
A Pure Transformer Pretraining Framework on
Text-attributed Graphs

Yu Song
Michigan State University

songyu5@msu.edu

Haitao Mao
Michigan State University

haitaoma@msu.edu

Jiachen Xiao
Michigan State University

xiaojiac@msu.edu

Jingzhe Liu
Michigan State University

liujin33@msu.edu

Zhikai Chen
Michigan State University

chenzh85@msu.edu

Wei Jin
Emory University

wei.jin@emory.edu

Carl Yang
Emory University

j.carlyang@emory.edu

Jiliang Tang
Michigan State University

tangjili@msu.edu

Hui Liu
Michigan State University

liuhui7@msu.edu

Abstract
Pretraining plays a pivotal role in acquiring generalized knowledge from large-
scale data, achieving remarkable successes as evidenced by large models in
CV and NLP. However, progress in the graph domain remains limited due to
fundamental challenges represented by feature heterogeneity and structural het-
erogeneity. Recent efforts have been made to address feature heterogeneity
via Large Language Models (LLMs) on text-attributed graphs (TAGs) by gen-
erating fixed-length text representations as node features. These high-quality
features reduce the previously critical role of graph structure, resulting in a
modest performance gap between Graph Neural Networks (GNNs) and structure-
agnostic Multi-Layer Perceptrons (MLPs). Motivated by this, we introduce a
feature-centric pretraining perspective by treating graph structure as a prior and
leveraging the rich, unified feature space to learn refined interaction patterns that
generalizes across graphs. Our framework, Graph Sequence Pretraining with
Transformer (GSPT), samples node contexts through random walk and employs
masked feature reconstruction to capture pairwise proximity in the LLM-unified
feature space using a standard Transformer. By utilizing unified text represen-
tations rather than varying structures, GSPT alleviates structural heterogeneity
and achieves significantly better transferability among graphs within the same
domain. Our approach can be easily adapted to both node classification and link
prediction, demonstrating promising empirical success on various datasets. The
source code is publicly available at https://github.com/SongYYYY/GSPT.

1 Introduction
Transfer learning has witnessed remarkable success in recent years, particularly exemplified by the
advancements in foundation models for Natural Language Processing (NLP) [1, 2] and Computer
Vision (CV) [3, 4]. These methods typically leverage self-supervised pretraining on large-scale
datasets to acquire broad, generalized knowledge, which is subsequently adapted to specific tasks
and datasets through fine-tuning or in-context learning. However, the graph domain predominantly
adheres to a ‘one-model, one-dataset’ approach, where models are tailored specifically to individual
datasets and tasks, deviating from the prevailing trend of ‘one model serves all’.

The pursuit of cross-dataset transfer learning on graphs faces unique challenges. The immediate one
is feature heterogeneity, i.e., the inherent mismatch in feature spaces among different datasets, as

Y. Song et al., A Pure Transformer Pretraining Framework on Text-attributed Graphs. Proceedings of the Third
Learning on Graphs Conference (LoG 2024), PMLR 269, Virtual Event, November 26–29, 2024.

https://github.com/SongYYYY/GSPT

A Pure Transformer Pretraining Framework on Text-attributed Graphs

graphs denoting different data types often have features with varying dimensions and semantics [5, 6].
Previous methods circumvent this by ignoring the features and only transferring knowledge from the
structural side [7, 8], or constraining the applications in vertical domains where node/edge features
are naturally aligned [9, 10]. Such approaches, while somewhat effective, suffer from performance
loss or restricted applicability [11]. Another challenge is structural heterogeneity, which arises
from the vastly different structural patterns across various graphs, leading to out-of-distribution
scenarios and potential negative transfer [12]. A typical example is the varying degrees of homophily
across graphs [13]. Together, these challenges pose substantial obstacles to the development of a
flexible, generalizable model capable of effective pretraining and knowledge transfer across diverse
downstream datasets.

Recent efforts [5, 14–17] have been made to tackle feature heterogeneity by leveraging large
language models (LLMs) to unify the feature spaces of text-attributed graphs (TAGs). They replace
traditional shallow features like word2vec and tf-idf with language model-enhanced features and
have demonstrated impressive empirical success, represented by the improved performance on graph-
related tasks and the reduced gap between purely feature-based approaches (e.g., an MLP) and
graph-tailored models (e.g., Graph Neural Networks) [14]. This trend motivates us to consider a
conceptual shift from a structure-centric approach to a feature-centric view, suggesting the potential
to enhance knowledge transfer by effectively leveraging the LLM-unified feature space.

Building on this perspective, the core principle is to identify a fundamental unit that can effectively
encode graph information and generalize across the LLM-unified feature space. In this study, we
propose to learn a pairwise function that models the proximity of node pairs, thereby capturing the
interactions embedded in the graph structure. Drawing inspiration from existing works [18–20],
we adopt a feature reconstruction-based objective as the pretext task, under the assumption that the
relational patterns learned through reconstruction overlap with those necessary for downstream tasks
[21]. Specifically, given a (masked) center node and its context, we aim to reconstruct the feature
of the center node using its context. This approach presents two key challenges. The first challenge
is how to construct an appropriate context for graphs? Unlike sequential data such as language or
grid-based data like images, graphs represent non-Euclidean structures, making it non-trivial to define
the context for reconstruction. The second challenge is how to reconstruct the center node from its
context? This involves identifying an appropriate architecture capable of accurately interpreting the
context nodes and a loss function that effectively guides the model’s learning process.

To address the first challenge, we propose using node sequences generated by random walks as
contexts, where the entire sequence forms the receptive field, and the order of nodes preserves
proximity information [22, 23]. By doing so, the original graph topology serves as a prior to retrieve
relevant context nodes, facilitating effective proximity modeling for accurate reconstruction of
masked features. For the second challenge, we employ a standard Transformer architecture due to its
flexibility in modeling sequences with self-attention and its proven transferability across domains
like CV and NLP [3, 19]. To handle the multi-dimensional and continuous nature of LM-produced
features, we adopt a cosine similarity-based objective to measure reconstruction error instead of
cross-entropy [24].

Putting it all together, we propose Graph Sequence Pretraining with Transformer (GSPT), where a
standard Transformer is used alongside a feature reconstruction objective to learn a unified model
for node representations. Our framework highlights the use of text-based representations rather
than the diverse structures of different graphs, leading to enhanced transferability and reduced risk
of negative transfer caused by structural shifts. To evaluate the effectiveness of our method, we
perform self-supervised training on the largest graph available ogbn-papers100M [25], and apply
the pretrained model on various downstream datasets. Experimental results reveal that our GSPT
excels in in-context node classification and link prediction, showcasing effective knowledge transfer
from pretraining to downstream tasks. Furthermore, we observe a notable trend of improvement with
increased pretraining data, highlighting the potential of the proposed framework. Our findings deepen
the understanding of the LLM-unified feature space in graph data and provide valuable insights into
the development of a versatile and generalizable graph foundation model.

2 Preliminary Study
In this section, we aim to answer the question: What can be better transferred across graphs? In
general, a graph G = (A,X) is comprised of two “modalities", i.e., the structure space represented

2

A Pure Transformer Pretraining Framework on Text-attributed Graphs

Cora
Citeseer
Pubmed
Papers100M

(a) t-SNE visualization of feature space

word2vec tf-idf SBert40

50

60

70

80

90

AU
C

(b) Link prediction

word2vec tf-idf SBert40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

MLP
GCN

(c) Node classification

Figure 1: (a) SentenceBert provides a unified feature space for different datasets under the same
domain. The node features of three small citation graphs, i.e., Cora, Citeseer, and Pubmed, can be
well covered by ogbn-papers100M, a large-scale citation network containing papers from a vast
variety of research topics. (b) Advanced text embeddings are better at predicting the missing edges
compared with shallow features. (c) Advanced embeddings reduce the performance gap on node
classification between GCN and MLP. Experiments are conducted on Cora.

by the adjacency matrix A, and the feature space of X . Previous studies [13, 26] show that the
structure space can hardly be unified since the connections may be formed due to vastly different
principles even for graphs in similar domains. For instance, in a friendship network, nodes tend to
form edges with others of the same gender, whereas the pattern is reversed in a dating network. Such
inherent shift poses significant challenges to the transfer learning on the structure space, even leading
to negative transfer [12, 27]. On the other hand, the feature space X can be effectively unified with a
powerful LM, as demonstrated in Figure 1 (a), where a pretrained SentenceBERT [28] is used to
generate node embeddings for different datasets within the citation domain.

Therefore, we ask: can we focus on transferring knowledge from the feature space, while reconstruct-
ing the structure information based on the unified features? To answer this question, we conduct two
sets of experiments to determine the extent to which structure can be reconstructed from the feature
information. Based on Figure 1, the SentenceBert embeddings significantly facilitate the structure
reconstruction, demonstrated by the improved link prediction performance (b) and the reduced gap
between GCN and MLP in node classification (c).

The aforementioned observations motivate us to design our pretraining framework from a feature-
centric perspective: we consider graph structure as a prior and utilize features X to capture the
fine-grained topology that generalizes across graphs. In particular, we propose to model the graph
structure via pairwise relationships based on the unified feature space derived from LLM embeddings
and transfer this function to datasets within similar domains. The pairwise relationship is useful
because it is closely related to various graph-based tasks, e.g., for node classification, we can frame
the problem as "whether two nodes belong to the same class"; for link prediction, the question can be
framed as "whether there exists an edge between a pair of nodes". Compared with strictly adhering
to the fixed inductive bias of graph topology, this approach inherently avoids the potential negative
transfer due to structure mismatch and has the potential to improve with advances in LLMs to unify
the node attributes.

3 Method

3.1 An Overview

In this section, we introduce our feature-centric pretraining framework Graph Sequence Pretraining
with Transformer (GSPT), a direct implication of the preliminary study. It consists of two major
components. First, we generate node contexts from the graph through random walks. This context
encapsulates the structural information of the graph and is tailored to the specific task. Next, we feed
the context into a standard Transformer and perform masked feature reconstruction on the large-scale
pretraining dataset. This approach enables the Transformer to effectively model pairwise relationships
within a unified feature space, facilitating seamless transfer to downstream datasets. Next we will

3

A Pure Transformer Pretraining Framework on Text-attributed Graphs

illustrate our framework using the node classification task and then extend it to link prediction in
Appendix A.1. The overall framework of GSPT is illustrated in Figure 2.

3.2 Context Construction

① random walk Input node sequence

𝑥1 [𝑀] 𝑥3 𝑥4 [𝑀]

②mask

Feature
embedding

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5
Positional
embedding

Transformer

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ2 ℎ5

𝑥2 𝑥5

Feature Reconstruction
Loss

ℒ = 1 − cos(𝒉, 𝒙)③

④

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

Original Graph

Augmented Graph

Regular node

Class node

Original edges

Inserted edges

Figure 2: The overall framework of Graph Sequence Pretraining with Transformer (GSPT). Left:
the pretraining consists of four steps: (1) generate node sequences from the graph using random
walk; (2) randomly replace a portion of node features with [MASK]; (3) feed the input sequence
into the Transformer and (4) compute the feature reconstruction loss with cosine similarity. Right:
We construct the augmented graph by adding class nodes to the original graph and connecting
correponding node pairs. GSPT performs in-context node classification by comparing the cosine
similarity between the representations of regular nodes and class nodes.

Graph context aims to provide structural information that graph algorithms can leverage. Traditional
methods like Graph Neural Networks (GNNs) rely on message-passing to generate contextualized
node representations, which have been effective in many graph-related tasks [29–31]. However, these
approaches often encode fixed inductive biases via K-hop neighborhoods, which can lead to negative
transfer when applied to structurally diverse graphs [12, 13]. Moreover, extracting the ego networks
poses a significant computational burden, particularly for large-scale graphs with high average
degrees. In contrast, random walks (RWs) offer a more flexible mechanism for exploring graph
structures, supported by both theoretical rigor and empirical success [22, 32]. Next, we demonstrate
that random walks provide several key advantages for context construction in our framework. The
proof is provided in Appendix A.5.

[Neighbor Coverage] Let G = (V,E) be a graph, v ∈ V a node, and NK(v) its K-hop neighborhood.
Given m random walks of length l starting from v, the probability p(l,m) that all nodes in NK(v)
are visited by at least one random walk is bounded by:

p(l,m) ≥ 1− |NK(v)| ·
(
HK

l

)m

,

where |NK(v)| is the size of the K-hop neighborhood, and HK is an upper bound on the expected
hitting time between nodes in a K-hop neighborhood, which is typically small for a low value of K.

[Proximity Preservation] Let H(v, u) be the expected hitting time from v to u in a graph G. For any
two nodes u1, u2 ∈ V such that H(v, u1) < H(v, u2), there exists an m large enough such that:

P (f(v, u1) < f(v, u2)) > 1− δ,

for any δ > 0, where f(v, u) is the average position of u in m random walks starting from v.

Remark. Proposition 1 ensures that with multiple random walks of sufficient length, the K-hop
neighborhood can be covered with high probability. In practice, initiating a small number of random
walks per node provides enough context for generating high-quality node representations. Proposition

4

A Pure Transformer Pretraining Framework on Text-attributed Graphs

2 demonstrates that the order of nodes in random walks effectively reflects node proximity via the
expected hitting time, which captures both local and global path information, serving as a robust
indicator of node connectivity [33]. By incorporating learnable positional embeddings into the input
node features, the QKV-attention is capable of capturing this fine-grained information.

In addition to their ability to cover neighborhoods and preserve node proximity, random walks offer
several other benefits. For instance, the randomness of RWs acts as a form of data augmentation,
potentially improving robustness and generalization. Unlike message-passing confined to fixed
neighborhoods, random walks dynamically explore nodes up to K hops away, expanding the receptive
field and benefiting the modeling of long-range dependencies. From the efficiency perspective,
random walks can be easily parallelized, making them scalable for large graphs.

In our implementation, we adopt the random walk approach from Node2vec [22], which uses
parameters p and q to balance between local and global graph exploration. For pretraining, we
generate one random walk sequence starting from each node. At inference time, we start 3 random
walks per node to enhance performance.

3.3 Transformer as Backbone

With random walks as the contexts, our next step is to identify a suitable backbone to effectively
learn the interaction patterns within each context. As discussed earlier, GNNs may not be the best fit
for this purpose due to their fixed graph inductive biases. While Graph Transformers aim to address
these issues by integrating self-attention with fixed graph structures, they often become complex and
are typically tailored for specific tasks such as graph classification [34].

In contrast, the Vanilla Transformer [35] stands out as an ideal architecture for our task due to several
key advantages. Firstly, Transformers enable flexible relational modeling through self-attention,
allowing for dynamic and adaptable feature propagation. Secondly, their straightforward design
simplifies implementation and scaling compared to more intricate variants. Lastly, they integrate
several successful components in deep learning such as layer normalization and residual connections,
greatly reducing the design space of the framework.

The combined use of Transformers and random walks is mutually beneficial. Random walks provide
contexts in the form of sequences to be processed by Transformers, while Transformers capture
fine-grained interaction patterns given the sampled contexts. With this approach, the graph topology
acts as a prior to provide structural knowledge for the model, effectively addressing the potential
structural shifts caused by fixed inductive bias.

3.4 Masked Feature Reconstruction

The pretext task plays a crucial role in determining the type of knowledge the model will acquire
and how well it can be transferred to downstream tasks. In our approach, we emphasize pairwise
relationships between nodes, as many graph-related tasks can be framed in terms of such relations.

To this end, we aim to learn meaningful interaction patterns between nodes through self-supervised
learning and transfer this knowledge to unseen datasets. Inspired by the success of masked autoen-
coders across various domains [18, 19], we adopt masked feature reconstruction for our pretraining
task. The key assumption is that the relational patterns learned for feature reconstruction overlap with
those required for tasks like node classification, thus offering a robust way of knowledge transfer
between pretraining and downstream applications [21]. To handle the sequential nature of RWs, we
adopt the BERT [19] approach, which enables feature reconstruction in a decoder-free manner. We
retain the bidirectional attention in BERT [19] as it is favored in the random walk setting where
context from both preceding and succeeding nodes enhances the prediction of missing features.

Specifically, given a random walk of length l: rw = [v0, v1, ..., vl−1], the input sequence is con-
structed by extracting the corresponding node features xi ∈ Rd, added by the positional embeddings
pi ∈ Rd, i.e., h0 = [x0 + p0, x1 + p1, ..., xl−1 + pl−1]. Before feeding to the Transformer, we
randomly replace a ratio of nodes in the sequence with a [MASK] token. The goal is to reconstruct
the raw node feature of the masked nodes based on the output of Transformer. Unlike the original
masked language modeling (MLM) task in BERT, where a cross-entropy loss is used to predict the ID
of the masked tokens, we use cosine similarity to measure how well the feature is reconstructed from
the context, similar to [24]. Formally, the node representations for a given input batch H0 ∈ Rb×l×d

5

A Pure Transformer Pretraining Framework on Text-attributed Graphs

of b nodes are obtained through the following steps:

HL = TRM(H0), (1)

Hnode = Pooling(HL), (2)
where TRM is a Transformer with L layers, and HL is the output of the final layer. Pooling denotes
a pooling function that reduces the output HL ∈ Rb×l×d to node representations Hnode ∈ Rb×d. In
our implementation, the pooling function is realized by taking the average of all embeddings of vi in
HL. For simplicity, we use hi to denote the i-th row of pooled representations Hnode.

Finally, given a masked sequence of nodes, the loss for the feature reconstruction task is computed as
follows:

Lnode =
1

m

m∑
i=1

(1− cos(hi, xi)) , (3)

where cos(hi, xi) denotes the cosine similarity between the reconstructed representation hi and the
original feature xi, and m is the number of masked nodes in the sequence.

3.5 Negative sampling

A random walk sequence typically form a locally connected component where nodes are highly
correlated, especially in graphs exhibiting strong homophily. Such correlation implies that nodes in
proximal positions within RWs are likely to share similar features. In the context of masked feature
reconstruction, this can lead to a shortcut where basic aggregation functions, like mean pooling,
suffice to reconstruct node features with high accuracy [24].

To enhance the model’s ability to discriminate between relevant and irrelevant contextual information,
we introduce noisy nodes into the input sequence as "distractor nodes." The purpose of such nodes
is to ensure that the model cannot obtain a good reconstruction error without learning to attend to
the truly relevant nodes in the sequence. In practice, we randomly select a node from the graph, and
repeat it K times at the end of the sequence, where K is a random number from [0, l]. Repeating the
same distractor node multiple times strategically increases the task’s complexity while maintaining a
manageable noise level, preventing excessive interference with the learning objective. Formally, the
random walk sequence with distractor nodes is given by:

rw = [v0, v1, ..., vl−K−1, vd, vd, ..., vd], (4)

where vd is the distractor node. Note that vd and K are sampled independently for each sequence.
By complicating the reconstruction task, the model is compelled to engage more effectively with its
attention mechanisms, improving its generalization capabilities by encouraging a more discerning
use of contextual information. Through ablation study, we demonstrate that the inclusion of distractor
nodes significantly improves the quality of pretraining.

3.6 Enabling In-context Learning

After pretraining, our framework is able to produce high-quality node representations for input graphs
from similar domains. To fully utilize the knowledge of the pretrained model, we design an in-context
learning framework to address few-shot learning tasks using support examples, inspired by the graph
prompts in [5, 17].

This in-context learning process is illustrated in the right part of Figure 2. For an N-way K-shot task,
we first introduce N class nodes to the original graph Gori. We then connect the K-shot examples
to their corresponding class nodes, creating an augmented graph Gaug. Similar to the pretraining
process, we transform the augmented graph into sequences using random walks. Our pretrained
backbone then performs feature propagation on these node sequences, merging the features of regular
nodes and class nodes through the self-attention mechanism. The output node embeddings, both for
regular and class nodes, are used for prediction by comparing the cosine similarity between the test
nodes and all class nodes. Given the output embeddings {s1, s2, . . . , sN} for the N class nodes and
the embedding t for a test node, the predicted class is:

ŷ = argmaxi∈{1,...,N} cos(t, si). (5)

Through this approach, our framework is able to make predictions on any unseen test graph with
novel labels, without modifying the parameters of the pretrained model.

6

A Pure Transformer Pretraining Framework on Text-attributed Graphs

4 Experiment
In this section, we conduct experiments to validate the effectiveness of our proposed GSPT framework.
Through the experiments, we aim to answer the following research questions: RQ1: Can our proposed
pretraining framework achieve cross-graph knowledge transfer? RQ2: What is the underlying
mechanism that promotes the positive transfer of GSPT? RQ3: How do different negative sampling
strategies affect performance? RQ4: Can our framework benefit from increasing the data scale used
for pretraining?

4.1 Datasets

We evaluate our framework using a variety of citation datasets. For pretraining, we utilize the ognb-
papers100M [36] dataset, which comprises over 100 million nodes and 1.6 billion edges, making it
the largest publicly available graph dataset. To address efficiency issues, we use the METIS algorithm
to partition the entire graph into approximately 10,000 smaller graphs during pre-processing, each
containing around 10,000 nodes. During pretraining, we randomly select one partition to construct
a batch. For downstream tasks, we assess the performance on both node classification and link
prediction using four well-known citation graphs: Cora, Citeseer, Pubmed, and Arxiv23. We neglect
ogbn-arxiv in our evaluation as it is covered by ogbn-papers100M. To ensure a consistent and unified
feature space among all datasets, we generate text embeddings for the raw text associated with each
node using SentenceBERT [28]. Due to space limit, the results for link prediction are presented in
Appendix A.2.

4.2 Few-shot Node Classification

4.2.1 Experimental Setup

Setup. We begin by evaluating our pretraining framework on node classification. In line with [5], we
adopt a few-shot in-context learning setting to create N-way K-shot tasks. Specifically, we randomly
select N classes from the dataset’s class set and generate a K-shot prompt, where K labeled nodes
are randomly chosen for each of the N classes. All K-shot examples are drawn from the original
training split of the graphs. The validation and test sets are constructed by filtering the nodes of
the selected classes from the original validation and test sets, respectively. In all experiments, we
generate 100 templates for each of the N-way K-shot tasks and report the averaged performance.

Baselines. We compare our method against five groups of baselines. The first group includes feature-
based approaches, which perform node classification by comparing the cosine similarity between
the test nodes and prototype vectors denoting the centroid of the K-shot prompt nodes. To make
the features contextualized w.r.t. the graph structure, we adopt the degree-normalized Laplacian to
perform feature propagation following [37]. The second group represents traditional supervised
learning methods, including GCN [29] and GAT [38], which are directly trained on the downstream
datasets. The third group consists of self-supervised learning baselines, covering three representative
methods: DGI [39], GraphMAE [24] and GRACE [40]. To assess the transferability of these SSL
methods, we pretrain a GNN model using each method on ogbn-papers100M [36] and then evaluate
the pretrained models on downstream datasets. Lastly, we compare our GSPT against in-context
learning methods, including Prodigy [17] and OneForAll [5]. Prodigy utilizes neighbor matching
and supervised training on the MAG240M dataset, while OneForAll is trained on ogbn-arxiv with
few-shot learning templates directly mimicking the downstream task.

Our method. Depending on how to construct the features for the class nodes, we propose two
variants of GSPT, namely, GSPT-void and GSPT-desc. GSPT-void means initializing the features
for all class nodes with zero vectors. In contrast, in GSPT-desc, we use GPT4 [1] to generate a text
description for each class of the downstream dataset, and use the SentenceBert [28] embeddings of
the descriptions to initialize the class nodes, following [5].

4.2.2 Result Comparison

Table 1 shows the performance comparison between the five groups of methods on N-way-3-shot
tasks with varying Ns. We make the following observations:

Feature-based approaches provide a solid baseline. Feature-based methods offer a straightforward
implementation of model-free classification and can be practical in low-resource scenarios. Among

7

A Pure Transformer Pretraining Framework on Text-attributed Graphs

these methods, SentenceBERT outperforms other shallow embeddings, significantly reducing the
gap to supervised learning models which are trained end-to-end on downstream datasets. This
indicates that using advanced language model embeddings as node features, combined with simple
message-passing, allows a model-free method to generate highly contextualized and discriminative
node representations.
Table 1: Performance comparison of few-shot node classification on citation datasets. We report the
Accuracy (%) on 100 sampled tasks with 3-shot prompts.

Methods Cora Citeseer Pubmed Arxiv23

2-way 5-way 7-way 3-way 6-way 3-way 3-way 5-way 10-way

Supervised Learning

GCN 91.90 77.22 71.60 80.38 67.46 66.56 88.34 82.14 67.98
GAT 93.00 78.19 72.28 80.96 68.02 66.82 87.75 83.80 69.21

Feature-based Approach

Word2vec 78.81 56.73 48.82 69.49 53.74 56.09 60.57 59.01 44.05
Tf-idf 87.96 70.98 64.27 76.40 62.78 63.76 79.74 75.77 60.52
SentenceBert 89.39 74.56 67.91 79.10 66.70 64.55 83.66 77.01 62.94

Self-supervised Learning

DGI 91.00 75.35 69.08 79.60 66.64 60.93 83.61 72.49 60.73
GraphMAE 90.85 76.36 70.14 79.53 67.57 64.14 OOM OOM OOM
GRACE 91.98 77.09 70.99 80.50 67.54 63.40 85.56 73.94 63.25

Self-supervised Transfer

DGI 62.47 33.51 26.47 40.18 23.20 41.27 38.73 27.08 14.46
GraphMAE 88.82 73.52 66.77 75.80 62.54 62.39 27.21 24.77 11.07
GRACE 79.23 54.71 46.08 57.52 41.50 53.99 56.08 40.61 26.03

In-context Learning

Prodigy 73.57 62.54 58.31 69.81 61.63 60.24 68.35 58.43 42.14
OFA 72.35 60.57 56.47 67.99 59.53 59.88 69.23 58.23 42.68

GSPT-void 91.92 77.00 71.40 80.02 68.37 65.51 86.06 78.26 63.12
GSPT-desc 92.89 80.55 75.61 82.23 70.88 70.85 87.67 81.46 69.40

Existing self-supervised learning methods exhibit negative transfer. We now assess the transfer-
ability of existing self-supervised learning (SSL) methods. In Table 1, ’Self-supervised Learning’
refers to performing SSL on the individual downstream datasets, while ’Self-supervised Transfer’
means pretraining on ogbn-papers100M and evaluating with the pretrained checkpoint. Comparing
the results from the two groups, we observe a drastic performance drop in the transfer learning setting.
This suggests that models pretrained with existing SSL methods cannot directly generalize to different
datasets, even when they belong to similar domains. We attribute this to the structural shift from the
pretraining graph to the downstream datasets, particularly highlighted by the poor performance on
Arxiv23, which exhibits distinct properties compared to the pretraining dataset (See Appendix A.6
for details).

GSPT exhibits strong in-context learning ability. Both variants of GSPT achieve competitive
performance across all baselines. For the two variants, GSPT-desc consistently outperforms GSPT-
void, suggesting that our pretrained model can further leverage the additional information provided in
the class descriptions. Among training-free methods1 including feature-based and in-context learning
approaches, GSPT surpass others by a significant margin, demonstrating its capability to promote
positive transfer by effectively leveraging the pretrained knowledge. Notably, GSPT-desc achieves
the highest accuracy in most scenarios, even outperforming expert GNN models trained directly on
the downstream dataset. This indicates that when label information is sparse, in-context learning can
be a better solution than training task-specific models.

Overall, GSPT demonstrates strong cross-graph transferability, achieving better or comparable
accuracy compared to end-to-end methods on few-shot node classification tasks across different
datasets, without modifying any pretrained parameters (Answer to RQ1).

1Here training-free means the methods are not trained on the downstream dataset.

8

A Pure Transformer Pretraining Framework on Text-attributed Graphs

4.2.3 Analysis of GSPT’s in-context capability

We aim to understand the strong in-context learning ability of GSPT from the perspective of attention
mechanisms, using GSPT-desc as an example. Specifically, using each class prototype as the query,
we visualize the attention distribution computed by the Transformer on its context nodes of different
classes. As illustrated in Figure 3, the pretrained Transformer learns to adaptively propagate messages
within the augmented graph, i.e., allowing class nodes to selectively attend to regular nodes that share
the same ground-truth labels, and vice versa (Answer to RQ2). Consequently, the similarity between
intra-class nodes increases, while it decreases for inter-class nodes. In contrast, the Transformer
without pretraining relies solely on the graph structure for message passing, and thus the performance
is bounded by the homophily of the original graph.

Class

Cl
as

s

Classwise Attention Map

Class

Classwise Attention Map

0.0

0.2

0.4

0.6

0.8

1.0

At
te

nt
io

n
Va

lu
e

Figure 3: Attention map on classes of Cora. Left: at-
tention weights obtained by the pretrained Transformer.
Right: attention weights w/o pretraining.

GSPT-no-ns GSPT-random-ns GSPT-ours
70

72

74

76

78

80

82

84

Pe
rf

or
m

an
ce

Cora Citeseer Pubmed

Figure 4: Ablation studies of different neg-
ative sampling strategies.

4.3 Ablation Study

In this subsection, we compare three variants of negative sampling approaches used in GSPT’s
pretraining stage. Specifically, GSPT-no-ns refers to pretraining without negative sampling, i.e.,
using the entire random walk sequences as input. GSPT-random-ns means randomly sampling K
independent nodes at the end of each sequence. In GSPT-ours, we randomly sample one negative
node for each sequence, and repeat the same node K times at the end of the sequence. The results are
presented in Figure 4. We observe that GSPT-no-ns performs worse than GSPT-ours, demonstrating
that the feature reconstruction task alone cannot compel the model to effectively learn interaction
patterns without the inclusion of negative samples. On the other hand, GSPT-random-ns performs
even worse, as it introduces too much noise to the input sequences, interfering with the training.
Overall, our negative sampling approach, while simple and straightforward, is effective to aid the
pretraining process (Answer to RQ3).

4.4 Scaling Effect

The NLP and CV domains have observed a scaling law in Transformer-based models, where perfor-
mance on downstream tasks improves as more data is used for pretraining. To investigate whether
GSPT exhibits a similar property, we conducted controlled experiments using different ratios of the
pretraining dataset and evaluated the corresponding performance on downstream tasks. Specifically,
we randomly selected varying proportions of METIS subgraphs for pretraining. As shown in Figure
5, GSPT’s performance on both node classification and link prediction improves as more data is used
for pretraining. This demonstrates the potential for further enhancement of our pretraining method if
industry-scale data becomes available (Answer to RQ4).

5 Conclusion
In this work, we present a novel graph pretraining framework based on random walks and a standard
Transformer architecture. Building upon the unified feature space provided by LLM embeddings, we
leverage masked feature reconstruction to perform fully self-supervised learning to learn transferrable
node representations across different graphs. By pretraining on massive-scale graphs with over
100 million nodes, our framework demonstrates impressive transferability and achieves promising
performance on both node-level and link-level tasks. Our findings enhance the comprehension of the
LLM-unified feature space in graph data and offer valuable insights for the creation of a versatile and
generalizable graph foundation model.

9

A Pure Transformer Pretraining Framework on Text-attributed Graphs

References
[1] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece

Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[2] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[3] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4015–4026,
2023.

[4] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[5] Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. arXiv preprint
arXiv:2310.00149, 2023.

[6] Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Michael
Galkin, and Jiliang Tang. Graph foundation models. arXiv preprint arXiv:2402.02216, 2024.

[7] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 1150–1160, 2020.

[8] Alex O Davies, Riku W Green, Nirav S Ajmeri, et al. Its all graph to me: Foundational topology
models with contrastive learning on multiple domains. arXiv preprint arXiv:2311.03976, 2023.

[9] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv: Learning, 2019.

[10] Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li,
and Stan Z. Li. Mole-bert: Rethinking pre-training graph neural networks for molecules. In
International Conference on Learning Representations, 2023.

[11] Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S. Yu. Graph self-supervised
learning: A survey. IEEE Transactions on Knowledge and Data Engineering, 35:5879–5900,
2021.

[12] Zehong Wang, Zheyuan Zhang, Chuxu Zhang, and Yanfang Ye. Subgraph pooling: Tackling
negative transfer on graphs. In International Joint Conferences on Artificial Intelligence, 2024.

[13] Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang
Tang. Demystifying structural disparity in graph neural networks: Can one size fit all? Advances
in Neural Information Processing Systems, 36, 2024.

[14] Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Haifang Wen, Xiaochi Wei, Shuaiqiang Wang,
Dawei Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language
models (llms) in learning on graphs. ArXiv, abs/2307.03393, 2023.

[15] Yanchao Tan, Zihao Zhou, Hang Lv, Weiming Liu, and Carl Yang. Walklm: A uniform language
model fine-tuning framework for attributed graph embedding. Advances in Neural Information
Processing Systems, 36, 2024.

[16] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic,
and Inderjit S. Dhillon. Node feature extraction by self-supervised multi-scale neighborhood
prediction. ArXiv, abs/2111.00064, 2021.

[17] Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs. arXiv preprint arXiv:2305.12600,
2023.

10

A Pure Transformer Pretraining Framework on Text-attributed Graphs

[18] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll’ar, and Ross B. Girshick.
Masked autoencoders are scalable vision learners. 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 15979–15988, 2021.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In North American Chapter of the
Association for Computational Linguistics, 2019.

[20] Mingyue Tang, Pan Li, and Carl Yang. Graph auto-encoder via neighborhood wasserstein
reconstruction. In International Conference on Learning Representations, 2021.

[21] Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design
with self-supervision. arXiv preprint arXiv:2204.04879, 2022.

[22] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016.

[23] Bryan Perozzi, Rami Al-Rfou, and Steven S. Skiena. Deepwalk: online learning of social
representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2014.

[24] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 594–604, 2022.

[25] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[26] Haitao Mao, Juanhui Li, Harry Shomer, Bingheng Li, Wenqi Fan, Yao Ma, Tong Zhao, Neil Shah,
and Jiliang Tang. Revisiting link prediction: a data perspective. In The Twelfth International
Conference on Learning Representations, 2024.

[27] Lu Lin, Jinghui Chen, and Hongning Wang. Spectral augmentation for self-supervised learning
on graphs. arXiv preprint arXiv:2210.00643, 2022.

[28] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

[29] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[30] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-
metric graph convolutional networks. In International Conference on Learning Representations,
2020.

[31] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph
transformer for node classification in large graphs. In International Conference on Learning
Representations, 2022.

[32] Dexiong Chen, Till Hendrik Schulz, and Karsten Borgwardt. Learning long range dependencies
on graphs via random walks. arXiv preprint arXiv:2406.03386, 2024.

[33] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

[34] Ladislav Rampavsek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
D. Beaini. Recipe for a general, powerful, scalable graph transformer. ArXiv, abs/2205.12454,
2022.

[35] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information
Processing Systems, 2017.

[36] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[37] Felix Wu, Tianyi Zhang, Amauri H. de Souza, Christopher Fifty, Tao Yu, and Kilian Q. Wein-
berger. Simplifying graph convolutional networks. In International Conference on Machine
Learning, 2019.

11

A Pure Transformer Pretraining Framework on Text-attributed Graphs

[38] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio’, and
Yoshua Bengio. Graph attention networks. ArXiv, abs/1710.10903, 2017.

[39] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Lio’, Yoshua Bengio, and
R. Devon Hjelm. Deep graph infomax. ArXiv, abs/1809.10341, 2018.

[40] Zhu Yanqiao, Xu Yichen, Yu Feng, Liu Qiang, Wu Shu, and Wang Liang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020.

[41] Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks
for link prediction with subgraph sketching. arXiv preprint arXiv:2209.15486, 2022.

[42] Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion
for link prediction. arXiv preprint arXiv:2302.00890, 2023.

[43] Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-supervised graph-
level representation learning with local and global structure. In International Conference on
Machine Learning, pages 11548–11558. PMLR, 2021.

[44] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in neural information processing
systems, 33:5812–5823, 2020.

[45] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

[46] Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and
Stan Z. Li. Mole-BERT: Rethinking pre-training graph neural networks for molecules. In The
Eleventh International Conference on Learning Representations, 2023.

[47] Yu Rong, Yatao Bian, Tingyang Xu, Wei yang Xie, Ying Wei, Wen bing Huang, and Junzhou
Huang. Self-supervised graph transformer on large-scale molecular data. arXiv: Biomolecules,
2020.

[48] Jiarong Xu, Renhong Huang, Xin Jiang, Yuxuan Cao, Carl Yang, Chunping Wang, and Yang
Yang. Better with less: A data-active perspective on pre-training graph neural networks.
Advances in Neural Information Processing Systems, 36:56946–56978, 2023.

[49] Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi.
Harnessing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation
learning, 2023.

[50] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang.
Learning on large-scale text-attributed graphs via variational inference. ArXiv, abs/2210.14709,
2022.

12

A Pure Transformer Pretraining Framework on Text-attributed Graphs

A Appendix
A.1 Extending GSPT to Link Prediction

Our proposed framework can be readily adapted to the link prediction task with minor adjustments.
The key consideration is to construct an appropriate context for link prediction in a sequence-based
manner to accomodate the Transformer architecture. Unlike node classification, which necessitates
precise feature propagation, link prediction emphasizes modeling the neighborhood information of
nodes such as the number of common neighbors and their distribution [26]. To achieve this, we
adopt the ’Hop2Token’ [31] approach for constructing the input context, i.e., h0 = [x0, x1, . . . , xl−1],
where x0 represents the feature of the center node and xk the aggregated feature of its K-hop
neighborhood. This method ensures that the input sequence encapsulates the necessary neighborhood
information for effective link prediction.

To better capture the global connectivity in the graph, we incorporate a structure-aware decoder on
top of the Transformer. This decoder takes the output of the Transformer and integrates them based
on the graph’s connectivity structure, enhancing the model’s ability to predict links by leveraging
global graph properties. Formally, the loss function for pretraining is computed by:

HL = TRM(H0) (6)

Hnode = Pooling(HL) (7)

HD = Dec(Hnode, A) (8)

Llink =
1

m

m∑
j=1

(
1− cos(hD

i , xi)
)

(9)

Pooling obtains the node representations by concatenating the output of the 0-hop (center) node and
the averaged outputs of all other hops. Dec(HL, A) indicates a structure-aware decoder that takes
node representations and the adjacency matrix A as input, and outputs the decoded embeddings HD.
For simplicity, we use hD

i to denote the i-th row of HD. The difference from node-level task is that
(1) H0 is constructed with multi-hop aggregated features rather than independent nodes and (2) a
decoder is used before computing the reconstruction loss. In practice, we adopt a one-layer GCN as
the decoder.

A.2 Link Prediction Results

Setup. For the link prediction task, we construct the dataset by randomly sampling 80%, 10%, and
10% of the edges in the graph for the training, validation, and test sets, respectively. We use the Mean
Reciprocal Rank (MRR) as our evaluation metric. Unlike the in-context node classification setting,
we finetune the pretrained GSPT on the downstream dataset to better adapt it to the specific properties
of the individual dataset.

Baselines. We compare our method against two categories of baselines. For feature-based approaches,
we use the SentenceBert embeddings and Node2Vec embeddings which are solely based on the
feature and structure, respectively. For GNNs, we include GCN and GraphSAGE for comparison.
We do not compare with GNN4LP methods like [41, 42] as they explicitly incorporate pairwise
information when computing the edge scores, and do not reflect the capacity of node representations.
Subgraph-based methods like OneForAll [5] and Prodigy [17] present severe efficiency issues, which
makes them non-applicable to large-scale pretraining for link prediction. For our method, we evaluate
both the variant trained from scratch (GSPT-TFS) and the variant fine-tuned from the pretrained
checkpoint (GSPT-pretrained). In all methods, we employ an MLP on top of the generated node
embeddings to compute edge scores.

Results. As shown in Table 2, GSPT-pretrained surpasses all baseline methods. Notably, GSPT-
pretrained consistently outperforms GSPT-TFS. This demonstrates that pretraining on a large-scale
dataset allows the model to effectively learn the underlying principles of edge formation, leading to
improved performance when transferred to downstream datasets (Answer to RQ1).

A.3 Scaling Effect

We show the scaling effect of GSPT by adding more data for pretraining in Figure 5.

13

A Pure Transformer Pretraining Framework on Text-attributed Graphs

101 102 103 104

#Pretraining Graphs

0.72

0.74

0.76

0.78

0.80

0.82

Ac
cu

ra
cy

Cora
CiteSeer

(a) Node Classification

101 102 103 104

#Pretraining Graphs

0.69

0.70

0.71

0.72

0.73

0.74

0.75

M
RR

Cora
CiteSeer

(b) Link Prediction

Figure 5: Scaling effect of GSPT. (a) Node classification performance on downstream datasets with
linear probing. (b) Link prediction performance on downstream datasets via fine-tuning. X-axis
denotes the number of METIS graphs used for pretraining. Empirically, GSPT improves as adding
more data to pretraining.

Table 2: Performance comparison of link prediction on citation datasets. We adopt MRR with 100
negative samples as the evaluation metric.

Method Cora Citeseer Pubmed Arxiv23
Feature-based

SentenceBert 55.67 64.19 63.47 70.51
Node2vec 58.06 46.26 53.53 56.50

GNN
GCN 70.25 64.88 78.96 79.39

GraphSAGE 64.12 63.95 79.16 78.04
GSPT

GSPT-TFS 68.61 71.16 79.48 79.67
GSPT-pretrained 72.67 75.16 81.59 82.13

A.4 Related Works

Graph self-supervised learning. Limited by feature heterogeneity, studies in graph SSL are
often limited to individual graphs [24, 43, 44], or focus on specific applications in biology and
chemistry [45–47], where a fixed-size ’vocabulary’ allows for consistent representation of node or
edge features across different graphs. Alternatively, some approaches entirely discard the original
features to facilitate knowledge transfer based solely on structural information [7, 8, 48], leading
to sub-optimal performance. These constraints significantly hinder the broader application of graph
SSL in real-world scenarios, particularly in developing a versatile and generalizable model.

Feature-centric graph learning. To mitigate feature heterogeneity, [5] propose converting varied
node features into text and training the model within this unified text space instead of the original vec-
tor spaces. Among the text-based methodologies, [14, 49] use frozen large language models (LLMs)
to create fixed text embeddings for nodes across different graphs. In contrast, [16, 50] implement a
cascaded architecture that combines Language Models (LMs) and Graph Neural Networks (GNNs)
to directly learn graph-aware text embeddings from original text attributes and graph topology. These
approaches have demonstrated improved performance on various TAGs tasks, highlighting the critical
importance of high-quality features in addition to graph structures.

Graph foundation models. Developing a graph foundation model [6] with a unified architecture that
can adapt to diverse downstream tasks has been a popular research topic in the graph domain. Based
on a LM-unified feature space, OneForAll [5] trains a model with a shared backbone across different
data and tasks by transforming them into the same form, but its scope is limited to small-scale
supervised learning. Prodigy [17] focuses on empowering graph models with the ability to "learn
in context" through pretraining, yet its specialized training strategy restricts it to few-shot inference
and limited data utilization due to computational inefficiency. Meanwhile, these methods still rely
on message passing, which has been shown to have limitations when generalizing to graphs with
different structural or attribute properties [13, 27]. In contrast to previous works, our proposed

14

A Pure Transformer Pretraining Framework on Text-attributed Graphs

GSPT (1) presents a novel strategy to pretrain a backbone model across graphs without requiring
supervision; (2) scales to massive scale graphs with efficiency and effectiveness; (3) showcases
a message passing-free pretraining strategy, opening up new avenues for graph foundation model
development.

A.5 Proof of Propositions

A.5.1 Proof of Proposition 1

[Neighbor Coverage] Let G = (V,E) be a graph, v ∈ V a node, and NK(v) its K-hop neighborhood.
Given m random walks of length l starting from v, the probability p(l,m) that all nodes in NK(v)
are visited by at least one random walk is bounded by:

p(l,m) ≥ 1− |NK(v)| ·
(
HK

l

)m

.

Let HK be an upper bound on the expected hitting time for any pair of nodes within K hops in G,
i.e., for all u ∈ NK(v), H(v, u) ≤ HK .

For a single random walk of length l, the probability of missing a node u ∈ NK(v) can be bounded
using Markov’s inequality as:

P (missing u in one walk) ≤ HK

l
.

For m independent random walks, the probability of missing u in all walks is:

P (missing u in m walks) ≤
(
HK

l

)m

.

Using the union bound, the probability of visiting all nodes in NK(v) is:

P (visiting all nodes in NK(v)) ≥ 1− |NK(v)| ·
(
HK

l

)m

.

As l → ∞, HK

l → 0, and as m → ∞,
(
HK

l

)m → 0 for any l > HK . Since |NK(v)| is finite, it
follows that p(l,m) → 1 as l and/or m increase.

A.5.2 Proof of Proposition 2

[Proximity Preservation] Let H(v, u) be the expected hitting time from v to u in a graph G. For any
two nodes u1, u2 ∈ V such that H(v, u1) < H(v, u2), there exists an m large enough such that:

P (f(v, u1) < f(v, u2)) > 1− δ,

for any δ > 0, where f(v, u) is the average position of u in m random walks starting from v.

We are interested in bounding the probability P (f(v, u1) ≥ f(v, u2)), which can be written as:

P

(
1

m

m∑
i=1

Ti(v, u1) ≥
1

m

m∑
i=1

Ti(v, u2)

)
.

where Ti(v, u) denotes the hitting time for the i-th random walk from v to u. This is equivalent to:

P

(
1

m

m∑
i=1

(Ti(v, u2)− Ti(v, u1)) ≤ 0

)
.

Define Zi = Ti(v, u2)− Ti(v, u1). Thus, we aim to bound the probability:

P

(
1

m

m∑
i=1

Zi ≤ 0

)
.

15

A Pure Transformer Pretraining Framework on Text-attributed Graphs

The random variables Zi are bounded, as both Ti(v, u1) and Ti(v, u2) are bounded. The expected
value of Zi is:

E[Zi] = H(v, u2)−H(v, u1) = γ > 0.

Applying Hoeffding’s inequality with ϵ = γ , we get:

P

(
1

m

m∑
i=1

Zi ≤ 0

)
= P

(
1

m

m∑
i=1

Zi − γ ≤ −γ

)
≤ exp

(
− 2mγ2

(b− a)2

)
.

As m increases, this probability decays exponentially. Therefore, for any δ > 0, there exists an m
such that P (f(v, u1) < f(v, u2)) > 1− δ.

A.6 Datasets

Summary. The summary of datasets used in the experiments are presented in Table 3.

Table 3: Summary of datasets

Name #Nodes #Edges
Cora 2,708 10,858

Citeseer 3,186 8,554
Pubmed 19,717 88,670
Arxiv23 46,198 78,548

ogbn-papers100M 111,059,956 1,615,685,872

Partition. For ogbn-papers100M, we use the METIS algorithm to partition the graph into 11105
non-overlapping subgraphs. The statistics of the subgraphs are listed in Table 4. We use the
implementation by dgl in our experiments.

Table 4: Summary of METIS partitions on ogbn-papers100M

#Graphs Avg. #Nodes Avg. #Edges #Node Range #Edge Range
11105 10000.90 61357.03 303 - 45748 328 - 122644

Properties. The graphs used in the experiments exhibit varying properties. To characterize these
properties, we compute four commonly used graph metrics: average degree, sparsity, clustering
coefficient, and homophily. The results are summarized in Table 5. For the ogbn-papers100M
dataset, we compute the average statistics using 100 randomly sampled METIS subgraphs. Note that
ogbn-papers100M does not contain label data, so the homophily cannot be obtained.

Table 5: Summary of graph properties

Dataset Average Degree Homophily Clustering Coefficient Graph Density
Cora 8.02 0.81 0.24 0.00144

Citeseer 5.37 0.79 0.14 0.00083
Pubmed 8.99 0.80 0.06 0.00023
Arxiv23 3.40 0.65 0.05 0.00004

Papers100M 13.77 N/A 0.16 0.00173

A.7 Accessibility

Citeseer: https://github.com/CurryTang/Graph-LLM

Cora, Pubmed: https://github.com/kimiyoung/planetoid

ogbn-papers100M: https://ogb.stanford.edu/docs/nodeprop/

Arxiv23: https://github.com/XiaoxinHe/tape_arxiv_2023

16

http://glaros.dtc.umn.edu/gkhome/views/metis
https://docs.dgl.ai/guide/distributed-partition.html
https://github.com/CurryTang/Graph-LLM
https://github.com/kimiyoung/planetoid
https://ogb.stanford.edu/docs/nodeprop/
https://github.com/XiaoxinHe/tape_arxiv_2023

A Pure Transformer Pretraining Framework on Text-attributed Graphs

A.8 Experimental Details

GSPT. The hyperparameters used for GSPT pretraining are listed in Table 6 and Table 7. GSPT-node
indicates the version for node classification, while GSPT-link denotes the one for link prediction.
For the few-shot node classification tasks, we randomly initiate 3 random walks from each node,
and use the validation set to select the best results. For link prediction, GSPT involves fine-tuning
the pretrained model on individual datasets. We search the hyperparameters from Table 8 during
fine-tuning, using an independent edge set for validation.

Table 6: Hyperparameters of GSPT-node

Hyperparameter Value Explanation
mask_rate 0.2 Probability of masking a node
p_random 0.2 Probability of replacing [MASK] with random nodes, see [19]
p_unchanged 0.2 Probability of keeping masked nodes unchanged, see [19]
hidden_dim 768 Dimension of hidden layers
ffn_dim 3072 Dimension of feed-forward network layers
n_layers 3 Number of Transformer layers
n_heads 12 Number of attention heads
epochs 10 Number of training epochs
weight_decay 0.01 strength of L2 regularization
peak_lr 0.0001 Peak learning rate
end_lr 0.00001 End learning rate (after decay)
warmup_updates 10000 Number of warmup updates
dropout 0.3 Dropout rate
attention_dropout 0.3 Dropout rate for attention layers
emb_dropout 0.3 Dropout rate for embeddings
p 0.25 Return parameter of random walk, see [22]
q 0.25 In-out parameter of random walk, see [22]
walk_length 20 Length of random walk

Table 7: Hyperparameters of GSPT-link

Hyperparameter Value Explanation
mask_rate 0.5 Probability of masking a node
p_random 0 Probability of replacing [MASK] with random nodes, see [19]
p_unchanged 0 Probability of keeping masked nodes unchanged, see [19]
hidden_dim 384 Dimension of hidden layers
ffn_dim 768 Dimension of feed-forward network layers
n_layers 2 Number of Transformer layers
n_heads 8 Number of attention heads
epochs 100 Number of training epochs
weight_decay 0 strength of L2 regularization
peak_lr 0.001 Peak learning rate
end_lr 0.0001 End learning rate (after decay)
warmup_updates 100 Number of warmup updates
dropout 0.1 Dropout rate
attention_dropout 0.1 Dropout rate for attention layers
emb_dropout 0 Dropout rate for embeddings
n_hops 3 Number of hops for feature aggregation

Baselines. For all baselines, we search the optimal hyperparameters using the validation set of
individual datasets. We organize the hyperparameters based on the task type into the following.

Few-shot node classification. Table 9 contains the details for reproducing the results for end-to-end
methods in Table 1. Such methods involve training specific models on individual downstream
datasets.

17

A Pure Transformer Pretraining Framework on Text-attributed Graphs

Table 8: Hyperparameters of GSPT-link, fine-tuning.

Hyperparameter Value Explanation
lr [1e-3, 1e-4] Learning rate
projector_layers 3 Number of layers in the projector module to compute edge scores
projector_dim 256 Dimension of the projector module to compute edge scores
epochs 1000 Number of training epochs
patience 20 Patience of early stopping
batch_size 4096 Number of samples (edges) per batch

Table 9: Hyperparameters of GNNs on few-shot node classification

Hyperparameter lr weight_decay hidden_dim dropout num_layers num_heads

Search Range [1e-2, 1e-3] [0, 1e-4, 5e-4] [64, 256, 384] [0, 0.5] [2] [4, 8]

Link prediction. Table 10 presents the hyperparameters of GNN baselines for link prediction to
reproduce results in Table 2. Specifically, we adopt an MLP on top of the GNNs that takes the
hadamard product of node representations as input, and output the score of edge existence.

Table 10: Hyperparameters for link prediction baselines.

Model Hyperparameter Search Range

GNN
num_layers [1, 2, 3]
hidden_dim [128, 256]
num_heads [1, 4]

MLP num_layers [1, 2, 3]
hidden_dim [128, 256]

General

lr [1e-3, 1e-2]
weight_decay [0, 1e-5]
dropout [0.1, 0.5]
batch_size 4096
epochs 1000
patience 20

18

	1 Introduction
	2 Preliminary Study
	3 Method
	3.1 An Overview
	3.2 Context Construction
	3.3 Transformer as Backbone
	3.4 Masked Feature Reconstruction
	3.5 Negative sampling
	3.6 Enabling In-context Learning

	4 Experiment
	4.1 Datasets
	4.2 Few-shot Node Classification
	4.2.1 Experimental Setup
	4.2.2 Result Comparison
	4.2.3 Analysis of GSPT's in-context capability

	4.3 Ablation Study
	4.4 Scaling Effect

	5 Conclusion
	A Appendix
	A.1 Extending GSPT to Link Prediction
	A.2 Link Prediction Results
	A.3 Scaling Effect
	A.4 Related Works
	A.5 Proof of Propositions
	A.5.1 Proof of Proposition 1
	A.5.2 Proof of Proposition 2

	A.6 Datasets
	A.7 Accessibility
	A.8 Experimental Details

