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Abstract

While self-attention has been instrumental in the
success of Transformers, it can lead to over-
concentration on a few tokens during training, re-
sulting in suboptimal information flow. Enforcing
doubly-stochastic constraints in attention matri-
ces has been shown to improve structure and bal-
ance in attention distributions. However, existing
methods rely on iterative Sinkhorn normalization,
which is computationally costly. In this paper,
we introduce a novel, fully parallelizable doubly-
stochastic attention mechanism based on sliced
optimal transport, leveraging Expected Sliced
Transport Plans (ESP). Unlike prior approaches,
our method enforces doubly stochasticity without
iterative Sinkhorn normalization, significantly en-
hancing efficiency. To ensure differentiability, we
incorporate a temperature-based soft sorting tech-
nique, enabling seamless integration into deep
learning models. Experiments across multiple
benchmark datasets, including image classifica-
tion, point cloud classification, sentiment analysis,
and neural machine translation, demonstrate that
our enhanced attention regularization consistently
improves performance across diverse applications.
Our implementation code can be found at https:
//github.com/dariansal/ESPFormer.

1. Introduction
The debut of Transformers (Vaswani et al., 2017) marked a
turning point in artificial intelligence and machine learning.
Self-attention mechanisms excel at modeling the interac-
tions among features, allowing Transformers to generate
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highly expressive and context-rich representations that accu-
rately capture the essence of input data (Khan et al., 2022).
Although first developed to perform Natural Language Pro-
cessing (NLP) tasks, the Transformer architecture has been
adapted to a wide range of domains such as computer vi-
sion (Dosovitskiy et al., 2021; Touvron et al., 2021a;b;
2022), graphs (Yun et al., 2019; Rampášek et al., 2022;
Shirzad et al., 2023), point clouds (Zhao et al., 2021; Qin
et al., 2022), and biological sequences (Jumper et al., 2021;
Abramson et al., 2024; Rives et al., 2021; Lin et al., 2023;
Hayes et al., 2025). Over the years, a considerable amount
of research has been devoted to enhancing the classic Trans-
former, focusing on better positional encoding (Dwivedi
et al., 2021; Ying et al., 2021), efficiency of the attention
mechanisms (Wang et al., 2020; Choromanski et al., 2020),
and variants of self-attention (Hou et al., 2019; Ho et al.,
2019), among others.

Self-attention produces a row-stochastic matrix, which can
lead to a few tokens dominating the attention distribution.
To mitigate this, enforcing doubly-stochastic attention en-
sures a more balanced distribution across tokens. To that
end, Sander et al. (2022) introduced Sinkformer, replac-
ing the softmax normalization in the classic Transformer
with Sinkhorn’s algorithm (Sinkhorn, 1964), resulting in a
doubly-stochastic attention matrix. Sander et al. (2022) es-
tablish a connection between self-attention matrices and the
optimal transport problem by theoretically demonstrating
that Sinkformers can be interpreted as a Wasserstein gradient
flow for an energy minimization in the infinite depth limit.
Indeed, doubly stochastic attention can be interpreted as a
transport plan between queries and keys, further strengthen-
ing the connection between optimal transport and attention
mechanisms. Owing to their inherent doubly stochastic
structure, transport plans (i.e., couplings between keys and
queries) naturally serve as strong candidates for attention
matrices in this setting.

Nevertheless, computing optimal transport plans between
keys and queries is computationally expensive, with a
general complexity of O(N3) for N tokens. A more
scalable approach is entropy-regularized transport (Cuturi,
2013), which leverages the Sinkhorn algorithm to itera-
tively approximate the transport plan, obtaining a complex-
ity O(SN2), where S denotes the number of iterations. The
Sinkhorn algorithm (Sinkhorn, 1964), as used in Sinkform-
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ers (Sander et al., 2022), repeatedly applies a series of row
and column normalization steps until it reaches a desired
level of convergence. Such an approach may introduce com-
putational inefficiencies in scenarios where a significant
number of iterations are needed for the normalization to
converge.

A more computationally efficient alternative is the calcu-
lation of optimal transport plans for one-dimensional dis-
tributions, with a complexity of O(N logN). This has
motivated a large body of work on sliced optimal trans-
port methods that compare distributions by comparing their
slices, i.e., one-dimensional marginals (Rabin et al., 2012;
Kolouri et al., 2016; 2018; 2019; Deshpande et al., 2019;
Nguyen et al., 2022; Nguyen & Ho, 2024). Although sliced
optimal transport methods offer efficient metrics between
distributions, they do not explicitly construct transport plans.
Recent studies have addressed this limitation by developing
methods to construct transport plans through slicing (Mahey
et al., 2024; Liu et al., 2025). Liu et al. (2025) introduce
the Expected Sliced Transport Plan (ESP), which leverages
slicing to define a computationally efficient metric while
crucially providing an explicit transport plan by aggregat-
ing lifted plans from all slices. This makes ESP a strong
candidate for doubly-stochastic attention mechanisms.

In this work, we leverage the ESP framework to propose
a novel doubly-stochastic attention mechanism. We refer
to the resulting architecture as ESPFormer. Our specific
contributions are as follows:

• We propose ESPFormer, a novel doubly stochastic at-
tention mechanism built on the recently introduced Ex-
pected Sliced Transport Plan (ESP) framework. ESP-
Former ensures a more balanced distribution of atten-
tion across tokens while enabling control over the num-
ber of tokens each token attends to via an inverse tem-
perature parameter.

• Through extensive experiments across diverse appli-
cations, we demonstrate performance improvements
over both classic Transformer and Sinkformer archi-
tectures, along with enhanced computational efficiency
compared to Sinkformer.

• We show that replacing the classic attention mecha-
nism in a pre-trained Transformer with ESPFormer
and fine-tuning for a few epochs results in significant
performance gains.

• We show that by finetuning pretrained models with
an exponential temperature annealing schedule and
then switching to hard sorting at inference, we obtain
exact doubly stochastic matrices reducing complexity
from O(N2) to O(LN logN), and achieve consistent
accuracy gains on the Cats vs. Dogs dataset.

• We demonstrate the compatibility of our proposed at-
tention mechanism with the recently introduced differ-
ential attention architecture (Ye et al., 2025).

2. Background and Related Work
In this section, we first provide an overview of the exist-
ing variants of softmax attention, including the doubly-
stochastic attention using Sinkhorn’s algorithm (Sander
et al., 2022). Then, we shift our focus to the fundamen-
tals of sliced optimal transport, with soft sorting reviewed
for algorithmic concerns. Finally, we provide an overview
of Expected Sliced Transport Plans (Liu et al., 2025) and
soft sorting (Prillo & Eisenschlos, 2020), which serve as the
cornerstones of our proposed doubly-stochastic attention
mechanism, ESPFormer.

2.1. Variants of Softmax Attention

At the heart of the Transformer architecture is the self-
attention operation, a crucial component that enables dy-
namic pairwise interactions among tokens. In essence, it
allows each position to “attend” to all others, with the degree
of attention determined by how similar their representations
are. Formally, let WQ,WK ∈ Rm×d,WV ∈ Rd×d denote
the query, key, and value matrices, respectively. Then, for a
sequence (x1, x2, · · · , xN ), xi ∈ Rd,∀i, the output of the
attention function for the i-th row, xi, can be written as∑N

j=1 sim(WQxi,WKxj)WV xj∑N
j=1 sim(WQxi,WKxj)

(1)

where sim(·, ·) can be any similarity function, and the nor-
malization for the similarities is applied row-wise. The clas-
sic self-attention mechanism (Vaswani et al., 2017) lever-
ages the softmax function to perform this row-wise nor-
malization, i.e., the softmax of attention matrix C with
Ci,j = (WQxi)

TWKxj can be interpreted as row-wise nor-
malization of exp(C). Alternative normalization operators
have also been proposed in the literature. Some focus on
normalizations that share the same properties as softmax
but produce sparse outputs, such as SparseMax (Martins &
Astudillo, 2016) and SparseK (Lou et al., 2024). Sparse-
Max seeks the Euclidean projection of the input into the
probabilistic simplex. Since this projection tends to hit
the boundary of the simplex, SparseMax will output sparse
probabilities. SparseK extends SparseMax by replacing the
probabilistic simplex with a k-sum constraint. Others use
different sim(·, ·) functions in (1) to achieve linear com-
plexity: Katharopoulos et al. (2020) and Han et al. (2023)
use kernel smoothers to linearize the similarity calculations,
and Li et al. (2020) propose to approximate the exponential
function in softmax by the first-order Taylor expansion.

Another line of research approaches the attention from the
alignment/matching perspective and specifically utilizes
concepts from the Optimal Transport (OT) theory. Zhang
et al. (2021) propose to enforce the alignment between the
distributions of keys and queries by adding a penalty term
in the training objective, where the JensenShannon (JS)
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divergence, the Wasserstein distance, and bi-directional con-
ditional transport (Zheng & Zhou, 2021) are considered to
define the matching cost. Xu & Chen (2023) introduce a
multimodal co-attention method that relies on OT to match
patches of images and gene embeddings for the survival
prediction task. Zhang et al. (2023) reinterpret slot attention
within the OT framework and propose to enhance the per-
formance of slot attention by minimizing the entropy of the
Sinkhorn divergence between two multisets, one containing
inputs and the other containing slot features.

2.2. Doubly-Stochastic Attention

In their pioneering work, Sander et al. (2022) empirically
observed that, during training, the row-stochastic attention
matrices in classical Transformers tend to become approxi-
mately doubly-stochastic, with most column sums approach-
ing 1. This suggests that Transformers inherently learn to
distribute attention more evenly across tokens. In light of
this finding, the authors propose the Sinkformer architecture,
which replaces the softmax operation by the Sinkhorn’s al-
gorithm (Sinkhorn, 1964; Cuturi, 2013; Peyré et al., 2019)
to enforce doubly-stochastic attention as an informative
prior. They show that although both classic Transformers
and Sinkformers can be understood as models that operate
on discrete probability distributions, the Sinkformers have a
special property that, in the infinite depth limit, they behave
as a Wasserstein gradient flow for an energy minimization.

2.3. Sliced Optimal Transport

Consider the space of Borel probability measures on Ω ⊂
Rd with finite p-th moment (p ≥ 1), denoted by Pp(Ω).
For µ1, µ2 ∈ Pp(Ω), the classic optimal transport (in the
Kantorovich formulation) solves the optimization problem

inf
γ∈Γ(µ1,µ2)

∫
Ω2

c(x, y)dγ(x, y), (2)

where Γ(µ1, µ2) denotes the set of all couplings between
µ1 and µ2, and c : Ω2 → R+ is a lower semi-continuous
function representing the transportation cost. Specifically,
when c(·, ·) is the p-th power of a metric, the p-Wasserstein
distance is defined as

Wp(µ
1, µ2) := min

γ∈Γ(µ1,µ2)

(∫
Ω2

∥x− y∥pdγ(x, y)
) 1

p

.

(3)

In practical settings, the Wasserstein distance between dis-
crete probability measures can be obtained by solving a
linear program (Peyré et al., 2019) with an expensive com-
putational complexity of O(N3 logN) for sample size N .
Therefore, faster alternatives have been extensively stud-
ied, including entropy-regularized optimal transport (Cu-
turi, 2013) and sliced optimal transport (Rabin et al., 2012;

Kolouri et al., 2016; 2018; Deshpande et al., 2019; Kolouri
et al., 2019; Nguyen et al., 2022; Nguyen & Ho, 2024).
Sinkhorn’s algorithm at the core of Sinkformer is used to
solve the entropy-regularized optimal transport problem
with an improved complexity of O(N2 logN).

Sliced optimal transport operates by projecting high-
dimensional distributions onto one-dimensional slices, lever-
aging the key property that, in the one-dimensional case, a
unique optimal transport plan exists, and the p-Wasserstein
distance has a closed-form solution (Rabin et al., 2012),

Wp(µ
1, µ2) =

(∫ 1

0

∣∣∣F−1
µ1 (u)− F−1

µ2 (u)
∣∣∣p du

) 1
p

, (4)

where F−1
µ1 and F−1

µ2 are the quantile functions of µ1 and
µ2 respectively, and the optimal transport map is given by
T (x) = F−1

µ2 (Fµ1(x)) when µ1 is absolutely continuous.
For empirical measures with N samples, the quantile func-
tions correspond to the sorted samples that can be calculated
in O(N logN). Then, by integrating the 1-dimensional
Wasserstein distance over a set of L slices, the sliced Wasser-
stein distance reduces the computational cost significantly
to O(LN logN).

2.4. Expected Sliced Transport Plans

Although the sliced Wasserstein distance offers a rapid and
well-defined metric, it has one limitation: it does not gen-
erate a transport plan between the probability measures. It
thus fails to explicitly provide how one distribution could
be transported into another.

Liu et al. (2025) recently proposed the Expected Sliced
Transport Plan (ESP), which defines an efficient transport
plan as an aggregation of lifted optimal transport plans on
1-dimensional slices. Let µ1 =

∑
x∈Rd p(x)δx be a dis-

crete probability measure in P(Rd), that is, p(x) ≥ 0 for
all x ∈ Rd and

∑
x∈Rd p(x) = 1. We further assume

that p(x) ̸= 0 for at most countable many points x ∈ Rd.
Similarly, let µ2 =

∑
y∈Rd q(y)δy be another probability

measure in P(Rd) with at most countable support. For a
given θ ∈ Sd−1, the projected measures θ#µ

1 and θ#µ
2

are 1-dimensional probability measures in P(R), and there
exists a unique optimal transport plan Λµ1,µ2

θ between them.
Equivalently, θ#µ1 and θ#µ

2 can be interpreted as proba-
bility measures over a quotient space Rd/ ∼θ, where ∼θ is
defined as follows:

x ∼θ x′ if and only if θ · x = θ · x′,

as each point on the slice R corresponds to an equiva-
lent class of points in Rd that gets mapped to it by θ.
With a slight abuse of notation, we denote the equiva-
lent class of x ∈ Rd by x̄θ, referring to either a point
in the quotient space Rd/ ∼θ or the set of points {x′ ∈
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Figure 1. An overview of the proposed ESP attention mechanism. By integrating the slicing operator into the key and query matrices,
each dimension is treated as a learnable slice. For each slice, tokens are (soft) sorted, and a doubly-stochastic correspondence matrix is
computed between the keys and queries. Finally, these correspondence matrices across all dimensions are aggregated to form a single
doubly-stochastic attention matrix.

Rd : θ · x′ = θ · x} interchangeably. Then, we can
write θ#µ

1 =
∑

x̄θ∈R/∼θ
P (x̄θ)δx̄θ , where P (x̄θ) =∑

x′∈x̄θ p(x′), and θ#µ
2 =

∑
ȳθ∈R/∼θ

Q(ȳθ)δȳθ , where
Q(ȳθ) =

∑
y′∈ȳθ q(y′). This quotient space interpretation

of the 1-dimensional distributions θ#µ1 and θ#µ
2 allows

us to construct a lifted transport plan in the original space
Rd using the optimal transport plan Λµ1,µ2

θ ,

γµ1,µ2

θ :=
∑
x∈Rd

∑
y∈Rd

uµ1,µ2

θ (x, y)δ(x, y), (5)

where the transported mass uµ1,µ2

θ is defined as

uµ1,µ2

θ (x, y) :=
p(x)q(y)

P (x̄θ)Q(ȳθ)
Λµ1,µ2

θ ({(x̄θ, ȳθ)}).

Then for a given distribution of slicing directions (θ’s): σ ∈
P(Sd−1), the ESP γ̄µ1,µ2 ∈ Γ(µ1, µ2) is defined as an
expectation of γµ1,µ2

θ over σ:

γ̄µ1,µ2

:= Eθ∼σ[γ
µ1,µ2

θ ] (6)

i.e. γ̄µ1,µ2

({(x, y)}) =
∫
Sd−1

γµ1,µ2

θ ({(x, y)})dσ(θ).

Liu et al. (2025) have shown that the associated cost,

Dp(µ
1, µ2) =

∑
x∈Rd

∑
y∈Rd

∥x− y∥pγ̄µ1,µ2

({(x, y)})

 1
p

,

is a well-defined distance and equivalent to the Wasserstein
distance.

2.5. Soft Sorting

Calculating the sliced Wasserstein distance involves evalu-
ating the quantile functions of the distributions, which, in
the discrete case, can be boiled down to the sorting oper-
ation. Sorting is one of the most common operations in
computer science. Yet, the piecewise-linear sorted value
function and the integer-valued rank/argsort operators pose
a significant obstacle for gradient-based optimization tech-
niques, which are essential in deep learning, as neither of
them is differentiable. To incorporate sorting operations
into the backpropagation framework, differentiable approxi-
mations, known as soft sorting, have been explored. Exam-
ples include smoothed rank operators by adding Gaussian
noise (Taylor et al., 2008) and by using sigmoid surrogate
functions (Qin et al., 2010), parameterizing permutations
in terms of a differentiable relaxation (Mena et al., 2018),
and relaxing the permutation matrices to be only row-wise
stochastic (Grover et al., 2019). Of note, Cuturi et al. (2019)
propose a differentiable proxy by viewing sorting as an
optimal assignment problem and relaxing it to an entropic
optimal transport problem from the input values to an auxil-
iary probability measure supported on an increasing family
of target values.

Prillo & Eisenschlos (2020) introduce a simple yet highly
effective continuous relaxation of the argsort operator using
the softmax function. Given a vector v ∈ RN ,

SoftSortdt (v) := softmax
(
−d(sort(v)1T ,1vT )

t

)
, (7)

approximates the sorting permutation matrix, where the
softmax operator is applied row-wise, d(·, ·) can be any
differentiable semi-metric, and t is a temperature parameter
that controls the degree of the approximation.
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3. Method
3.1. ESP for Uniform Discrete Distributions

Given our application of interest, we specifically focus on
uniformly distributed discrete distributions with an equal
number of support points, while the method can be readily
extended to an unequal number of support points. For a
given N ∈ N, denote the space of uniform discrete distribu-
tions with N support as

P(N)(Rd) :=

{
1

N

N∑
i=1

δxi |xi ∈ Rd,∀i ∈ {1, · · · , N}

}
.

Let µ1 = 1
N

∑N
i=1 δxi

∈ P(N)(Rd), µ2 = 1
N

∑N
j=1 δyj

∈
P(N)(Rd) and X = [x1, x2, · · · , xN ]T ∈ RN×d, Y =

[y1, y2, · · · , yN ]T ∈ RN×d be the corresponding matrix
forms. Denote the symmetry group of order N in matrix
representation as SN , that is, SN contains all permutation
matrices of a set of N elements.

Consider the 1-dimensional slice of µ1 and µ2 in the θ direc-
tion: θ#µ

1 = 1
N

∑N
i=1 δθ·xi

and θ#µ
2 = 1

N

∑N
j=1 δθ·yj

,
with Xθ = [θ · x1, θ · x2, · · · , θ · xN ]T ∈ RN and
Y θ = [θ · y1, θ · y2, · · · , θ · yN ]T ∈ RN . There exists
permutation matrices A,B ∈ SN such that AXθ ∈ RN

and BY θ ∈ RN are in sorted order, i.e.,

(AXθ)1 ≤ (AXθ)2 ≤ · · · ≤ (AXθ)N ;

(BY θ)1 ≤ (BY θ)2 ≤ · · · ≤ (BY θ)N .

Then the optimal matching between θ#µ
1 and θ#µ

2 can be
described by

(AXθ)n 7→ (BY θ)n, ∀n ∈ [1, 2, · · · , N ],

or equivalently, given that AT = A−1, ATB represents the
transport map from Xθ to Y θ, i.e.,

(Xθ)n 7→ (ATBY θ)n, ∀n ∈ [1, 2, · · · , N ].

By lifting this transport map from the θ slice to the origi-
nal space Rd, we have Uθ := 1

NATB which represents a
transport plan from X to Y .

Finally, for a given histogram of θ, σ =
∑L

l=1 σlδθl with∑L
l=1 σl = 1, the ESP for uniformly-distributed discrete

distributions with the same number of supports is defined as

G :=

L∑
l=1

στ
l Uθl , (8)

where τ denotes the “inverse temperature” hyperparameter,
and στ

l is defined as

στ
l =

e−τDp
p(µ

1,µ2;θl)∑L
l′=1 e

−τDp
p(µ1,µ2;θl′ )

, (9)

with Dp
p(µ

1, µ2; θ) representing the p-th power of the in-
duced transport cost by Uθ, defined as

Dp
p(µ

1, µ2; θ) =

N∑
i=1

N∑
j=1

∥xi − yj∥pUθ({(xi, yj)}), (10)

where Uθ({(xi, yj)}) is the (i, j)′th component of the Uθ

matrix. When τ = 0, σl =
1
L for all l ∈ [1, 2, · · · , L], then

G is simply the mean of all the lifted plans.

When handling uniformly distributed discrete distribu-
tions with different numbers of support points (e.g., in
cross-attention), the transport plan involving mass split-
ting can be approximated using linear interpolation. For
µ1 = 1

N

∑N
j=1 δxi

, µ2 = 1
M

∑M
j=1 δyj with N ̸= M , let

A′ ∈ RN×N and B′ ∈ RM×M respectively denote their
sorting permutation matrices. We define an interpolation
matrix I ∈ RN×M , where

I[i, j] :=


i
N − j

M
1
M

, if j
M ≤ i

N ≤ j+1
M ;

j
M − i

N
1
M

, if j−1
M ≤ i

N ≤ j
M ;

0, elsewhere.

(11)

The transport plan is then given by Uθ = 1
NA′T IB′.

3.2. ESP Attention

To bridge the abstract formulation of the Expected Sliced
Plan (ESP) with its practical use in attention mechanisms,
we interpret the query and key matrices as empirical prob-
ability measures due to their permutation-equivariant na-
ture. Following our notation in Section 2.1, let WQ,WK ∈
Rm×d,WV ∈ Rd×d denote the query, key, and value ma-
trices, respectively, and let X = [x1, x2, · · · , xN ], xi ∈
Rd,∀i denote the input tokens. Also, let Q = WQX ∈
Rm×N and K = WKX ∈ Rm×N denote the queries and
keys, respectively. Then, we think of doubly-stochastic at-
tention as a transport plan between the empirical measures
µQ and µK , defined as

µQ =
1

N

N∑
i=1

δqi , µK =
1

N

N∑
j=1

δkj .

To create such a transport plan using the ESP framework
presented in Section 3.1, we use a set of L slicing directions
Θ = [θ1, ..., θL]

T ∈ RL×m, θl ∈ Sm−1. Then, the rows
of ΘK and ΘQ contain the projected keys and queries for
each slice. The transportation plan Uθl is, then, calculated
for each slice by soft-sorting the projected keys and queries
as described in Section 3.1. Finally, the attention matrix is
calculated from (8).

A key consideration is the choice of slices, Θ. While classic
sliced OT uniformly samples slices from Sm−1, prior work
suggests learning them (Deshpande et al., 2019; Naderial-
izadeh et al., 2021; NaderiAlizadeh et al., 2025). Though
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Figure 2. The attention weights between an example pair of keys (red) and queries (green) obtained by Sinkhorn’s algorithm (top row)
with different numbers of iterations and by Expected Sliced Transport Plans (bottom row) with different inverse temperature values. Note
that for Sinkrhorn and at zero iterations, i.e., S0, the computed attention reduces to classic self-attention. The weights are represented by
the width of the lines connecting each pair of points.

this approach is common, learning Θ introduces additional
parameters, increasing the total count in ESP attention and
complicating fair comparisons with other mechanisms. No-
tably, since the input distributions (keys and queries) are
themselves learned, optimizing Θ may be unnecessary. In-
stead, the distributions can adapt to a fixed slicing scheme,
as done in prior work, such as FSPool (Zhang et al., 2020).
To avoid extra parameters, in this work, we propose us-
ing axis-aligned slices by setting Θ = Im×m, the identity
matrix. This leads to

ESP-Attention(Q,K, V ) = V G, (12)

where V = WV X ∈ Rd×N is the value matrix. Figure
1 illustrates the construction of the ESP matrix G, which
serves as the proposed transport-based attention map, direct-
ing how information flows from V to the output. Moreover,
Figure 2 compares classic attention (Sinkhorn S0), Sinkhorn
attention from (Sander et al., 2022) across different iteration
counts, and our ESP attention under varying “inverse tem-
perature” hyperparameters. As can be seen, while ESP pro-
vides a balanced distribution of attention due to its double
stochasticity, the “inverse temperature” parameter controls
the number of other tokens each token should pay atten-
tion to. The overall pipeline of ESPFormer can be found
in Algorithm 1. For completeness, we also report results
from explicitly learning the slices and observe no significant
benefits compared to axis-aligned slices.

3.3. Runtime Complexity

ESPFormer begins with query and key projections (Q =
WQX and K = WKX), each requiring O(mNd) opera-

Algorithm 1 ESPFormer’s Doubly-Stochastic Attention
input Query matrix Q ∈ Rm×N , Key matrix K ∈ Rm×N ,

Value Matrix V ∈ Rd×N , SoftSort hyperparameter t,
and “inverse temperature” hyperparameter τ .

output Attention-weighted output matrix
1: Calculate the pairwise distance matrix:

[C]ij = ∥Q:i −K:j∥2.

2: for l = 1 to m do
3: SoftSort the projected samples using (7):

Al = SoftSortt(Ql:), Bl = SoftSortt(Kl:).

4: Calculate the transport plan Ul =
1
NAT

l Bl

5: Calculate Dl =
∑

ij [C]ij [Ul]ij
6: end for
7: Calculate the στ = softmax(D; τ)
8: Aggregate the plans from all slices G =

∑m
l=1 σ

τ
l Ul

9: Return: V G

tions, where d corresponds to the output dimension. The
subsequent SoftSort operation, which involves computing
pairwise distances, incurs a complexity of O(N2) per slice.
When applied across all L = m slices, this yields a com-
plexity of O(mN2). The computation of transport plans
through matrix multiplications with soft permutation ma-
trices contributes an additional O(mN2) operations. The
final aggregation of transport plans requires summing m
plans of size N ×N , also contributing O(mN2) operations.
Therefore, the overall runtime complexity of ESPFormer
is O(mN(N + d)). In comparison, Sinkhorn’s algorithm
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Figure 3. Runtime analysis of ESPFormer versus Sinkformer
with varying iteration counts (S) for sequence lengths N ∈
{50, 100, 500, 1000} with d = 1024, averaged over 10
runs.ESPFormer achieves superior computational efficiency across
all sequence lengths with hard sorting, and outperforms Sinkformer
for S > 3 under soft sorting, while maintaining model expressivity.
.

exhibits a runtime complexity of O((S +m)N2), where S
denotes the number of iterations. A key distinction lies in
the parallelization capabilities: while Sinkhorn necessitates
sequential processing over S iterations, ESPFormer enables
parallel computation across the m slices. This parallelizabil-
ity allows ESPFormer to scale efficiently with increasing
m. As demonstrated in Figure 3, ESPFormer offers superior
efficiency at all sequence lengths with hard sorting, and
surpasses Sinkformer for S > 3 when using soft sorting.
The wall clock runtime analysis of ESPFormer compared to
all the baselines can be found in Appendix A.

4. Experiments
In this section, we evaluate the performance of ESPFormer
across a diverse set of domains, including image classifica-
tion using ViTs (Dosovitskiy et al., 2021), point cloud clas-
sification using set transformers (Lee et al., 2019) and point
cloud transformers (Guo et al., 2021), as well as sentiment
analysis and neural machine translation via Transformers,
highlighting the applicability of our approach in comparison
to Differential Transformer (Ye et al., 2025), Sinkformer
(Sander et al., 2022), and the Vanilla Transformer (Vaswani
et al., 2017). Throughout our experiments, we employed an
axis-aligned slicer. our experimental setup and implementa-
tion can be found in Appendices B and C.

4.1. ModelNet40 Classification

The ModelNet40 dataset (Wu et al., 2015) comprises 40
widely recognized 3D object categories and serves as a stan-
dard benchmark for point cloud classification. Transformers
designed for point clouds and sets have been extensively
evaluated on ModelNet40, with notable examples including
Set Transformers (Lee et al., 2019) and Point Cloud Trans-

formers (Guo et al., 2021). Table 2 presents the classification
results across four runs, comparing different attention mech-
anisms integrated into Set Transformers and Point Cloud
Transformers. Notably, ESPFormer outperforms competing
methods, demonstrating superior performance.

4.2. Sentiment Analysis

We next evaluate ESPFormer on the IMDB dataset (Maas
et al., 2011) for sentiment analysis. Following Sander
et al. (2022), our architecture comprises an attentionbased
encoder followed by a maxpooling layer trained to clas-
sify movie reviews as either positive or negative. Table 3
presents the accuracy improvements achieved by using ESP-
Former as the core attention module, compared to baseline
models, showcasing its robustness in text classification.

We additionally evaluate ESPFormer on the TweetEval senti-
ment dataset (Barbieri et al., 2020), where tweets are labeled
positive or negative. We use the same encoder + maxpooling
architecture and training setup as for IMDb. Table 4 reports
the corresponding accuracy metrics.

4.3. Neural Machine Translation

We evaluate ESPFormer and Sinkformer using two reference
models: the Transformer and its DiffTransformer counter-
part (Ye et al., 2025). Both models are trained using the
fairseq sequence modeling toolkit (Ott et al., 2019) on the
IWSLT’14 German-to-English dataset (Cettolo et al., 2014).
The architecture of both models consists of an encoder and
a decoder, each with a depth of 6 layers. Initially, we trained
both models for 25 epochs using the standard training pro-
cedure. After this phase, we performed a Plug-and-Play
evaluation, where the attention heads were plugged into the
pre-trained models and evaluated on their performance, as
shown in Table 5. In this phase, we tested ESPFormer and
Sinkformer attention heads, denoted by the respective mod-
els in the table, comparing their performance to the base
Transformer and DiffTransformer models. Following the
Plug-and-Play evaluation, we performed a Fine-Tune Boost
phase, where the models were further fine-tuned for an addi-
tional 10 epochs. The fine-tuning led to further performance
gains, as observed in the table, with ESPFormer showing the
highest improvement in both the Transformer and DiffTrans-
former settings, achieving the best BLEU score of 34.64
and 34.83, respectively. The fine-tuned results show the
effectiveness of incorporating ESPFormer into the model
architecture.

4.4. Vision Transformers

To evaluate the generalizability of the models under lim-
ited data scenarios, we conducted experiments on the Cats
and Dogs dataset (Kaggle, 2013) using varying fractions of
the training data: 1%, 10%, 25%, and 100%. We train a
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Table 1. Average and standard deviation (over 3 runs) of ESPFormer’s classification accuracy (%) vs. baselines on the Cats and Dogs
dataset under varying data availability. ESPFormer’s performance is reported in three modes: initial soft sort, sharp soft sort, and hard sort.

Data Fraction
Baselines ESPFormer

Sinkformer DiffTransformer Transformer Initial Soft Sort Sharp Soft Sort Hard Sort
1% 55.07 ± 3.34 53.78 ± 0.28 49.71 ± 0.31 55.66 ± 3.95 57.86 ± 3.77 58.52 ± 3.73
10% 69.56 ± 0.32 67.34 ± 0.11 57.25 ± 0.22 71.49 ± 0.43 72.22 ± 0.37 72.71 ± 0.36
25% 74.56 ± 0.58 74.86 ± 0.17 72.25 ± 0.16 75.40 ± 0.38 75.92 ± 0.31 75.92 ± 0.28
100% 79.12 ± 0.17 78.85 ± 0.11 78.49 ± 0.09 79.47 ± 0.12 80.61 ± 0.11 81.23 ± 0.11

Table 2. Test accuracy (%) on the ModelNet40 dataset over 4 runs.
Accuracies marked with ∗ are reported from (Sander et al., 2022).
Model Best Median Mean Worst
Set Transformer∗ 87.8 86.3 85.8 84.7
Set DiffTransformer 89.0 88.7 88.7 88.6
Set Sinkformer∗ 89.1 88.4 88.3 88.1
Set ESPFormer 89.6 89.5 89.4 89.1
Point Cloud Transformer∗ 93.2 92.5 92.5 92.3
Point Cloud DiffTransformer 93.1 92.8 92.7 92.6
Point Cloud Sinkformer∗ 93.1 92.8 92.7 92.5
Point Cloud ESPFormer 93.2 92.9 92.7 92.6

Table 3. Test accuracy (%) for Sentiment Analysis on IMDb.
Model Best Median Mean Worst
Transformer 85.30 85.25 85.25 85.20
DiffTransformer 85.50 85.45 85.45 85.40
Sinkformer 85.40 85.39 85.37 85.30
ESPFormer 85.50 85.50 85.47 85.40

Table 4. Test accuracy (%) for Sentiment Analysis on TweetEval.
Model Best Median Mean Worst
Transformer 71.50 71.35 71.31 71.10
DiffTransformer 72.60 72.35 72.31 72.00
Sinkformer 72.40 72.30 72.23 71.90
ESPFormer 72.60 72.40 72.36 72.10

ViT and modify the attention mechanism accordingly. The
models compared include ESPFormer, Sinkformer, Diff-
Transformer, and the standard Transformer. The goal was to
assess how well each model performs when faced with pro-
gressively larger amounts of data, particularly in resource-
constrained settings. Table 1 summarizes the classification
accuracy for each model under different data fractions. Our
results demonstrate that ESPFormer consistently outper-
forms the other models across all data fractions, achieving
the highest classification accuracy at each level of data avail-
ability. With only 1% of the data, ESPFormer achieves
55.66% accuracy, a significant improvement over the Trans-
former at 49.71%. As the data availability increases, ESP-
Former continues to show superior performance. This sug-
gests that ESPFormer is particularly robust in data-scarce
environments, showcasing its ability to generalize well even
under limited training data.

Table 5. Plug-and-Play and Fine-Tune Boost performance of Trans-
former and DiffTransformer Baselines on the IWSLT14 German-
to-English dataset, reported as the median over 4 runs. Results
with a ⋆ sign denote the Plug-and-Play performance of a different
attention module than the base attention module.

Model Plug-and-Play Fine-Tune Boost

Tr
an

sf
or

m
er Transformer 33.40 34.61

Sinkformer 33.36⋆ 34.61
ESPFormer 33.38⋆ 34.64

D
iff

Tr
an

sf
or

m
er DiffTransformer 33.85⋆ 34.78

Sinkformer 33.67⋆ 34.81
ESPFormer 33.72⋆ 34.83

TRANSITION TO HARD SORTING

During training, the use of soft sorting—which depends on
a temperature parameter—results in approximate doubly
stochastic matrices (DSMs). However, this approximation
can be addressed by gradually annealing the temperature
during training, effectively transitioning toward hard sorting.
Consequently, at inference time, soft sorting can be replaced
with hard sorting to yield exact DSMs. This not only ensures
exact computations but also reduces the inference time from
O(N2) to O(LN logN), where L is the number of slices.

To further clarify this point, we conducted additional ex-
periments the Cats vs. Dogs dataset using the same frac-
tions of the training data to evaluate the effect of hard
sorting at inference time. We finetuned pretrained mod-
els for 40 epochs using an exponential temperature anneal-
ing schedule to progressively sharpen the sorting behav-
ior. Specifically, the temperature at epoch e is defined as:
temp(e) = γ temp(e − 1), with γ = 0.8. This decay
schedule reduces the temperature to approximately 10−6,
making the soft sorting operation nearly equivalent to a
hard permutation. After finetuning, we replaced soft sorting
with hard sorting for final evaluation. Table 1 demonstrates
that fine-tuning with temperature annealing and switching to
hard sorting yields consistent improvements in test accuracy.

ON THE CHOICE OF SLICER

We employ axis-aligned slicing because our keys and
queries are learned parameters; any optimal slice orientation
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Table 6. Accuracy (%) over three runs (mean ± standard deviation) across slicer types, slice counts L, and inverse temperature τ .

L = 1 L = 8 L = 32 L = 64 L = 128

τ = 0.1

Learnable 74.30± 0.48 78.70± 0.32 79.10± 0.22 78.40± 0.26 76.20± 0.42
Frozen 66.50± 0.52 72.80± 0.38 78.30± 0.18 79.20± 0.30 79.60± 0.28
Axis-Aligned – – – 79.47± 0.12 –

τ = 1.0

Learnable 74.30± 0.48 79.07± 0.30 78.20± 0.35 77.80± 0.21 74.10± 0.46
Frozen 66.50± 0.52 73.11± 0.43 77.95± 0.25 78.80± 0.29 78.40± 0.27
Axis-Aligned – – – 78.85± 0.31 –

τ = 10

Learnable 74.30± 0.48 79.15± 0.29 78.06± 0.27 77.10± 0.23 74.15± 0.44
Frozen 66.50± 0.52 73.45± 0.41 76.85± 0.24 77.85± 0.30 78.10± 0.26
Axis-Aligned – – – 77.75± 0.32 –

is thus implicitly encoded in the projection matrices WQ

and WK . This avoids introducing extra learnable parame-
ters and ensures a fair comparison with baselines such as
vanilla attention and Sinkformer.

However, for an ablation study, we ran additional experi-
ments on the Cats vs. Dogs dataset, varying the number of
slices L, the inverse temperature τ , and whether the slicer
was learnable or frozen. Tables 6 summarizes the results.
Across all settings, axis-aligned slicing provides a simple, in-
terpretable baseline without parameter overhead. Learnable
slicers can boost performance when L is small, by focus-
ing on the most informative directions, but their advantage
diminishes as L grows. Frozen slicers likewise require suffi-
ciently many slices to approximate the distribution structure
effectively, since performance degrades when L is low in
high-dimensional spaces.

5. Conclusion
We introduced ESPFormer, a novel Transformer architecture
that integrates a fast, doubly-stochastic attention mechanism
based on Expected Sliced Transport Plans (ESP). By lever-
aging differentiable soft sorting and a fully parallelizable
approach, ESPFormer provides a computationally efficient
alternative to iterative Sinkhorn normalization while ensur-
ing a balanced distribution of attention across tokens. Our
experiments across diverse domains, including image clas-
sification, point cloud processing, sentiment analysis, and
neural machine translation, demonstrate that ESPFormer
consistently outperforms both classical self-attention and
Sinkhorn-based alternatives in terms of accuracy and effi-
ciency. Furthermore, we showed that our proposed attention
can be seamlessly integrated into pre-trained Transform-
ers, improving performance even with minimal fine-tuning.
The flexibility of ESPFormer also makes it compatible with
emerging differential attention mechanisms, e.g., (Ye et al.,
2025), expanding its applicability to a broad range of archi-
tectures. These findings highlight the potential of transport-

based attention mechanisms as a principled alternative to
existing methods, paving the way for future research in
efficient and structured attention models.

Limitations
Our method has two main limitations. First, it is incom-
patible with strictly causal Transformer or autoregressive
architectures, since enforcing both lower-triangularity and
doubly stochasticity reduces the mapping to the identity.
Second, during training its memory usage scales linearly
with the number of slices, as we must retain each slices
permutation matrix; after fine-tuning and switching to hard
sorting, however, these matrices can be discarded and all
inference computations can be run off-GPU.

Impact Statement
ESPFormer significantly accelerates the computation of bal-
anced attention by introducing an efficient mechanism for
enforcing doubly stochastic constraints through the math-
ematics of sliced optimal transport. The proposed atten-
tion improves model robustness and interoperability, and
is shown to be effective even in a plug-and-play setting.
This enables practical use of balanced attention as a strong
inductive bias, particularly effective in low-data regimes.
Furthermore, by establishing a connection between sliced
optimal transport and attention mechanisms, ESPFormer
opens a new research direction for structured and efficient
attention through transport-based formulations. Although
ESPFormer has the potential to impact a broad range of
applications, we do not foresee any specific societal risks
requiring special attention.
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Peyré, G., Cuturi, M., et al. Computational optimal trans-
port: With applications to data science. Foundations and
Trends® in Machine Learning, 11(5-6):355–607, 2019.

Prillo, S. and Eisenschlos, J. Softsort: A continuous relax-
ation for the argsort operator. In International Conference
on Machine Learning, pp. 7793–7802. PMLR, 2020.

Qin, T., Liu, T.-Y., and Li, H. A general approximation
framework for direct optimization of information retrieval
measures. Information retrieval, 13:375–397, 2010.

Qin, Z., Yu, H., Wang, C., Guo, Y., Peng, Y., and Xu, K.
Geometric transformer for fast and robust point cloud
registration. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 11143–
11152, 2022.
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A. Full runtime wall-clock analysis, and Patch size impact
A.1. Full runtime wall-clock

The runtime comparison in Figure 4 highlights the computational efficiency of different attention mechanisms across
varying sequence lengths. Transformer and DiffTransformer exhibit the lowest runtime due to their standard self-attention
mechanism, making them computationally lightweight. In contrast, ESPFormer achieves a balance between efficiency and
expressivity, maintaining lower runtimes compared to Sinkformer across all sequence lengths. These results emphasize the
trade-off between computational efficiency and model expressivity when selecting an attention model for large-scale tasks.
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Figure 4. Runtime analysis of Transformer, DiffTransformer, ESPFormer, and Sinkformer with varying iteration counts (S) for sequence
lengths N ∈ {50, 100, 500, 1000} with d = 1024, averaged over 10 runs. ESPFormer consistently demonstrates superior computational
efficiency compared to Sinkformer across all sequence lengths, while Transformer and DiffTransformer remain the most lightweight.

A.2. Impact of Patch Size

Similar to Sander et al. (2022) and to analyze the effect of patch size on model performance, we trained Transformer,
DiffTransformer, Sinkformer, and ESPFormer on the MNIST dataset (LeCun et al., 1998). To isolate the impact of the
attention mechanism, we used a single-layer self-attention module without feed-forward layers. Figure 5 illustrates the test
accuracy as a function of patch size for each model. ESPFormer consistently outperforms competing models, particularly
for smaller patch sizes, highlighting its superior ability to capture fine-grained details. As the patch size increases, the
performance gap narrows, with all models converging to similar accuracies — likely due to the reduced information content
within each individual patch.
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Figure 5. Comparison of MNIST test accuracy across different patch sizes for Transformer, DiffTransformer, Sinkformer, and ESPFormer
architectures. Results are averaged over 3 runs.
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B. Implementation Details
Sinkhorn’s Algorithm

We implement Sinkhorns algorithm in the log domain to enhance numerical stability. Given a matrix S0 ∈ Rn×n defined as
S0
i,j = eCi,j for some cost matrix C ∈ Rn×n, the algorithm iteratively updates the scaling vectors (f, g) ∈ Rn × Rn such

that the limiting matrix is given by

S∞ = diag(ef
∞
)S0diag(eg

∞
).

Starting with g0 = 0n, the updates are performed in the log domain as follows:

f l+1 = log(1n/n)− log(Seg
l

), if l is even,

gl+1 = log(1n/n)− log(S⊤ef
l

), if l is odd.

This log-domain formulation allows for efficient and numerically stable computations by leveraging the log-sum-exp
trick to evaluate expressions like log(Seg

l

) and log(S⊤ef
l

).

Implementation of Sinkhorn Algorithm:

def sinkhorn_log_domain(C, epsilon=1e-3, num_iters=50):
n = C.shape[0]
S = np.exp(-C / epsilon) # Compute Sˆ0
f, g = np.zeros(n), np.zeros(n) # Initialize log scaling vectors

for l in range(num_iters):
if l % 2 == 0:

f = np.log(1 / n) - log_sum_exp(np.log(S) + g)
else:

g = np.log(1 / n) - log_sum_exp(np.log(S.T) + f)

return f, g

For further details and implementation, please refer to the SinkFormer GitHub Repository.

Differential Transformer

The Differential Transformer extends traditional self-attention by introducing differential attention mechanisms, which
modulate the contribution of multiple attention maps using a learnable parameter λ. This allows the model to capture finer
differences in the relational structure of the input data.

Given an input sequence X , the attention mechanism computes two different sets of queries and keys, denoted as (Q1,K1)
and (Q2,K2). The attention output is computed using a weighted difference of the attention maps:

A = softmax(Q1K
T
1 )− λ× softmax(Q2K

T
2 ).

The resulting attention map is then applied to the values V , followed by normalization and projection:

O = GroupNorm(AV ).

Implementation of Differential Attention:

def DiffAttn(X, W_q, W_k, W_v, \lambda):
Q1, Q2 = split(X @ W_q)
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K1, K2 = split(X @ W_k)
V = X @ W_v
s = 1 / sqrt(d)
A1 = Q1 @ K1.transpose(-1, -2) * s
A2 = Q2 @ K2.transpose(-1, -2) * s
return (softmax(A1) - \lambda * softmax(A2)) @ V

Implementation of Multi-Head Differential Attention:

def MultiHead(X, W_q, W_k, W_v, W_o, \lambda):
O = GroupNorm([DiffAttn(X, W_qi, W_ki, W_vi, \lambda) for i in range(h)])
O = O * (1 - \lambda{init})
return Concat(O) @ W_o

For further details and implementation, please refer to the Differential Transformer Github Repository.

C. Experiment Details
C.1. Table of Notations

Table 7 includes the notations used in this section.

Table 7. Experimental Notations
Notation Description
t Temperature parameter in the Soft Sorting algorithm
τ The ”inverse temperature” hyperparameter in ESP
ϵ The entropy regularization parameter in the Sinkhorn algorithm
S Number of iterations in Sinkformer
λinitial Initial λ value in DiffTransformer
lrinitial Initial learning rate for all methods
I The interpolation matrix in ESPformer

C.2. ModelNet 40

In our experiments on ModelNet40 utilizing Set Transformers, we begin by preprocessing the dataset and uniformly
sampling 5000 points from each object.

Set Transformers
The model architecture consists of two Induced Set Attention Blocks (ISAB) in the encoder, followed by a decoder
incorporating a Set Attention Block (SAB) and a Pooling by Multihead Attention (PMA) module. The training procedure
employs a batch size of 64 and utilizes the Adam optimizer (Kingma & Ba, 2015). The network is trained for 300 epochs,
with an initial learning rate of 10−3, which is reduced by a factor of 10 after 200 epochs.

t τ ϵ S λinitial lrinitial I

10−3 10−1 10−1 21 0.8 10−3 IdentityN×M

Table 8. Hyperparameters used in training for Set Transformers on ModelNet40 dataset.

Point Cloud Transformers
The training is conducted with a batch size of 32 using Stochastic Gradient Descent (SGD) (Ruder, 2016). The model
undergoes 300 training epochs, starting with an initial learning rate of 10−4, which is reduced by a factor of 10 after 250
epochs.
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t τ ϵ S λinitial lrinitial I

10−3 10−1 10−1 21 0.8 10−4 IdentityN×N

Table 9. Hyperparameters used in training for Point Cloud Transformers on ModelNet40 dataset.

C.3. Sentiment Analysis

For our sentiment analysis experiments, we utilize the publicly available implementation from the nlp-tutorial1

repository, where a pretrained Transformer model is fine-tuned on the IMDb dataset. In our experimental setup, we reset the
parameters of the pretrained Transformer and train it from scratch on the IMDb dataset. The model architecture consists of a
depth of 6 layers and employs 8 attention heads. Training is conducted using the Adam optimizer with a batch size of 32
over 15 epochs. The initial learning rate is set to 10−4 and is reduced by a factor of 10 after 12 epochs.

t τ ϵ S λinitial lrinitial I

10−3 10+1 10−1 15 0.33 10−4 IdentityN×N

Table 10. Hyperparameters used in training for Transformers on IMDb dataset.

We also utilize this implementation for TweetEval, and similar hyperparameters for this sentiment analysis experiment can
be found in table 11.

t τ ϵ S λinitial lrinitial I

10−3 10+1 10−1 15 0.33 10−4 IdentityN×N

Table 11. Hyperparameters used in training for Transformers on TweetEval dataset.

C.4. Neural Machine Translation

For our neural machine translation experiments, we adopt the Transformer model from fairseq along with its DiffTrans-
former counterpart, training both from scratch for 25 epochs. We then fine-tune them alongside other baselines for an
additional 10 epochs on the IWSLT’14 dataset2. When fine-tuning ESPFormer and Sinkformer, we modify the original
training schedule by reducing the learning rate by a factor of 10.

t τ ϵ S λinitial lrinitial I

10−3 10+1 10−1 15 0.0 10−4 IdentityN×N

Table 12. Hyperparameters used in training for neural machine translation on IWSLT14 dataset.

C.5. Vision Transformers

C.5.1. CATS AND DOGS CLASSIFICATION

For this experiment, we use the ViT model (Dosovitskiy et al., 2021) with different attention mechanisms. The images
are resized to 224× 224. We use a ViT architecture with an embedding and MLP dimension of 128, 6 layers, 8 attention
heads, and a patch size of 16. For all methods and percentages of data, we train the model for 300 epochs. We use an initial
learning rate of 3× 10−5. After 250 epochs, the learning rate is reduced by a factor of 10. Training is done using the Adam
optimizer (Kingma & Ba, 2015) and a batch size of 64. Our experimental setup, including the normalizations and data
augmentations, are consistent with the Cats and Dogs experiment in Sinkformer (Sander et al., 2022) . For each percentage
of the data, three random seeds are used to initialize and generate new subsets of data. The subsets are consistent across all
methods to ensure the same training set is used.

1https://github.com/lyeoni/nlp-tutorial/tree/master/text-classification-transformer
2https://github.com/pytorch/fairseq/blob/main/examples/translation/README.md
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t τ ϵ S λinitial lrinitial I

10−3 10−1 1 3 0.5 3× 10−5 IdentityN×N

Table 13. Hyperparameters used in training for ViT on Cats and Dogs dataset.

C.5.2. IMPACT OF PATCH SIZE

To analyze the effect of patch size on final accuracy, we conduct experiments using a batch size of 100 and the Adam
optimizer. The model architecture consists of a single-layer Transformer (depth = 1) with one attention head, no non-linearity,
and varying patch sizes. Training is performed over 45 epochs, with an initial learning rate of 1× 10−3 for the Transformer
and DiffTransformer and 2× 10−3 for the ESPFormer and Sinkformer. The learning rate is decayed by a factor of 10 after
35 epochs, and again by another factor of 10 after 41 epochs.

t τ ϵ S λinitial lrinitial I

10−3 0 1 5 0.5 1× 10−3, 2× 10−3 IdentityN×N

Table 14. Hyperparameters used in training for shallow-ViT on MNIST dataset.
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