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ABSTRACT

The problem of group-level fairness in machine learning has received increasing
attention due to its critical role in ensuring the reliability and trustworthiness of
models deployed in sensitive domains. Mainstream approaches typically incorpo-
rate fairness by enforcing constraints directly within the training objective. How-
ever, treating fairness solely as a regularisation term can lead to suboptimal trade-
offs with loss of accuracy or insufficient fairness guarantees. In this work, we
propose a novel approach that formulates fairness as an auxiliary task in a Multi-
Task Learning (MTL) paradigm. In contrast to embedding fairness constraints
into a single-task objective, explicitly modelling the problem as multi-objective
optimisation (MOO) allows to decouple the learning of a fair internal representa-
tion from the optimisation of the predictive task: these two conflicting objectives
are optimised concurrently. We introduce two novel fairness loss functions that
are better tailored to an MTL approach. We provide a theoretical analysis of the
generalisation properties of the proposed approach. The experimental analysis on
benchmark datasets shows that in spite of not embedding a fairness loss function
directly on the predictive task the MTL formulation consistently improves group-
level fairness metrics compared to both standard regularisation-based methods and
other MTL architectures, while maintaining competitive predictive performance.
Code is available at https://anonymous.4open.science/r/EDK1-02EB.

1 INTRODUCTION

With the widespread integration of machine learning (ML) into decision-support systems, ensur-
ing equitable and unbiased outcomes is vital for maintaining system integrity and trust. Historical
data biases often seep into ML models, perpetuating inequities in evaluations and applications. To
counter this, fairness-driven learning strategies have been developed in three main categories. Pre-
processing approaches attempt to reduce bias before training by modifying the data (e.g., sampling,
weighting, feature transformation). These are useful when the data is the main source of bias.
However, the potential loss of information in this approach can limit the learnable features in large
datasets. Post-processing methods are useful when the model is already trained and cannot be eas-
ily retrained, although altering model outputs to reduce bias may affect model performance as well
as interpretability. In-processing approaches incorporate fairness constraints into the learning al-
gorithm, e.g., by integrating some fairness measure into the training objective. A typical approach
introduces a fairness regularisation term in the loss function. Other techniques are based on adver-
sarial debiasing or, more generally, to some form of fairness-aware optimisation. These methods can
usually achieve the strongest and most principled fairness guarantees since constraints are built into
the optimisation process. Most importantly, this approach introduces an explicit trade-off between
fairness and accuracy of the predictive task.

In this work, we investigate how to enhance fairness in the internal/latent representation and the
effectiveness of an in-training approach where the predictive component of the model is not directly
subject to fairness optimisation or constraints.

Regularisation and constraint optimisation are significant in-processing techniques. Regularisation
embeds fairness penalties in the objective function for adaptable fairness alignment, though it may
affect robustness Zemel et al. (2013). Constraint optimisation enforces fairness as a strict constraint
but can be destabilised by conflicting constraints Cotter et al. (2019). An alternative approach is
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Lf

Lm

(a) (b)

+ (1-λ)Lm Lfλ + (1-λ)Lm Lfλ

Figure 1: Illustration of the two learning paradigms with the main task loss denoted as Lm, the
fairness task loss denoted as Lf , and the fairness regularisation hyperparameter λ. (a) STL learn-
ing: Group-level fairness learned via regularisation optimisation, Lf is not mandatory to be a loss
function and can also be a penalty score. (b) MTL learning: Fairness is learned concurrently to the
main predictive task by means of two distinct task-specific layers and a shared latent representation.

learning a latent representation that accurately encodes the target variable while remaining neutral
to sensitive attributes Madras et al. (2018); Adel et al. (2019). Adversarial debiasing seeks a fair
representation invariant to sensitive attributes, yet it demands careful balancing of predictor and
adversary objectives, increasing training complexity.

To surmount the challenges and shortcomings of previous methods, we propose framing fair latent
representation as a multi-objective optimisation problem, dealing with two distinct types of tasks,
primary predictive tasks and fairness tasks, through Multi-Task Learning (MTL) Caruana (1997).
MTL effectively balances objectives, avoiding penalties and constraints of Single-Task Learning
(STL).

Unlike methods adopting fairness regularisation in a single objective function, we explore fairness
regularisation as an auxiliary concurrent task, transitioning from STL to an MTL framework (see
Fig. 1). During training, the two objective functions of the main prediction task and of the fairness
task are combined. However, each task-specific component of the architecture is subject only to the
task-specific gradient, while the shared component is optimised with their aggregation inducing a
fair and effective latent representation.

The underlying rationale of the auxiliary fairness task is to induce the shared layers to learn a latent
representation in which information about the sensitive variable is encoded without bias. Conse-
quently, the main task learns from an unbiased latent representation without being directly penalised
by a direct fairness objective.

Overall, this work aims to bridge the gap between fairness and performance in ML models by lever-
aging MTL and provides the following contributions.

• Fairness as an auxiliary task: We incorporate group-level fairness into a multi-task learn-
ing framework as an auxiliary objective, systematically evaluating its impact on both pre-
dictive performance and fairness metrics.

• Novel fairness loss functions: We introduce two new fairness-oriented loss functions de-
signed to guide model optimisation, analyse their effectiveness in promoting fair outcomes.

• Theoretical guarantees: We derive explicit generalisation bounds showing that optimising
the multi-task objective provably reduces the true group fairness gap. Our analysis connects
optimisation error, model capacity (via Rademacher complexity), and sample imbalance to
fairness performance, establishing the first rigorous optimisation-to-fairness guarantees in
the MTL paradigm.

• Experimental analysis: We compare the proposed approach to STL methods adopting
fairness regularisation as well as other existing MTL methods for group-level fairness.

The reminder of this work is organised as follows. In section 2 we discuss related work and present
a general definition of fairness and the MTL paradigm. In section 3 we introduce the concept of
auxiliary fairness tasks for sensitive variables and two novel fairness loss funtions. In section 4 a
theoretical analysis of the proposed approach is carried out. Sections 5 and 6 present, respectively,
the setup of the experimental analysis and the results. Finally, section 7 provides some remarks and
outlines future research directions.
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2 RELATED WORK

Group-level fairness in machine learning has gained attention recently Rabonato & Berton (2024);
Pessach & Shmueli (2022); Caton & Haas (2024). Advances in fairness-aware machine learning
have highlighted MTL as a promising method for improving group-level fairness without compro-
mising predictive power. Research strategies for enhancing fairness through MTL fall into three
main categories: regularisation, optimisation, and specialised architectures to mitigate unfairness.

Regularisation strategies focus on embedding fairness constraints within MTL frameworks. One
method involves a MTL architecture that learns both a universal model and group-specific mod-
els, directly incorporating fairness into shared components Oneto et al. (2019). Another approach
uses low-rank matrix factorisation to ensure Demographic Parity (DP) in factor representation Oneto
et al. (2020), while a similar technique employs Wasserstein barycenters for equitable representa-
tions in classification and regression tasks Hu et al. (2023). Optimisation strategies tackle fairness
by balancing tasks and employing dynamic weighting to adjust between fairness and task-specific
losses Li et al. (2023). Rank-based fairness in MTL regression uses the Mann-Whitney U statistic
to address bias without distributional assumptions Zhao & Chen (2019).

Task-group branching clusters tasks with similar parameters to reduce negative and bias transfer is-
sues in fairness-aware MTL Roy et al. (2024). Fairness is also explored in a multi-objective context,
balancing fairness with classification accuracy Ruchte & Grabocka (2021). Recent methodologies
employ bi-level optimisation to find Pareto-optimal solutions between fairness and predictive per-
formance Yazdani-Jahromi et al. (2024).

Fairness-aware MTL designs aim to mitigate bias transfer and improve fair representation. One
technique trains distinct models for each group to tackle data shortages in underrepresented groups
Dwork et al. (2018). Attention-aware models concurrently predict main tasks and sensitive at-
tributes, minimising bias through attention mechanisms Majumdar et al. (2021). Another strat-
egy leverages teacher-student models to embed fairness in the student network, balancing between
primary and fairness goals Roy & Ntoutsi (2023). Adversarial debiasing methods prevent biased
encodings while preserving task performance Adel et al. (2019).

Collectively, these works acknowledge that fairness can be effectively integrated into MTL frame-
works. Yet, most methods either impose fairness as a constraint or introduce fixed fairness ob-
jectives. Our work, however, models group-level fairness as an auxiliary task within the MTL
approach, offering flexible adaptation to various fairness definitions and training dynamics. Further-
more, unlike the bi–level optimization formulation Yazdani-Jahromi et al. (2024), there is no outer
optimisation task and an inner optimisation task. In MOO all tasks are at the same level with no
hierarchy and are optimised concurrently.

2.1 FAIRNESS DEFINITION

In general, a single universal definition of fairness in machine learning is neither attainable nor
desirable. Instead, the choice of a fairness definition should be context-dependent, tailored to the
specific application scenario Global Future Council on Human Rights 2016–18 (2018).

For the purpose of this work, we adopt a commonly used fairness definition from the literature Baro-
cas et al. (2023); Sarhan et al. (2020); Zemel et al. (2013), which requires the predictive distribution
P (y | x) of the classifier to be statistically independent of the sensitive attribute s, as formalised
in equation 1.

P (y|x) = P (y|x, s) (1)

The primary objective is therefore to learn a fair representation that is both informative for the main
prediction task and invariant with respect to the sensitive attribute.

2.2 MULTI-TASK LEARNING

Let X = {(xi, y
(1)
i , . . . , y

(K)
i )}Ni=1 be a dataset of N input samples, where each xi ∈ Rd is associ-

ated with task-specific labels y(k)i for k = 1, . . . ,K.

3
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A hard-parameter sharing MTL model consists of shared parameters θSh : Rd → Rp, which
map some input x into a shared latent representation h(x) ∈ Rp, and K task-specific parameter
sets θkT : Rp → Rok for each task k = 1, . . . ,K. Therefore the parameters of the MTL model
can be written as θ = θSh ∪ {θkT }Kk=1, where ŷ(k) = fθk

T
(fθSh

(x)) transforms the shared latent
representation h(x) = fθSh

(x) into a task-specific output ŷ(k) for each task k.

The objective of training an MTL model is to minimise the sum of the task-specific loss functions
as defined in equation 2:

argmin
θ

�
Lmtl(θ) :=

KX

k=1

Lk

�
fθk

T
(fθSh

(x))
��

, (2)

where Lk is the loss function for task k.

3 AUXILIARY FAIRNESS TASKS

In this work, we propose a hard-parameter-sharing MTL architecture in which the main prediction
tasks are augmented by auxiliary fairness tasks, one for each sensitive attribute, and are all opti-
mised concurrently. The aim of the auxiliary tasks is to enhance group-level fairness in the shared
representation h(x), while retaining the encoding of the relevant information for the main tasks.

Let X = {(xi, y
(1)
i , . . . , y

(K)
i , z

(1)
i , . . . , z

(S)
i )}Ni=1 be a dataset of N observations, where each xi ∈

Rd is associated with K task-specific labels y(k)i for k = 1, . . . ,K, and S sensitive attributes z(s)i
for s = 1, . . . , S.

Our model architecture consists of a single set of shared parameters θSh : Rd → Rp, K task-
specific parameter sets θkT : Rp → Rok and S fairness-specific parameter sets θsF : Rp → Ros for
s = 1, . . . , S. It follows that the set of parameter can be written as θ = θSh ∪ {θkT }Kk=1 ∪ {θsF }Ss=1,
where fθk

T
(fθSh

(x)) produces the output ŷ(k) for the task k and fθs
F
(fθSh

(x)) produces the fairness
output for the sensitive attribute ẑ(s).

The learning objective is to minimise the sum of task-specific loss functions and fairness-specific
loss functions, as formalised in equation 3.

min
θ

�
LMTL(θ) := λ

KX

k=1

Lk


θkT , θSh;x

�
+ (1− λ)

SX

s=1

Ls


θsF , θSh;x

��
, λ ∈ [0, 1]. (3)

Here, Lk denotes the loss for task k, Ls denotes the fairness loss associated with sensitive attribute
zs, and λ is a hyperparameter controlling the trade-off between task performance and fairness. Dur-
ing training the task-specific parts of the architecture are not affected by the fairness loss functions,
while the shared part of the model is affected by both types of objectives.

3.1 FAIRNESS LOSS FUNCTIONS

Fairness loss functions are commonly used in the literature to incorporate fairness into model ob-
jectives Caton & Haas (2024). These functions are typically based on fairness metrics to address
disparities among sensitive groups. However, they often assume an STL framework, where fairness
regularisation aligns with classification predictions in the entire architecture. This approach does
not fit our MTL architecture, which separates prediction accuracy from fairness as objectives in
distinct parts of the architecture. Using standard fairness loss functions in the MTL approach would
require an additional predictive task head dedicated to fairness, leading back to optimisation issues
and potentially suboptimal performance. Therefore, we introduce two new fairness loss functions
that operate independently of the predictive tasks and can be integrated seamlessly within the MTL
framework.

The concept of a group-specific loss forms the basis of our approach. Given a sensitive attribute z(s)

with groups g ∈ {1, . . . , Gs}, we define the group-specific loss L(s)
g as the task loss Ls restricted to

the subset of samples belonging to group g, as shown in equation 4.

4
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L(s)
g = Ls

�
θsF

�
θSh

�
X (s)

g

���
(4)

where X (s)
g = {(x, y) : z(s) = g}. For instance, if the primary task is binary classification with

a binary cross-entropy (BCE) loss and the sensitive attribute z(s) corresponds to gender, then Lmale
denotes the BCE evaluated exclusively on male samples.

Group Loss Fairness (GLF) This objective computes the main task loss independently for each
sensitive attribute and minimises the disparity among these group-specific losses. By directly penal-
ising inter-group performance differences, GLF promotes fairness across groups without relying on
a shared classification head. The formulation is given in equation 5.

Lfair =





���L(s)
g1 − L(s)

g2

��� , if G = 2

1−

�Pg
i=1 L

(s)
gi

�2

G ·PG
i=1 L

(s)
gi

2 , otherwise
(5)

For binary sensitive attribute (G = 2), we use the absolute difference of the mean losses for the two
groups. For multi sensitive attribute (G > 2), we adopt Jain’s Fairness Index (JFI) Jain et al. (1984),
a standard measure in resource allocation fairness, and convert it into a loss by subtracting it from 1
(i.e., 1− JFI).

Group Loss Divergence (GLD) This objective promotes equitable treatment across sensitive
groups by minimising the Kullback–Leibler divergence Kullback & Leibler (1951) (DKL) equation 6
between the empirical distribution of group-specific losses, denoted P , and a uniform distribution
U representing ideal fairness.

DKL(P ∥U) =
GX

g=1

Pg log
Pg

Ug
, where Ug =

1

G
, Pg =

exp
�
−L(s)

g

�

PG
i=1 exp

�
−L(s)

i

� . (6)

By aligning P with U , GLD encourages balanced performance across groups. The formulation is
provided in equation 7.

Lfair = eDKL(P ∥U) − 1 (7)

Here, P is derived by applying a softmax transformation to negative group losses, effectively as-
signing higher weights to groups with smaller losses. The resulting fairness loss is then scaled
exponentially, which amplifies the penalty for larger divergences while maintaining non-negativity.

4 THEORETICAL ANALYSIS OF MULTI-TASK FAIRNESS

We now analyse the generalisation properties of the proposed MTL objective in equation 3. Our
goal is to establish provable connections between optimisation error, hypothesis class complexity,
and group-level fairness. To make the exposition concrete, we focus on binary sensitive attributes
(s ∈ {0, 1}), with extensions to multi-group settings following by standard reductions.

Let H denote the hypothesis class for the main classifier fθ ∈ H induced by parameters θ. For each
group j ∈ {0, 1}, let Pj := P (· | s = j) and bPj be the corresponding empirical distribution over a

sample Dj = {(xj,i, yj,i)}nj

i=1
i.i.d.∼ Pj . We denote the true and empirical group losses by

L
(s)
j (fθ) := E(x,y)∼Pj

�
ℓ(fθ(x), y)

�
,

bL(s)
j (fθ) :=

1

nj

njX

i=1

ℓ

fθ(xj,i), yj,i

�
,
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where ℓ ∈ [0, 1] is a bounded loss (e.g., 0–1 or a surrogate).

We define the fairness gap as the absolute difference in group risks:

∆L(fθ) :=
��L(s)

0 (fθ)− L
(s)
1 (fθ)

��, d∆L(fθ) :=
��bL(s)

0 (fθ)− bL(s)
1 (fθ)

��.

This section develops three ingredients: (i) a discrepancy bound that relates the true and empirical
group distributions, (ii) fairness guarantees for different fairness heads in the MTL objective, and
(iii) excess-fairness bounds that connect optimisation error to fairness on unseen data.

4.1 DISCREPANCY GENERALISATION BOUND

We first control the discrepancy between group distributions, which serves as a proxy for fairness
gaps. The following lemma shows that the true discrepancy is bounded by its empirical counterpart
plus terms depending only on sample size and Rademacher complexity.

Lemma 1 (Uniform control of discrepancy via Rademacher complexity). Let F := {x 7→
1{h(x) ̸= h′(x)} : h, h′ ∈ H}. For dataset Dj , let

RadDj (A) =
1

nj
Eσ

�
sup
a∈A

njX

i=1

σia(xj,i)

�
,

where σi are Rademacher variables. Then, with probability at least 1− δ over samples D0, D1,

disc(P0, P1) ≤ disc( bP0, bP1) + 2RadD0
(F) + 2RadD1

(F) +
q

ln(2/δ)
2n0

+
q

ln(2/δ)
2n1

. (8)

This result implies that the observed discrepancy during training is a reliable proxy for the true hid-
den discrepancy, provided the hypothesis class is not overly complex and each group is sufficiently
sampled. (See Appendix B for proof.)

Lemma 2 (From loss-class to hypothesis-class complexity). For binary-valued H, RadDj
(F) ≤

2RadDj
(H).

This lemma links the complexity of pairwise disagreements to the complexity of the original hy-
pothesis class.

4.2 FAIRNESS HEADS IN THE MTL OBJECTIVE

We next show how the MTL objective enforces fairness through different fairness heads. Theorems 1
and 2 establish guarantees for adversarial and GLF losses, respectively.

Theorem 1 (Fairness bound via adversarial head). Let bε(θ) be the discriminator’s best empirical
error on the combined sample. Then, with probability at least 1− δ, for every θ,

∆L(fθ) ≤ 2− 4bε(θ) + 4

RadD0

(H) + RadD1
(H)

�
+

q
ln(2/δ)
2n0

+
q

ln(2/δ)
2n1

.

In the MTL objective (Equation equation 3), instantiating Ls as the adversarial discriminator loss
minimises bε(θ), which in turn reduces the fairness gap ∆L(fθ). (Proof in Appendix D.)

Theorem 2 (Fairness bound via GLF head). For any θ, with probability at least 1− δ,

∆L(fθ) ≤ d∆L(fθ) + 4

RadD0

(H) + RadD1
(H)

�
+

q
ln(2/δ)
2n0

+
q

ln(2/δ)
2n1

.

This result formalises the effect of the GLF objective: by directly minimising the empirical fairness
gap d∆L(fθ), the true fairness gap ∆L(fθ) is also reduced up to standard generalisation slack. (Proof
in Appendix E.)

6
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4.3 EXCESS-FAIRNESS BOUNDS

Finally, we connect optimisation error in the empirical MTL objective to fairness on unseen data.
Let bLMTL(θ) denote the empirical counterpart of equation 3. Suppose θ̂ is an approximate empirical
minimiser satisfying

bLMTL(θ̂) ≤ inf
θ

bLMTL(θ) + η, η ≥ 0.

Let θ⋆ be a reference (oracle) parameter set, and define the generalisation slack

Cgen := 4

RadD0

(H) + RadD1
(H)

�
+

q
ln(2/δ)
2n0

+
q

ln(2/δ)
2n1

.

Corollary 1 (Excess-fairness bound for GLF head). If the fairness head implements the GLF penalty
and θ̂ satisfies the above optimisation error, then with probability at least 1− δ,

∆L(fθ̂) ≤ ∆L(fθ⋆) +
η

1− λ
+ 2Cgen.

Corollary 2 (Excess-fairness bound for adversarial head). If the fairness head is an adversarial
discriminator, then with probability at least 1− δ,

∆L(fθ̂) ≤ ∆L(fθ⋆) +
4η

1− λ
+ 2Cgen.

These corollaries demonstrate that small optimisation error translates into small fairness error, pro-
viding a convergence-to-fairness guarantee. (Proofs in Appendices F and G.)

5 EXPERIMENTAL SETUP

This section outlines our empirical evaluation setup of the proposed MTL approach. We begin
by describing the dataset, then provide an overview of the baseline and comparative methods for
benchmarking, and conclude with details on the experimental setup and evaluation protocol.

5.1 DATASETS

We evaluate fairness-aware classification using three standard benchmark datasets: Adult Income
Becker & Kohavi (1996), Bank Marketing Moro & Cortez (2014), and COMPAS Angwin et al.
(2016), as described in Le Quy et al. (2022). The Adult Income dataset is characterised by a bi-
nary classification task, namely the prediction of whether an individual earns more than $50, 000
per year. The sensitive attributes in consideration are ’gender’ (binary) and ’race’ (multi-class). The
COMPAS dataset is centred on the classification of recidivism risk as a binary variable. The sen-
sitive attributes in question are gender and race, as was the case in the previous dataset. The Bank
Telemarketing Dataset focuses on the classification of samples with respect to subscription to a term
bank deposit. The sensitive attribute in question is age, which is encoded into two groups: those
who are considered to be ’privileged’, with an age between 25 and 60 years old, and those who are
considered to be ’unprivileged’, with an age younger than 25 or older than 60 Le Quy et al. (2022).

We also evaluate fairness-aware classification using the Multi-Task Faces (MTF) image dataset Haf-
far (2024), which includes labelled face images for tasks such as face recognition, race, gender, and
age classification. The curated version comprises 5,246 images that involve 240 unique individu-
als. The MTF datasets are ethically gathered, featuring publicly available images of celebrities and
strictly adhering to copyright laws.

5.2 COMPARATIVE METHODS

We compare our proposed model architecture and loss functions with existing approaches to group-
level fairness adaptation fairness-aware model design considering the Group-Specific Task Decom-
position method Oneto et al. (2019), without applying any additional fairness constraints. As a
regularisation-based method, we consider bounded group loss (BGL) Agarwal et al. (2019), De-
mographic parity loss (DPL), false positive rate loss (FPRL), and true positive rate loss (TPRL)
proposed in Padala & Gujar (2021). For the adversarial debiasing method, we consider Fair adver-
sarial discriminative Adel et al. (2019), an adversary debiasing min–max optimisation framework.

7
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5.3 EXPERIMENTAL SETTINGS

Experiments are conducted using a 10-fold repeated hold-out protocol with an 0.6, 0.2, 0.2 split
for the training, validation and test sets, respectively. The model is trained for a maximum of 50
epochs with the best-performing epoch selected for the classification task on the validation set.
Similarly to Zeng et al. (2024), the model architecture employs an MTL framework with two fully
connected layers in the shared representation and one task-specific fully connected layer per head. In
line with previous studies, ReLU activations, dropout regularisation and stochastic gradient descent
optimisation are employed. The same hyperparameter values adopted in Zeng et al. (2024) are used.

For the Computer Vision data experiments are conducted by fine-tuning a ConvNeXT Liu et al.
(2022) model using the hyperparameters proposed in Haffar et al. (2025). The original ConvNeXT
Liu et al. (2022) architecture is equipped with one task specific network for the classification and
each sentitive task with a Layer Normalization Ba et al. (2016) and a fully connected layer. Our
primary evaluation focuses on binary age classification (young vs old subjects).

The experiments evaluate fairness with respect to single sensitive attributes as well as multiple sen-
sitive attributes concurrently.

5.4 EVALUATION METRICS

To evaluate classification performance, we use the Area Under the Receiver Operating Character-
istic Curve (AUC). For fairness evaluation, we consider three well known group-based metrics the
Equal Opportunity Difference (EOpD) Hardt et al. (2016), the Equalised Odds Difference (EOD)
and the Group AUC Difference (GAUCD).

To jointly assess classification and fairness, we employ two aggregate metrics typical of MTL fram-
works, the Mean Rank (MR) and Delta-m % (∆m%) Navon et al. (2022). The detailed formulas are
reported in Appendix H.

6 RESULTS

In this section, we elaborate extensively on the empirical results obtained from our investigation.
We perform a detailed comparison between the effectiveness of the MTL framework proposed in
our study and the various fairness-orientated loss functions that are being analysed. To provide
further insight, we calculate the Pareto front, focussing on a single sensitive attribute, highlighting
the trade-offs involved. When required, the hyperparameter λ is set to 0.5 to balance the trade-off

MTF
Gender

MTF
Race

0.0 0.2 0.4 0.6 0.8 0.0 0.4 0.8 1.2 1.6

0.2

0.4

0.6

0.2

0.4

0.6

Fairness Loss

Cl
as

sif
ica

tio
n 

Lo
ss

Auxiliary Task Fairness (BGL) Auxiliary Task Fairness (GLD)

Auxiliary Task Fairness (GLF) Fair adversarial discriminative

Single-task Fairness Regularisation (BGL) Single-task Fairness Regularisation (FPRL)

Single-task Fairness Regularisation (TPRL)

Figure 2: Pareto fronts on the MTF dataset for a single attribute.

between fairness and classification objectives, prioritising comparable performance across method-
ology rather than optimising them for the best overall accuracy. An ablation study to investigate the
impact of the hyperparameter λ in balancing the trade-off between fairness and accuracy is proposed
in Appendix L. The evaluation includes two baseline models: a standard classification model that
does not incorporate fairness constraints, referred to as Single-task Classification, and a fairness-
aware model that applies established single-task regularisation techniques, denoted as Single-task
Fairness Regularisation.
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Figure 2 shows the Pareto fronts for the MTF dataset using one sensitive attribute, while Appendix K
reports the Pareto fronts for tabular datasets. Our proposed method consistently identifies a superior
front compared to baselines.

Tables 1 show our experimental results in data sets that involve two sensitive attributes. Our ap-
proach demonstrates effectiveness and scalability, showing no adverse effects from the number of
sensitive attributes w.r.t. the Single-task Classification baseline model. Additional findings on tabu-
lar data sets related to individual sensitive attributes are detailed in Appendices J,I.

Table 1: Results on the different datasets with multiple sensitive attributes.
Adult Race - Gender

Architecture Fairness Classification Fairness Race Fairness Gender MR ↓ ∆m%↓
Loss AUC↑ ± sd EOD↓ ± sd EopD↓ ± sd GAUCD↓ ± sd EOD↓ ± sd EopD↓ ± sd GAUCD↓ ± sd

Single-task Classification (STL) - 89.082 ± 0.4 49.454 ± 3.56 80.143 ± 5.72 14.348 ± 5.63 6.335 ± 0.87 2.216 ± 1.86 5.846 ± 0.82 0 0

Single-task Fairness Regularisation Agarwal et al. (2019) BGL 60.074 ± 16 54.529 ± 8.76 71.37 ± 7.75 24.753 ± 9.26 9.998 ± 7.21 7.968 ± 7.96 7.241 ± 6.8 6.875 239.11
Single-task Fairness Regularisation Agarwal et al. (2019) DPL 57.129 ± 14.46 51.683 ± 11.74 69.343 ± 8.74 23.887 ± 10.66 9.824 ± 5.72 8.846 ± 8.18 7.527 ± 6.69 6.875 256.14
Single-task Fairness Regularisation Agarwal et al. (2019) FPRL 57.129 ± 14.46 51.683 ± 11.74 69.343 ± 8.74 23.887 ± 10.66 9.824 ± 5.72 8.846 ± 8.18 7.527 ± 6.69 6.875 256.14
Single-task Fairness Regularisation Agarwal et al. (2019) TPRL 57.129 ± 14.46 51.683 ± 11.74 69.343 ± 8.74 23.887 ± 10.66 9.824 ± 5.72 8.846 ± 8.18 7.527 ± 6.69 6.875 256.14

Fair adversarial discriminative (min-max) Adel et al. (2019) CE - BCE 88.371 ± 0.45 49.605 ± 4.47 80.286 ± 5.98 15.832 ± 6.67 6.108 ± 1.64 2.009 ± 1.72 5.846 ± 1.04 2.75 -0.25
Group-Specific Task Decomposition Oneto et al. (2019) BCE 88.158 ± 0.45 48.882 ± 4.22 80.103 ± 5.74 14.036 ± 6.07 6.365 ± 1.24 2.149 ± 0.74 5.794 ± 1.01 3.5 -2.37

Auxiliary Task Fairness BGL 88.376 ± 0.46 50.346 ± 3.75 80.423 ± 5.62 15.93 ± 7.4 6.273 ± 1.74 1.966 ± 1.57 5.863 ± 1.03 3.75 1.39
Auxiliary Task Fairness GLD 88.341 ± 0.44 50.144 ± 4.11 80.346 ± 5.5 16.031 ± 7.23 6.143 ± 1.72 1.748 ± 1.71 5.877 ± 1.04 4 -4.28
Auxiliary Task Fairness GLF 88.339 ± 0.44 50.096 ± 4.28 80.31 ± 5.66 15.906 ± 7.29 5.928 ± 1.5 1.631 ± 1.56 5.883 ± 1.05 3.5 -9.08

Compas Race - Gender

Architecture Fairness Classification Fairness Race Fairness Gender MR ↓ ∆m%↓
Loss AUC↑ ± sd EOD↓ ± sd EopD↓ ± sd GAUCD↓ ± sd EOD↓ ± sd EopD↓ ± sd GAUCD↓ ± sd

Single-task Classification (STL) - 95.082 ± 0.5 33.686 ± 15.19 55.63 ± 30.3 6.31 ± 1.68 4.621 ± 2.46 4.115 ± 4.1 1.106 ± 0.83 0 0

Single-task Fairness Regularisation Agarwal et al. (2019) BGL 66.474 ± 20.9 56.567 ± 22.27 69.942 ± 24.91 19.168 ± 16.79 13.12 ± 9.84 11.434 ± 9.68 3.356 ± 2.87 7.875 461.35
Single-task Fairness Regularisation Padala & Gujar (2021) DPL 67.844 ± 20.62 55.887 ± 19.61 70.39 ± 20.49 24.237 ± 20.85 12.064 ± 10.86 11.459 ± 10.53 3.032 ± 2.57 7.375 473.69
Single-task Fairness Regularisation Padala & Gujar (2021) FPRL 67.844 ± 20.62 55.887 ± 19.61 70.39 ± 20.49 24.237 ± 20.85 12.064 ± 10.86 11.459 ± 10.53 3.032 ± 2.57 7.375 473.69
Single-task Fairness Regularisation Padala & Gujar (2021) TPRL 67.844 ± 20.62 55.887 ± 19.61 70.39 ± 20.49 24.237 ± 20.85 12.064 ± 10.86 11.459 ± 10.53 3.032 ± 2.57 7.375 473.69

Fair adversarial discriminative (min-max) Adel et al. (2019) CE - BCE 94.916 ± 0.52 34.213 ± 15.57 55.903 ± 31.2 6.337 ± 1.82 4.325 ± 1.93 3.134 ± 2.93 1.133 ± 0.88 2.875 -12.53
Group-Specific Task Decomposition Oneto et al. (2019) BCE 93.344 ± 0.91 34.559 ± 16.42 54.259 ± 31.23 9.164 ± 3.45 3.693 ± 2.09 3.358 ± 2.01 1.731 ± 1.13 3.75 33.51

Auxiliary Task Fairness BGL 94.896 ± 0.56 33.459 ± 15.8 55.299 ± 31.62 6.696 ± 2.06 4.661 ± 2.26 4.405 ± 2.86 1.222 ± 0.85 3.75 11.77
Auxiliary Task Fairness GLD 94.974 ± 0.53 33.391 ± 15.66 55.336 ± 31.54 6.601 ± 1.9 3.9 ± 1.37 3.365 ± 1.81 1.147 ± 0.93 2.25 -13.36
Auxiliary Task Fairness GLF 94.962 ± 0.52 34.11 ± 16.48 55.716 ± 32.02 6.517 ± 1.84 3.874 ± 1.43 3.104 ± 2.49 1.158 ± 0.91 2.375 -15.55

Multi-Task Faces Race - Gender

Architecture Fairness Classification Fairness Race Fairness Gender MR ↓ ∆m%↓
Loss ACC↑ ± sd EOD↓ ± sd EopD↓ ± sd GACCD↓ ± sd EOD↓ ± sd EopD↓ ± sd GACCD↓ ± sd

Single-task Classification (STL) CE 98.021 ± 1.34 17.923 ± 7.62 21.005 ± 9.08 13.226 ± 3.29 3.951 ± 2.26 4.793 ± 4.34 2.454 ± 3.28

Single-task Fairness Regularisation Agarwal et al. (2019) BGL 80.399 ± 10.56 21.924 ± 7.5 24.605 ± 14.39 17.574 ± 4.86 4.258 ± 2.72 5.675 ± 3.31 10.019 ± 4.36 7.5 219.51
Single-task Fairness Regularisation Padala & Gujar (2021) DPL 80.486 ± 9.85 22.15 ± 6.52 25.229 ± 14.11 17.043 ± 7.11 3.826 ± 2.65 4.698 ± 3.44 8.447 ± 5.94 7.375 173.78
Single-task Fairness Regularisation Padala & Gujar (2021) FPRL 80.486 ± 9.85 22.15 ± 6.52 25.229 ± 14.11 17.043 ± 7.11 3.826 ± 2.65 4.698 ± 3.44 8.447 ± 5.94 7.375 173.78
Single-task Fairness Regularisation Padala & Gujar (2021) TPRL 80.486 ± 9.85 22.15 ± 6.52 25.229 ± 14.11 17.043 ± 7.11 3.826 ± 2.65 4.698 ± 3.44 8.447 ± 5.94 7.375 173.78

Fair adversarial discriminative (min-max) Adel et al. (2019) BCE 98.021 ± 0.39 16.236 ± 8.26 17.811 ± 11.13 12.63 ± 5.6 3.05 ± 2.64 3.987 ± 4.8 3.718 ± 3.33 3.25 -8.80
Group-Specific Task Decomposition Oneto et al. (2019) BCE 97.812 ± 0.38 15.663 ± 7.26 17.241 ± 8.46 10.245 ± 2.21 2.149 ± 0.74 2.559 ± 2.46 3.482 ± 3.79 1.375 -50.74

Auxiliary Task Fairness BGL 98.047 ± 0.45 21.294 ± 3.96 23.341 ± 6.6 12.239 ± 1.77 2.658 ± 2.05 3.352 ± 2.89 1.431 ± 0.74 2.875 -9.26
Auxiliary Task Fairness GLD 98.073 ± 0.44 17.137 ± 7.76 19.86 ± 8.9 11.938 ± 3.35 3.211 ± 1.58 3.238 ± 2.19 0.667 ± 0.78 3.375 -71.85
Auxiliary Task Fairness GLF 97.917 ± 0.32 18.701 ± 4.6 23.1 ± 5.98 12.772 ± 0.49 3.133 ± 2.14 4.976 ± 4 3.449 ± 3.86 4.5 17.1

The results consistently show that treating fairness as an auxiliary task yields more balanced out-
comes compared to single-task regularisation and adversarial debiasing. Across datasets, our pro-
posed GLF and GLD losses reduce group disparities while preserving accuracy, validating our theo-
retical guarantees. Importantly, the framework generalises effectively to multiple sensitive attributes
and diverse modalities. Together, these findings suggest that multi-task fairness is a robust and
generalisable paradigm for fair representation learning.

7 CONCLUSIONS

In group-level fairness training, single-task models with fairness regularisation typically encounter
an undesirable trade-off between preserving predictive accuracy and ensuring fairness. This study
explores the potential of MTL to mitigate this trade-off by introducing Auxiliary Task Fairness, a
novel MTL architecture that treats fairness as an auxiliary task with dedicated task-specific layers
and fairness losses. Our proposed framework enables the concurrent learning of predictive and fair-
ness objectives by guiding the shared representation to be both accurate and unbiased with respect
to sensitive attributes, while maintaining task-specific layers to enhance prediction performance and
fairness awareness. Theoretical analysis demonstrates convergence-to-fairness guarantees. Exten-
sive empirical evaluations across benchmark datasets show that Auxiliary Task Fairness effectively
improves the balance between predictive performance and group-level fairness, outperforming con-
ventional regularisation-based methods and adversarial debiasing methods. Future work includes
expanding the comparative analysis to incorporate a broader range of fairness loss functions and
extending the architecture to handle multiple fairness definitions simultaneously.
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