yu. 2021a. Aspect- 587
category-opinion-sentiment quadruple extraction 588
with implicit aspects and opinions. In Proceedings 589
of ACL. 590

Hongjie Cai, Rui Xia, and Jianfei Yu. 2021b. Aspect- 591
category-opinion-sentiment quadruple extraction 592
with implicit aspects and opinions. In Proceedings 593
of ACL. 594

Zhibin Gou, Qingyan Guo, and Yujiu Yang. 2023. MvP: 595
Multi-view prompting improves aspect sentiment tu- 596
ple prediction. In Proceedings of ACL. 597

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 598
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 599
Weizhu Chen. 2022a. Lora: Low-rank adaptation of 600
large language models. In Proceedings of ICLR. 601

Mengting Hu, Yinhao Bai, Yike Wu, Zhen Zhang, Liqi 602
Zhang, Hang Gao, Shiwan Zhao, and Minlie Huang. 603
2023. Uncertainty-aware unlikelihood learning im- 604
proves generative aspect sentiment quad prediction. 605
In Findings of ACL. 606

Mengting Hu, Yike Wu, Hang Gao, Yinhao Bai, and Shi- 607
wan Zhao. 2022b. Improving aspect sentiment quad 608
prediction via template-order data augmentation. In 609
Proceedings of EMNLP. 610

Minqing Hu and Bing Liu. 2004. Mining and summariz- 611
ing customer reviews. In Proceedings of SIGKDD. 612

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 613
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 614
guage models are zero-shot reasoners. In Proceed- 615
ings of NeuralIPS. 616

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 617
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon- 618
zalez, Hao Zhang, and Ion Stoica. 2023a. Efficient 619
memory management for large language model serv- 620
ing with pagedattention. In Proceedings of the ACM 621
SIGOPS. 622

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 623
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon- 624
zalez, Hao Zhang, and Ion Stoica. 2023b. Efficient 625
memory management for large language model serv- 626
ing with pagedattention. In Proceedings of the ACM 627
SIGOPS. 628

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik- 629
tus, Fabio Petroni, Vladimir Karpukhin, Naman 630
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, 631
Tim Rocktäschel, Sebastian Riedel, and Douwe 632
Kiela. 2020. Retrieval-augmented generation for 633
knowledge-intensive NLP tasks. In Proceedings of 634
NeurIPS. 635

Shichen Li, Zhongqing Wang, Xiaotong Jiang, and 636
Guodong Zhou. 2022. Cross-domain sentiment clas- 637
sification using semantic representation. In Findings 638
of EMNLP. 639

9

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://doi.org/10.18653/v1/2023.findings-acl.505
https://doi.org/10.18653/v1/2023.findings-acl.505
https://doi.org/10.18653/v1/2023.findings-acl.505
https://doi.org/10.24963/ijcai.2022/561
https://doi.org/10.24963/ijcai.2022/561
https://doi.org/10.24963/ijcai.2022/561
https://doi.org/10.1162/tacl_a_00468
https://doi.org/10.1162/tacl_a_00468
https://doi.org/10.1162/tacl_a_00468
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/2021.acl-long.29
https://aclanthology.org/2021.acl-long.29
https://aclanthology.org/2021.acl-long.29
https://aclanthology.org/2021.acl-long.29
https://aclanthology.org/2021.acl-long.29
https://doi.org/10.18653/v1/2021.acl-long.29
https://doi.org/10.18653/v1/2021.acl-long.29
https://doi.org/10.18653/v1/2021.acl-long.29
https://doi.org/10.18653/v1/2021.acl-long.29
https://doi.org/10.18653/v1/2021.acl-long.29
https://aclanthology.org/2023.acl-long.240
https://aclanthology.org/2023.acl-long.240
https://aclanthology.org/2023.acl-long.240
https://aclanthology.org/2023.acl-long.240
https://aclanthology.org/2023.acl-long.240
https://openreview.net/pdf?id=nZeVKeeFYf9
https://openreview.net/pdf?id=nZeVKeeFYf9
https://openreview.net/pdf?id=nZeVKeeFYf9
https://aclanthology.org/2023.findings-acl.851
https://aclanthology.org/2023.findings-acl.851
https://aclanthology.org/2023.findings-acl.851
https://aclanthology.org/2022.emnlp-main.538
https://aclanthology.org/2022.emnlp-main.538
https://aclanthology.org/2022.emnlp-main.538
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://aclanthology.org/2022.findings-emnlp.22/
https://aclanthology.org/2022.findings-emnlp.22/
https://aclanthology.org/2022.findings-emnlp.22/


Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,640
Lawrence Carin, and Weizhu Chen. 2022. What641
makes good in-context examples for GPT-3? In642
Proceedings of DeeLIO.643

Ilya Loshchilov and Frank Hutter. 2018. Decou-644
pled weight decay regularization. arXiv preprint645
arXiv:1711.05101.646

Tianlai Ma, Zhongqing Wang, and Guodong Zhou. 2024.647
Transition-based opinion generation for aspect-based648
sentiment analysis. In Findings of ACL.649

Yubo Ma, Yixin Cao, Yong Hong, and Aixin Sun. 2023.650
Large language model is not a good few-shot informa-651
tion extractor, but a good reranker for hard samples!652
In Findings of EMNLP.653

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-654
roll L. Wainwright, Pamela Mishkin, Chong Zhang,655
Sandhini Agarwal, Katarina Slama, Alex Ray, John656
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,657
Maddie Simens, Amanda Askell, Peter Welinder,658
Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022.659
Training language models to follow instructions with660
human feedback. arXiv preprint arxiv:2203.02155.661

Pouya Pezeshkpour and Estevam Hruschka. 2024.662
Large language models sensitivity to the order of663
options in multiple-choice questions. In Findings of664
NAACL.665

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,666
Ion Androutsopoulos, Suresh Manandhar, Moham-667
mad Al-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao,668
Bing Qin, Orphée De Clercq, Véronique Hoste,669
Marianna Apidianaki, Xavier Tannier, Natalia V.670
Loukachevitch, Evgeniy V. Kotelnikov, Núria Bel,671
Salud María Jiménez Zafra, and Gülsen Eryigit. 2016.672
Semeval-2016 task 5: Aspect based sentiment analy-673
sis. In Proceedings of NAACL-HLT.674

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,675
Suresh Manandhar, and Ion Androutsopoulos. 2015.676
Semeval-2015 task 12: Aspect based sentiment anal-677
ysis. In Proceedings of NAACL-HLT.678

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-679
pher D. Manning, Stefano Ermon, and Chelsea Finn.680
2023. Direct preference optimization: Your language681
model is secretly a reward model. In Proceedings of682
NeurIPS.683

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec684
Radford, and Oleg Klimov. 2017. Proximal policy685
optimization algorithms. In Proceedings of ICLR.686

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,687
Weiming Lu, and Yueting Zhuang. 2023. Hugging-688
gpt: Solving AI tasks with chatgpt and its friends in689
huggingface. In Proceedings of NeurIPS.690

Guixin Su, Yongcheng Zhang, Tongguan Wang, Ming-691
min Wu, and Ying Sha. 2025. Unified grid tagging692
scheme for aspect sentiment quad prediction. In Pro-693
ceedings of COLING.694

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. 695
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd- 696
hery, and Denny Zhou. 2023. Self-consistency im- 697
proves chain of thought reasoning in language mod- 698
els. In Proceedings of ICLR. 699

Canwen Xu, Yichong Xu, Shuohang Wang, Yang Liu, 700
Chenguang Zhu, and Julian McAuley. 2024. Small 701
models are valuable plug-ins for large language mod- 702
els. In Findings of ACL. 703

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 704
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 705
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao- 706
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian 707
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin 708
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang 709
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, 710
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng 711
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, 712
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, 713
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, 714
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin 715
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang 716
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu 717
Cui, Zhenru Zhang, and Zhihao Fan. 2024a. Qwen2 718
technical report. arXiv preprint arXiv:2407.10671. 719

Linyi Yang, Shuibai Zhang, Zhuohao Yu, Guangsheng 720
Bao, Yidong Wang, Jindong Wang, Ruochen Xu, Wei 721
Ye, Xing Xie, Weizhu Chen, and Yue Zhang. 2024b. 722
Supervised knowledge makes large language models 723
better in-context learners. In Proceedings of ICLR. 724

Wenxuan Zhang, Yang Deng, Xin Li, Yifei Yuan, Li- 725
dong Bing, and Wai Lam. 2021a. Aspect sentiment 726
quad prediction as paraphrase generation. In Pro- 727
ceedings of EMNLP. 728

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan, 729
and Lidong Bing. 2024a. Sentiment analysis in the 730
era of large language models: A reality check. In 731
Findings of NAACL. 732

Wenxuan Zhang, Xin Li, Yang Deng, Lidong Bing, and 733
Wai Lam. 2021b. Towards generative aspect-based 734
sentiment analysis. In Proceedings of ACL. 735

Wenxuan Zhang, Xin Li, Yang Deng, Lidong Bing, 736
and Wai Lam. 2023. A survey on aspect-based senti- 737
ment analysis: Tasks, methods, and challenges. IEEE 738
Transactions on Knowledge & Data Engineering. 739

Yice Zhang, Jie Zeng, Weiming Hu, Ziyi Wang, Shiwei 740
Chen, and Ruifeng Xu. 2024b. Self-training with 741
pseudo-label scorer for aspect sentiment quad predic- 742
tion. In Proceedings of ACL. 743

Zheng Zhang, Zili Zhou, and Yanna Wang. 2022. 744
SSEGCN: syntactic and semantic enhanced graph 745
convolutional network for aspect-based sentiment 746
analysis. In Proceedings of NAACL. 747

10

https://aclanthology.org/2022.deelio-1.10
https://aclanthology.org/2022.deelio-1.10
https://aclanthology.org/2022.deelio-1.10
https://aclanthology.org/2024.findings-acl.182
https://aclanthology.org/2024.findings-acl.182
https://aclanthology.org/2024.findings-acl.182
https://doi.org/10.18653/v1/2023.findings-emnlp.710
https://doi.org/10.18653/v1/2023.findings-emnlp.710
https://doi.org/10.18653/v1/2023.findings-emnlp.710
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.18653/v1/2024.findings-naacl.130
https://doi.org/10.18653/v1/2024.findings-naacl.130
https://doi.org/10.18653/v1/2024.findings-naacl.130
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://aclanthology.org/2024.findings-acl.18
https://aclanthology.org/2024.findings-acl.18
https://aclanthology.org/2024.findings-acl.18
https://aclanthology.org/2024.findings-acl.18
https://aclanthology.org/2024.findings-acl.18
https://openreview.net/forum?id=bAMPOUF227
https://openreview.net/forum?id=bAMPOUF227
https://openreview.net/forum?id=bAMPOUF227
https://aclanthology.org/2021.emnlp-main.726
https://aclanthology.org/2021.emnlp-main.726
https://aclanthology.org/2021.emnlp-main.726
https://doi.org/10.18653/v1/2024.findings-naacl.246
https://doi.org/10.18653/v1/2024.findings-naacl.246
https://doi.org/10.18653/v1/2024.findings-naacl.246
https://aclanthology.org/2021.acl-short.64
https://aclanthology.org/2021.acl-short.64
https://aclanthology.org/2021.acl-short.64
https://aclanthology.org/2024.acl-long.640
https://aclanthology.org/2024.acl-long.640
https://aclanthology.org/2024.acl-long.640
https://aclanthology.org/2024.acl-long.640
https://aclanthology.org/2024.acl-long.640
https://doi.org/10.18653/v1/2022.naacl-main.362
https://doi.org/10.18653/v1/2022.naacl-main.362
https://doi.org/10.18653/v1/2022.naacl-main.362
https://doi.org/10.18653/v1/2022.naacl-main.362
https://doi.org/10.18653/v1/2022.naacl-main.362


A Experiment Details748

A.1 Prompt Details749

This section provides details about the prompts750

used in our experiments, covering both zero-shot751

and few-shot settings for the laptop and restaurant752

domain.753

The specific prompts are presented in Table 9,754

Table 10, Table 11, Table 12. Since the few-755

shot and zero-shot methods lack sufficient knowl-756

edge of ASQP, we incorporate additional knowl-757

edge and examples to provide a more compre-758

hensive understanding of the ASQP task. For759

the Retrieval-Augmented method, we used the760

LangChain framework to implement the process.761

Specifically, LangChain was utilized to build a re-762

trieval pipeline, where a dense retriever searched763

for relevant labeled examples from training dataset.764

The retrieved examples are then integrated into the765

prompt to guide the generation process. For the766

CoT method, we followed prior studies (Kojima767

et al., 2022) and added "Let’s think step by step" af-768

ter the zero-shot prompt. Additionally, our method769

incorporates candidate answers generated by the su-770

pervised model after the zero-shot prompt as shown771

in Table 13 and Table 14.772

A.2 Implementation Details773

In our experiments, all language models used a774

temperature of 0.7 for Top@10 candidate answers775

sampling and 0.2 for Top@1 candidate answers776

sampling. To enhance diversity in LLM-generated777

outputs, we slightly adjusted the generation order778

format of ASQP quads in the instruction during779

sampling, inspired by the previous work (Hu et al.,780

2022b).781

We employ Qwen2.5-7B-Instruct (Yang782

et al., 2024a) and SCORER (Zhang et al.,783

2024b) as our primary supervised SLM and784

Qwen2.5-0.5B-Instruct act as the reward model.785

AdamW (Loshchilov and Hutter, 2018) is used786

as the optimizer, with a learning rate of 1× 10−4787

for LoRA-based supervised fine-tuning (Hu et al.,788

2022a) and 1 × 10−5 for the full-parameters789

supervised fine-tuning. During training, we790

employ early stopping based on the development791

set performance792

Previous research (Pezeshkpour and Hruschka,793

2024) has shown that the performance of LLM794

in multiple choice tasks can be influenced by the795

order of options. Therefore, for experiments involv-796

ing candidate selection, we report results averaged797

# Runs Speed Time (s) F1 Score (%)
QWEN2.5 4.63 27 62.03
OURS (S1) 1.37 80 64.67

Table 5: Inference speed (sample/ms) and cost under
different decoding rounds.

over three runs, with candidate answers randomly 798

shuffled in each run. 799

A.3 Computational Cost Analysis 800

Our framework introduces a multiround inference 801

process, which increases inference time compared 802

to standard single-pass decoding. However, this 803

additional cost is modest and leads to consistent 804

performance improvements. 805

To quantify the cost, we measure the inference 806

time under different numbers of decoding rounds 807

using the vLLM framework (Kwon et al., 2023b), 808

which significantly mitigates latency through opti- 809

mized batching and memory reuse. Specifically, we 810

conduct experiments on the ACOS-Rest test dataset 811

with 583 examples, recording the time for running 812

QWEN2.5-7B-INSTRUCT once (QWEN2.5) and 813

ten times (OURS). The inference experiments were 814

conducted on a single NVIDIA RTX 4090 GPU. 815

As shown in Table 5, running ten inference rounds 816

only triples the inference time compared to a single 817

round, while providing a notable F1 improvement 818

benefit from our framework. 819

Compared with prior methods such as 820

SCORER (Zhang et al., 2024b), our framework is 821

more efficient: we avoid retraining the supervised 822

model and use a smaller LLM (e.g., GPT-4o-mini 823

vs. GPT-4). Thus, our framework offers a 824

favorable trade-off between computational cost 825

and performance. 826

A.4 Case Study 827

In this section, we present anther case studies to an- 828

alyze our framework. In the table, symbols like ×N 829

(e.g., ×2) indicate the number of identical candidate 830

answers. 831

As shown in Table 6, the zero-shot method suc- 832

cessfully followed the instructions and generated 833

a response. However, it produced additional, un- 834

necessary answers that did not align with human 835

preferences. Our method, on the other hand, pro- 836

duced the correct result with the guidance of the 837

supervised candidate answers. 838

As shown in Table 8, we conducted an error 839
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Case Study

ZERO-SHOT
Task Definition: {Task Definition}
Input: The owner is belligerent to guests that have a complaint.
Final output:
((owner, SERVICE#GENERAL, belligerent, negative),

(guests, SERVICE#GENERAL, NULL, negative),
(complaint, SERVICE#GENERAL, NULL, negative)) ✗

OURS (STAGE-1)
Task Definition: {Task Definition}
Input: The owner is belligerent to guests that have a complaint.
Candidate answers:
a) (owner, SERVICE#GENERAL, belligerent, negative)
Final output:
(owner, SERVICE#GENERAL, belligerent, negative) ✓
OURS (STAGE-1 & STAGE-2)
Task Definition: {Task Definition}
Input: The owner is belligerent to guests that have a complaint.
Candidate answers:
a) (owner, SERVICE#GENERAL, belligerent, negative)
Final output:
(owner, SERVICE#GENERAL, belligerent, negative) ✓

Table 6: An example of case study.

analysis, and the results showed that all methods,840

including the supervised learning model, produced841

incorrect answers. Interestingly, the number of can-842

didate answers generated by the supervised model843

indicated that even with supervision, the model’s844

output remained uncertain. Furthermore, we ob-845

served that LLMs tend to exhibit bias when analyz-846

ing neutral sentiment, which aligns with findings847

from previous studies. Notably, our framework, af-848

ter several rounds of reward model refinement, was849

able to explore the candidate answers but failed to850

identify the correct one.851

B Exploring Generalization Ability852

B.1 Generalization to ASTE Task853

Our study primarily investigates the impact of in-854

creasing the number of samples on tasks such as855

Aspect Sentiment Quad Prediction (ASQP). How-856

ever, we have also observed a similar trend in the857

Aspect Sentiment Triplet Extraction (ASTE) task.858

In the ASTE task, we refine the ASQP dataset to859

focus solely on aspect, opinion, and sentiment po-860

larity, deliberately excluding the category attribute.861

Our experimental results Shown in Table 7 indicate862

that increasing the number of samples enhances the863

likelihood of correctly capturing the desired triplets.864

This trend aligns with our findings in ASQP, sug-865

gesting that the observed performance improve-866

ment is not limited to a single task but can extend867

Methods Rest Laptop Rest15 Rest16

Top@1 64.59 65.09 52.18 63.53
Top@10 72.56 69.08 57.90 67.47

Table 7: Top@1 and Top@10 results on the ASTE task
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Ours (Qwen2.5-32B-Instruct)
Ours (GPT4o-Mini)
Ours (GPT4o)

Figure 7: Illustration of the Top@1 performance of our
proposed framework, composed of different model sizes

to other sentiment analysis tasks. 868

In this section, we utilize the Qwen2.5-7B- 869

Instruct (Yang et al., 2024a) model as the base 870

model, further fine-tuned with LoRA (Hu et al., 871

2022a) under supervised learning settings. The 872

observed improvements across different datasets 873

support our hypothesis that increasing sample size 874

consistently enhances extraction performance, rein- 875

forcing the broader applicability of our framework 876

to other tasks. 877

B.2 Analysis of Different Model 878

Combinations 879

we evaluate the scalability of our framework by 880

experimenting with various base supervised mod- 881

els and LLMs. Specifically, we utilize the super- 882

vised SLMs with parameters of 0.5B, 1.5B, and 883

7B (LoRA) and pair them with different LLMs, in- 884

cluding Qwen2.5-32B-Instruct, GPT4o-mini, and 885

GPT-4o. 886

As illustrated in Figure 7, our framework con- 887

sistently demonstrates improved performance as 888

the size and capability of the supervised SLMs 889

and LLMs increase. Specifically, we observe that 890

increasing the size of the supervised SLM from 891

0.5B to 7B leads to substantial improvements in 892

F1-scores across all datasets. Similarly, upgrading 893

the LLM from Qwen2.5-32B-Instruct to GPT-4o 894

yields further performance improvements. These 895

results indicate that our framework supports flexi- 896

ble combinations of SLMs and LLMs with differ- 897

ent capacities, and that models of varying strengths 898
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Case Study

GOLD ANSWER:
((portions, FOOD#STYLE_OPTIONS, not the biggest, negative),

(portions, FOOD#STYLE_OPTIONS, adequate, neutral)) ✓
ZERO-SHOT

Task Definition: {Task Definition}
Input: not the biggest portions but adequate .
Final output:
(portions, FOOD#GENERAL, not the biggest, negative) ✗

OURS (STAGE-1)
Task Definition: {Task Definition}
Input: not the biggest portions but adequate .
Candidate answers:
a) (portions, FOOD#STYLE_OPTIONS, biggest, neutral) ×1
b) (portions, FOOD#STYLE_OPTIONS, adequate, neutral) ×3
c) (portions, FOOD#STYLE_OPTIONS, adequate, positive) ×2
d) (portions, FOOD#STYLE_OPTIONS, biggest, negative) ×2
e) ((portions, FOOD#STYLE_OPTIONS, not, negative),

(portions, FOOD#STYLE_OPTIONS, adequate, neutral)) ×2
Final output:
(portions, FOOD#STYLE_OPTIONS, adequate, neutral) ✗

OURS (STAGE-1 & STAGE-2)
Task Definition: {Task Definition}
Input: not the biggest portions but adequate .
Candidate answers:
a) (portions, FOOD#STYLE_OPTIONS, biggest, neutral) ×1
b) (portions, FOOD#STYLE_OPTIONS, adequate, neutral) ×16
c) (portions, FOOD#STYLE_OPTIONS, adequate, positive) ×2
d) (portions, FOOD#STYLE_OPTIONS, biggest, negative) ×2
e) ((portions, FOOD#STYLE_OPTIONS, not, negative),

(portions, FOOD#STYLE_OPTIONS, adequate, neutral)) ×3
f) ((portions, FOOD#STYLE_OPTIONS, not the biggest, neutral),

(portions, FOOD#STYLE_OPTIONS, adequate, neutral)) ×2
Final output:
(portions, FOOD#STYLE_OPTIONS, adequate, neutral) ✗

Table 8: An example case of error analysis. The symbol
×N indicates the number of identical candidate answers.

can benefit from our framework. Interestingly, we899

find that the performance improvement is more900

significant when the SLM has relatively weaker901

ASQP capabilities, suggesting that our framework902

is particularly effective in enhancing low-resource903

or underperformed SLMs. These findings highlight904

the high scalability of our framework and pave the905

way for future research.906
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Zero-shot example of restaurant domain

Task Definition:
Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.
Pre-defined Categories: Categories must follow the A#B format, where A is one of [’RESTAURANT’, ’DRINKS’, ’SERVICE’, ’FOOD’, ’AMBIENCE’,
’LOCATION’], and B is one of [’GENERAL’, ’STYLE_OPTIONS’, ’QUALITY’, ’PRICES’, ’MISCELLANEOUS’]. Each category must strictly adhere to
these sets, e.g., FOOD#QUALITY.
Input
Instruction: From the restaurant review, identify all aspects, their opinion words, category, and sentiment (’positive’, ’negative’, ’neutral’).
Answer Format: Your final answer can include multiple aspect-opinion pairs, formatted as follows:
"Final Answer: [’aspect_term1’, ’category1’, ’opinion_term1’, ’sentiment1’], [’aspect_term2’, ’category2’, ’opinion_term2’, ’sentiment2’] ...".If an aspect or
opinion term is implicit, use ’NULL’ to represent it.
Input: "Yum !"

Table 9: Zero-shot example of restaurant domain

Few-shot example of restaurant domain

Task Definition:
Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.
Pre-defined Categories: Categories must follow the A#B format, where A is one of [’RESTAURANT’, ’DRINKS’, ’SERVICE’, ’FOOD’, ’AMBIENCE’,
’LOCATION’], and B is one of [’GENERAL’, ’STYLE_OPTIONS’, ’QUALITY’, ’PRICES’, ’MISCELLANEOUS’]. Each category must strictly adhere to
these sets, e.g., FOOD#QUALITY.
Examples
The following are several examples to help you learn how to extract quadruples:
Input: "after all that , they complained to me about the small tip ."
Final Answer: [’NULL’, ’SERVICE#GENERAL’, ’complained’, ’negative’]
Input: "food was okay , nothing great ."
Final Answer: [’food’, ’FOOD#QUALITY’, ’okay’, ’neutral’], [’food’, ’FOOD#QUALITY’, ’nothing great’, ’neutral’]
Input: "i had to ask her three times before she finally came back with the dish ive requested ."
Final Answer: [’NULL’, ’SERVICE#GENERAL’, ’NULL’, ’negative’]
Input: "went on a 3 day oyster binge , with fish bringing up the closing , and i am so glad this was the place it o trip ended , because it was so great !"
Final Answer: [’fish’, ’RESTAURANT#GENERAL’, ’great’, ’positive’], [’NULL’, ’RESTAURANT#GENERAL’, ’glad’, ’positive’]
Input: "ive asked a cart attendant for a lotus leaf wrapped rice and she replied back rice and just walked away ."
Final Answer: [’cart attendant’, ’SERVICE#GENERAL’, ’NULL’, ’negative’]
Input
Instruction: From the restaurant review, identify all aspects, their opinion words, category, and sentiment (’positive’, ’negative’, ’neutral’).
Answer Format: Your final answer can include multiple aspect-opinion pairs, formatted as follows:
"Final Answer: [’aspect_term1’, ’category1’, ’opinion_term1’, ’sentiment1’], [’aspect_term2’, ’category2’, ’opinion_term2’, ’sentiment2’] ...".If an aspect or
opinion term is implicit, use ’NULL’ to represent it.
Input: "Yum !"

Table 10: Few-shot example of restaurant domain

Zero-shot example of Laptop domain

Task Definition:
Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.
Pre-defined Categories: Categories must follow the A#B format, where A is one of [’LAPTOP’, ’HARD_DISC’, ’OS’, ’KEYBOARD’, ’HARDWARE’,
’PORTS’, ’SUPPORT’, ’COMPANY’, ’MULTIMEDIA_DEVICES’, ’POWER_SUPPLY’, ’DISPLAY’, ’BATTERY’, ’FANS&COOLING’, ’CPU’, ’MEM-
ORY’, ’WARRANTY’, ’OPTICAL_DRIVES’, ’GRAPHICS’, ’SOFTWARE’, ’SHIPPING’, ’MOTHERBOARD’, ’MOUSE’, ’Out_Of_Scope’], and B is one
of [’PRICE’, ’DESIGN_FEATURES’, ’OPERATION_PERFORMANCE’, ’USABILITY’, ’GENERAL’, ’QUALITY’, ’PORTABILITY’, ’CONNECTIVITY’,
’MISCELLANEOUS’]. Each category must strictly adhere to these sets, e.g., LAPTOP#GENERAL.
Input
Instruction: From the laptop review, identify all aspects, their opinion words, category, and sentiment (’positive’, ’negative’, ’neutral’).
Answer Format: Your final answer can include multiple aspect-opinion pairs, formatted as follows:
"Final Answer: [’aspect_term1’, ’category1’, ’opinion_term1’, ’sentiment1’], [’aspect_term2’, ’category2’, ’opinion_term2’, ’sentiment2’] ...".If an aspect or
opinion term is implicit, use ’NULL’ to represent it.
Input: "the unit cost $ 275 to start with , so it is not worth repairing ."

Table 11: Zero-shot example of laptop domain.
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Few-shot example of laptop domain

Task Definition:
Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.
Pre-defined Categories: Categories must follow the A#B format, where A is one of [’LAPTOP’, ’HARD_DISC’, ’OS’, ’KEYBOARD’, ’HARDWARE’,
’PORTS’, ’SUPPORT’, ’COMPANY’, ’MULTIMEDIA_DEVICES’, ’POWER_SUPPLY’, ’DISPLAY’, ’BATTERY’, ’FANS&COOLING’, ’CPU’, ’MEM-
ORY’, ’WARRANTY’, ’OPTICAL_DRIVES’, ’GRAPHICS’, ’SOFTWARE’, ’SHIPPING’, ’MOTHERBOARD’, ’MOUSE’, ’Out_Of_Scope’], and B is one
of [’PRICE’, ’DESIGN_FEATURES’, ’OPERATION_PERFORMANCE’, ’USABILITY’, ’GENERAL’, ’QUALITY’, ’PORTABILITY’, ’CONNECTIVITY’,
’MISCELLANEOUS’]. Each category must strictly adhere to these sets, e.g., LAPTOP#GENERAL.
Examples
The following are several examples to help you learn how to extract quadruples:
Input: "acer wants $ 170 to just look at it then add the repair cost on top of that ."
Final Answer: [’acer’, ’SUPPORT#PRICE’, ’NULL’, ’neutral’]
Input: "update : i repaired it myself for $ 12 ."
Final Answer: [’NULL’, ’LAPTOP#GENERAL’, ’NULL’, ’neutral’]
Input: "first one that they shipped was obviously defective , super slow and speakers were garbled ."
Final Answer: [’NULL’, ’SHIPPING#GENERAL’, ’defective’, ’negative’], [’NULL’, ’SHIPPING#GENERAL’, ’slow’, ’negative’], [’speakers’, ’MULTIME-
DIA_DEVICES#GENERAL’, ’garbled’, ’negative’]
Input: "pro : light , reasonable price , fast ."
Final Answer: [’NULL’, ’LAPTOP#DESIGN_FEATURES’, ’light’, ’positive’], [’NULL’, ’LAPTOP#OPERATION_PERFORMANCE’, ’fast’, ’positive’],
[’price’, ’LAPTOP#PRICE’, ’reasonable’, ’positive’]
Input: "overall , it is not horrible , but i wouldn ’ t purchase this model again ."
Final Answer: [’model’, ’LAPTOP#GENERAL’, ’not horrible’, ’negative’]
Input
Instruction: From the laptop review, identify all aspects, their opinion words, category, and sentiment (’positive’, ’negative’, ’neutral’).
Answer Format: Your final answer can include multiple aspect-opinion pairs, formatted as follows:
"Final Answer: [’aspect_term1’, ’category1’, ’opinion_term1’, ’sentiment1’], [’aspect_term2’, ’category2’, ’opinion_term2’, ’sentiment2’] ...".If an aspect or
opinion term is implicit, use ’NULL’ to represent it.
Input: "the unit cost $ 275 to start with , so it is not worth repairing ."

Table 12: Few-shot example of laptop domain

Our instruction for restaurant domain

Task Definition:
Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.
Pre-defined Categories: Categories must follow the A#B format, where A is one of [’RESTAURANT’, ’DRINKS’, ’SERVICE’, ’FOOD’, ’AMBIENCE’,
’LOCATION’], and B is one of [’GENERAL’, ’STYLE_OPTIONS’, ’QUALITY’, ’PRICES’, ’MISCELLANEOUS’]. Each category must strictly adhere to
these sets, e.g., FOOD#QUALITY.
Instruction:
From the restaurant review, identify all aspects, their opinion words, category, and sentiment (’positive’, ’negative’, ’neutral’).
You will be given several possible answers and the correct answer is highly likely to be among the provided options. Please select the most appropriate option.
Only if you believe none of the options are correct, provide your own answer.
Answer Format:
Your final answer can include multiple aspect-opinion pairs, formatted as follows:
"Final Answer: [’aspect_term1’, ’category1’, ’opinion_term1’, ’sentiment1’], [’aspect_term2’, ’category2’, ’opinion_term2’, ’sentiment2’] ...".
If an aspect or opinion term is implicit, use ’NULL’ to represent it.
Input:
{Input review}
Candidate answers:
{candidate answers}

Table 13: Our instruction for restaurant domain

Our instruction for laptop domain

Task Definition:
Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.
Pre-defined Categories: Categories must follow the A#B format, where A is one of {category_a}, and B is one of {category_b}. Each category must strictly
adhere to these sets, e.g., BATTERY#GENERAL.
Instruction:
From the laptop product review, identify all aspects, their opinion words, category, and sentiment (’positive’, ’negative’, ’neutral’).
You will be given several possible answers and the correct answer is highly likely to be among the provided options. Please select the most appropriate option.
Only if you believe none of the options are correct, provide your own answer.
Answer Format:
Your final answer can include multiple aspect-opinion pairs, formatted as follows:
"Final Answer: [’aspect_term1’, ’category1’, ’opinion_term1’, ’sentiment1’], [’aspect_term2’, ’category2’, ’opinion_term2’, ’sentiment2’] ...".
If an aspect or opinion term is implicit, use ’NULL’ to represent it.
{Input review}
Candidate answers:
{candidate answers}

Table 14: Our instruction for laptop domain
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