
Robot Utility Models: General Policies for Zero-Shot
Deployment in New Environments

Haritheja Etukuru∗1, Norihito Naka1, Zijin Hu1, Seungjae Lee1, Julian Mehu2, Aaron Edsinger2,
Chris Paxton2, Soumith Chintala3, Lerrel Pinto1, Nur Muhammad “Mahi” Shafiullah∗1

1New York University, 2Hello Robot Inc., 3Meta Inc.

robotutilitymodels.com

3. Deploy in new environments, zero shot, with mLLM feedback

Robot Utility Models
train once, deploy zero-shot

1. Collect large, diverse,
task specific dataset.

â

RUM
policy

2. Train multi-modal
behavior generation model

RUM
policy

mLLM
Failure? 

<restart> â

E.g. your
home

Door opening

Drawer opening Tissue pick up

Bag Pick Up

Object reorientation

Fig. 1: Robot Utility Models are trained on a diverse set of environments and objects, and then can be deployed in novel environments
with novel objects without any further data or training.

Abstract— Robot models, particularly those trained with
large amounts of data, have recently shown a plethora of
real-world manipulation and navigation capabilities. Several
independent efforts have shown that given sufficient training
data in an environment, robot policies can generalize to demon-
strated variations in that environment. However, needing to
finetune robot models to every new environment stands in stark
contrast to models in language or vision that can be deployed
zero-shot for open-world problems. In this work, we present
Robot Utility Models (RUMs), a framework for training and
deploying zero-shot robot policies that can directly generalize
to new environments without any finetuning. To create RUMs
efficiently, we develop new tools to quickly collect data for
mobile manipulation tasks, integrate such data into a policy
with multi-modal imitation learning, and deploy policies on-
device on the Hello Robot Stretch, a cheap commodity robot,
with an external mLLM verifier for retrying. We train five such
utility models for opening cabinet doors, opening drawers, pick-
ing up napkins, picking up paper bags, and reorienting fallen
objects. Our system, on average, achieves 90% success rate
in unseen, novel environments interacting with unseen objects.
Primary among our lessons are the importance of training data

* Denotes Equal Contribution

over training algorithm and policy class, guidance about data
scaling, necessity for diverse yet high-quality demonstrations,
and a recipe for robot introspection and retrying to improve
performance on individual environments.

I. INTRODUCTION

We have seen rapid progress in training manipulation skills
recently [1, 2, 3, 4, 5, 6, 7], largely brought about by fitting
deep networks on data collected by teleoperating robots [8, 9,
10, 11, 12]. The mechanism for deploying such skills in new
environments mimics the pretrain-then-finetune strategy first
developed by the vision community circa 2014 [13]. There,
models were first pretrained on ImageNet and then finetuned
on task-specific data such as detection, segmentation, and
pose estimation [13, 14].

In the context of robotics, this strategy involves pretraining
on large robot datasets [15, 12, 16, 17] to produce a robot
foundation model, which is then fine-tuned on data collected
in new environments or tasks [16, 18, 7]. This need to fine-
tune the foundation model for each and every new environ-

https://robotutilitymodels.com

ment is limiting as it requires humans to collect data in the
very environment where the robot is expected to perform. So
while vision and language models have moved on to zero-
shot deployments, i.e. without environment-specific finetun-
ing data, such a capability eludes most robot manipulators.
This is not to say that there have not been attempts to create
zero-shot manipulation models – several foundational work
in grasping and pick-and-place [19, 20, 21] have tackled this
problem albeit with a task-specific solution.

Creating a general policy for an arbitrary task that works
zero-shot is challenging for several reasons. First, training
such a model requires a large amount of data, and collecting
robot data is difficult and expensive due to the need for
human demonstrations. Second, open-world datasets have
diverse and multi-modal behaviors, making it hard to fit
models to this data. Third, unlike standardized data in
vision and language, robotics lacks uniform hardware setups,
complicating real-time model deployment. Finally, zero-shot
models in new environments have higher failure rates, ne-
cessitating robust error detection and recovery mechanisms.

In this work, we introduce Robot Utility Models (RUMs),
a new framework for training focused and functional utility
models to complete helpful tasks that can be deployed zero-
shot without further training or fine-tuning in novel envi-
ronments. This is done by taking a systems-first approach.
To scale up our datasets without compromising on data
quality, we develop a new tool, building on prior work in
untethered data collection [16, 22]. We train policies on these
diverse datasets with state-of-the-art multi-modal behavior
learning algorithms [23, 24] and show how they can absorb
and scale with large-scale demonstration data. Finally, we
deploy the policies in multiple different environments out
of the box, with self-critique via mLLMs [25] and retrying,
showing how the policy can be robustly executed on cheap,
general-purpose hardware. A selection of our trained models
are available on the Hello Robot Stretch without much
modification.

Creating and deploying RUMs led us to several key
lessons. First, we find that data quantity and quality are cru-
cial for training a utility model, while model architecture is
less critical. Second, we see that data diversity is essential for
generalization to new environments, outweighing raw data
quantity. Third, we find that single-environment performance
improves by using an independent model for self-critique and
retrying when appropriate.

To validate RUMs, we run a total of 2,950 robot rollouts
in real-world environments including homes in New York
City (NY), Jersey City (NJ), and Pittsburgh (PA). These
experiments reveal the following:
• We show that it is possible to create general Robot Utility

Models with a moderate amount of data in the order of
1,000 demonstrations (Section II). These RUMs achieve a
90% average success rate on zero-shot deployment in 25
novel environments (Section III-A).

• The success of RUMs relies primarily on two key tech-
niques. First, the use of multi-modal policies (Section II-C)
provides a zero-shot success rate of 74.4% (Section III-B).

Wrist mounted iPhone Pro

Flexible fingers

Robot arm with 6D pose
& position control

3D printed chassis with
cable-driven trigger

Fig. 2: Stick-v2, our data collection tool (right), is built out of an
iPhone Pro and a bill of materials that adds up to $25. The tool is
portable, robust, and makes it easy to start collecting data in a new
environment in seconds. We match the end-effector on the Stretch
robot (left) for seamless transfer of policies trained on Stick data.

Second, the mLLM-based self-critique and retrying system
(Section II-D) further improves the success rate by 15.6%
(Section III-F).

• While the overall framework for RUMs is straightforward,
the devil is in the details, where we find gains from
unexpected sources, e.g. data diversity vs. data quantity
(Section III-D and III-E).
To encourage the development of RUMs for a wider

variety of tasks, our code, data, models, hardware designs, as
well as experiment and deployment videos are open-sourced
and can be found on our website: robotutilitymodels.com.

II. ROBOT UTILITY MODELS

We take a full-stack approach to create Robot Utility
Models. At its core, our system follows the imitation learning
framework. However, to effectively scale imitation learning
to the point where our trained policies are deployable zero-
shot, we create new tools and techniques to improve data
collection, model training, inference, and deployment.

A. Data collection tool

One of the primary requirements of our system is to be
able to scale up diverse yet accurate demonstration data for
cheap. To this end, we continue on the evolutionary path of
hand-held, portable data collection tools [26, 27, 28, 16, 22]
that let us quickly collect precise demonstrations. Following
our previous work [16], we call this tool Stick-v2, which is
a hand-held data collection tool built out of an iPhone Pro
and has a bill of materials that adds up to $25. We combine
inspirations from the quick deployability of Stick-v1, and the
compact, handheld form factor of UMI gripper [22].

Our design prioritizes portability, convenience, and quick
setup, which we found essential for scaling robot datasets
and training RUMs. As shown in Section III-C, data di-
versity—collecting data across many environments—is cru-
cial. Thus, a portable, mass-producible tool enables fast
deployment. Additionally, it is important to minimize “per-
environment setup time,” whether it be for data collection,
camera calibration, or the tool’s SLAM system.

https://robotutilitymodels.com

For the above reason, we design our data collection tool,
Stick-v2, around the ARKit API from the widely available
and used iPhone Pro (Figure 2). The iPhone can collect RGB
video and depth data at up to 60 Hz and high precision 6D
pose data from the ARKit API at up to 100Hz. This pose
data gives us the absolute translate and rotation of the iPhone
in space, with respect to some world frame. To capture the
gripper opening information, we trained a simple RGB-based
model that predicts the gripper aperture (in the range [0, 1])
from images. The model predicts x, y positions of the finger
tips, then computes the normalized distance. We trained this
model on a hand-labeled ∼200 image dataset of our gripper
grasping various objects in front of a green screen, with the
background randomized during training. The RGB, depth,
and pose data is automatically synchronized and timestamped
by the iPhone without the need for any calibration, further
minimizing set-up time. This is in contrast to other data
collection tools based on visual SLAM systems which have
limited precision and are non-robust around “textureless”
scenes such as close to flat walls, ceilings, or corners [22, 27].
Finally, not needing camera calibration makes our system
deployable out-of-the-box in unseen environments, especially
in the real world where the environment is not controlled.

B. Collected datasets

We collect data for each of our five tasks, which are as
defined below:

• Door opening: Open doors with a long handle, on e.g.
cabinets and microwaves. Due to hardware limitations,
our robot cannot open doors with round knobs, so we
exclude them from our dataset.

• Drawer opening: Open a drawer with a handle. We
exclude drawers with knobs from our dataset for similar
reasons as above.

• Reorientation: Pick up a cylindrical object (e.g. bottle)
lying on a flat surface and set it upright.

• Tissue pickup: Pick up a soft, flexible tissue paper from
any tissue paper box.

• Bag pickup: Pick up a kraft paper bag or similar other
bags from a flat surface.

For each of our five RUMs, we focused on gathering
approximately 1,000 demonstrations on approximately 40
environments, with about 25 demonstrations per environment
on average. The only exceptions are door opening with 1,200
and drawer opening with 525 demonstrations. A sample of
demonstrations from these environments can be found on
our website: robotutilitymodels.com/#dataset. For the door
opening task, we seeded this dataset with the Homes of
New York dataset [16] as well as demonstrations collected
during the Dobb·E experiments. For the other tasks, our
dataset consists of new demonstrations collected using the
Stick-v2 tool on a novel set of environments and objects.
For demonstrations collected from the previous dataset by
inexperienced data collectors, we do a manual quality check
and exclude any environment that has a high number of
low-quality demonstrations, such as failed demonstrations.
Note that, to keep our experiments unbiased, we hold out

test environments and objects and never collect any data on
them. To gain quick insight on different task data we use for
training, we created an interactive data diversity visualization
tool: robotutilitymodels.com/data diversity/.

C. Model training

Given that our data is collected by a large set of demon-
stration collectors, conceptually it is important for the model
to handle any resultant multi-modality in the dataset. In this
work, we train a large set of policy classes on our datasets
for each task. Among the policy classes, the best performing
ones are VQ-BeT [23] and Diffusion Policy (DP) [24]. We
also train ACT [1] and MLP-BC policies on a limited set
of tasks. Each policy class shares some features, such as
a ResNet34-based vision encoder initialized to the HPR
encoder from [16], and a transformer-based policy trunk. We
also train each model for the same 500 epochs. Beyond that,
we sweep to find the best hyperparameters for learning rate,
history length, and chunk size, and use the recommended
hyperparameters from the original papers for each model.
Our final VQ-BeT models are trained on data subsampled at
3.75Hz, and use a sequence of 6 frames to predict the next
action. All of our models predict the action in relative 6D
space for the robot end-effector, and absolute value in the
range [0, 1] for the gripper opening. We discuss the impact
of choosing different training algorithms in Section III-B.
Training all of our models took between 24 and 48 hours on
2 Nvidia A100 GPUs, with proportional speed-ups by using
more GPUs or using more recent GPUs like H100s.

D. Retrying with GPT-4o feedback

As the timesteps progress, does the robotic
arm open the door AND is the robot arm
grasping the handle in the LAST timestep?
Please respond with only 'Yes' or ‘No'

As the timesteps progress, does the robotic
arm open the door AND is the robot arm
grasping the handle in the LAST timestep?
Please respond with only 'Yes' or ‘No'

No

<Reset and retry>

Yes

<Terminate>

Robot Utility Model Multimodal LLM (gpt-4o-2024-05-13)

Trial 1 Trial 2

Fig. 3: Automated retrying with feedback from a multimodal LLM
critic. We use a multimodal LLM (gpt-4o-2024-05-13) to
verify the success of a task given a summary of robot observations.
If the mLLM detects a failure, we automatically reset the robot and
retry the task with a new initial robot state until success or timeout.

While a pre-trained model can solve the task in a new
environment, to achieve the best possible performance,
it is helpful to have additional runtime support for the
model. For our deployment, we use a multimodal LLM
(gpt-4o-2024-05-13) as an introspection module for
our policies for a success detection and retrying mechanism.
We define a single verification prompt for each task, and ask
the mLLM to verify the success of the task given a summary

https://robotutilitymodels.com/#dataset
https://robotutilitymodels.com/data_diversity/

Chart 1

Su
cc

es
s

ra
te

 (%
)

0

20

40

60

80

100

Reorientation Drawer opening Door opening Tissue pick up Bag pick up

8492949486

90
Average

VQ-BeT

Table 1

VQ-BeT VQ-BeT stddev VQ-BeT stderr

Reorientation 86 9 4

Drawer opening 94 9 4

Door opening 94 13 6

Tissue pick up 92 13 6

Bag pick up 84 15 7

X X X X

X

X X X
X
X

X
X
X XX

X

X

X X X

X

X

X
X X

1

Fig. 4: Success rate of Robot Utility Models on average over five
novel scenes in five different tasks, with automated retrying in each
trial. The X’s on the figure denote success rates from individual
environments.

of robot observations. As for the run summary, we give the
mLLM every other frame from the robot camera, which is
either from the head or the wrist camera depending on the
task. At the end of a fixed time horizon, if the mLLM detects
a failure (Figure 3), RUM automatically resets the robot to
a random home position within a 5cm radius of the original,
and retries the task with the new initial robot state.

E. Deployment Details

Our hardware for Robot Utility Models deployment is
the Hello Robot: Stretch robot with an iPhone on the wrist
(Figure 2). We use the iPhone Pro as the deployment camera.
We run lightweight policies (VQ-BeT, ACT, and MLP-BC)
directly on the robot’s Intel NUC, and Diffusion Policy
through a GPU workstation. One step of our VQ-BeT policy
runs with ∼15ms inference time on an A4000 GPU and
∼115ms inference time on the NUC CPU, while we find
Diffusion Policy takes ∼540ms on GPU and ∼4300ms on
CPU, hence the decision to run it on an external workstation.

III. CAPABILITIES OF ROBOT UTILITY MODELS

To understand the capabilities of RUMs, we evaluate each
of our models on a diverse set of environments. At the same
time, we try to examine our recipe for training utility models
and answer a set of questions about the trained models by
running a set of ablation experiments. The primary questions
that we try to answer are the following:
• How well do Robot Utility Models solve a task in an

unseen environment while operating on unseen objects?
• What is the relative importance of different components

of Robot Utility Models, such as training data, training
algorithm, and self-verification?
– What scale of data is needed to train capable RUMs?
– What properties of data are most important for training

RUMs?
– How does mLLM-based self-critique affect RUMs, and

where does it succeed or fail?
a) Evaluation details: For each task, we set up 25

novel environments – five for each task – with objects
and props not seen in the training dataset. To create these
evaluation environments, we take the robot to previously
unseen kitchens, purchase new furniture online (door and
drawer opening), and source new objects manually verified
to not be in the training set (reorientation, bag and tissue
pick up). We evaluate each system and policy for 10 trials in

Su
cc

es
s

ra
te

 (%
)

0

25

50

75

100

Reorientation Drawer opening Door opening Tissue pick up Bag pick up

Diffusion Policy VQ-BeT

Table 1

Diffusion Policy VQ-BeT DP stddev VQ stddev DP stderr VQ stderr

Reorientation 62 68 31.144823 18.16590212 13.92838827503988.12403840258551
Drawer opening 66 76 28.80972058 33.61547263 12.884098725930915.0332963792927
Door opening 62 76 23.87467277 21.67948339 10.67707825085669.69535971542352
Tissue pick up 72 80 38.98717738 12.24744871 17.43559577450445.47722557330042
Bag pick up 82 84 20.49390153 11.40175425 9.165151389053395.09901951314943

1

Fig. 5: Relative comparison of the success rate (with standard error)
of different policy architectures on our dataset on all five tasks with
one-try evaluation (without automated retrying). The performance
of VQ-BeT and Diffusion Policy is generally close, with VQ-BeT
narrowly outperforming Diffusion Policy.

Chart 1

Reorientation

Tissue pick up

Success rate (%)
0 20 40 60 80 100

MLP-BC ACT Diffusion Policy VQ-BeT

Table 1

Diffusion Policy VQ-BeT MLP-BC ACT

Reorientation 62 68 44 48

Tissue pick up 72 80 64 66

2

Fig. 6: Relative comparison of different policy architectures on our
dataset on two tasks with one-try evaluation (without automated
retrying). The performances of VQ-BeT and Diffusion Policy are
close, while the performance of other algorithms is not far behind.

each of these environments, starting from the same grid of
starting positions facing the task space used by [16]. For the
retrying-based experiments, while RUMs take 1.31 tries in
average to succeed (Section III-F), we set a 10-try timeout
to avoid getting stuck in infinite retry loops.

A. Zero-shot evaluation of RUMs on unseen environments

The most important test of capability for a Robot Utility
Model is whether such a model is capable of solving the
target task in a new environment operating on new objects.
We test for this capability by running our RUMs on our set
of 25 test environments and objects not seen during training.

On Figure 4, we see that on unseen and novel environ-
ments, RUMs perform well, as, with automated retrying, it
achieves a 90% success rate overall, and ranges between 84%
to 94% on individual tasks. We see that in every environment
we evaluate on, RUMs is able to achieve some success.
This success implies that our policies have a general idea of
solving the target task; then, such policies are further boosted
with post-training methods (Section III-F). On all of our
following experiments, we try to understand these two factors
separately: the raw performance of the underlying RUM
policies, and the effect of introspection and retrying on the
performance of RUMs.

B. Effect of policy architecture and training on RUMs

Once we have verified that RUMs can solve tasks in novel
environments, we analyze the importance of different training
components. Specifically, we compare the performance of

Door Opening

Diffusion VQ-BeT

20% 42 8 24 14.35270009
40% 48 10.67707825 22 7.348469228
60% 58 11.13552873 38 9.695359715
80% 58 9.121403401 64 11.22497216

100% 62 13.92838828 76 8.124038405

Su
cc

es
s

ra
te

 (%
)

0
25
50
75

100

Data usage (% of full dataset)

20% 40% 60% 80% 100%

Diffusion VQ-BeT

Door opening

Reorientation

Diffusion VQ-BeT

20% 20 12 7.071067812 2
40% 38 24 7.348469228 5.099019514
60% 52 38 9.695359715 5.830951895
80% 62 64 10.67707825 6.782329983

100% 60 68 10.29563014 9.695359715

0
25
50
75

100

Data usage (% of full dataset)

20% 40% 60% 80% 100%

Diffusion VQ-BeT

Reorientation

Table 2

Diffusion VQ-BeT

25% 46 22 12.08304597 5.830951895
50% 64 24 15.03329638 6.782329983
75% 52 38 20.34698995 11.5758369

100% 76 84 7.483314774 10.09950494

0
25
50
75

100

Data usage (% of full dataset)

25% 50% 75% 100%

Diffusion VQ-BeT

Tissue pick up

1

Fig. 7: Performance change of RUMs as we scale the datasets up on
three tasks, evaluated ‘one-try’ (without automated retrying), with
standard error shown on error bars. We observe better performance
from Diffusion Policy (DP) on smaller datasets, but as we scale up,
VQ-BeT outperforms DP in the 900–1,200 demonstrations limit.

various policy architectures on our dataset without introspec-
tion. We train multiple policy classes per task, including VQ-
BeT [23], Diffusion Policy (DP)[24], and baselines ACT[1]
and MLP-BC on two tasks. Figure 5 and 6 show the base
success rates of different architectures without retrying.

As we see in Figure 5, VQ-BeT and DP are the top
two algorithms in terms of performance, with comparable
performance in most tasks and overlapping error bars. More-
over, we see from Figure 6 that while ACT and MLP-BC
are not exactly on par, they are not too far behind. As
we see the training algorithm is not necessarily a make-
or-break decision, we recommend more energy be spent on
collecting diverse and accurate data. While we have similar
performances on the test environment, we use VQ-BeT over
DP for our final models due the higher performance and a
lower latency on the robot CPU itself during deployment.

C. Effect of scaling datasets on RUMs

As our experiments show the importance of training data
in creating RUMs, we investigate the dataset properties that
successful RUMs rely on. In particular, the dataset scale
at which reliable generalization emerges, and how RUMs’
performance vary with dataset size. We train our policies
on a random subset of environments from the task-specific
datasets, and evaluate them on our evaluation environments.

In Figure 7, we show the performance of VQ-BeT and
Diffusion Policy, without retrying, trained on such data
subsets on our evaluation environments as we scale up the
dataset. We see that while Diffusion Policy performs better
on smaller datasets, it saturates on larger datasets where VQ-
BeT outperforms it. This observation implies that while a
smaller dataset may be sufficient for training capable RUMs,
a larger dataset is crucial for achieving the best performance.
Even on our largest datasets, we see that the performance
of VQ-BeT continues to improve as the dataset scales up,
implying that more data may improve RUMs even further.

D. Importance of data diversity in training RUMs

Beyond the scale of the dataset, we also investigate how
the diversity of the training data impacts the performance
of RUMs in Figure 8 (left). We create two alternate datasets
of equal size for the door opening and the object reorientation
tasks. The first datasets are composed of a large number
of diverse environments with roughly 25 demonstrations in
each environment. The second dataset is composed of fewer,
between 5 and 6, distinct environments with roughly 200

Su
cc

es
s

ra
te

 (%
)

0

25

50

75

100

Door opening Object reorientation

18

64 68
76

Diverse data 
(25 demo/env)

Uniform data 
(200 demo/env)

Table 1

Diverse data Concentrated data Co-training Drop

Door opening 76 64 76 12

Object reorientation 68 18 34 50

0

25

50

75

100

Door opening Drawer opening

34

76 76

52

32
22

Non-expert data Expert data Co-training

1

Fig. 8: Understanding the importance of different qualities of data
in training RUMs. On the left, we see that diverse datasets are
more valuable than more uniform datasets, with strong effects on
the reorientation task with many unseen environments and objects.
On the right, we see that expert data is more valuable than non-
expert data while learning behavior on an identically sized dataset.
Moreover, we see that co-training with both types of data may
sometimes reduce performance, contrary to common knowledge,
especially when the task demands multiple degrees of motion.

demonstrations on each environment. We see that on the
door opening task, where the scene diversity is narrower,
both diverse and uniform environment trained policies per-
formed well. However, in the reorientation task, with much
more diverse environments and objects at test-time, only the
diverse-environment trained RUM policy performs well – the
policy trained on more uniform environments experiences a
50% performance drop. This result implies that to train an
effective RUM, collecting a diverse dataset is important.

E. Impact of expert demonstrations on training policies

While scaling up the dataset size and diversity is important
for training RUMs, an important question to consider is the
quality of the training dataset. Namely, while it may be
easy to collect a large number of demonstrations by a large
number of demonstrators, the quality of the demonstrations
may vary. In this section, we investigate the value of using
expert demonstrations in training RUMs.

In Figure 8 (right) we compare the performance of RUMs
trained on roughly 500 demonstrations, where the data is
either sampled from expert or non-expert demonstration col-
lectors. Here, “expertise” is defined as experience deploying
Dobb·E policies on the robot. We see that in general, expert
data is more valuable than non-expert data, with expert data
outperforming non-expert data in all tasks. Moreover, we
see that co-training with expert and non-expert data can
sometimes, but not always, improve the performance of the
policy. This observation implies depending on the task, data
quality can have different levels of suboptimality depending
on task complexity, and in extreme cases may even hurt
performance in co-training, which goes against a common
practice in some earlier works [1, 12].

F. Effects of introspection and retrying with self-critique

In RUMs, we are using a multimodal large language
model (mLLM) as a self-critique method to identify failures.
However, a pretrained mLLM in practice is just another layer
of fail-safe for our robot deployment, and not a guarantee of
success in itself. Thus, in this section we try to understand
how it helps, and how this introspection method can fail.

In Figure 9 (left), we can see the improvement rate
of using self-critique over simply using the RUM policies

Table 1

Task Mean tries to success False positive rateImprovement rate

Object reorientation 1.348837209 0% 18

Drawer opening 1.617021277 4% 20

Door opening 1.382978723 2.86% 26

Tissue pick up 1.173913043 7% 10

Bag pick up 1.047619048 10% 4

0.5

1.0

1.5

2.0

Mean tries to success

2.5%

5%

7.5%

10%

False positive rate

Object reorientation Drawer opening Door opening Tissue pick up Bag pick up

+7%

+14%

+21%

+28%

Improvement rate

+15.6%
4.8%

1.31

1

Fig. 9: The role of introspection and retrying in RUMs: on the
left, we show that retrying improves the performance of RUMs
significantly, with an average improvement of 15.6% over ‘single-
try’. In the middle, we show that with retrying, most tasks get
solved with 1.31 tries on average. On the right, we see that while
the mLLM verifier helps, it may also have false positives (4.8%
average over five tasks) which may let some errors slip past.

without any retrying mechanism. On average, over our 5
tasks, we see a 15.6% improvement over simply using RUM
policies. While retrying is crucial to a higher success rate,
a system that is perpetually retrying is much less useful.
Thankfully, when RUMs succeed, they do so within 1.31
tries on average, as we see from Figure 9 (middle). Finally,
we analyze the primary failure mode of mLLMs, which
is predicting false positives: classifying a trajectory as a
success when it’s actually a failure. On average, 4.8% of our
trajectories exhibit such behavior, constituting of half of the
total errors, as seen on Figure 9 (right). However, we posit
that this source of error will reduce with stronger verifiers
in the form of more powerful language and vision models.

IV. RELATED WORKS

a) Large Scale Data Collection: The data acquisition
pipeline is key in data-driven robot learning frameworks.
Previous work has used a variety of techniques, combining
open-source datasets from diverse simulation and real-world
environments from many robot embodiments [29, 15, 3, 12].

Common approaches to robot demonstration collection
involve pairing robots with remote controllers or similar
devices. These range from full robotic exoskeletons [30,
31, 32] to simpler tools [1, 33, 2], and methods that don’t
require physical robot movement [16, 26, 28, 27, 22]. Other
control methods include gaming controllers [34, 35], VR
devices [9, 36, 11, 37, 38, 39, 40, 5], and mobile phones [8].

Physically moving a robot is intuitive but hard to scale,
while controller-based methods require mental mapping of
inputs to robot behavior. Non-physical approaches, though
efficient, lack force feedback. Studies such as [16, 22]
compare these methods. In this work, we improve upon the
device proposed in [16, 22] for our data collection pipeline.

b) Pretrained Robot Models: Pre-trained foundation
models have demonstrated a wide range of generalization
performance across various domains, with the capability to
learn from internet-scale pre-training data [41, 42, 43, 44].
However, compared to these vision and language pre-trained
models, learning a robotics foundation model has been more
challenging due to the limited size of available datasets
[45, 46, 47, 48], the significant discrepancy across the
domains [49, 50, 15], and the inherent challenges of rep-
resenting diverse robot actions [23, 3, 51].

Recent research addresses these challenges by adopting
modular and hierarchical systems, incorporating pre-trained
language and visual models [52, 53, 54, 55, 56, 57], and
using efficient large-scale data collection methods [12, 3,
17, 58, 59]. These techniques enhance generalization in pre-
trained robot models, enabling them to operate across differ-
ent robot embodiments and environments [18, 29, 7, 60].
Whereas these approaches rely on fine-tuning with task-
specific data, our project achieves generalizable performance
without fine-tuning for each new robot or environment.

c) Large Models Feedback and Improvement: Due to
their capacity to comprehend intricate semantics and rela-
tions, LLMs have been used for run-time monitoring [61,
62, 63], and have been applied to robotic agents powered
by imitation learning [64, 7, 65, 66] and reinforcement
learning [67, 68]. Among the wide capabilities afforded by
language models, those commonly employed in the context
of decision-making include providing feedback in the reso-
lution of uncertain information [69, 70, 71, 72, 25, 73, 74],
suggesting affordances of what is possible in the environment
through Value functions [75], and imagination of outcomes
[76] or planning and decompose complex tasks into mid-
level plans [77, 78, 79, 80]. Language models could also
be used to improve the overall performance of autonomous
agent systems by improving reward signal [81, 68, 82],
leveraging their long-horizon reasoning [83, 84, 85], or
designing environments [86]. In this project, we employ an
mLLM to provide feedback in the form of a reset signal, a
manner analogous to that of the studies above.

V. LIMITATIONS AND CONCLUSION

While in this work we create Robot Utility Models that
can perform particular tasks zero-shot in novel environments,
future versions can improve upon certain limitations. Primary
among those are that of hardware: for example, two-fingered
grippers like our Stick-v2 cannot open doors with round
doorknobs. Similarly, while flexible fingertips can be more
lenient for the policy, they make manipulating heavy objects
hard. Secondly, we assume navigation to be a separate
component, and in this work assume that the robot is in
the task space facing the task objective. Combining with
modular navigation work such as [56] should address this
issue. Finally, for introspection and retrying, we assume that
the errors made by our model (a) leaves the task-space
somewhat in-distribution, and (b) allows for an easy reset
of the robot to the initial state. Increasing training data with
failure recovery behavior in our dataset should let our robots
recover more naturally from such failure cases.

VI. FUNDING ACKNOWLEDGEMENTS

NYU authors are supported by grants from Honda,
Hyundai, NSF award 2339096 and ONR awards N00014-21-
1-2758 and N00014-22-1-2773. MS is supported by the Ap-
ple Fellowship. LP is supported by the Packard Fellowship.
SL is supported by the Daishin Songchon Foundation. Hello
Robot authors are supported by NIH NIA R43AG072982.

REFERENCES

[1] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained
bimanual manipulation with low-cost hardware,” arXiv preprint
arXiv:2304.13705, 2023.

[2] Z. Fu, T. Z. Zhao, and C. Finn, “Mobile aloha: Learning bimanual
mobile manipulation with low-cost whole-body teleoperation,” arXiv
preprint arXiv:2401.02117, 2024.

[3] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn, et al., “Rt-2: Vision-
language-action models transfer web knowledge to robotic control,”
arXiv preprint arXiv:2307.15818, 2023.

[4] S. Haldar, Z. Peng, and L. Pinto, “Baku: An efficient transformer for
multi-task policy learning,” arXiv preprint arXiv:2406.07539, 2024.

[5] Z. Fu, Q. Zhao, Q. Wu, G. Wetzstein, and C. Finn, “Humanplus:
Humanoid shadowing and imitation from humans,” arXiv preprint
arXiv:2406.10454, 2024.

[6] T. Lin, Y. Zhang, Q. Li, H. Qi, B. Yi, S. Levine, and J. Malik,
“Learning visuotactile skills with two multifingered hands,” arXiv
preprint arXiv:2404.16823, 2024.

[7] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna,
S. Nair, R. Rafailov, E. Foster, G. Lam, P. Sanketi, et al., “Open-
vla: An open-source vision-language-action model,” arXiv preprint
arXiv:2406.09246, 2024.

[8] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao,
J. Emmons, A. Gupta, E. Orbay, et al., “Roboturk: A crowdsourcing
platform for robotic skill learning through imitation,” in Conference
on Robot Learning. PMLR, 2018, pp. 879–893.

[9] A. Iyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and
L. Pinto, “Open teach: A versatile teleoperation system for robotic
manipulation,” arXiv preprint arXiv:2403.07870, 2024.

[10] S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto, “Dexterous im-
itation made easy: A learning-based framework for efficient dexterous
manipulation,” in 2023 ieee international conference on robotics and
automation (icra). IEEE, 2023, pp. 5954–5961.

[11] X. Cheng, J. Li, S. Yang, G. Yang, and X. Wang, “Open-television:
Teleoperation with immersive active visual feedback,” 2024. [Online].
Available: https://arxiv.org/abs/2407.01512

[12] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karam-
cheti, S. Nasiriany, M. K. Srirama, L. Y. Chen, K. Ellis, et al., “Droid:
A large-scale in-the-wild robot manipulation dataset,” arXiv preprint
arXiv:2403.12945, 2024.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[14] G. Gkioxari, B. Hariharan, R. B. Girshick, and J. Malik, “R-cnns
for pose estimation and action detection,” CoRR, vol. abs/1406.5212,
2014. [Online]. Available: http://arxiv.org/abs/1406.5212

[15] A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Ir-
pan, A. Khazatsky, A. Rai, A. Singh, A. Brohan, et al., “Open
x-embodiment: Robotic learning datasets and rt-x models,” arXiv
preprint arXiv:2310.08864, 2023.

[16] N. M. M. Shafiullah, A. Rai, H. Etukuru, Y. Liu, I. Misra, S. Chin-
tala, and L. Pinto, “On bringing robots home,” arXiv preprint
arXiv:2311.16098, 2023.

[17] H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao,
P. Hansen-Estruch, Q. Vuong, A. He, V. Myers, K. Fang, C. Finn,
and S. Levine, “Bridgedata v2: A dataset for robot learning at scale,”
2023.

[18] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees,
S. Dasari, J. Hejna, T. Kreiman, C. Xu, et al., “Octo: An open-source
generalist robot policy,” arXiv preprint arXiv:2405.12213, 2024.

[19] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie,
and C. Lu, “Anygrasp: Robust and efficient grasp perception in spatial
and temporal domains,” IEEE Transactions on Robotics, 2023.

[20] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-
graspnet: Efficient 6-dof grasp generation in cluttered scenes,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 13 438–13 444.

[21] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-Net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” in Robotics:
Science and Systems (RSS), 2017.

[22] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake,
and S. Song, “Universal manipulation interface: In-the-wild robot
teaching without in-the-wild robots,” arXiv preprint arXiv:2402.10329,
2024.

[23] S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah, and
L. Pinto, “Behavior generation with latent actions,” arXiv preprint
arXiv:2403.03181, 2024.

[24] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,”
arXiv preprint arXiv:2303.04137, 2023.

[25] Y. Guo, Y.-J. Wang, L. Zha, Z. Jiang, and J. Chen, “Doremi: Grounding
language model by detecting and recovering from plan-execution
misalignment,” arXiv preprint arXiv:2307.00329, 2023.

[26] S. Song, A. Zeng, J. Lee, and T. Funkhouser, “Grasping in the wild:
Learning 6dof closed-loop grasping from low-cost demonstrations,”
IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4978–4985,
2020.

[27] S. Young, D. Gandhi, S. Tulsiani, A. Gupta, P. Abbeel, and L. Pinto,
“Visual imitation made easy,” arXiv e-prints, pp. arXiv–2008, 2020.

[28] J. Pari, N. M. Shafiullah, S. P. Arunachalam, and L. Pinto, “The
surprising effectiveness of representation learning for visual imitation,”
2021.

[29] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov,
G. Barth-maron, M. Giménez, Y. Sulsky, J. Kay, J. T. Springenberg,
T. Eccles, J. Bruce, A. Razavi, A. Edwards, N. Heess, Y. Chen,
R. Hadsell, O. Vinyals, M. Bordbar, and N. de Freitas, “A generalist
agent,” Transactions on Machine Learning Research, 2022.

[30] L. Zhao, T. Yang, Y. Yang, and P. Yu, “A wearable upper limb
exoskeleton for intuitive teleoperation of anthropomorphic manipu-
lators,” Machines, vol. 11, no. 4, p. 441, 2023.

[31] Y. Ishiguro, T. Makabe, Y. Nagamatsu, Y. Kojio, K. Kojima, F. Sugai,
Y. Kakiuchi, K. Okada, and M. Inaba, “Bilateral humanoid teleop-
eration system using whole-body exoskeleton cockpit tablis,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 6419–6426, 2020.

[32] H. Fang, H.-S. Fang, Y. Wang, J. Ren, J. Chen, R. Zhang, W. Wang,
and C. Lu, “Low-cost exoskeletons for learning whole-arm manipula-
tion in the wild,” arXiv preprint arXiv:2309.14975, 2023.

[33] P. Wu, Y. Shentu, Z. Yi, X. Lin, and P. Abbeel, “Gello: A general, low-
cost, and intuitive teleoperation framework for robot manipulators,”
arXiv preprint arXiv:2309.13037, 2023.

[34] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone, “Libero:
Benchmarking knowledge transfer for lifelong robot learning,” Ad-
vances in Neural Information Processing Systems, vol. 36, 2024.

[35] N. E. Sian, K. Yokoi, S. Kajita, F. Kanehiro, and K. Tanie, “Whole
body teleoperation of a humanoid robot development of a simple
master device using joysticks,” Journal of the Robotics Society of
Japan, vol. 22, no. 4, pp. 519–527, 2004.

[36] Z. J. Cui, Y. Wang, N. M. M. Shafiullah, and L. Pinto, “From play to
policy: Conditional behavior generation from uncurated robot data,”
arXiv preprint arXiv:2210.10047, 2022.

[37] S. Yang, M. Liu, Y. Qin, R. Ding, J. Li, X. Cheng, R. Yang, S. Yi,
and X. Wang, “Ace: A cross-platform visual-exoskeletons system
for low-cost dexterous teleoperation,” 2024. [Online]. Available:
https://arxiv.org/abs/2408.11805

[38] Y. Park and P. Agrawal, “Using apple vision pro to train and control
robots,” 2024.

[39] S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto, “Dexterous im-
itation made easy: A learning-based framework for efficient dexterous
manipulation,” arXiv preprint arXiv:2203.13251, 2022.

[40] S. P. Arunachalam, I. Güzey, S. Chintala, and L. Pinto, “Holo-dex:
Teaching dexterity with immersive mixed reality,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 5962–5969.

[41] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, pp. 4171–4186, 2018.

[42] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
“Learning transferable visual models from natural language supervi-
sion,” in International Conference on Machine Learning (ICML), vol.
139, 2021, pp. 8748–8763.

[43] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan, et al., “The llama 3 herd
of models,” arXiv preprint arXiv:2407.21783, 2024.

https://arxiv.org/abs/2407.01512
http://arxiv.org/abs/1406.5212
https://arxiv.org/abs/2408.11805

[44] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al., “Segment
anything,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023, pp. 4015–4026.

[45] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp
planning,” in ICRA, 2015.

[46] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” JMLR, vol. 17, no. 1, pp. 1334–1373,
2016.

[47] A. Depierre, E. Dellandréa, and L. Chen, “Jacquard: A large scale
dataset for robotic grasp detection,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 3511–3516.

[48] X. Zhu, R. Tian, C. Xu, M. Huo, W. Zhan, M. Tomizuka, and
M. Ding, “Fanuc manipulation: A dataset for learning-based manipu-
lation with fanuc mate 200iD robot,” https://sites.google.com/berkeley.
edu/fanuc-manipulation, 2023.

[49] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper,
S. Singh, S. Levine, and C. Finn, “RoboNet: Large-scale multi-robot
learning,” in Conference on Robot Learning (CoRL), vol. 100. PMLR,
2019, pp. 885–897.

[50] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jon-
schkowski, C. Finn, S. Levine, and K. Hausman, “MT-Opt: Continu-
ous multi-task robotic reinforcement learning at scale,” arXiv preprint
arXiv:2104.08212, 2021.

[51] R. Zheng, C.-A. Cheng, H. Daumé III, F. Huang, and A. Kolobov,
“Prise: Llm-style sequence compression for learning temporal action
abstractions in control,” in Forty-first International Conference on
Machine Learning, 2024.

[52] X. Li, M. Liu, H. Zhang, C. Yu, J. Xu, H. Wu, C. Cheang, Y. Jing,
W. Zhang, H. Liu, et al., “Vision-language foundation models as
effective robot imitators,” arXiv preprint arXiv:2311.01378, 2023.

[53] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, “R3m:
A universal visual representation for robot manipulation,” in CoRL,
2022.

[54] S. Karamcheti, S. Nair, A. S. Chen, T. Kollar, C. Finn, D. Sadigh,
and P. Liang, “Language-driven representation learning for robotics,”
Robotics: Science and Systems (RSS), 2023.

[55] N. M. M. Shafiullah, C. Paxton, L. Pinto, S. Chintala, and A. Szlam,
“Clip-fields: Weakly supervised semantic fields for robotic memory,”
arXiv preprint arXiv:2210.05663, 2022.

[56] P. Liu, Y. Orru, C. Paxton, N. M. M. Shafiullah, and L. Pinto, “Ok-
robot: What really matters in integrating open-knowledge models for
robotics,” arXiv preprint arXiv:2401.12202, 2024.

[57] A. Gupta, M. Zhang, R. Sathua, and S. Gupta, “Opening cabinets and
drawers in the real world using a commodity mobile manipulator,”
arXiv preprint arXiv:2402.17767, 2024.

[58] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis,
K. Daniilidis, C. Finn, and S. Levine, “Bridge data: Boosting gen-
eralization of robotic skills with cross-domain datasets,” in Robotics:
Science and Systems (RSS) XVIII, 2022.

[59] H.-S. Fang, H. Fang, Z. Tang, J. Liu, J. Wang, H. Zhu, and C. Lu,
“RH20T: A robotic dataset for learning diverse skills in one-shot,” in
RSS 2023 Workshop on Learning for Task and Motion Planning, 2023.

[60] R. Doshi, H. Walke, O. Mees, S. Dasari, and S. Levine, “Scaling
cross-embodied learning: One policy for manipulation, navigation,
locomotion and aviation,” arXiv preprint arXiv:2408.11812, 2024.

[61] Y. Du, K. Konyushkova, M. Denil, A. Raju, J. Landon, F. Hill,
N. de Freitas, and S. Cabi, “Vision-language models as success
detectors,” in Proceedings of The 2nd Conference on Lifelong Learning
Agents. PMLR, 2023, pp. 120–136.

[62] R. Sinha, A. Elhafsi, C. Agia, M. Foutter, E. Schmerling, and
M. Pavone, “Real-time anomaly detection and reactive planning with
large language models,” in Robotics: Science and Systems, 2024.

[63] S. S. Raman, V. Cohen, I. Idrees, E. Rosen, R. Mooney, S. Tellex, and
D. Paulius, “Cape: Corrective actions from precondition errors using
large language models,” in 2024 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2024, pp. 14 070–14 077.

[64] D. Fried, R. Hu, V. Cirik, A. Rohrbach, J. Andreas, L. Morency,
T. Berg-Kirkpatrick, K. Saenko, D. Klein, and T. Darrell, “Speaker-
follower models for vision-and-language navigation,” in Advances
in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, 2018, pp. 3318–3329.

[65] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” in Conference on Robot Learning.
PMLR, 2022, pp. 894–906.

[66] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch,
S. Levine, and C. Finn, “BC-Z: Zero-shot task generalization with
robotic imitation learning,” in Conference on Robot Learning (CoRL),
2021, pp. 991–1002.

[67] Y. Du, O. Watkins, Z. Wang, C. Colas, T. Darrell, P. Abbeel, A. Gupta,
and J. Andreas, “Guiding pretraining in reinforcement learning with
large language models,” in International Conference on Machine
Learning. PMLR, 2023, pp. 8657–8677.

[68] P. Goyal, S. Niekum, and R. Mooney, “Pixl2r: Guiding reinforcement
learning using natural language by mapping pixels to rewards,” in
Conference on Robot Learning. PMLR, 2021, pp. 485–497.

[69] A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu,
L. Takayama, F. Xia, J. Varley, et al., “Robots that ask for help:
Uncertainty alignment for large language model planners,” arXiv
preprint arXiv:2307.01928, 2023.

[70] J. F. Mullen Jr and D. Manocha, “Towards robots that know when
they need help: Affordance-based uncertainty for large language model
planners,” arXiv preprint arXiv:2403.13198, 2024.

[71] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar, et al., “Inner monologue:
Embodied reasoning through planning with language models,” arXiv
preprint arXiv:2207.05608, 2022.

[72] Z. Liu, A. Bahety, and S. Song, “Reflect: Summarizing robot ex-
periences for failure explanation and correction,” arXiv preprint
arXiv:2306.15724, 2023.

[73] J. Park, S. Lim, J. Lee, S. Park, M. Chang, Y. Yu, and S. Choi, “Clara:
classifying and disambiguating user commands for reliable interactive
robotic agents,” IEEE Robotics and Automation Letters, 2023.

[74] J. Gao, B. Sarkar, F. Xia, T. Xiao, J. Wu, B. Ichter, A. Majumdar, and
D. Sadigh, “Physically grounded vision-language models for robotic
manipulation,” in 2024 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2024, pp. 12 462–12 469.

[75] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, et al., “Do as i
can, not as i say: Grounding language in robotic affordances,” arXiv
preprint arXiv:2204.01691, 2022.

[76] C. Zhang, X. Meng, D. Qi, and G. S. Chirikjian, “Rail: Robot
affordance imagination with large language models,” arXiv preprint
arXiv:2403.19369, 2024.

[77] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao,
and Y. Su, “Llm-planner: Few-shot grounded planning for embodied
agents with large language models,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 2998–3009.

[78] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in International conference on machine learning. PMLR,
2022, pp. 9118–9147.

[79] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker,
F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani, et al., “Socratic
models: Composing zero-shot multimodal reasoning with language,”
arXiv preprint arXiv:2204.00598, 2022.

[80] P. Sharma, A. Torralba, and J. Andreas, “Skill induction and planning
with latent language,” arXiv preprint arXiv:2110.01517, 2021.

[81] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al., “Learning
language-conditioned robot behavior from offline data and crowd-
sourced annotation,” in Conference on Robot Learning. PMLR, 2022,
pp. 1303–1315.

[82] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Ja-
yaraman, Y. Zhu, L. Fan, and A. Anandkumar, “Eureka: Human-
level reward design via coding large language models,” arXiv preprint
arXiv:2310.12931, 2023.

[83] M. Dalal, T. Chiruvolu, D. Chaplot, and R. Salakhutdinov, “Plan-seq-
learn: Language model guided rl for solving long horizon robotics
tasks,” arXiv preprint arXiv:2405.01534, 2024.

[84] H. Zhou, M. Ding, W. Peng, M. Tomizuka, L. Shao, and C. Gan,
“Generalizable long-horizon manipulations with large language mod-
els,” arXiv preprint arXiv:2310.02264, 2023.

[85] V. Blukis, C. Paxton, D. Fox, A. Garg, and Y. Artzi, “A persistent spa-
tial semantic representation for high-level natural language instruction
execution,” in Conference on Robot Learning. PMLR, 2022, pp.
706–717.

https://sites.google.com/berkeley.edu/fanuc-manipulation
https://sites.google.com/berkeley.edu/fanuc-manipulation

[86] Y. J. Ma, W. Liang, H.-J. Wang, S. Wang, Y. Zhu, L. Fan, O. Bastani,
and D. Jayaraman, “Dreureka: Language model guided sim-to-real
transfer,” arXiv preprint arXiv:2406.01967, 2024.

	Introduction
	Robot Utility Models
	Data collection tool
	Collected datasets
	Model training
	Retrying with GPT-4o feedback
	Deployment Details

	Capabilities of Robot Utility Models
	Zero-shot evaluation of RUMs on unseen environments
	Effect of policy architecture and training on RUMs
	Effect of scaling datasets on RUMs
	Importance of data diversity in training RUMs
	Impact of expert demonstrations on training policies
	Effects of introspection and retrying with self-critique

	Related Works
	Limitations and Conclusion
	Funding Acknowledgements
	References

