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Abstract

We revisit the reduction of learning in adversarial Markov decision processes [MDPs] to
adversarial learning based on Q–values; this reduction has been considered in a number of
recent articles as one building block to perform policy optimization. Namely, we first restate
this reduction in a greater generality: it may involve any adversarial learning strategy (not
just exponential weights) and it may be based indifferently on Q–values or on advantage
functions. Both twists may be leveraged to obtain improved practical performance. We
then present two extensions: convergence of the last iterate for a vast class of adversarial
learning strategies (again, not just exponential weights); stronger regret criteria for learning
in MDPs, inherited from the stronger regret criteria of adversarial learning called strongly
adaptive regret and tracking regret. Finally, we demonstrate how adversarial learning, also
referred to as aggregation of experts, relates to orchestration of expert policies (also known
as imitation learning): we obtain stronger forms of performance guarantees in this setting
than existing ones, via yet another, simple reduction.

A word intended to reviewers: we included three brief formal proofs in the main body, as well as many other
detailed arguments. This is why the appendix is short (less than 6 pages, possibly being even shortened to
4 pages if the proof of the performance difference lemma is omitted) but the main body features 17 pages.

1 Introduction

In this article, we revisit a specific approach in policy optimization for adversarial Markov decision processes
[MDPs] in the episodic setting, namely, the closed-form design of the policies output over time (which change
in an incremental way) based on estimated value functions. In virtually all previous work, these policies
are computed thanks to the same adversarial-learning strategy, referred to under possibly different names:
exponential weights, weighted majority, Boltzmann reweighting, or online mirror descent, to name a few. It
turns out that different adversarial-learning strategies may be used, which may have important consequences
in practice: this choice can, for instance, influence the computational efficiency or the robustness to estimation
errors.

1.1 Brief literature review

Before reviewing in detail our contributions, we first provide a concise overview of the related literature and
justify some claims contained in the previous paragraph.

Adversarial MDPs / Reduction to adversarial learning. The setting of adversarial MDPs was
introduced by by Even-Dar et al. (2009) and Yu et al. (2009). As in the standard episodic setup, the
transition kernels dictating the evolution of the states are unknown and constant over time. However, the
reward functions vary over time and may be chosen by some adversary; they are possibly revealed at the end
of an episode. Both references were also the first ones to introduce a reduction of the control of adversarial
MDPs to standard adversarial learning (a setting also called expert prediction; see Cesa-Bianchi & Lugosi,
2006 for an overview thereof). In this article, we will be interested in closed-form policy optimization, and
not in approaches relying on so-called occupancy measures (introduced by Zimin & Neu, 2013), which solve

1



Under review as submission to TMLR

a complex convex optimization problem at each episode and do not result in closed-form expressions for the
policies output (see, e.g., Rosenberg & Mansour, 2019).

Policy optimization. Policy optimization refers to designing policies to be used at each episode, often
obtained by sequential incremental updates, and may be opposed to value-based learning in MDPs, which
focuses on estimating and improving value functions rather than directly constructing policies. Several
approaches were considered in policy optimization, for instance, (natural) policy gradient (Sutton et al., 2000,
Kakade & Langford, 2002), and variants like Trust Region Optimization or Proximal Policy Optimization
(TRPO and PPO, respectively; see Schulman et al., 2015, Schulman et al., 2017). We will rather be interested
in the closed-form policy design relying on estimates of Q–value functions. This vein of research includes the
works by Shani et al. (2020), Cai et al. (2020), He et al. (2022), Zhao et al. (2023), Tiapkin et al. (2024) (see
also Abbasi-Yadkori et al., 2019) to name a few contributions illustrating well the angle used. The settings
differ in these articles depending, among others, on the feedback on the reward functions (full monitoring or
bandit feedback) and on the structural assumptions, or lack thereof, on the transition kernels.

However, all cited references have one thing in common: they rely on the same adversarial-learning strategy
(except Tiapkin et al., 2024, which points to the present article).

A single adversarial-learning strategy, based on exponential weights. This same adversarial-
learning strategy is known under different names and relies on exponential weights; namely, Agarwal et al.
(2021, Section 5.3) refers to it as multiplicative weights updates, Abbasi-Yadkori et al. (2019), as the Boltz-
mann policy1, Shani et al. (2020) and Zhao et al. (2023), as online mirror descent (with a Kullback-Leibler
regularization), while Cai et al. (2020) and He et al. (2022) do not write any explicit name but obtain its
expression by some follow-the-regularized-leader approach with a Kullback-Leibler regularization (referring
to the same closed-form update obtained by earlier references).

Interestingly, this strategy based on exponential weights aligns with the concept of natural policy gradient
for non-adversarial MDPs when the policy parametrization is softmax: both approaches involve the same
update rule on the weights (this explicit update rule was, for instance derived, in Agarwal et al., 2021,
Section 5.3, see also Kakade, 2001). This specific case, as the intersection of two optimisation paradigms,
leads to remarkable theoretical guarantees in non-adversarial MDPs; see, in particular, the recent work by
Müller & Montúfar (2024) and references therein.

Two exceptions to the use of the exponential-weight strategy are provided by Even-Dar et al. (2009) and Yu
et al. (2009), which resort to a strategy called follow-the-perturbed-leader (Kalai & Vempala, 2005); but
their setting and objectives are somewhat different to the ones considered in this article and in the references
of the previous paragraph.

Previous reductions of learning in MDPs to adversarial learning. We provide a specific analysis
of the strategy based on exponential weights in Section 6, obtaining improved regret bounds compared to
the analyses provided in the mentioned references. These analyses range from a few-line-long proof by direct
reduction to adversarial learning in Shani et al. (2020), that we copy in Section 3.2 (but that can be improved
in the specific case of exponential weights), to longer proofs (possibly several pages, see, e.g., Zhao et al.,
2023, Appendix A.1). The typical proofs are one-page-long, do not clearly identify a reduction, and consist
of ad hoc adaptations of the proof for exponential weights based on telescoping Kullback-Leibler terms2 à
la Freund & Schapire (1999), as in Agarwal et al. (2021, Section 5.3) or Cai et al. (2020). We note that
the cited references actually run the exponential-weight strategy on estimated Q–values: more details are
provided in Section 7.

In a nutshell, among all cited references, Shani et al. (2020) already clearly identified how to reduce learning
MDPs to adversarial learning, but only leveraged this fact for one specific adversarial learning strategy (and
provided suboptimal bounds for this strategy).

1Abbasi-Yadkori et al. (2019) even states that “the choice of the Botzmann policy is not arbitrary”, but one of the point of
the present article is to actually show that it is, as many other choices of adversarial-learning strategies are suitable.

2Simpler proofs of performance exist for exponential weights in the adversarial setting (based on Hoeffding’s lemma, see
Cesa-Bianchi & Lugosi, 2006, Section 2.2).
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1.2 Contributions and outline of this article

In Section 2, we define formally the setting of episodic adversarial Markov decision processes [MDPs] and
state our objective: the minimization of a cumulative regret defined as the sum of the differences between
the value functions of the best stationary policy and of the policies output.

Section 3 recalls the reduction of learning in MDPs to adversarial learning as clearly stated by Shani et al.
(2020). We essentially replicate their proof, based on the performance difference lemma, up to a single,
straightforward extension: the consideration of a vast family of possible adversarial learning strategies, not
just exponential weights with a constant learning rate. For instance, the ML-Prod and ML-Poly strategies
(Gaillard et al., 2014, Gaillard et al., 2021) are suitable adversarial-learning strategies that exhibit in general
much better empirical performance than exponential weights. Another, immediate, remark is that the
theoretical guarantees hold when adversarial-learning strategies are fed with advantage functions instead of
Q–functions, which is a second source of improved empirical performance.

We then present three extensions and discuss two twists: a special-case analysis for exponential weights
with improved bounds, and how to use the general theory developed in real-case scenarios where advantage
functions need to be estimated (in particular due to the transition kernels being unknown).

Extension 1: convergence of the last iterate. Section 4 focuses on a simple regret instead of a
cumulative regret, in the case reward functions are constant over time: the difference between the last policy
output and the best policy. Agarwal et al. (2021, Section 5.3) controlled this quantity for exponential weights
with a constant learning rate (in the discounted setting). We show how to extend their argument to a large
class of adversarial strategies satisfying a natural property that we call “monotonicity of weights”.

Extension 2: Stronger forms of regret. Section 5 shows that the general reduction studied also works
for a stronger notion of regret called strongly adaptive regret and consisting of studying the sums of differences
in value functions over subintervals of time. As a consequence, the so-called tracking regret may also be
controlled: therein, the comparison is made not to the best stationary policy but to the best sequence of
policies with few shifts. To the best of our knowledge, the control of such improved forms of regret for MDPs
is an original contribution.

The special case of exponential weights. Section 6 leverages elements from Extensions 1 and 2 to show
that when the adversarial learning strategy consists of exponential weights with a constant learning rate,
the (cumulative) regret may be bounded by the number of shifts in the reward sequence. This provides yet
another generalization of the results of Agarwal et al. (2021, Section 5.3). In addition, the proof technique
of Agarwal et al. (2021, Section 5.3) seemed highly specific to the discounted setting: we provide instead a
treatment for the episodic setting.

Practical versions with estimated advantage functions. Section 7 puts in perspective the design
of policies studied in this article: in practice, advantage functions are unknown but may be estimated, so
that the strategies studied earlier in this article should be run on these estimates. We review the literature
to explain how the actual regret relates to the regret in terms of estimated value functions. The black-box
reduction recalled and emphasized in Section 3 should be helpful in the core of new proofs, to make the latter
more modular. (Compare, for instance, the modular approach of Tiapkin et al., 2024 based on the present
article to more typical proofs re-deriving regret guarantees in terms of value functions based on mimicking
proofs of adversarial regret bounds for exponential weights.)

Extension 3: Aggregation (orchestration) of expert policies, a.k.a. imitation learning. Adver-
sarial learning is sometimes called prediction with experts (see Cesa-Bianchi & Lugosi, 2006). Section 8
considers the case where policies output over time are not learned anymore in a direct tabular setting, but
are obtained by (state-by-state and stage-by-stage) convex combinations of some expert policies. The aim is
to mimic the performance of the overall best such convex combination. This methodology relates to orches-
tration of expert policies, also called imitation learning (see, for instance, Cheng et al., 2020 and Liu et al.,
2023). We show that to deal with this problem, it suffices to consider expert policies as actions in a lifted
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MDP and apply all results described earlier in this article. We obtain stronger performance guarantees than
in the cited references.

2 Setting and aims

Notation. We denote by P(X ) the set of probability distributions over some set X , either finite or given
by an interval of R in the sequel. For an integer n ⩾ 1, let [n] = {1, . . . , n} denote the set of the first n
integers.

Setting. We consider an H–episodic and (obliviously) adversarial Markov decision process [MDP] with
finite state and action spaces S and A, of respective cardinalities S and A: each episode t ⩾ 1 is of length
H ⩾ 1 and is governed by transition kernels T = (Th)h∈[H−1], where Th : S × A → P(S), and by reward
functions Rt = (Rt,h)h∈[H], where Rt,h : S × A → P

(
[0, 1]

)
. The transition kernels are constant over

episodes, while the reward functions Rt vary between episodes; they may actually be picked by an adversary
in some oblivious way, i.e., the entire sequence (Rt)t⩾1 is determined by the adversary before the first episode
takes place.

We denote by rt,h : S × A → [0, 1] the mean-payoff function associated with some Rt,h, i.e., rt,h(s, a) is the
expectation of the distribution Rt,h(s, a), for each s ∈ S and a ∈ A.

A (stationary, or one-shot) policy π = (πh)h∈[H] is a sequence of mappings πh : S → P(A); we denote by
πh( · |s) the probability distribution over actions that it uses in stage h and state s. The learner should
determine a policy πt at the beginning of each episode t ⩾ 1, based on the information gained at rounds
τ ⩽ t − 1; that information consists at least of the states observed and actions played therein, as well as
the rewards obtained. In some scenarios, additional observations may be performed, which we will explicitly
detail; for instance, in Section 3.2, the learning system may observe, among others, the mean-payoff functions
rτ = (rτ,h)h∈[H] at the end of episode τ .

At the beginning of each episode t ⩾ 1, the same initial state st,1 = s1 is set. Then, at each stage h ∈ [H −1],
the learning system draws an action at,h ∼ πt,h( · |st,h), after which it obtains and observes a stochastic reward
rt,h ∼ Rt(st,h, at,h), while the environment moves to a new state drawn as st,h+1 ∼ Th( · |st,h, at,h). In the
final stage, only an action at,H ∼ πt,H( · |st,h) is drawn, and a reward rt,H ∼ Rt(st,H , at,H) is obtained and
observed.

By the tower rule, the value function of a given stationary policy π = (πj)j∈[H] at episode t ⩾ 1 and started
at stage h ∈ [H] equals, for all s ∈ S,

V π,Rt

h (s) = Eπ,T

 H∑
j=h

rt,j(sj , aj)
∣∣∣∣ sh = s

 , (1)

where the piece of notation Eπ,T indicates that actions ah and states sh in the expectation are governed by
the policy π and the transition kernels T , as described above.

2.1 First aim: direct tabular learning

We evaluate the policies πt picked over time in terms of their value functions and are interested in mimicking
the performance of the best stationary policy in hindsight. More precisely, the learning system aims to control

∀T ⩾ 1, RT = max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

, (2)

where the maximum is over all stationary policies π. We write “∀T ⩾ 1” to indicate that either the time
horizon T is unknown or the regret should be controlled for all time horizons. The regret RT involves a
sum essentially because the reward functions Rt evolve over time in a possibly adversarial way; when they
are constant over time, then convergence of the last iterate (of the T–th term in the sum above) may be
achieved, see Section 4.
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The aim described above is called direct tabular learning as policies πt are picked by determining, for each
stage h and state s, the entire probability distribution πt,h( · |s). The terminology is borrowed from Agarwal
et al., 2021, Section 3.

The setting above is summarized in the left part of Box A in Section 8.

The aim described above may be difficult to complete when the number A of actions is large. In addition, the
learning system may sometimes have some prior information given by a finite set of expert policies among
which some policies could perform well (the subsets of these good-performing policies could possibly depend
on the state). We therefore introduce an alternative aim in Section 8 called aggregation (or orchestration) of
expert policies, but actually show that resolving this objective is equivalent to the first aim described above.

2.2 Additional notation

For later use, we define Q–values and advantage functions, and use the same notation as in (1) to that end.
For any pair of stationary policy π and reward functions R, we define its Q–value function at episode t ∈ [T ],
and started from stage h ∈ [H], as

Qπ,Rt

h : (s, a) ∈ S × A 7−→ Eπ,T

 H∑
j=h

rt,j(sj , aj)
∣∣∣∣ sh = s, ah = a

 ,

and its advantage function as

Aπ,Rt

h : (s, a) ∈ S × A 7−→ Qπ,Rt

h (s, a) − V π,Rt

h (s) . (3)

We only keep in the notation Vh, Qh, and Ah the parameters π and Rt that vary, and omit the transition
kernels T . We use the short-hand notation

Aπt,Rt

h (s, · ) =
(
Aπt,Rt

h (s, a)
)

a∈A (4)

to denote the vector of advantages for a given episode t and a given stage h.

3 Methodology and core result: adversarial learning on advantage functions

Contributions of this section. We recall how strategies designed to control the regret in the so-called
adversarial setting, i.e., satisfying guarantees as described in Definition 1 below, may be used to construct
policies so as to control the regret in terms of value functions. This observation was essentially already made
in the literature, at least for exponential weights; see, for instance, how Shani et al. (2020, Section 6) handles
its Term (ii).

Before formally stating our main result, we briefly recall what the adversarial setting consists in; see the
monograph by Cesa-Bianchi & Lugosi (2006) for a more detailed exposition.

3.1 Reminder on adversarial learning

At each round t ⩾ 1, based on the information collected during past rounds, a learning strategy picks a
convex combination wt = (wt,1, . . . , wt,K) ∈ P

(
[K]
)

while an opponent player simultaneously picks, possibly
at random, a vector gt = (gt,1, . . . , gt,K) of signed rewards. Both wt and gt are revealed at the end of the
round. More formally, we mean that a learning strategy is a sequence φ = (φt)t⩾1 of functions φt : RK(t−1)

and that wt = φt

(
(gτ )τ⩽t−1

)
for t ⩾ 1. This formula means in particular that the initial vector w1 = φ1(∅)

is constant.
Definition 1 (adversarial-learning regret bound). A sequential strategy controls the regret in the adversarial
setting with rewards bounded by M > 0 if there exists a sequence (BT,K)T⩾1 of positive numbers with
BT,K/T → 0 and such that, against all opponent players sequentially picking reward vectors in [−M, M ]K ,

∀T ⩾ 1, max
k∈[K]

T∑
t=1

gt,k −
T∑

t=1

∑
j∈[K]

wt,j gt,j ⩽ 2M BT,K .
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The optimal orders of magnitude of BT,K are
√

T ln K (see Cesa-Bianchi & Lugosi, 2006). In Definition 1,
the strategy may know M and rely on its value. On the contrary, the number T of rounds is unknown and
actually, for the sake of exposition, Definition 1 requires a control of the adversarial regret for all T ⩾ 1,
which is a mild restriction.

Our main examples of strategies abiding by the constraints of Definition 1 are the potential-based strategies
by Cesa-Bianchi & Lugosi (2003). They are defined based on a sequence of non-decreasing functions Φt :
R → [0, +∞); they resort to w1,k = 1/K and

∀t ⩾ 2, wt,k = vt,k∑
j∈[K]

vt,j

, where vt,k = Φt

t−1∑
τ=1

gτ,k −
t−1∑
τ=1

∑
j∈[K]

wτ,jgτ,j

 . (5)

Example 1. Cesa-Bianchi & Lugosi (2003, Section 2) show that the strategy based on the constant polyno-
mial potentials Φt ≡ Φ : x 7→

(
max{x, 0}

)2 ln K provides the control BT,K =
√

6T ln K for the regret in the
adversarial setting.
Example 2. Auer et al. (2002) studied exponential potentials Φt(x) = exp(ηtx) with time-varying learn-
ing rates ηt = (1/M)

√
(ln K)/t. This sequential strategy controls the regret with BT,K =

√
T ln K in the

adversarial setting.

A final example is of a different, not potential-based, nature.
Example 3. The greedy projection algorithm of Zinkevich (2003) relies on a sequence (ηt)t⩾1 of positive step
sizes and sets wt+1 = proj(wt + ηt gt) for t ⩾ 1, where w1 = (1/K, . . . , 1/K) and where proj is the convex
projection onto P

(
[K]
)

in Euclidean norm. For the choices ηt = (1/M)
√

1/(2Kt), this strategy controls the
regret with BT,K =

√
2KT in the adversarial setting.

3.2 Policy optimization via adversarial learning on advantage functions

This section presents rather standard material and must be read accordingly. Indeed, what follows is a
reduction that was essentially known, though only applied with exponential weights and on Q–values rather
than on advantage functions. The proof follows the one by Shani et al. (2020, Section 6) (see also Agarwal
et al., 2021, proof of Theorem 16), i.e., is based on the performance difference lemma.

For each stage h ∈ [H], we fix a sequential strategy φh = (φt,h)t⩾1 in the adversarial setting, relying on
reward vectors bounded by Mh = H − h + 1 and of dimension K = A, i.e., indexed by A. We run these
strategies on the advantage functions, in a stage-by-stage and state-by-state manner, as follows: for all t ⩾ 1,

∀h ∈ [H], ∀s ∈ S, πt,h( · |s) = φt,h

((
Aπτ ,Rτ

h (s, · )
)

τ⩽t−1

)
, (6)

where we used the notation defined in (4). We refer to this strategy as (φh)h∈[H]–Adv2, for (φh)h∈[H]–
adversarial learning on advantage functions.

It constitutes a “theoretical” strategy, as it relies on the oracle knowledge of the advantage functions—an
issue that we discuss and mitigate later in Section 7. The strategy could be run instead on Q–values, see
Remark 1 below.
Theorem 1. In the setting of Section 2 where rewards lie in [0, 1], if, for all h ∈ [H], the sequential
strategies φh control the regret in the adversarial setting (Definition 1) by BT,A for A–dimensional reward
vectors bounded by H − h + 1, then the (φh)h∈[H]–Adv2 strategy defined in (6) controls the regret as:

∀T ⩾ 1, max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)
⩽ H(H + 1) BT,A .

As indicated above, following Shani et al. (2020, Section 6), the (short) proof of Theorem 1 relies on the
so-called performance difference lemma, which we recall next. For the sake of completeness, references for
this lemma and a proof thereof are provided in Appendix C.
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Lemma 1 (Performance difference lemma). Let µs1,π,T
h′ be the distribution of the state sh′ of the h′–th stage,

starting from the state s1 in the first stage, following the stationary policy π and the transition kernels T .
In a MDP with transition kernels T , for all pairs π, π′ of stationary policies, for all reward functions R,
and for all stages h ∈ [H],

∑
s∈S

µs1,π,T
h (s)

(
V π,R

h (s) − V π′,R
h (s)

)
=

H∑
h′=h

∑
s∈S

µs1,π,T
h′ (s)

∑
a∈A

πh′(a|s) Aπ′,R
h′ (s, a) .

In particular, for h = 1,

V π,R
1 (s1) − V π′,R

1 (s1) =
H∑

h′=1

∑
s∈S

µs1,π,T
h′ (s)

∑
a∈A

πh′(a|s) Aπ′,R
h′ (s, a) .

Proof of Theorem 1. We fix a stationary policy π throughout the proof and control the regret with respect
to this π.

The first part consists of applying the adversarial-learning regret upper bound for each h ∈ [H]. As the
rewards take values in [0, 1], we have that

∣∣Aπτ ,Rτ

h (s, a)
∣∣ ⩽ H − h + 1 for all τ, s, a. By the definition of

advantage functions (for the equality to 0) and by Definition 1 and the design of the (φh)h∈[H]–Adv2 strategy
(for the upper bound), we have, for all s ∈ S,

max
a∈A

T∑
t=1

Aπt,Rt

h (s, a) −
T∑

t=1

= 0︷ ︸︸ ︷∑
a∈A

πt,h(a|s) Aπt,Rt

h (s, a) ⩽ 2(H − h + 1) BT,A . (7)

The second part consists of applying the performance difference lemma, i.e., Lemma 1 above with h = 1,
which guarantees that

V π,Rt

1 (s1) − V πt,Rt

1 (s1) =
H∑

h=1

∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πh(a|s) Aπt,Rt

h (s, a) .

Summing this equality over t and rearranging, we get

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

=
H∑

h=1

∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πh(a|s)
T∑

t=1
Aπt,Rt

h (s, a)

⩽
H∑

h=1

∑
s∈S

µs1,π,T
h (s) max

a∈A

T∑
t=1

Aπt,Rt

h (s, a)︸ ︷︷ ︸
⩽2(H−h+1) BT,A

⩽ 2
H∑

h=1
(H − h + 1)︸ ︷︷ ︸

=H(H+1)

BT,A , (8)

where we substituted (7). Here, we crucially used that the weights µs1,π,T
h (s) are independent of t as they

only depend on the fixed benchmark policy π, on the common transition kernels T , and on the initial state s1
(identical for all t).

3.3 Comments

In this section, we comment and discuss the Adv2 strategy (6) and its bound.

We first note that the regret bound of Theorem 1 is independent of the size S of the state space; it only
depends on the size A of the action space, on the number T of episodes, and on the length H of the episodes.
Given that adversarial-learning strategies have a per-round computational complexity typically proportional
to K (with the notation of Section 3.1), the per-round computational complexity of the Adv2 strategies (6)
are typically proportional to SAH as far as the weight updates are concerned. The main computational
issue relies in computing (or estimating, see Section 7) the advantage functions Aπτ ,Rτ

h .
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Second, for potential-based strategies (5), we note that the original definition (6) of Adv2 and the alternative
definition based on Q–values,

πt,h( · |s) = φt,h

((
Qπτ ,Rτ

h (s, · )
)

τ⩽t−1

)
, (9)

lead to the exact same strategies. This may be shown by induction, based on the fact that for all h ∈ [H]
and (s, a) ∈ S × A, due to (7) for the first equality and due to the definitions of value functions for the
second equality,

t−1∑
τ=1

Aπτ ,Rτ

h (s, a) −
t−1∑
τ=1

=0︷ ︸︸ ︷∑
a∈A

πτ,h(a|s) Aπτ ,Rτ

h (s, a) =
t−1∑
τ=1

Aπτ ,Rτ

h (s, a)

and
t−1∑
τ=1

Qπτ ,Rτ

h (s, a) −
t−1∑
τ=1

∑
a∈A

πτ,h(a|s) Qπτ ,Rτ

h (s, a)︸ ︷︷ ︸
=V πτ ,Rτ

h
(s)

=
t−1∑
τ=1

Aπτ ,Rτ

h (s, a) .

For general adversarial-learning strategies, the induced strategies (6) and (9) may differ, though they achieve
the same regret guarantees, as detailed by the following remark.
Remark 1. An inspection of the proof of Theorem 1 shows that it would also work for the strategies of the
form (9). Indeed, the inequality (7) therein would be replaced equivalently by

2(H − h + 1) BT,A ⩾ max
a∈A

T∑
t=1

Qπt,Rt

h (s, a) −
T∑

t=1

=V
πt,Rt

h
(s)︷ ︸︸ ︷∑

a∈A
πt,h(a|s) Qπt,Rt

h (s, a) = max
a∈A

T∑
t=1

Aπt,Rt

h (s, a) ,

while the rest of the proof would be unaffected. However, using the advantage functions is preferred in
practice, as it provides a greater numerical stability, as well as a possibly a lower variance when the value
function are estimated (see Section 7).

4 Extension 1:
Convergence of the last iterate for some adversarial learning strategies

Contributions of this section. We generalize an argument of Agarwal et al. (2021, Section 5.3), which
was provided for exponential weights only (in the discounted setting): the aim is to control the convergence of
the last iterate, i.e., to upper bound max

π
V π,R

1 (s1) − V πT ,R
1 (s1), when (mean) rewards functions are constant

over time.

More precisely, for some adversarial-learning strategies φ, satisfying some property which we call monotonic-
ity of weights, and in case reward functions do not vary over time (or even just mean reward functions, see
Remark 2) the result of Theorem 1 may be strengthened into a convergence result of the last iterate, at a
rate faster by a factor of 1/T compared to the convergence of the cumulative regret (2).
Definition 2 (monotonicity of weights). A sequential strategy φ = (φt)t⩾1 in the adversarial setting satisfies
monotonicity of weights if against all opponent players sequentially picking K–dimensional reward vectors
gτ = (gτ,k)k∈[K], the convex weights output by φ are such that

∀t ⩾ 1,
∑

k∈[K]

wt+1,k

gt,k −
∑

j∈[K]

wt,jgt,j

 ⩾ 0 ,

where we recall the notation (wt,k)k∈[K] = φt(g1, . . . , gt−1) and (wt+1,k)k∈[K] = φt(g1, . . . , gt−1, gt).

The reason behind the terminology of monotonicity of weights, as well as the proof of the lemma below, may
be found in Appendix A.

8
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Lemma 2. The potential-based strategies (5) of Cesa-Bianchi & Lugosi (2003) with constant, non-decreasing
potential functions Φt ≡ Φ (like in Example 1) and the greedy projection algorithm (Example 3) of Zinkevich
(2003) satisfy monotonicity of weights.
Theorem 2. Assume reward functions do not vary over time and are all equal to some R. If, for all
h ∈ [H], the sequential strategies φh satisfy monotonicity of weights (Definition 2) and control the regret in
the adversarial setting (Definition 1) by BT,A for A–dimensional reward vectors bounded by H − h + 1, then
the last iterate of the (φh)h∈[H]–Adv2 strategy defined in (6) satisfies

∀T ⩾ 1, max
π

V π,R
1 (s1) − V πT ,R

1 (s1) ⩽ H(H + 1) BT,A

T
.

The bound by Agarwal et al. (2021, Section 5.3), where the exponential weights with a constant learning
rate are considered, corresponds to this theorem but is stated separately in Corollary 2, for reasons that will
be made clear in Section 6. As the proof of Theorem 2 is concise, we provide it in the main body of this
article.

Proof. Given the definition (6), the monotonicity of weights (Definition 2), and the definition of advantage
functions, we have that, for all t ⩾ 1, for all h ∈ [H], and s ∈ S,∑

a∈A
πt+1,h(a|s) Aπt,R

h (s, a) ⩾
∑
a∈A

πt,h(a|s) Aπt,R
h (s, a) = 0 .

Therefore, the performance difference lemma, i.e., Lemma 1 above with h = 1, shows that

V
πt+1,R

1 (s1) − V πt,R
1 (s1) =

H∑
h=1

∑
s∈S

µ
s1,πt+1,T
h (s)

∑
a∈A

πt+1,h(a|s) Aπt,R
h (s, a)︸ ︷︷ ︸

⩾ 0

⩾ 0 .

(This is the part of the proof where crucially use that reward functions do not vary over time.) Thus,

max
π

V π,R
1 (s1) − V πT ,R

1 (s1) ⩽ max
π

V π,R
1 (s1) − 1

T

T∑
t=1

V πt,R
1 (s1) ⩽ H(H + 1) BT,A

T
,

where we applied Theorem 1 for the final bound.

Remark 2. An inspection of the proof above shows that what matters actually is only that mean reward
functions rt = (rt,h)h∈[H] be constant over time. Indeed, the value and advantage functions only depend on
the Rt through the rt; this fact is also illustrated in the proof of the performance difference lemma which
only requires identical mean reward functions, not the identity of reward functions.

5 Extension 2: Stronger forms of regret

Contributions of this section. We push the logic of the reduction of the control of MDPs to adversarial
learning, and leverage stronger forms of regret in adversarial learning. This section thus presents new regret
criteria for learning MDPs.

Definition 1 considers the simplest definition of adversarial regret. However, several stronger notions of regrets
were proposed by the literature. The proof of Theorem 1 shows that the vanilla notion of adversarial regret
of Definition 1 regret may be transferred into the vanilla regret (2) in terms of value functions. Actually, this
proof may be mimicked to transfer stronger notions of adversarial regret. We illustrate this possibility with
two notions of adversarial regrets that replace the comparison to a single global policy by local comparisons
(strongly adaptive regret) or by global comparisons to sequences of policies (tracking regret).

9
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5.1 Strongly adaptive regret and tracking regret in adversarial learning

We use again the notation for adversarial learning introduced at the beginning of Section 2.1. The first
extended notion of regret, called strongly adaptive regret, measures performance simultaneously over each
given sub-interval of time with respect to the best component over that sub-interval. It was introduced
by Daniely et al. (2015), based on the concept of adaptive regret from Hazan & Seshadhri (2009), itself
based on the work by Littlestone & Warmuth (1994).
Definition 3 (strongly adaptive regret in adversarial learning). A sequential strategy controls the strongly
adaptive regret in the adversarial setting with rewards bounded by M > 0 if there exist positive numbers
BT,K,τ , where T ⩾ 1 and τ ∈ [T ], such that, against all opponent players sequentially picking reward vectors
in [−M, M ]K ,

∀T ⩾ 1, ∀τ ∈ [T ], max
t0∈[T −τ+1]

max
k∈[K]

t0+τ−1∑
t=t0

gt,k −
t0+τ−1∑

t=t0

∑
j∈[K]

wt,j gt,j

 ⩽ 2M BT,K,τ ,

and sup
τ∈[T ]

BT,K,τ

T
→ 0 as T → ∞.

It follows from Daniely et al. (2015, Theorem 1) that the strongly adaptive regret can be controlled with
bounds BT,K,τ of order

√
τ up to logarithmic factors.

A closely related notion is the tracking regret, introduced by Herbster & Warmuth (1998) (see also Cesa-
Bianchi & Lugosi, 2006, Chapter 5.2), where the comparison is taken over all time steps but against sequences
k1:T = (k1, k2, . . . , kT ) with values in [K], with C shifts (i.e., C time steps such that kt ̸= kt−1). The tracking
regret involves

T∑
t=1

gt,kt
−

T∑
t=1

∑
j∈[K]

wt,j gt,j .

There are strong links between strongly adaptive and tracking regret, see Adamskiy et al. (2016). In partic-
ular, we explain, in the context of regret with value functions, how strongly adaptive regret with BT,K,τ of
order

√
τ up to logarithmic factors entails tracking regret of order

√
CT ; see Corollary 1.

5.2 Transfer to strongly adaptive regret bounds for value functions and policies

Based on Definition 3, we obtain the following regret bound in terms of value functions and policies.
Theorem 3. In the setting of Section 2 where rewards lie in [0, 1], if, for all h ∈ [H], the sequential strategies
φh control the strongly adaptive regret in the adversarial setting (Definition 3) by BT,A,τ for A–dimensional
reward vectors bounded by H − h + 1, then the (φh)h∈[H]–Adv2 strategy defined in (6) ensures that

∀T ⩾ 1, ∀τ ∈ [T ], max
t0∈[T −τ+1]

{
max

π

t0+τ−1∑
t=t0

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)}

⩽ H(H + 1) BT,A,τ .

The proof of Theorem 3 is obtained by a direct adaptation of the proof of Theorem 1, which basically consists
of considering sums over subintervals only instead of sums over all time periods. Again, since the proof is
concise, we provide it here.

Proof of Theorem 3. We fix a stationary policy π throughout the proof and control some adaptive regret
with respect to this π. By the design (6) of the Adv2 strategy, which operates stage by stage and state by
state, we have that for all h ∈ [H] and s ∈ S, the following holds, by Definition 3: for all T ⩾ 1 and τ ∈ [T ],

max
t0∈[T −τ+1]

max
a∈A

t0+τ−1∑
t=t0

Aπt,Rt

h (s, a) −
t0+τ−1∑

t=t0

= 0︷ ︸︸ ︷∑
a∈A

πt,h(a|s) Aπt,Rt

h (s, a)

 ⩽ 2(H − h + 1) BT,A,τ .

10
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The same application of the performance difference lemma as in the proof of Theorem 1 entails that for all
T ⩾ 1, τ ∈ [T ], and t0 ∈ [T − τ + 1],

t0+τ−1∑
t=t0

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

=
H∑

h=1

∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πh(a|s)
t0+τ−1∑

t=t0

Aπt,Rt

h (s, a)

⩽
H∑

h=1

∑
s∈S

µs1,π,T
h (s) max

a∈A

t0+τ−1∑
t=t0

Aπt,Rt

h (s, a)︸ ︷︷ ︸
⩽2(H−h+1) BT,A,τ

⩽ H(H + 1) BT,A,τ .

Here again, we crucially used that the weights µs1,π,T
h (s) are independent of t. The claimed bound follows

by taking the maximum over π and over t0 ∈ [T − τ + 1].

5.3 Tracking regret bounds for value functions and policies

We now detail a consequence of the bound of Theorem 3 for tracking regret.

We consider sequences π(1:T ) =
(
π(1), π(2), . . . , π(T )) of stationary policies and define their numbers of

shifts c
(
π(1:T )) as follows: the smallest integer c′ such that there exist c′ − 1 integers τ2, . . . , τc′ with values

in [T ] such that, denoting τ1 = 1 and τc′+1 = T + 1,

∀i ∈ {2, . . . , c′ + 1}, ∀t ∈ {τi−1, . . . , τi − 1}, π(t) = π(τi−1) . (10)

The tracking regret against sequences π(1:T ) of stationary policies with at most C shifts is defined as

max
π(1:T ) such that

c(π(1:T ))⩽C

T∑
t=1

V π(t),Rt

1 (s1) −
T∑

t=1
V πt,Rt

1 (s1) .

We fix T, C ⩾ 1 and a sequence π(1:T ) of stationary policies, with C shifts, occurring at τ1, τ2, . . . , τC (where
we recall that τ1 = 1). We introduce τC+1 = T + 1 and partition time into the C intervals [τi, τi+1 − 1],
for i ∈ [C]. The C values successively taken by the sequence π(1:T ) consist of the π(τi), where i ∈ [C]. By
applying the bound of Theorem 3 on each of the C intervals [τi, τi+1 − 1], we obtain the following corollary.
Corollary 1. Under the assumptions of Theorem 3, the (φh)h∈[H]–Adv2 strategy defined in (6) also ensures
that ∀T ⩾ 1, ∀C ∈ [T ],

max
π(1:T ) such that

c(π(1:T ))⩽C

T∑
t=1

V π(t),Rt

1 (s1) −
T∑

t=1
V πt,Rt

1 (s1) ⩽ H(H + 1) max
τ1,...,τC⩾0:

τ1+τ2+...+τC=T

C∑
i=1

BT,A,τi
.

In particular, if BT,A,τ ⩽ ℓ(T, K)
√

τ , where ℓ(T, K) is logarithmic in T and K, which is a standard bound,
then by Jensen’s inequality for

√
· ,

max
τ1,...,τC⩾0:

τ1+τ2+...+τC =T

C∑
i=1

BT,A,τi
⩽ ℓ(T, K) max

τ1,...,τC⩾0:
τ1+τ2+...+τC=T

C∑
i=1

√
τi︸ ︷︷ ︸

⩽
√

C(τ1+...+τC)

= ℓ(T, K)
√

CT .

6 The special case of exponential weights: improved regret bounds

Contributions of this section. The literature (see Section 1.1) essentially focuses on the adversarial
learning strategy given by exponential weights with a constant learning rate η. It turns out that this strategy
does not satisfy the requirement of Definition 1 because of a tuning issue: the adversarial regret bound is
of the form ln N/η + ηMT/2 and cannot be simultaneously optimized for all values of T . The literature
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typically assumes that T is known and obtains a
√

T regret bound for MDPs by taking η of order 1
√

T ; see,
for instance, among many others, Cai et al. (2020) and Shani et al. (2020). A notable exception, in the
discounted setting and for a constant reward function, can be extracted from the proof of Agarwal et al. (2021,
Section 5.3)—they handle convergence of the last iterate but their proof technique also applies to cumulative
regret. We extend their result to the episodic setting and show that it is not essential that the reward functions
be constant over time: we provide an upper bound in terms of the numbers of shifts in the sequence of reward
functions.

We study in this section the strategy (6) of Section 3.2 where the adversarial learning strategies are given
by the strategy (5) based on a constant exponential potential Φt ≡ Φ : x 7→ exp(ηx). This strategy takes
the following simple form: for all t ⩾ 1,

∀h ∈ [H], ∀s ∈ S, ∀a ∈ A, πt,h(a|s) =
exp
(

η

t−1∑
τ=1

Aπτ ,Rτ

h (s, a)
)

∑
a′∈A

exp
(

η

t−1∑
τ=1

Aπτ ,Rτ

h (s, a′)
) , (11)

with the understanding that a sum over no term is null, i.e., π1,h(a|s) = 1/A.

Agarwal et al. (2021, Section 5.3) showed that the strategy above corresponds to the natural policy gradient
strategy based on a softmax parametrization. They proposed a direct analysis (in the discounted setting)
with reward functions constant over time. We adapt and extend this analysis to (obliviously) adversarial
sequences of reward functions. We also claim a more transparent proof scheme, consisting of a suitable
adversarial bound (finer than the uniform bounds considered in Definition 1, which in this case would be
linear in T , as recalled in the introduction of this section) applied to policy learning along the lines of the
proof of Theorem 1.

Our result is stated in terms of the number R of regimes shifts in the sequence R1, . . . , RT of payoff functions.
More formally, R is the smallest integer such that there exist R − 1 integers τ2, . . . , τR with values in [T ]
such that, denoting τ1 = 1 and τR+1 = T + 1,

∀k ∈ {2, . . . , R + 1}, ∀t ∈ {τk−1, . . . , τk − 1}, Rt = Rτk−1 . (12)

(The case R = 1 corresponds to a single regime, i.e., the reward functions Rt are independent of time.)

The proof of Theorem 4 below may be found in Appendix B. It is more complex that the proof by Agarwal
et al. (2021, Section 5.3), which could use a simple argument specific to the discounted setting, with discount
factor γ: that distributions over states induced by a starting state s0, a policy, and a transition function,
put a probability mass at least 1 − γ on s0, no matter the policy and the transition function. See Remark 7
for more details.
Theorem 4. In the setting of Section 2 where rewards lie in [0, 1], the policy learning strategy (11) controls
the regret as

max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)
⩽

H ln A

η
+ RH(H + 1) ,

where R is the number of regimes shifts in the sequence R1, . . . , RT of payoff functions.

The bound of Theorem 4 has a smaller order of magnitude than the one of Theorem 1, which is typically of
order

√
T , as soon as the number of regime shifts satisfies R ≪

√
T . (In general, up to T − 1 regime shifts

may occur.) In particular, the regret upper bound of Theorem 4 is smaller than a constant when the reward
functions do not vary over time.

By Lemma 2 and (the proof of) Theorem 2, we have the following corollary to Theorem 4, in case of a
constant sequence of payoff functions. It corresponds to the bound of Agarwal et al. (2021, Section 5.3) with
H playing the role of 1/(1 − γ) therein.
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Corollary 2. In the setting of Section 2 where rewards lie in [0, 1], if the reward functions do not vary over
time and are all equal to some R, then the last iterate of the policy learning strategy (11) satisfies

max
π

V π,R
1 (s1) − V πT ,R

1 (s1) ⩽ H ln A

ηT
+ H(H + 1)

T
.

As in Agarwal et al. (2021, Section 5.3), the bounds obtained in Theorem 4 and Corollary 2 suggest choosing
η as large as possible.

7 Practical versions with estimated advantage functions

Contributions of this section. We review in greater detail how the literature resorted or should resort to
adversarial learning strategies in practice: value functions are typically not observed and must be estimated.

To implement the strategy (6), advantage functions of the form Aπt,Rt

h should be computed. The main issue
in doing so is that the transition kernels T are unknown; that the reward functions Rt are fully revealed
(full-information feedback) or not (bandit feedback, where only actual rewards are observed) at the end
of an episode may be handled (see, among others, Shani et al., 2020). This is why the literature of policy
optimization typically replaces the unknown Aπt,Rt

h by estimates Ât
h, often based on a principle of optimism,

and builds the policies of the form

∀h ∈ [H], ∀s ∈ S, πt,h( · |s) = φt,h

((
Âτ

h(s, · )
)

τ⩽t−1

)
,

where we used the same notation as in (6); see, among others, Abbasi-Yadkori et al. (2019), Shani et al.
(2020), Cai et al. (2020), He et al. (2022), Zhao et al. (2023), Tiapkin et al. (2024). In all these references, the
estimates of advantage functions satisfy the following facts, which we could interpret as a linear consistency
of estimation. Other approaches, based on learning value functions, would not satisfy these properties,
especially when V̂ t

h(s) is defined as max
a′∈A

Q̂t
h(s, a′).

Assumption 1. The estimates Ât
h are defined based on estimates Q̂t

h of Q–value functions: for all s ∈ S
and a ∈ A,

V̂ t
h(s) def=

∑
a′∈A

πt,h(a′|s) Q̂t
h(s, a′) and Ât

h(s) def= Q̂t
h(s, a) − V̂ t

h(s, a) .

In addition, the estimates Ât
h are bounded, i.e.,

∣∣Ât
h

∣∣ ⩽ MH for some quantity MH (typically depending
on H).
Remark 3. The same comments as in Remark 1 apply: the policies could be built based on the Q̂τ

h(s, · )
instead of the Âτ

h(s, · ), but the latter are preferred empirically.

When the sequential strategies φh control the regret in the adversarial setting (Definition 1) by BT,A for
A–dimensional reward vectors, the same argument as in (7), together with Assumption 1 for the equality
to 0, shows that the strategy defined above satisfies: for all h ∈ [H] and s ∈ S,

max
a∈A

T∑
t=1

Ât
h(s, a) −

T∑
t=1

= 0︷ ︸︸ ︷∑
a∈A

πt,h(a|s) Ât
h(s, a) ⩽ 2MH BT,A ,

thus, for all h ∈ [H] and s ∈ S,

R̂T
def= max

π

H∑
h=1

∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πh(a|s)
T∑

t=1
Ât

h(s, a) ⩽ 2MH BT,A . (13)

Specific arguments (see detail below) then relate the quantity above to the target quantity, stated as in (8):

RT = max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

= max
π

H∑
h=1

∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πh(a|s)
T∑

t=1
Aπt,Rt

h (s, a) . (14)
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In general, R̂T is not equal to a sum of differences of value functions. An exception is to be found in Tiapkin
et al. (2024): they obtain the estimates Q̂t

h as the Q–value functions corresponding to the policies πt, to
some reward functions R′

t (based on the actual reward function Rt revealed at the end of the episode plus
some bonus function), and to some estimated transition kernels T̂ t (that are constant over epochs).

We now provide two lines of arguments relating (13) and (14).

Optimism. The most popular approach is to build optimistic estimates Q̂t
h of the true Q–value functions

Qπt,Rt

h , i.e., estimates that upper bound the true values with high probability. These optimistic estimates
may or may not rely on structural assumptions (e.g., Cai et al., 2020 and He et al., 2022 assume some
linear representation of the transition kernels). The total regret RT is then typically decomposed into three
terms, and R̂T is one of these three terms: in Shani et al. (2020), term (ii); in Cai et al. (2020), term (i);
in He et al. (2022), term I1; in Zhao et al. (2023), the “OMD regret term”; in Tiapkin et al. (2024),
term (B). The two other terms are controlled in ways that are specific to each approach and setting, but our
interesting observation is the systematic presence of the exact R̂T term. The adversarial learning strategy
(φh)h∈[H] considered in all these references (but Tiapkin et al., 2024, which refers to the present article) is
the exponential potential with a constant learning rate (see Section 6), possibly seen as an instance of online
mirror descent.

Simulator. An alternative, but less natural, approach is to assume that some simulator is available, as
in Agarwal et al. (2021, Section 6). Then, simulations at the end of each episode t may be performed to
estimate the quantities Qπt,Rt

h (s, a), for each pair (s, a). Applications of the Hoeffding-Azuma inequality
then relate with high probability, for each pair (s, a),

T∑
t=1

Q̂t
h(s, a) and

T∑
t=1

Qπt,Rt

h (s, a)

or, equivalently, the advantage functions. The regret RT is then smaller, with high probability, than the
upper bound on R̂T plus some deviation bound of order

√
T up to logarithmic terms. We omit the immediate

details.

8 Extension 3:
Aggregation (orchestration) of expert policies, a.k.a. imitation learning

Contributions of this section. Adversarial learning is sometimes called prediction with experts (see Cesa-
Bianchi & Lugosi, 2006). We again push the logic of the reduction of the control of MDPs to adversarial
learning and now rather aggregate expert policies. The aim is to mimic the performance of the overall best
convex combination of expert policies (which is in particular better than the performance of the best policy
taken in isolation). This setting was termed imitation learning; see, for instance, Cheng et al., 2020 and Liu
et al., 2023. We obtain stronger forms of performance guarantees than in the latter references, see Remark 4.
We do so via some reduction to the standard tabular case for a lifted MDP.

We go back to the considerations of Section 2.1 and consider a finite number K of stationary policies. We
denote by Π = {π1, . . . , πK} the set these policies and will refer to them as expert policies. We further
denote by Πh = {π1,h, . . . , πK,h} the policies corresponding to a given stage h ∈ [H].

We combine expert policies over time through state-stage-dependent weights pt = (pt,h)h∈[H] ∈ P
(
[K]
)[H]×S ,

where pt,h( · |s) ∈ P
(
[K]
)

may be interpreted either as a probability distribution over the policies in Πh or
as providing convex weights for the aggregation of the policies in Πh. More precisely, for each episode t ⩾ 1,
we denote by ptΠ = (pt,hΠh)h∈[H] the stationary policy such that, for all stages h ∈ [H],

pt,hΠh : s ∈ S 7−→ pt,hΠh( · |s) =
∑

k∈[K]

pt,h(k|s) πk,h( · |s) ∈ P(A) . (15)

Picking an action a′ according to pt,hΠh( · |s) amounts to performing a two-stage randomization: first,
drawing a policy index k′ ∼ pt,h( · |s), then drawing a′ ∼ πk′,h( · |s). This remark is important in the cases
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where it is difficult or computationally complex to explicitly write the πk,h( · |s) but where it is easy to
simulate them.

As indicated above, the set of all possible state-stage-dependent weights q corresponds to P
(
[K]
)[H]×S . We

consider the class C(Π) of all possible policies defined according to the model above by using the same weights
over time:

C(Π) =
{

qΠ, q ∈ P
(
[K]
)[H]×S

}
,

and aim to learn a good policy in this class. To do so, the learning strategies pick weights pt ∈ P
(
[K]
)[H]×S

over time and output πt = ptΠ. We will minimize the corresponding regret criterion:

∀T ⩾ 1, RΠ
T = max

q

T∑
t=1

(
V qΠ,Rt

1 (s1) − V
ptΠ,Rt

1 (s1)
)

.

Remark 4. To the best of our understanding, Cheng et al. (2020) and Liu et al. (2023) consider a more
restrictive setting with a constant reward function and in addition target a weaker notion of regret, corre-
sponding to

max
k∈[K]

V δkΠ,R
1 (s1) − max

t∈[T ]
V

ptΠ,R
1 (s1) ,

where each δk is a collection of state-stage-dependent weights that are all given by Dirac masses on expert k;
i.e., V δkΠ,R

1 = V πk,R
1 .

Actually, the total regret RT defined in Section 2.1 may be decomposed as some approximation error, i.e.,
how good the policies in C(Π) are in terms of values, plus the regret with respect to C(Π):

RT = max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

= max
π

T∑
t=1

V π,Rt

1 (s1) − max
q

T∑
t=1

V qΠ,Rt

1 (s1)︸ ︷︷ ︸
approximation error

+ RΠ
T .

In this section, we aim to control RΠ
T only and will basically assume that the approximation error is small

due to a proper choice of Π. This situation should arise often, as explained by the following remark.
Remark 5. Denote by π⋆ a stationary policy achieving the maximum in the definition of RT . Given that
expert policies are combined through state-stage-dependent weights, the approximation error defined above is
null as soon as

∀h ∈ [H], ∀s ∈ S, ∃qh( · |s) ∈ P
(
[K]
)

s.t. π⋆
h( · |s) =

∑
k∈[K]

qh(k|s) πk,h( · |s) .

In particular, it suffices that there exists kh,s ∈ [K] such that π⋆
h( · |s) = πkh,s,h( · |s). Put differently, it

suffices that at each stage h ∈ [H] and for each state s ∈ S, one of the expert policies (but not necessarily
always the same) coincides with an optimal policy. This observation motivates the use of expert policies in
the cases where finitely many easy-to-identify distributions are candidates to be optimal distributions for each
given stage-state pair (h, s).

Summary. We provide in Box A a summary of the settings and aims considered, here in Section 8 and
earlier in Section 2.1.

8.1 Equivalence between direct tabular learning and aggregation of expert policies

We now explain why any learning scheme minimizing the standard regret RT induces a learning scheme
minimizing the regret RΠ

T with respect to a finite set Π of expert policies, and vice versa. In a nutshell, the
equivalence stems from considering the indexes k ∈ [K] of expert policies as meta-actions, i.e., actions in a
sequences of lifted MDPs.

As a consequence, for the sake of clarity and completeness, we re-state the counterpart of our main result,
Theorem 1, in the setting of policy orchestration: see Section 8.2.
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Box A: Policy optimization, possibly based on expert policies

Direct tabular learning (Section 2.1) Aggregation of expert policies (Section 8)

MDP parameters: state space S, action space A, initial state s1 ∈ S,
transition kernels T

(No additional parameters) Set Π of K expert policies

The environment picks a sequence (Rt)t⩾1 of reward functions

For episodes t = 1, 2, . . .:
1. The initial state is set to st,1 = s1

2. For stages h = 1, . . . , H:

(a) The learner picks a policy πt,h : S → P(A)
(b) and draws an action at,h ∼ πt,h( · |st,h)

(a) The learner picks weights pt,h ∈ P
(
[K]
)S ,

(b) draws kt,h ∼ pt,h( · |st,h), the index of the
expert policy,

(c) and draws an action at,h ∼ πkt,h,h( · |st)
according to expert policy kt,h

4. The learner receives and observes a reward rt,h ∼ Rt,h(st,h, at,h),
with conditional expectation rt,h(st,h, at,h)

5. If h ⩽ H − 1, the next state st,h+1 ∼ Th( · |st,h, at,h) is drawn

Goal: Minimize the regret

RT = max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)

RΠ
T = max

q

T∑
t=1

(
V qΠ,Rt

1 (s1) − V
ptΠ,Rt

1 (s1)
)

Direct tabular learning as aggregation of expert policies. We set K = A and take as expert
policies the Dirac masses on the arms; more precisely, for each a ∈ A, and for all h ∈ [H] and s ∈ S, we set
πa,h( · |s) = δa, the Dirac mass at a. This defines the expert policy ∆a. We consider

∆ = {∆a : a ∈ A} and C(∆) =
{

p∆, p ∈ P(A)[H]×S} ;

C(∆) is the set of all stationary policies, stated in their direct tabular form.

From direct tabular learning to aggregation of expert policies. Conversely, we note that aggre-
gation of expert policies in Π amounts to performing direct tabular learning in the following sequence of
(lifted) MDPs: the action space is A = [K], the state space is S = S, the transition kernels T and the
reward functions Rt are defined, for all t ⩾ 1 and h ∈ [H], by

T h : (s, k) ∈ S × [K] 7−→
∑
a∈A

πk,h(a|s) Th( · |s, a)

and Rt,h : (s, k) ∈ S × [K] 7−→
∑
a∈A

πk,h(a|s) Rt,h(s, a) .
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Direct tabular learning on the sequence of lifted MDPs defined above provides policies πt which correspond
to the convex weights pt discussed above: for all t ⩾ 1, h ∈ [H], and s ∈ S, we use pt,h( · |s) = πt,h( · |s)
to aggregated expert policies in the original MDP. Denoting by RT the regret suffered with direct tabular
learning in the lifted MDP, we have: RΠ

T = RT .
Remark 6. In the final part of the proof of Theorem 1, we critically used that the transition kernels T
do not depend on time. The expression above for T is indeed independent on time, which would not be the
case if the expert policies were evolving over time. This explains why we restricted our attention to constant
expert policies.

8.2 Adversarial learning on advantage functions for aggregation of expert policies

The counterpart for imitation learning of the strategy defined in Section 3.2 is defined as follows, given the
equivalence stated above.

For each stage h ∈ [H], we fix a sequential strategy φh = (φt,h)t⩾1 in the adversarial setting, relying on
reward vectors bounded by Mh = H − h + 1 and of dimension K.

We run these strategies on the advantage functions of the lifted MDPs described above: for all t ⩾ 1, h ∈ [H],
and s ∈ S,

A
pt,Rt

h (s, · ) =
(

A
pt,Rt

h (s, k)
)

k∈[K]
, where A

pt,Rt

h (s, k) =
∑
a∈A

πk,h(a|s) A
ptΠ,Rt

h (s, a) . (16)

More precisely, we run the strategies (φh)h∈[H] in the following stage-by-stage and state-by-state manner:
for all t ⩾ 1,

pt,h( · |s) = φt,h

((
A

pτ ,Rτ

h (s, · )
)

τ⩽t−1

)
. (17)

We refer to this strategy as (φh)h∈[H]–Adv2-Aggr, for (φh)h∈[H]–adversarial learning on advantage functions
for aggregation of expert policies.

Theorem 1 immediately entails the following performance guarantee.
Corollary 3. In the setting of Section 8 where rewards lie in [0, 1], if, for all h ∈ [H], the sequential
strategies φh control the regret in the adversarial setting (Definition 1) by BT,K for K–dimensional reward
vectors bounded by H − h + 1, then the (φh)h∈[H]–Adv2-Aggr strategy defined in (17) over the set Π of K
expert policies controls the regret with respect to C(Π) as:

∀T ⩾ 1, RΠ
T = max

q

T∑
t=1

(
V qΠ,Rt

1 (s1) − V
ptΠ,Rt

1 (s1)
)
⩽ H(H + 1) BT,K .
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Appendix. The appendix provides proofs omitted from the main body of the article.

A On monotonicity of weights for an adversarial-learning strategy

The proof of Lemma 2 (re-stated below) explains why the property of Definition 2 is termed monotonicity
of weights, and why it is a natural property.
Lemma 2. The potential-based strategies (5) of Cesa-Bianchi & Lugosi (2003) with constant, non-decreasing
potential functions Φt ≡ Φ (like in Example 1) and the greedy projection algorithm (Example 3) of Zinkevich
(2003) satisfy monotonicity of weights.

Proof. We start with the potential-based strategies (5), in case of a constant, non-decreasing potential
function Φt ≡ Φ, and use the notation defined therein. For each t ⩾ 1, since Φ is non-decreasing, we have,
for all k ∈ [K],

vt+1,k ⩾ vt,k ⇐⇒ gt,k −
∑

j∈[K]

wt,jgt,j ⩾ 0 , thus (vt+1,k − vt,k)

gt,k −
∑

j∈[K]

wt,jgt,j

 ⩾ 0

in all cases. Therefore,

∑
k∈[K]

vt+1,k

gt,k −
∑

j∈[K]

wt,jgt,j

 ⩾
∑

k∈[K]

vt,k

gt,k −
∑

j∈[K]

wt,jgt,j

 = 0 ,

where the equality to 0 and the final result of Definition 2 are obtained, respectively, by normalizing the
vt+1,k and vt,k into wt+1,k and wt,k.
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The calculation above show that the monotonicity of weights is satisfied as soon as weights for components k
associated with a good (respectively, bad) reward gt,k in the previous round increase (respectively, decrease),
where good or bad is determined by the sign of

gt,k −
∑

j∈[K]

wt,jgt,j .

This is why we termed this property monotonicity of weights. It looks like a natural property of an adversarial
learning strategy.

For the greedy projection algorithm (Example 3) of Zinkevich (2003), we note that by a property of Euclidean
projection onto a convex set (here, wt+1 is the projection of wt + ηt gt onto the simplex, and wt also belongs
to the simplex), the following inner product is non-positive:

0 ⩾
〈
wt − wt+1, (wt + ηt gt) − wt+1

〉
= ∥wt − wt+1∥2 + ηt⟨wt − wt+1, gt⟩ ,

so that ⟨wt+1 − wt, gt⟩ ⩾ 0, which is exactly monotonicity of weights.

B Proof of Theorem 4 (analysis of NPG with softmax parametrization)

For the convenience of the reader, we restate the result to be proved.
Theorem 4. In the setting of Section 2 where rewards lie in [0, 1], the policy learning strategy (11) controls
the regret as

max
π

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)
⩽

H ln A

η
+ RH(H + 1) ,

where R is the number of regimes shifts in the sequence R1, . . . , RT of payoff functions.

As indicated in Section 6, the proof below is based on the analysis of NPG with softmax parametrization
proposed by Agarwal et al. (2021, Section 5.3) in the discounted setting with reward functions constant over
time. See Remark 7 for an explanation of why the proof in the discounted is significantly simpler than the
proof in the episodic setting.

We extend the proof of Agarwal et al. (2021, Section 5.3) to the episodic setting and to (obliviously)
adversarial sequences of reward functions. We also claim a more transparent proof scheme, consisting of an
ad hoc adversarial bound (Lemma 3) which is then applied to policy learning along the lines of the proof of
Theorem 1.

The first piece of the proof of Theorem 4 is to replace the uniform regret bounds considered in Definition 1 by
some ad hoc, data-based, bound (of the same flavor as the bounds by de Rooij et al., 2014, Section 2 in terms
of so-called mixability gaps). Indeed, the uniform regret bound that could be proved (see, e.g., Cesa-Bianchi
& Lugosi, 2006, Theorem 2.2) for the adversarial strategy of Lemma 3 is BT,K = ln K/η + ηT/8, which is
not sublinear.
Lemma 3. The strategy (5) based on a constant exponential potential Φt ≡ Φ : x 7→ exp(ηx), i.e., picking
weights

∀t ⩾ 1, wt,k = vt,k∑
j∈[K]

vt,j

, where vt,k = exp
(

η

t−1∑
τ=1

gτ,k

)
,

with the convention that v1,k = 1 and w1,k = 1/K, satisfies the following bound: against all opponents
sequentially picking reward vectors in RK ,

∀T ⩾ 1, max
k∈[K]

T∑
t=1

gt,k ⩽
ln K

η
+

T∑
t=1

∑
j∈[K]

wt+1,j gt,j .

This lemma is proved at the end of this section and we now apply it to prove Theorem 4.
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Proof of Theorem 4. We adapt the proof of Theorem 1 by replacing (7) by the ad hoc bound stemming from
Lemma 3. Namely,

∀h ∈ [H], ∀s ∈ S, max
a∈A

T∑
t=1

Aπt,Rt

h (s, a) ⩽ ln A

η
+

T∑
t=1

∑
a∈A

πt+1,h(a|s) Aπt,Rt

h (s, a) . (18)

We fix a comparator policy π. The combination of the obtained inequality (18) with the application (8) of
the performance difference lemma yields

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)
⩽

H∑
h=1

∑
s∈S

µs1,π,T
h (s) max

a∈A

T∑
t=1

Aπt,Rt

h (s, a)

⩽
H ln A

η
+

T∑
t=1

H∑
h=1

∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πt+1,h(a|s) Aπt,Rt

h (s, a)︸ ︷︷ ︸
to be bounded

. (19)

We fix t ∈ [T ] and h ∈ [H] in what follows. We define a new one-shot policy π̃h
t+1 =

(
π̃h

t+1,h′

)
h′∈[H] as

follows:

π̃h
t+1,h′ =

{
πh′ if h′ ⩽ h − 1,
πt+1,h′ if h′ ⩾ h.

As π and π̃h
t+1 coincide in the first h − 1 stages, we have µs1,π,T

h (s) = µ
s1,π̃h

t+1,T
h (s). In addition, the

definition of π̃h
t+1, the definition of the strategy, Lemma 2, and the definition of advantage functions entail

that for all s ∈ S and all h′ ⩾ h,∑
a∈A

π̃h
t+1,h′(a|s) Aπt,Rt

h′ (s, a) =
∑
a∈A

πt+1,h′(a|s) Aπt,Rt

h′ (s, a) ⩾
∑
a∈A

πt,h′(a|s) Aπt,Rt

h′ (s, a) = 0 .

Therefore, the sum marked as “to be bounded” in (19) can be controlled as∑
s∈S

µs1,π,T
h (s)

∑
a∈A

πt+1,h(a|s) Aπt,Rt

h (s, a) =
∑
s∈S

µ
s1,π̃h

t+1,T
h (s)

∑
a∈A

π̃h
t+1,h(a|s) Aπt,Rt

h (s, a)

⩽
H∑

h′=h

∑
s∈S

µ
s1,π̃h

t+1,T
h′ (s)

∑
a∈A

π̃h
t+1,h′(a|s) Aπt,Rt

h′ (s, a)

=
∑
s∈S

µs1,π,T
h (s)

(
V

π̃h
t+1,Rt

h (s) − V πt,Rt

h (s)
)

, (20)

where we used the performance difference lemma (Lemma 1) together with µs1,π,T
h (s) = µ

s1,π̃h
t+1,T

h (s) for
the final equality.

As π̃h
t+1 and πt+1 coincide in the last h stages, we have V

π̃h
t+1,Rt

h (s) = V
πt+1,Rt

h (s) for all s ∈ S. This
observation, combined with (20), entails∑

s∈S
µs1,π,T

h (s)
∑
a∈A

πt+1,h(a|s) Aπt,Rt

h (s, a) ⩽
∑
s∈S

µs1,π,T
h (s)

(
V

πt+1,Rt

h (s) − V πt,Rt

h (s)
)

,

and we thus get, after substitution into (19),

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)
⩽

H ln A

η
+

H∑
h=1

∑
s∈S

µs1,π,T
h (s)

T∑
t=1

(
V

πt+1,Rt

h (s) − V πt,Rt

h (s)
)

. (21)
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We obtain telescoping sums on regimes of payoffs. More precisely, with the notation (12),

∀k ∈ {2, . . . , R + 1},

τk−1∑
t=τk−1

(
V

πt+1,Rt

h (s) − V πt,Rt

h (s)
)

= V
πτk

,Rτk−1
h (s) − V

πτk−1 ,Rτk−1
h (s) ⩽ H − h + 1 ,

where the upper bound follows from the boundedness of rewards in [0, 1]. Together with (21), we finally
obtain

T∑
t=1

(
V π,Rt

1 (s1) − V πt,Rt

1 (s1)
)
⩽

H ln A

η
+

H∑
h=1

∑
s∈S

µs1,π,T
h (s)

R+1∑
k=2

(H − h + 1) = H ln A

η
+ RH(H + 1) ,

which leads to the claimed regret upper bound after taking the maximum over all policies π.

Remark 7. The arguments between (19) and (21) may be bypassed in the discounted setting with discount
factor γ; see Agarwal et al. (2021, Section 5.3). Indeed (with obvious notation, for value functions defined
in the standard way for discounted rewards, and for a constant reward function), for each s ∈ S,

max
a∈A

T∑
t=1

Aπt(s, a) ⩽ ln A

η
+

T∑
t=1

⩾0︷ ︸︸ ︷∑
a∈A

πt+1(a|s) Aπt(s, a)

⩽
ln A

η
+

T∑
t=1

1
1 − γ

∑
s′∈S

µs,πt+1(s′)
∑
a∈A

πt+1(a|s′) Aπt(s′, a)︸ ︷︷ ︸
=V πt+1 (s)−V πt (s)

= ln A

η
+ V πT +1(s) − V π1(s)

1 − γ
⩽

1
(1 − γ)2 ,

where the first inequality is by Lemma 3, where the non-negativity is guarantees by monotonicity of weights
(see Lemma 2), where the second inequality comes from the fact that distributions induced by a starting state
s, a given policy, and a given transition function put a probability mass at least 1 − γ on s, no matter the
policy and transition function (this is the property extremely specific to the discounted setting), where the
equality to V πt+1(s) − V πt(s) is by the performance difference lemma, and where the final equality is by
telescoping. The inequality obtained above is the key; the rest of the proof merely consists of yet another
(now standard) application of the performance difference lemma:

T∑
t=1

(
V π(s1) − V πt(s1)

)
=

T∑
t=1

1
1 − γ

∑
s∈S

µs1,π(s)
∑
a∈A

π(a|s) Aπt(s, a) ⩽ 1
1 − γ

∑
s∈S

µs1,π(s) max
a∈A

T∑
t=1

Aπt(s, a)︸ ︷︷ ︸
⩽(ln A)/η+1/(1−γ)2

,

which is the bound claimed by Agarwal et al. (2021, Section 5.3).

We conclude this section with a proof of Lemma 3.

Proof of Lemma 3. First, a bound “à la Pisier” yields that for all sequences of payoffs gt,j , possibly signed
and unbounded:

max
k∈[K]

T∑
t=1

gt,k = 1
η

ln
(

max
j∈[K]

exp
(

η

T∑
t=1

gt,j

))

⩽
1
η

ln

∑
j∈[K]

exp
(

η

T∑
t=1

gt,j

) = ln K

η
+ 1

η

T∑
t=1

ln

∑
j∈[K]

wt,j exp(ηgt,j)

 ,

where the equality follows by telescoping: indeed, by definition of the weights,

∑
j∈[K]

exp
(

η

T∑
t=1

gt,j

)
︸ ︷︷ ︸

=vT +1,j

= K

T∏
t=1

∑
j∈[K]

vt+1,j∑
j∈[K]

vt,j

= K

T∏
t=1

∑
j∈[K]

vt,j exp(ηgt,j)

∑
j∈[K]

vt,j

= K

T∏
t=1

wt,j exp(ηgt,j) .
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Second, by the application of Jensen’s inequality to the convex function x 7→ x ln x,∑
j∈[K]

wt,j exp(ηgt,j)

 ln

∑
j∈[K]

wt,j exp(ηgt,j)

 ⩽
∑

j∈[K]

wt,j exp(ηgt,j) ln
(
exp(ηgt,j)

)
,

that is, after rearranging and given the definition of the weights wj,t+1,

ln

∑
j∈[K]

wt,j exp(ηgt,j)

 ⩽ η
∑

j∈[K]

wt+1,j gt,j .

The claimed bound follows from combining the two inequalities obtained.

C Proof of the performance difference lemma

A word intended to reviewers: we would be happy to drop this section if required; there is a slight but
straightforward generalization compared to earlier statements, lying in the fact that sums over h′ ⩾ h are
considered.

One of the first references stating the performance difference lemma (in the discounted setting) is Kakade &
Langford (2002). Statements (possibly of generalizations) of this lemma for H–episodic MDPs are ubiquitous
in the literature (see, e.g., Cai et al., 2020, Lemma 3.2 for a simple statement, and Shani et al., 2020,
Lemma 1 for an extension to approximated advantage functions). We state yet another, straightforward,
generalization, in terms of advantage and value functions starting at a given stage h; this generalization is
useful in the proof of Theorem 4 in Appendix B.
Lemma 1 (Performance difference lemma). Let µs1,π,T

h′ be the distribution of the state sh′ of the h′–th stage,
starting from the state s1 in the first stage, following the stationary policy π and the transition kernels T .
In a MDP with transition kernels T , for all pairs π, π′ of stationary policies, for all reward functions R,
and for all stages h ∈ [H],

∑
s∈S

µs1,π,T
h (s)

(
V π,R

h (s) − V π′,R
h (s)

)
=

H∑
h′=h

∑
s∈S

µs1,π,T
h′ (s)

∑
a∈A

πh′(a|s) Aπ′,R
h′ (s, a) .

In particular, for h = 1,

V π,R
1 (s1) − V π′,R

1 (s1) =
H∑

h′=1

∑
s∈S

µs1,π,T
h′ (s)

∑
a∈A

πh′(a|s) Aπ′,R
h′ (s, a) .

Proof. We denote by Ps1,π,T the probability distribution underlying the H–episodic MDP (s1, a1, . . . , sH , aH)
starting at s1, drawing actions according to π, and subject to the transition kernels T . In particular, by
definition, for any function f : S × A → R and all h′ ∈ [H],∑

s∈S
µs1,π,T

h′ (s)
∑
a∈A

πh′(a|s) f(s, a) = Es1,π,T [f(sh′ , ah′)
]

.

Letting successively f be Aπ′,R
h′ for h ⩽ h′ ⩽ H and using the definition Aπ′,R

h′ = Qπ′,R
h′ − V π′,R

h′ ,

H∑
h′=h

∑
s∈S

µs1,π,T
h′ (s)

∑
a∈A

πh′(a|s) Aπ′,R
h′ (s, a) = Es1,π,T

[
H∑

h′=h

(
Qπ′,R

h′ (sh′ , ah′) − V π′,R
h′ (sh′)

)]
. (22)

Now, by definition of the Q–values, recalling that r denotes the mean-payoff functions associated with R,
we have, for h′ ⩽ H − 1,

∀(s, a) ∈ S × A, Qπ′,R
h′ (s, a) = rh′(s, a) +

∑
s′∈S

Th′(s′ | s, a) V π′,R
h′+1 (s′) . (23)
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By definition of the MDP, for any function g : S → R,

Es1,π,T

[∑
s′∈S

Th′(s′ | sh′ , ah′) g(s′)
]

= Es1,π,T [g(sh′+1)
]

.

Thus, letting s = sh′ and a = ah′ in (23) and taking expectations yields

Es1,π,T [Qπ′,R
h′ (sh′ , ah′)

]
= Es1,π,T [rh′(sh′ , ah′)

]
+ Es1,π,T [V π′,R

h′+1 (sh′+1)
]

.

For h′ = H, we have Qπ′,R
H (s, a) = rH(s, a). As a consequence of the equalities above, a telescoping sum

appears in the right-hand side of (22):

Es1,π,T

[
H∑

h′=h

(
Qπ′,R

h′ (sh′ , ah′) − V π′,R
h′ (sh′)

)]

= Es1,π,T

[
rh′(sH , aH) +

H−1∑
h′=h

(
rh′(sh′ , ah′) + V π′,R

h′+1 (sh′+1)
)

−
H∑

h′=h

V π′,R
h′ (sh′)

]

= Es1,π,T

[
H∑

h′=h

rh′(sh′ , ah′)
]

− Es1,π,T [V π′,R
1 (sh)

]
.

Finally, the tower rule shows that

Es1,π,T

[
H∑

h′=h

rh′(sh′ , ah′)
]

= Es1,π,T [V π,R
1 (sh)

]
.

The proof is concluded by collecting all the bounds.
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