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1 Introduction

Cerebral microbleeds are small, dark, round lesions that can be visualised on
T2*-weighted MRI or other sequences sensitive to susceptibility effects [Il [2].
Detection of microbleeds is usually performed visually [3], with the help of
validated visual rating scales such as BOMBS [4] or MARS [5]. Semi-automated
tools to assist with microbleed detection have been developed in the past [6] [7]
8, [9]. Owing to the blooming effect of microbleeds on MRI, where they appear
larger with increasing echo time[Il [I0], there have not been many methods
focussing on segmentation; since size and volume of microbleeds can change
depending on the acquisition settings. Nevertheless, more recent deep learning
approaches for microbleed detection, address this as a semantic segmentation
task: detection via a method that performs segmentation [IT], 12].

In this work, we propose a multi-stage approach to both microbleed detection
and segmentation. First, possible microbleed locations are detected with a Mask
R-CNN technique [I3]. Second, at each possible microbleed location, a simple
U-Net [I4] performs the final segmentation.

2 Material and methods

2.1 Data

This work used the 72 subjects as training data provided by the Where is
VALDOQ? challenge of MICCAI 2021 (https://valdo.grand-challenge.org/)).
Data consisted of three sequences: T1, T2, and T2*; all aligned in the T2*-space.
A binary image including the manual segmentation of microbleeds was provided
for every subject.

Data originated from three cohorts and the first number of the subject ID
identified the cohort (cohort 1, 2, or 3). The data was split into two separate
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1** 3**

datasets, according to the slice thickness of the images. Subjects and
had T2* images with 3.0 mm slices; and subjects 2** had images with 0.8 mm
slices. Two separate models were trained for these dataset splits.

2.2 Pre-processing

For every patient, image intensities were normalized using the z-score approach.
The data originated from different cohorts and all images were resized to a
common field-of-view of 512x512 pixels in-plane.

2.3 Mask R-CNN

A pre-trained Mask R-CNN model [13| [15] was finetuned to obtain an initial
detection and segmentation of the microbleeds. The method uses 2D patches
of size 64x64. Because of the small size of the microbleeds, patches were up-
sampled with a factor of four to 256x256. This ensured that the microbleeds
had a detectable size in the patches. The three different modalities were in-
troduced as three separate channels. Data augmentation with random affine
transformations and horizontal flips was used. The model was trained on 80 %
of the data for 15 epochs, with a batch size of 6 and learning rate of 5e-6.

2.4 U-Net

A simple U-Net was applied to obtain the final segmentations. A four-channel
input was introduced in this case and consisted of the whole slice in the T2*
image, including the previous and posterior slice, and the predicted output of
the Mask R-CNN. In case of the first and last slice for every image, previous and
posterior slices were blank. Data augmentation was defined by random affine
transformations and horizontal flips. The model was trained on 80 % of the
data for 50 epochs, with a batch size of 4 and learning rate of 5e-5.

2.5 Post-processing

Because microbleeds consist of dark spots in the T2* images, the first threshold
was obtained by determining the minimum intensity value of every microbleed
present in the dataset, determined in the T2* images. This value was then
maximized and applied to the predictions of both models as a filter.

To further reduce the number of false positives, a mask is applied to the
U-Net predicted outputs. Visual inspection showed that most false positives
occur at the outer boundaries of the brain. The mask consists of cropping the
outside of the brain in the T2* image for every patient and applying a dilation
to include the borders of the brain.

Finally, the U-Net output is threshold at 0.001 to obtain a binary mask of
the microbleeds present in every image.



2.6 Full prediction pipeline

To summarize, the final prediction in a subject was obtained by following the
next steps: First the image intensity is scaled using z-score normalization and
both the images and mask are resized to 512x512. A three-channel input is
then introduced in the Mask R-CNN to obtain the first prediction, which is
thresholded considering the intensity of the T2* image. This prediction is then
included in the U-Net input, together with three consecutive slices in the T2*
image, as a four-channel tensor. Finally, the U-Net predictions are threshold
with the T2* intensities, masked by eliminating the outside and borders of the
brain, and threshold to obtain a binary image. Figure [I| shows the full pipeline.
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Figure 1: Full microbleed prediction pipeline showing the pre-processing, pre-
diction on the models (Mask R-CNN and U-Net) and post-processing steps to
detect and segment the microbleeds in a patient.
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3 Results

Figure 2]shows the confusion matrices of subjects 1¥*, 2** and 3**, respectively.
Subjects 1** and 3** have been processed with the ‘low’ slice thickness model,
and subjects 2** with the ‘high’ slice thickness model.

The prediction obtained from a random subject of each of the cohorts has
also been included to visualize the output of the segmentation. Note that, to
improve the visualization, the white squares show where the true microbleeds
are located in the figure.
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Figure 2: Confusion matrices showing the results on the training set of each
cohort; and a slice of a random subject showing the true microbleeds (white)
and predicted output (red).
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4 Discussion

Visual inspection of the results on the training data, revealed that most of the
false positive detections are dark areas in the image (Figure(3). This corresponds
mostly to locations close to the CSF and vessels present in the brain. The
use of masks to remove false positive detections was not enough to clear them
all, because of the low intensities (similar to true microbleeds) and the central
location. A future implementation could use an improved registration and/or
segmentation approach to remove the CSF from the images.
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Figure 3: Left: slice of a random subject, showing true microbleeds in red.
Right: prediction of the method for this slice (red) with the true microbleeds
in the white box. A number of false positives are visible, corresponding to dark
regions in the T2* image.

Our current implementation, using a threshold to remove false positive de-
tections, also partially removes the outer boundary of true microbleeds (Figure
; because the partial volume effect gives it a slightly higher intensity than the
signal void at the core of the microbleed. This could be improved by threshol-
ding at the object level (keeping a 3D connected component if at least one voxel
survives the intensity threshold) or using a double thresholding and/or region
growing approach to retain the borders of true microbleeds.

Similarly, some microbleeds are discard by the last post-processing because
they have lower intensities than the threshold, as is shown in the Figure |4]

5 More information

Source code is available at: https://github.com/hjkuijf/MixMicrobleed.
The docker container hjkuijf/mixmicrobleed can be pulled from https://hub.
|docker.com/r/hjkuijf/mixmicrobleed.
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Figure 4: Left: slice of a random subject, showing true microbleeds in red.
Right: prediction of the method for this slice (red) with the true microbleeds
in the white box. The true microbleed was originally detected, but removed by
the post-processing steps.
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