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ABSTRACT

Vision-Language Models (VLMs), such as CLIP, have shown strong zero-shot
generalization but remain highly vulnerable to adversarial perturbations, posing
serious risks in real-world applications. Test-time defenses for VLMs have re-
cently emerged as a promising and efficient approach to defend against adversarial
attacks without requiring costly large-scale retraining. In this work, we uncover
a surprising phenomenon: under diverse input transformations, adversarial im-
ages in CLIP’s feature space consistently shift along a dominant direction, in con-
trast to the dispersed patterns of clean images. We hypothesize that this dominant
shift, termed the Defense Direction, opposes the adversarial shift, pointing fea-
tures back toward their correct class centers. Building on this insight, we propose
Directional Bias-guided Defense (DBD), a test-time framework that estimates
the Defense Direction and employs a DB-score–based two-stream reconstruction
strategy to recover robust representations. Experiments on 15 datasets demon-
strate that DBD not only achieves SOTA adversarial robustness while preserving
clean accuracy, but also reveals the counterintuitive result that robust accuracy
can even surpass clean accuracy. This demonstrates that adversarial perturbations
inherently encode directional priors about the true decision boundary.

1 INTRODUCTION

Vision-Language Models (VLMs) such as CLIP (Radford et al., 2021), pre-trained on large-scale
image-text pairs, enable strong cross-modal understanding and zero-shot generalization, and are now
widely applied across vision and multimodal tasks (Zhang et al., 2024b). Despite its success, CLIP
is highly vulnerable to adversarial perturbations: even imperceptible input distortions (Szegedy
et al., 2013) can cause severe prediction errors. Such fragility poses critical safety risks in security-
sensitive applications, making adversarial robustness a key challenge for reliable deployment.

Adversarial training (Madry et al., 2017; Zhang et al., 2019) is a well-studied strategy for improv-
ing model robustness. When extended to VLMs like CLIP, methods such as Adversarial Fine-
Tuning (Mao et al., 2022; Wang et al., 2024; Schlarmann et al., 2024) and Adversarial Prompt
Tuning (Li et al., 2024; Zhou et al., 2024) have achieved notable progress in strengthening ad-
versarial resistance. However, these approaches rely on task-specific annotated datasets, making
training costly and less accessible. Optimization on limited data may also weaken generalization
and zero-shot transferability. To address these limitations, recent studies have explored test-time de-
fenses that require no additional training, broadly categorized as prompt-based and transformation-
based approaches. Prompt-based defenses (Sheng et al., 2025; Wang et al., 2025) adapt textual
prompts for each instance, effectively mitigating attacks but substantially increasing inference la-
tency. Transformation-based methods, such as counterattack perturbation (Xing et al., 2025) and
Gaussian noise injection (Tong et al., 2025), offer a simple and efficient way to enhance adversarial
robustness by modifying inputs, yet they may degrade performance on clean images.

Given their effectiveness and computational efficiency, transformation-based methods have emerged
as a promising approach for test-time defense. Prior studies (Guo et al., 2017; Cohen et al., 2019;
Dziugaite et al., 2016; Xie et al., 2017) have shown that various image transformations can mitigate
adversarial effects. However, the underlying mechanism of how and why the adversarial effects
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Figure 1: Illustration of the proposed Directional Bias (DB) analysis: (a) Visualization of image
features under various transformations for clean (first row) and adversarial (second row) inputs, ob-
tained via Multidimensional Scaling (MDS) with 1−cosine similarity as the distance metric. Clean
inputs yield dispersed feature patterns, whereas adversarial inputs exhibit strong directional bias.
(b) Histogram of DB-scores on ImageNet, showing clear separation between clean and adversarial
images. (c) Comparison of average robust accuracy across multiple methods on ten fine-grained
datasets (left) and five ImageNet-OOD datasets (right). Our DBD consistently surpasses previous
SOTA methods and even outperforms clean accuracy across all datasets. Adversarial images are
generated using 100-step PGD (ℓ∞, ϵ = 4/255, step size 1/255) on CLIP-ViT-B/32.

are alleviated remains unexplored, limiting further progress in defense design. To address this, we
analyze the latent feature space to investigate how diverse transformations alter image features and
thereby mitigate adversarial effects. As shown in Fig. 1(a), when applying various transformations to
an input image, the transformed features of a clean image tend to scatter around the original feature,
whereas those of an adversarial image consistently shift toward a specific direction, presenting a
skewed pattern. To quantify this phenomenon, we further introduce a Directional Bias (DB) score
to measure the directional concentration of transformed features. As shown in Fig. 1(b), the DB-
score exhibits a clear bimodal distribution, effectively distinguishing adversarial from clean ones, as
adversarial images consistently exhibit high and concentrated scores.

The above observation prompts a key question: what does the direction of transformed features rep-
resent? Recall that adversarial attacks work by shifting features away from original class centers,
thereby inducing misclassification. We therefore hypothesize that this dominant direction could be
anti-parallel to the adversarial shift, pointing features back toward their correct class centers. Build-
ing on this insight, we propose Directional Bias-guided Defense (DBD), a test-time framework for
VLMs that leverages this specific direction, referred to as Defense Direction, to uncover discrimi-
native features. To capture robust Defense Direction, DBD applies a wide range of transformations
across spatial, pixel, and frequency domains to obtain diverse augmented features, and then uses
entropy-based filtering to retain high-quality ones. Leveraging the DB-score to distinguish between
adversarial and clean inputs, we propose a two-stream feature reconstruction strategy to enhance
test-time defense: for high DB-score examples, adversarial features are linearly shifted along the
Defense Direction to restore correct representations; while for low DB-score examples, the average
transformed features are used as test-time augmentation for stabilizing representations.

We conduct extensive experiments across ten fine-grained classification datasets and five ImageNet-
OOD datasets. The results demonstrate that our method not only preserves performance on clean
images but also achieves substantial improvements over previous state-of-the-art defenses on adver-
sarial examples across all datasets. Remarkably, as shown in Fig. 1(c), the classification accuracy
on adversarial images even surpasses that on clean images. This counterintuitive result justifies that
the generation of adversarial examples guided by ground-truth labels implicitly encodes directional
priors about the true decision boundary, which we exploit to achieve effective defense.
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Our main contributions are as follows: (1) To the best of our knowledge, we are the first to show that
adversarial perturbations implicitly encode directional priors of the true decision boundary, which
can be reliably estimated using multiple transformations. (2) We propose Directional Bias-guided
Defense (DBD), a test-time framework that leverages these directional priors through Defense Di-
rection estimation and a two-stream reconstruction strategy based on the proposed DB-score, en-
abling effective and efficient defense. (3) We validate DBD on 15 datasets, demonstrating superior
adversarial robustness while preserving zero-shot performance on clean images. In some cases, our
method even surpasses the performance on clean images when evaluated on adversarial images.

2 RELATED WORKS

Vision-Language Models (VLMs). CLIP (Radford et al., 2021), trained on large-scale image-text
pairs, has become a cornerstone vision-language model (VLM) with strong zero-shot generalization
and cross-modal reasoning (Zhang et al., 2024b). Building on this paradigm, ALIGN (Jia et al.,
2021) and BLIP-2 (Li et al., 2023) further scale or refine the alignment of image-text pairs, while
LLaVA (Liu et al., 2023) extends VLMs toward instruction-following and conversational tasks. By
aligning modalities in a shared embedding space, these models provide powerful task-agnostic rep-
resentations. However, prior studies (Zhao et al., 2023; Schlarmann & Hein, 2023) have shown that
VLMs are highly vulnerable to adversarial attacks, posing a critical barrier to their deployment in
safety-sensitive applications.

Adversarial Attacks and Defenses. Adversarial perturbations are small but carefully crafted input
distortions that can drastically mislead deep neural networks (Szegedy et al., 2013). Early works
proposed gradient-based attacks such as FGSM (Goodfellow et al., 2014), iterative methods like
PGD (Madry et al., 2017), and optimization-based approaches such as CW (Carlini & Wagner,
2017). More recent efforts have introduced adaptive attacks such as AutoAttack (AA) (Croce &
Hein, 2020b), a robust benchmark combining four attacks: the score-based black-box Square (An-
driushchenko et al., 2020), the minimal-ℓp-perturbation FAB (Croce & Hein, 2020a), APGD-CE
(using cross-entropy loss), and APGD-DLR (using difference-of-logits-ratio loss). To counter ad-
versarial threats, defenses have been extensively explored. Adversarial training (Madry et al., 2017;
Zhang et al., 2019; Shafahi et al., 2019; Wong et al., 2020) optimizes models on perturbed exam-
ples to enhance robustness. Input purification (Guo et al., 2017; Xie et al., 2017) transforms inputs
toward the clean distribution. Recent diffusion-based purification methods (Nie et al., 2022; Chung
et al., 2022) show promise in removing perturbations but often incur high computational cost.

Adversarial Robustness of VLMs. For VLMs such as CLIP, several extensions of adversarial
training (Mao et al., 2022; Wang et al., 2024; Schlarmann et al., 2024; Li et al., 2024; Zhou et al.,
2024) have been proposed to enhance robustness. TeCoA (Mao et al., 2022) examines the effect
of fine-tuning and visual prompt tuning on the zero-shot adversarial robustness of VLMs. Adver-
sarial Prompt Tuning methods, including APT (Li et al., 2024) and AdvPT (Zhang et al., 2024a),
focus on optimizing textual prompts without modifying model parameters. However, these methods
rely on annotated data and may weaken generalization, motivating test-time defenses that require
no additional training. Prompt-based test-time methods such as R-TPT (Sheng et al., 2025) and
TAPT (Wang et al., 2025) adapt prompts on a per-instance basis, achieving reasonable robustness
at the cost of substantial inference overhead. Transformation-based methods mitigate adversarial
attacks by modifying input images. For example, TTC (Xing et al., 2025) generates counterattack
perturbations for adversarial images, and AOM (Tong et al., 2025)injects Gaussian noise into in-
puts. These approaches can improve robustness in practice but often degrade performance on clean
images. Our method exploits directional bias in latent feature space to reconstruct features under
diverse transformations, enhancing adversarial robustness while preserving clean performance, and
achieving an efficient balance between robustness and computational cost.

3 METHOD

3.1 PRELIMINARIES

Zero-shot classification of CLIP. CLIP (Radford et al., 2021) is a VLM that projects images and
texts into a shared embedding space and measures their relationships using cosine similarity. For
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zero-shot classification, CLIP consists of two pre-trained encoders: a visual encoder Ev and a text
encoder Et. For an C-class classification task, given an image xtest and a set of class names with
prompts Tc, c ∈ [1, C], CLIP computes text features: ftc = Et(Tc), for each class c, and image
feature fv = Ev(xtest). The prediction probability for class c is calculated as:

PCLIP(y = c | xtest) =
exp(cos(ftc ,fv)/t)∑C

c′=1 exp(cos(ftc′ ,fv)/t)
, (1)

where cos(·, ·) is the cosine similarity between the features, and t is a temperature parameter that
controls the sharpness of the distribution. The final classification decision is determined by selecting
the class with the highest probability:

ŷ = argmax
c∈[1,C]

PCLIP(y = c | xtest), (2)

where ŷ represents the predicted class label.

Adversarial attacks for CLIP. Despite its strong zero-shot performance, CLIP is particularly sen-
sitive to small adversarial perturbations (Szegedy et al., 2013). Following recent SOTA test-time
method R-TPT (Sheng et al., 2025), we consider a threat model where the attacker has full access
to the vanilla CLIP model, but no knowledge of the defense mechanism. This reflects real-world
deployment: foundation models like CLIP have publicly available weights, while test-time defenses
are typically deployed privately. In this setting, adversarial examples are crafted against CLIP as:

δ = argmax
δ′

L(CLIP(x+ δ′, T ), y), s.t. ∥δ′∥p ≤ ϵ, (3)

where y is the ground-truth label of input image x, T is a set of class names with prompts, L is a
loss function (typically cross-entropy loss), and ϵ is the attack budget controlling the magnitude of
perturbations to remain imperceptible.

3.2 DBD FOR VLMS

We propose Directional Bias-guided Defense (DBD), a test-time framework for defending VLMs
against adversarial attacks. The core idea of DBD is to leverage multiple input transformations to
construct diverse reference features, analyze their directional bias relative to the original features,
and use this property to guide feature reconstruction. The overall framework consists of three main
components: input transformations & feature filtering, Directional Bias (DB) computation, and two-
stream feature reconstruction, as illustrated in Fig. 2.

Image Transformations & Feature Filtering. Since individual transformations have inherent
drawbacks, relying on a single transformation may produce unreliable features. For example, ran-
dom cropping is stochastic and may capture mostly background, while filtering can excessively blur
important details. To improve robustness, we apply a diverse set of transformations to generate mul-
tiple feature candidates, which leverages complementary strengths across transformations to both
preserve task-relevant information and disrupt adversarial noise.

We construct an image transformation library covering diverse transformations across three do-
mains: (1) Spatial domain: including random cropping, scaling, and flipping. These geometric
operations alter object position, size, and orientation, thereby disrupting the structured alignment of
adversarial perturbations and weakening their effect. (2) Pixel domain: including bit-depth com-
pression (quantization), JPEG compression-decompression, and additive Gaussian noise. These
pixel-level modifications distort or overwrite fine-grained perturbations, making them less effective
in misleading the model. (3) Frequency domain: including Gaussian, mean, and median filtering. By
smoothing or suppressing high-frequency components, these filters reduce adversarial noise while
largely preserving the semantic content of the image.

Transformed features exhibit varying quality across different transformations, so we apply a feature
filtering step to select the most informative and reliable representations. Following common practice
in test-time adaptation (Shu et al., 2022), we use the entropy of the model’s prediction as a quality
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Figure 2: Overview of the proposed Directional Bias-guided Defense (DBD). (a) Framework:
multiple transformations are applied to the input image, and high-quality transformed features are
retained by entropy-based filtering; then the Defense Direction and DB-score are computed for fea-
ture reconstruction and classification. (b) Directional Bias (DB) Computation: the Defense Direc-
tion is defined from the original feature to the average transformed feature, and the DB-score is the
mean cosine similarity between the Defense Direction and each individual displacement vector. (c)
Two-stream Feature Reconstruction: for high DB-score (likely adversarial images), the original fea-
tures are shifted further along the Defense Direction to obtain more robust representations; for low
DB-score (likely clean images), the average transformed features are used as test-time augmentation
for stabilizing representations.

metric. Specifically, given n transformed images, we pre-compute their features fi(i = 1, 2, ..., n)
and classification probabilities with CLIP, then calculate the entropy for each:

Ei = −
∑
c

pi,c log pi,c, (4)

where pi,c denotes the predicted probability of the i-th transformed image feature for class c. We
then select the k transformed image features with the lowest entropy as high-quality features for
subsequent processing:

Fref = {fi | i ∈ Ik}, Ik = argmin
i⊂{1,...,n},|i|=k

∑
j∈i

Ej . (5)

Directional Bias (DB) Computation. After applying multiple transformations and feature filter-
ing, we obtain a set of high-quality transformed image features. Visualization (Fig. 1(a)) shows that
for clean images, the transformed features exhibit a dispersed pattern around the original feature. In
contrast, for adversarial inputs, they consistently shift toward a specific direction, presenting a direc-
tional bias pattern. This occurs because transformations partially mitigate adversarial perturbations,
aligning the features closer to the clean feature distribution.

Given a set of transformed featuresFref = {fi | i = 1, . . . , k} and the original feature f0, we define
the direction vectors for each transformed feature fi as unit vectors di = (fi − f0)/∥fi − f0∥2,
and compute the Defense Direction ddef as

d̄ =
1

k

k∑
i=1

(fi − f0), ddef =
d̄

∥d̄∥2
, (6)

where ∥ · ∥2 denotes the ℓ2 norm (Euclidean distance). The DB-score is computed as the average
cosine similarity between each direction and the Defense Direction:

Sdb =
1

k

k∑
i=1

⟨di,ddef⟩, (7)

where ⟨·, ·⟩ denotes the inner product. As shown in Fig. 1(b), the DB-score exhibits a clear bimodal
distribution for clean and adversarial images, allowing simple thresholding to separate them.
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Two-stream Feature Reconstruction. Adversarial perturbations shift image features away from
the true classification region, thereby inducing misclassification. Intuitively, the Defense Direction
ddef could be anti-parallel to the adversarial shift, pointing features back toward their correct clas-
sification region. Guided by this intuition, we reconstruct more robust features by linearly shifting
the input feature along the Defense Direction. However, due to stochasticity or imperfections in the
transformations, the computed Defense Direction may be inaccurate. To reduce the negative impact
of inaccurate Defense Direction, we propose a two-stream reconstruction strategy based on the DB-
score: (1) High DB-score stream: a high Sdb indicates a likely adversarial image and a more reliable
Defense Direction. In this case, we shift the feature along the Defense Direction to enhance its dis-
tinction from the original. (2) Low DB-score stream: a low Sdb suggests a likely clean image with
less reliable direction. For these examples, we use the average of transformed features as test-time
augmentation for stabilizing representations. Formally, we introduce a threshold τ on DB-score Sdb:

f̂ = f0 + l · ddef , l =

{
∥d̄∥2, Sdb ≤ τ

λ · ∥d̄∥2, Sdb > τ
, (8)

where f̂ is the reconstructed feature and λ is a hyperparameter controlling the magnitude of the
feature shift. In practice, we use the distance from the average transformed features to the original
feature ∥d̄∥2 as a reference for the shift magnitude, which is then scaled by λ. Finally, we use the
reconstructed image feature f̂ to compute the predicted classification result, as given in Eq.1.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. Following prior works (Sheng et al., 2025; Li et al., 2024) on the adversarial robust-
ness of CLIP, we evaluate our proposed test-time DBD on ten fine-grained classification datasets
and five ImageNet-based out-of-distribution(OOD) benchmarks. The fine-grained datasets span di-
verse domains: general objects (Caltech101 (Fei-Fei et al., 2004)), animals (Pets (Parkhi et al.,
2012)), plants (Flower102 (Nilsback & Zisserman, 2008)), vehicles (Cars (Krause et al., 2013),
Aircraft) (Maji et al., 2013), textures (DTD (Cimpoi et al., 2014)), satellite imagery (EuroSAT (Hel-
ber et al., 2019)), human actions (UCF101 (Soomro et al., 2012)), scenes (SUN397 (Xiao et al.,
2010)), and food (Food101 (Bossard et al., 2014)). For ImageNet-OOD evaluation, we use Im-
ageNet (Deng et al., 2009) and four established variants: ImageNet-A (Hendrycks et al., 2021b),
ImageNet-V2 (Recht et al., 2019) , ImageNet-R (Hendrycks et al., 2021a), and ImageNet-S (Wang
et al., 2019). Since our method targets test-time adversarial robustness, we do not require access to
any training sets.

Implementation details. We use official pre-trained CLIP backbones (ResNet-50 (He et al., 2016),
ViT-B/32, and ViT-B/16 (Dosovitskiy et al., 2020)) as the base models. Adversarial images are gen-
erated with PGD (Madry et al., 2017) under the L∞ norm constraint. Following prior works (Sheng
et al., 2025; Li et al., 2024), we evaluate two threat levels. For low-strength attack, we use PGD-10
with ϵ = 1/255 on CLIP-ResNet50; for high-strength attack, we use PGD-100 with ϵ = 4/255 on
CLIP-ViT-B/32 and CLIP-ViT-B/16. The step size for all attacks is α = ϵ/4. For our DBD, we
apply n = 31 transformations per input, yielding 32 images including the original, and then select
k = 16 transformed image features via entropy-based filtering. The DB-score threshold is τ = 0.8,
and the feature shift magnitude is set to λ = 2.5. Both are estimated from ImageNet validation set
(50k images). Experiments are conducted in PyTorch on RTX 3090 GPUs.

Baselines. We compare DBD with several existing methods, including adversarial fine-tuning on
ImageNet (TeCoA (Mao et al., 2022)), adversarial prompt tuning on downstream datasets with 16
shots (APT (Li et al., 2024)), test-time prompt tuning (R-TPT (Sheng et al., 2025)), test-time input
transformation method (TTC (Xing et al., 2025)), and the original CLIP (Radford et al., 2021)
models. Except for APT, which uses few-shot tuning , all other methods operate in a zero-shot
setting. Baseline results are obtained from official reports or reproduced using official code.

4.2 MAIN RESULTS

Results on fine-grained datasets. We evaluate the adversarial robustness of DBD on ten fine-
grained classification datasets, with results summarized in Table 1. Under the CLIP-ViT-B/32 and
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Table 1: Results (%) of clean accuracy (Acc.) and robust accuracy (Rob.) of various defense
methods on ten fine-grained classification datasets. Robust accuracies are highlighted with
gray background . Best clean accuracies are (bold), and best robust accuracies are (bold red).

Method Caltech101 Pets Cars Flower102 Aircraft DTD EuroSAT UCF101 SUN397 Food101 Avg.
Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

PGD-10 (ϵ = 1/255) on CLIP-ResNet50

CLIP 89.1 2.1 85.0 0.0 57.3 0.0 65.9 0.0 19.6 0.0 48.5 0.4 37.5 0.0 59.7 0.0 62.7 0.0 75.6 0.0 60.1 0.3
TeCoA 78.2 64.1 76.2 54.4 24.1 9.2 32.6 17.3 6.6 2.4 30.7 21.4 23.8 19.0 40.4 21.8 38.6 19.7 29.2 12.3 38.1 24.2
R-TPT 86.0 79.9 84.7 73.4 58.4 42.1 60.7 51.0 18.1 12.3 41.1 34.3 21.2 15.8 59.2 50.3 60.8 50.7 73.3 57.8 56.3 46.8
DBD 90.1 98.7 86.0 95.9 60.0 86.2 65.9 88.3 21.6 56.3 47.9 85.2 29.4 81.3 60.6 88.9 63.8 93.2 75.0 97.4 60.0 87.1

PGD-100 (ϵ = 4/255) on CLIP-ViT-B/32

CLIP 93.3 0.1 86.6 0.0 61.2 0.0 67.0 0.0 20.6 0.0 49.9 0.0 50.8 0.0 63.6 0.0 65.7 0.0 78.7 0.0 63.7 0.0
TeCoA 81.5 46.1 64.4 16.7 11.5 1.1 30.1 9.5 6.7 0.6 29.3 12.7 13.8 11.1 34.0 6.3 34.7 6.5 22.4 3.0 32.8 11.4
APT 86.6 57.6 66.6 17.2 41.9 9.9 84.4 47.0 28.7 6.8 47.5 21.4 67.2 23.5 58.2 18.9 46.6 10.5 33.3 6.8 56.1 22.0
TTC 89.5 47.6 61.0 41.5 45.9 21.3 65.5 29.2 15.4 11.1 39.5 20.4 44.8 15.4 60.8 27.6 46.3 25.7 74.4 32.2 54.3 27.2
R-TPT 91.0 77.8 84.8 57.7 63.3 28.3 63.3 38.8 19.6 10.1 42.7 29.9 31.9 6.5 63.1 44.2 64.0 44.1 78.5 43.5 60.2 38.1
DBD 93.8 99.0 86.8 96.2 63.7 91.2 68.7 94.7 22.4 66.3 51.5 88.3 41.7 92.6 65.3 92.2 67.1 94.2 80.1 98.4 64.1 91.3

PGD-100 (ϵ = 4/255) on CLIP-ViT-B/16

CLIP 94.2 0.0 90.3 0.0 66.2 0.0 73.0 0.0 27.1 0.0 53.2 0.0 55.7 0.0 67.0 0.0 67.9 0.0 84.2 0.0 67.9 0.0
TTC 90.3 16.1 57.9 17.7 57.4 11.3 68.5 19.8 21.7 2.8 41.5 15.3 44.7 0.6 64.8 4.9 51.5 15.7 81.0 21.2 58.0 12.5
R-TPT 93.7 83.1 87.4 63.3 67.0 36.0 68.1 46.4 24.0 14.4 46.6 34.9 34.6 10.2 67.8 47.3 65.7 46.5 84.3 49.7 63.9 43.2
DBD 94.8 99.4 90.7 97.1 67.8 93.4 73.6 97.5 29.7 71.9 54.5 92.3 44.9 93.3 68.2 95.9 69.0 97.4 84.7 99.5 67.8 93.8

Table 2: Results (%) of clean accuracy (Acc.) and robust accuracy (Rob.) of various defense meth-
ods on five ImageNet-OOD datasets. Robust accuracies are highlighted with gray background .
Best clean accuracies are (bold), and best robust accuracies are (bold red).

Attack & Model Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S Avg.
Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

PGD-10
(ϵ = 1/255)

on CLIP-ResNet50

CLIP 61.5 0.0 23.8 0.0 54.7 0.0 60.0 0.4 35.6 0.3 47.1 0.2
TeCoA 48.4 28.1 4.9 1.2 39.6 21.7 40.6 25.7 18.3 11.6 30.3 17.7
R-TPT 60.8 47.3 28.0 14.2 54.7 41.6 57.7 46.6 34.0 26.0 47.0 35.1
DBD 63.1 94.5 23.0 89.0 55.7 93.0 63.0 94.0 38.1 73.7 48.6 88.8

PGD-100
(ϵ = 4/255)

on CLIP-ViT-B/32

CLIP 64.4 0.0 31.1 0.0 57.2 0.0 68.3 0.0 42.5 0.0 52.7 0.0
TeCoA 39.5 9.7 4.2 0.3 32.4 7.3 38.0 12.7 18.5 7.6 26.5 7.5
TTC 35.4 25.7 27.5 8.4 41.3 21.4 53.4 28.1 29.8 12.8 37.5 19.3

R-TPT 64.2 40.4 36.6 11.0 58.0 34.3 70.0 47.9 41.7 23.6 54.1 31.4
DBD 66.3 95.3 32.9 95.3 59.1 94.3 71.7 98.2 45.1 89.5 55.0 94.5

PGD-100
(ϵ = 4/255)

on CLIP-ViT-B/16

CLIP 69.6 0.0 50.6 0.0 63.4 0.0 77.1 0.0 49.1 0.0 62.0 0.0
TTC 37.8 17.4 46.6 9.9 48.9 16.1 63.3 12.4 38.5 1.9 47.0 11.5

R-TPT 69.4 46.6 57.9 20.7 63.9 40.2 77.0 57.6 47.9 30.3 63.2 39.1
DBD 71.1 97.7 52.1 98.9 64.7 97.3 79.5 99.4 51.1 95.3 63.7 97.7

PGD-100 (ϵ = 4/255) setting, the original CLIP model demonstrates strong zero-shot classification
performance (63.7%) but is almost entirely vulnerable to adversarial attacks (0.0%). Adversarial
fine-tuning (TeCoA) improves defense to 11.4%, but at the cost of reduced zero-shot performance
on clean images (63.7%→ 32.8%). Adversarial prompt tuning (FAP) further enhances robustness
(0.0%→ 22.0%) while mitigating the drop in clean accuracy (63.7%→ 56.1%), though its few-shot
setting introduces data dependency. Test-time input transformation method (TTC) achieves mod-
erate robustness on CLIP-ViT-B/32 (0.0% → 27.2%) but are sensitive to model architecture, with
only 12.5% on CLIP-ViT-B/16. Previous state-of-the-art test-time prompt tuning method (R-TPT)
attains better robustness (0.0%→ 38.1%) and largely preserves zero-shot performance on clean im-
ages (63.7%→ 60.2%). In contrast, ours DBD maintains zero-shot performance close to the original
CLIP across all three backbones (even exceeding it on CLIP-ViT-B/32) and achieves substantially
higher robustness on adversarial examples, reaching 93.8% on CLIP-ViT-B/16, significantly sur-
passing both R-TPT and the performance on clean examples.

Results on ImageNet-OOD datasets. Results on ImageNet-OOD benchmarks are summarized in
Table 2. The original CLIP model demonstrates strong robustness to distribution shifts but remains
highly vulnerable to adversarial attacks. Notably, our DBD method not only preserves but slightly
improves zero-shot classification on clean images (e.g., 52.7%→ 55.0% on CLIP-ViT-B/32), which
we attribute to the combination of diverse image transformations and entropy-based feature filtering
that produces more robust and accurate features. Across all three backbones, DBD substantially
outperforms the previous state-of-the-art R-TPT on adversarial examples, achieving up to 97.7% on
CLIP-ViT-B/16, a performance that even surpasses the classification accuracy on clean examples.

Discussion. Remarkably, the classification accuracy on adversarial images significantly exceeds
that on clean images. This counterintuitive result suggests that the generation of adversarial ex-
amples guided by ground-truth labels implicitly encodes directional priors about the true decision
boundary. Our method leverages this by applying multiple image transformations to estimate the
Defense Direction , then linearly shifting features along it to reconstruct robust representations.
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4.3 MORE ANALYSIS

Table 3: Robust accuracy (%) under PGD-100 (ϵ = 4/255) on CLIP-ViT-B/16 using pseudo-labels
across six fine-grained datasets. The last row shows the clean accuracy as a reference.

Method Caltech101 Pets Flower102 Aircraft DTD UCF101 Avg.

CLIP 1.7 3.1 2.7 1.5 4.2 4.5 2.9
R-TPT 84.1 66.1 49.8 18.2 37.1 52.7 51.3
DBD 94.1 88.6 72.3 26.3 53.1 66.5 66.8
Clean 94.2 90.3 73.0 27.2 53.2 67.0 67.5

Analysis under PGD attack with pseudo-label. The previous experiments demonstrate that when
PGD generates adversarial examples using ground-truth labels, our method achieves robust accuracy
which significantly exceeds clean accuracy. To further validate its effectiveness without relying on
ground-truth labels, we consider a pseudo-label setting. Specifically, we use CLIP’s own predictions
on clean images as pseudo-labels to guide PGD in generating adversarial examples. As shown in
Table 3, under this setting the vanilla CLIP model remains highly vulnerable. In contrast, our method
consistently outperforms R-TPT and achieves robust accuracy comparable to clean accuracy (e.g.,
67.5% → 66.8% on CLIP-ViT-B/16). This indicates that our method is able to fully leverage the
directional prior information carried by adversarial examples.

Analysis under various attacks. To demonstrate the generality of our method, we evaluate DBD
and baseline methods under additional adversarial attacks, including FGSM (Goodfellow et al.,
2014), CW (Carlini & Wagner, 2017), AutoAttack (AA) (Croce & Hein, 2020b), and four com-
ponent attacks of AA: Square Attack (Andriushchenko et al., 2020), targeted FAB (Croce & Hein,
2020a), untargeted APGD-CE, and targeted APGD-DLR. We evaluate various attacks on the same
six fine-grained datasets in Table 3, with the results summarized in Table 4. DBD consistently
demonstrates robust defense performance across all attack types, significantly outperforming R-
TPT. Notably, under AA on CLIP-ViT-B/16, DBD achieves an average robust accuracy of 69.8%,
surpassing the average clean accuracy of 67.5%.

Table 4: Average robust accuracy (%) across six fine-grained datasets under various attacks on
CLIP-ViT-B/16. All attacks are conducted under the ℓ∞ norm with perturbation budget ϵ = 4/255.

Method FGSM CW AA FAB Square APGD-CE APGD-DLR Avg.

CLIP 11.8 1.0 0.0 12.9 11.7 0.1 0.1 5.1
R-TPT 38.9 55.6 45.0 59.5 59.2 45.0 48.8 50.4
DBD 75.2 69.1 69.8 69.3 65.1 69.8 68.5 69.2

Table 5: Running time and robust accuracies (%)
of different defense methods against adversarial
attacks on UCF101 dataset using CLIP-ViT-B/32.
APT is evaluated with 16 shots, while R-TPT and
DBD are evaluated with 32 views.

Method Stage Running time Rob.

APT Training time 22m47s / 200 epochs 18.9
TTC Test time 0.008s / image 27.6
R-TPT Test time 0.181s / image 44.3
DBD Test time 0.025s / image 92.2

Analysis of inference efficiency. We com-
pare DBD’s inference efficiency with baseline
methods. Table 5 reports the training time of
APT and the inference time of test-time de-
fenses R-TPT, TTC, and DBD on UCF101 us-
ing CLIP-ViT-B/32. Training-time defenses in-
cur substantial training costs, while test-time
defenses avoid this but increase inference over-
head. DBD achieves a favorable balance be-
tween robustness and efficiency, outperforming
R-TPT in both accuracy and inference speed.

4.4 ABLATION STUDY

Ablation of the feature shift magnitude factor λ. To evaluate the impact of the shift magnitude
factor λ on the performance of DBD, we test three attack settings across 15 datasets. The average
robust accuracy of all is shown in Fig.3(a). When λ = 0, the reconstructed feature reduces to the
original feature, yielding nearly no defense. With λ = 1.0, the reconstructed feature becomes the
average of transformed features, achieving an average robust accuracy of 34.8%. At λ = 2.5, DBD
reaches 92.1% accuracy, demonstrating that linearly shifting the original feature along the Defense
Direction reconstructs robust features that align with the correct class. This highlights the reliability
of the Defense Direction identified by DBD.
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Figure 3: (a) Average robust accuracy (%) across 15 datasets under three attack settings for different
values of the feature shift magnitude factor λ. (b) Average overall accuracy (%) for different values
of the DB-score threshold τ , computed by averaging both clean and robust accuracies across all
datasets and attack settings.

Table 6: Ablation study. Results (%) of clean accuracy (Acc.) and robust accuracy (Rob.) are
average over 15 datasets and three attack settings. The left five columns correspond to different im-
age transformation types, while the middle two columns represent DBD mechanisms (linear feature
shifting and DB-score-based thresholding).

Random
Crop-Resize-Flip

Bit-depth
Reduction

JPEG
Compression

Guassian
Noise

Image
Filtering

Feature
Shift

DB-score
Threshold Acc. Rob.

60.6 0.0
✓ ✓ 53.0 91.2

✓ ✓ 24.1 82.4
✓ ✓ 55.7 88.4

✓ ✓ 36.1 85.5
✓ ✓ 43.9 87.3

✓ ✓ ✓ ✓ ✓ 61.5 34.8
✓ ✓ ✓ ✓ ✓ ✓ 58.9 92.1
✓ ✓ ✓ ✓ ✓ ✓ ✓ 61.2 91.7

Ablation of the DB-score threshold τ . DBD employs a DB-score threshold τ to distinguish high-
score examples (likely adversarial) from low-score examples (likely clean). We evaluate the effect
of τ under three attack settings across 15 datasets, reporting the overall mean accuracy obtained by
averaging both clean and adversarial performance across all datasets and attack settings (Fig.3(b)).
The results show that setting τ = 0.8 yields the best overall performance. At this threshold, DBD
successfully reconstructs robust features for the majority of adversarial images, while simultane-
ously avoiding inaccurate shifts in most clean examples, thereby achieving a well-balanced trade-off
between robust and clean accuracy.

Ablation of DBD mechanisms. We conduct ablation experiments on all DBD components, with
results average over 15 datasets and three attack settings (Table 6). Our analysis reveals four key
findings: (1) Using a single type of image transformation with feature shifting provides strong ad-
versarial defense but reduces clean image performance. (2) Aggregating multiple transformations
without linear shifting gives the best clean accuracy but weak defense. (3) Adding linear shifting
on top of multiple transformations substantially improves adversarial robustness, at the cost of some
clean performance. (4) Applying the DB-score-based threshold to handle high-score and low-score
examples separately achieves the best trade-off between clean accuracy and adversarial robustness.

5 CONCLUSION

In this work, we found that adversarial examples exhibit a strong directional bias under multiple in-
put transformations, in contrast to the dispersed behavior of clean examples. Building on this obser-
vation, we proposed Directional Bias-guided Defense (DBD), a test-time framework that leverages
the directional bias to reconstruct robust features through Defense Direction estimation and a two-
stream reconstruction strategy based on the proposed DB-score. Experiments on 15 datasets under
three attack settings demonstrate that DBD achieves state-of-the-art adversarial robustness while
preserving zero-shot performance on clean images. Remarkably, robust accuracy even surpasses
clean accuracy, highlighting that adversarial perturbations implicitly encode directional priors about
the true decision boundary. We believe that our work sheds light on new perspectives for training-
free defenses in VLMs.
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A APPENDIX

A.1 ALGORITHM

We provide a detailed pseudocode of our proposed DBD in Algorithm 1.

Algorithm 1: Directional Bias-guided Defense (DBD) for VLMs
Input: Input image x, pre-trained CLIP vision encoder Ev , classification headH,

transformation library T , DB threshold τ , shift factor λ
Output: Robust feature f̂ and classification result y

Step 1: Image Transformations & Feature Filtering

for transformation t ∈ T do
xt ← t(x) ; // Apply transformation
ft ← Ev(xt) ; // Extract feature
pt ← H(ft) ; // Compute classification probabilities
Et ← −

∑
c pt,c log pt,c ; // Compute entropy

Fref ← k features with lowest Et

Step 2: Directional Bias Computation

f0 ← Ev(x) ; // Original feature
for fi ∈ Fref do

di ← (fi − f0)/∥fi − f0∥2 ; // Unit displacement vector

d̄← 1
k

∑k
i=1(fi − f0) ; // Mean displacement

ddef ← d̄/∥d̄∥2 ; // Defense Direction

Sdb ← 1
k

∑k
i=1⟨di,ddef⟩ ; // DB-score

Step 3: Two-stream Feature Reconstruction & Prediction

if Sdb ≤ τ then
f̂ ← f0 + ∥d̄∥2 · ddef ; // Likely clean

else
f̂ ← f0 + λ · ∥d̄∥2 · ddef ; // Likely adversarial, enhanced shift

y ← argmax(H(f̂)) ; // Compute final prediction

A.2 IMPLEMENTATION DETAILS

Transformations. In our experiments, DBD applies n = 31 transformations per input, yielding
32 images including the original. We provide more details on various image transformations used
in DBD in Table 7. (1) For spatial domain transformations, each transformation includes random
cropping, scaling, and flipping. Due to the stochastic nature of these operations, we perform 16
transformations per input. (2) For pixel domain transformations, we implement bit-depth reduction,
compressing the original 8-bit image to 3 bits using three quantization methods: floor, round,
and ceil. In addition, we apply JPEG compression-decompression with three quality levels (50,
60, 75) to increase diversity. Random Gaussian noise with amplitude γ = 0.1 is also added, with
six stochastic realizations per input. (3) For frequency domain transformations, we apply Gaussian,
mean, and median filtering with kernel size 5.

In the ablation study (Table 6 and Fig. 4), the resulting average features from Random Crop-Resize-
Flip (16 transformations), Bit-depth Reduction (3 operations), JPEG Compression (3 operations),
Gaussian Noise (6 operations), and Image Filtering (3 filters) are used for classification.
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Text Prompts. For text prompts, we use a mix of hand-crafted prompts and GPT-3-generated
prompts provided by CuPL (Pratt et al., 2023), and average text features over multiple prompts per
class.

Attacks. All attacks are implemented using the torchattack (Kim, 2020) library. For PGD and
FGSM attacks, we follow the baseline R-TPT (Sheng et al., 2025) configuration by using cross-
entropy loss in untargeted mode. For the CW attack (Carlini & Wagner, 2017), we use a learning
rate of 0.01 with the Adam optimizer. For AutoAttack (AA, (Croce & Hein, 2020b)), we use the
standard mode, which includes four components: untargeted APGD-CE (1 restart), targeted APGD-
DLR (10 target classes), targeted FAB (10 target classes, (Croce & Hein, 2020a)), and Square Attack
(5000 queries, (Andriushchenko et al., 2020)). To remain consistent with the baseline setup, EOT
was not applied. When verifying these 4 components, we keep the parameters unchanged.

Table 7: Details of image transformations used in DBD.

Domain Transformations
Spatial Random cropping-scaling-flipping (16 times)

Bit-depth compression (quantization): floor, round, ceil (bits = 3)
Pixel JPEG compression-decompression: quality = 50, 60, 75

Add Gaussian noise: γ = 0.1 (6 times)

Gaussian filter: kernel size = 5
Frequency Mean filter: kernel size = 5

Median filter: kernel size = 5

A.3 DATASETS

We evaluate our method on 10 fine-grained classification datasets and 5 ImageNet-OOD datasets.
Table 8 summarizes their detailed information, including their content, number of categories, num-
ber of images and corresponding hand-crafted prompt.

Table 8: Introduction of all datasets involved in experiments.

Dataset Description # Classes # Test Hand-crafted Prompt

Caltech101 Object images 100 2,465 a photo of a [CLASS]
Pets Pet images 37 3,669 a photo of a [CLASS], a type of pet
Cars Car images 196 8,041 a photo of a [CLASS]
Flower102 Flower images 102 2,463 a photo of a [CLASS], a type of flower
Aircraft Aircraft images 100 3,333 a photo of a [CLASS], a type of aircraft
DTD Describable textures images 47 1,692 [CLASS] texture
EuroSAT Sentinel-2 satellite images 10 8,100 a centered satellite photo of a [CLASS]
UCF101 Human action images 101 3,783 a photo of a person doing [CLASS]
SUN397 Scene recognition images 397 19,850 a photo of a [CLASS]
Food101 Food images 101 30,300 a photo of a [CLASS], a type of food

ImageNet Object and scene images 1,000 50,000 a photo of a [CLASS]
ImageNet-A Adversarially filtered images 200 7,500 a photo of a [CLASS]
ImageNet-V2 New test images 1,000 10,000 a photo of a [CLASS]
ImageNet-R Rendered images 200 30,000 a photo of a [CLASS]
ImageNet-S Sketch-style images 1,000 50,889 a photo of a [CLASS]

A.4 EXPERIMENTS

Detailed results under PGD attack with pseudo-label. Due to space constraints, Table 3 in the
main text reports only a subset of the results. Here we provide the complete version in Table 9,
which includes results on six fine-grained datasets and three attack settings.

Detailed results under various attacks. We evaluate DBD and baseline methods under additional
adversarial attacks, including FGSM (Goodfellow et al., 2014), CW (Carlini & Wagner, 2017), and
AutoAttack (AA) (Croce & Hein, 2020b). AA is a stronger, ensemble-based attack that combines
targeted FAB (Croce & Hein, 2020a), Square Attack (Andriushchenko et al., 2020), untargeted
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Table 9: robust accuracy (%) under three PGD attack settings using pseudo-labels on six fine-
grained datasets.

Attack & Model Method Caltech101 Pets Flower102 Aircraft DTD UCF101 Avg.

Clean 89.1 85.0 65.9 19.6 48.5 59.7 61.3

PGD-100 (ϵ = 1/255)
on CLIP-ResNet50

CLIP 7.5 5.6 6.4 1.6 8.2 6.3 5.9
R-TPT 81.7 77.7 53.2 15.1 35.6 54.3 52.9
DBD 88.8 82.4 64.4 16.9 47.5 59.0 59.8

Clean 93.3 86.6 67.0 20.6 49.9 63.6 63.5

PGD-100 (ϵ = 1/255)
on CLIP-ViT-B/32

CLIP 2.3 3.4 3.8 0.8 3.8 4.9 3.2
R-TPT 79.9 62.7 43.1 13.9 32.9 49.9 47.1
DBD 93.0 84.4 66.1 19.5 49.5 62.7 62.5

Clean 94.2 90.3 73.0 27.2 53.2 67.0 67.5

PGD-100 (ϵ = 1/255)
on CLIP-ViT-B/16

CLIP 1.7 3.1 2.7 1.5 4.2 4.5 2.9
R-TPT 84.1 66.1 49.8 18.2 37.1 52.7 51.3
DBD 94.1 88.6 72.3 26.3 53.1 66.5 66.8

Table 10: Results (%) of clean accuracy (Acc.) and robust accuracy (Rob.) of various attacks on six
fine-grained classification datasets.

Method Caltech101 Pets Flower102 Aircraft DTD UCF101 Avg.
CLIP R-TPT DBD CLIP R-TPT DBD CLIP R-TPT DBD CLIP R-TPT DBD CLIP R-TPT DBD CLIP R-TPT DBD CLIP R-TPT DBD

Attacks on CLIP-ResNet50
FGSM 49.6 79.2 94.2 11.1 72.1 91.1 6.2 49.3 80.8 0.3 12.1 38.2 16.6 33.3 72.0 13.9 48.0 77.2 16.3 49.0 75.6
CW 5.1 79.6 90.6 0.8 74.7 86.6 0.9 51.2 65.6 0.9 14.9 18.8 2.2 33.7 50.1 2.4 51.5 62.0 2.1 50.9 62.3
AA 0.9 81.0 91.4 0.0 76.8 86.0 0.0 53.3 67.6 0.0 15.2 21.1 0.4 35.2 52.2 0.0 53.6 64.6 0.2 52.5 63.8
FAB 33.8 81.8 90.5 1.9 78.7 86.3 1.0 54.8 64.5 0.0 15.2 18.7 10.2 36.3 49.6 8.3 54.4 62.2 9.2 53.5 62.0
Square 50.5 83.2 87.7 36.5 80.4 83.1 33.7 57.7 56.5 1.2 15.8 15.6 19.6 37.3 44.4 18.1 56.7 56.3 26.6 55.2 57.3
APGD-CE 2.7 81.0 91.4 0.0 76.8 85.9 0.0 53.2 67.6 0.0 15.2 21.0 0.7 35.0 52.3 0.0 53.5 64.6 0.6 52.5 63.8
APGD-DLR 1.2 82.1 91.3 0.0 79.0 87.3 0.0 55.3 66.4 0.0 15.4 19.0 0.2 35.8 51.7 0.1 54.4 64.1 0.3 53.6 63.3

Attacks on CLIP-ViT-B/32
FGSM 47.2 75.1 87.9 7.1 49.8 88.0 3.7 37.1 69.1 0.2 8.4 36.0 12.9 27.6 51.0 9.7 40.7 61.0 13.5 39.8 65.5
CW 3.0 84.7 92.8 0.4 73.9 87.5 0.9 55.3 69.1 0.2 16.8 22.9 1.5 36.4 50.7 1.4 55.9 64.8 1.2 53.8 64.6
AA 0.4 75.3 93.1 0.0 51.9 87.7 0.0 39.2 69.9 0.0 14.0 24.3 0.0 32.0 52.8 0.0 46.7 67.1 0.1 43.2 65.8
FAB 46.5 87.8 93.5 17.9 78.8 88.1 17.5 58.8 69.3 0.8 17.4 22.4 14.3 39.3 52.2 16.3 59.1 66.0 18.9 56.9 65.3
Square 22.7 86.7 92.2 8.0 77.6 84.7 8.9 57.9 65.6 0.5 17.0 20.4 3.8 37.4 48.3 6.9 58.9 64.0 8.4 55.9 62.5
APGD-CE 1.1 75.3 93.1 0.0 51.9 87.7 0.0 39.2 69.9 0.0 14.0 24.3 0.0 32.0 52.8 0.0 46.7 67.1 0.2 43.2 65.8
APGD-DLR 0.6 79.6 92.3 0.0 60.0 87.1 0.0 46.4 68.8 0.0 14.8 22.7 0.0 33.6 51.5 0.0 50.3 64.8 0.1 47.4 64.5

Attacks on CLIP-ViT-B/16
FGSM 47.2 75.6 92.8 7.1 47.9 95.3 3.7 35.3 80.5 0.2 10.1 53.5 12.9 29.4 61.5 9.7 35.1 67.8 13.5 38.9 75.2
CW 3.0 87.3 94.7 0.4 73.4 92.1 0.9 55.7 73.9 0.2 20.0 28.8 1.5 39.5 56.2 1.4 57.4 69.2 1.2 55.6 69.1
AA 0.4 78.9 94.8 0.0 51.2 90.4 0.0 40.6 74.7 0.0 17.3 31.7 0.0 33.7 57.0 0.0 48.2 70.3 0.1 45.0 69.8
FAB 46.5 90.1 95.2 17.9 80.3 92.1 17.5 60.7 74.1 0.8 21.0 28.5 14.3 43.0 56.0 16.3 62.1 69.8 18.9 59.5 69.3
Square 22.7 89.6 93.5 8.0 77.7 87.8 8.9 62.9 68.8 0.5 21.2 24.7 3.8 41.3 50.4 6.9 62.5 65.3 8.4 59.2 65.1
APGD-CE 1.1 78.9 94.8 0.0 51.2 90.4 0.0 40.6 74.7 0.0 17.3 31.7 0.0 33.7 57.0 0.0 48.2 70.3 0.2 45.0 69.8
APGD-DLR 0.6 82.0 94.3 0.0 58.7 91.0 0.0 47.5 73.4 0.0 18.5 30.0 0.0 35.8 55.3 0.0 50.4 67.1 0.1 48.8 68.5

APGD-CE (Auto-PGD with Cross-Entropy loss), and targeted APGD-DLR (Auto-PGD with Dif-
ference of Logits Ratio loss), incorporating both gradient-based and gradient-free strategies to com-
prehensively challenge model robustness. We also separately evaluate defense performance against
each of these four constituent attacks. For our DBD, we set τ = 0.6 and λ = 2.5 (with λ = 5
for FGSM). We assess the effectiveness of various attacks on six fine-grained datasets across three
attack settings, and detailed results are shown in Table 10.

Clean Acc. Robust Acc. Clean Acc. Robust Acc. Clean Acc. Robust Acc.

(a) PGD-10(� = 1/255) on CLIP-ResNet50 (b) PGD-100(� = 4/255) on CLIP-ViT-B/32 (c) PGD-100(� = 4/255) on CLIP-ViT-B/16

Figure 4: Average results (%) of clean accuracy (Clean Acc.) and robust accuracy (Robust Acc.) for
various types of transformations across 15 datasets under three attack settings.

Detailed analysis of various image transformations. We ablate the individual image transforma-
tions used in DBD to assess their standalone effects (as Fig.4). JPEG compression-decompression
preserves clean accuracy while providing moderate defense against low-strength attacks, though
its effectiveness diminishes as attack strength increases. Random crop-resize-flip slightly improves
clean accuracy and shows robustness across different attack strengths and model backbones. Adding
Gaussian noise can yield strong defense in certain cases but substantially degrades clean accuracy.
By combining multiple transformations, DBD leverages their complementary strengths to gener-
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ate more reliable features across diverse scenarios and model variants; moreover, integration of
transformations mitigates the risk of defenses being circumvented by attacks tailored to a single
transformation.

More ablation study on the DB-score threshold τ . We evaluate the detection performance of
adversarial examples using the DB-score. Specifically, we assess the effect of threshold τ under
three PGD attack settings across 15 datasets, reporting both the mean detection accuracy and mean
F1-score averaged over all datasets and attack settings. Results are presented in Fig.5. The results
show that τ = 0.8 achieves near-optimal detection performance, and the metric remains stable in its
neighborhood. This supports our choice and confirms that the DB-score provides a reliable signal
for distinguishing adversarial from clean inputs.

（b）DB-score threshold (�)

Figure 5: Average results of detection accuracy and F1-score for various types of transformations
across 15 datasets under three attack settings.

Geometric Verification of the Proposed Defense Direction. To validate our hypothesis that the
Defense Direction genuinely points toward the correct decision region, we conduct a geometric
analysis by measuring the cosine similarity between the estimated Defense Direction and two critical
reference directions. The first is the Clean Direction, defined as the vector from the adversarial
image’s feature to its corresponding clean (unperturbed) counterpart’s feature. The second is the
Class Centroid Direction, defined as the vector from the adversarial image’s feature to the centroid
of features belonging to the true class (computed using correctly classified clean images).

Table 11 presents the average cosine similarities across multiple fine-grained datasets under the
PGD-100 (ϵ=4/255) attack on CLIP-ViT-B/16. The results demonstrate that our proposed Defense
Direction exhibits extremely high similarity (≈ 0.95) with the Clean Direction and substantial sim-
ilarity (≈ 0.90) with the Class Centroid Direction. These high cosine similarities provide strong
geometric evidence that the Defense Direction indeed aligns closely with both the clean feature di-
rection and the correct class centroid, supporting our hypothesis that the Defense Direction points
back toward the correct decision region.

Table 11: Average cosine similarity between Defense Direction and reference directions across
datasets under PGD-100(ϵ = 4/255) attack on CLIP-ViT-B/16.

Reference Direction Pets Caltech101 Food101 Cars ImageNet
Clean Direction 0.957 0.945 0.939 0.943 0.951
Class Centroid Direction 0.932 0.917 0.898 0.905 0.892

Adaptive Attack with BPDA and EOT. While our primary evaluation based on the threat model
described in Section 3.1, we additionally evaluate against adaptive, defense-aware attacks to assess
potential vulnerabilities. Based on PGD attack, we implement BPDA (Backward Pass Differentiable
Approximation, Athalye et al. (2018)) combined with EOT (Expectation Over Transformation, (Xie
et al., 2017)) to approximate gradients through our differentiable DBD pipeline. During attack
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optimization, non-differentiable components are replaced with identity functions in the backward
pass, while gradients are averaged over multiple stochastic forward passes.

We evaluate on Caltech101 dataset using strong adaptive attacks: PGD-10 (ϵ=1/255) against CLIP-
ResNet50 and PGD-100 (ϵ=4/255) against CLIP-ViT-B/16. Results in Table 12 show that when
attackers explicitly optimize through the full DBD pipeline, robust accuracy degrades significantly
(to 50.79% and 1.29%, respectively). Notably, these adversarial images generated buy adaptive
attacks also perform substantially worse against the original CLIP model compared to standard
attacks, suggesting overfitting to the defense mechanism.

Critically, under the adaptive attack (PGD-100), the average DB-score remains high (0.89), with
approximately 81% of adversarial samples exceeding our detection threshold (τ=0.80). This reveals
an important insight: the directional bias pattern persists under adaptive attacks, but the estimated
direction is manipulated to point away from the true class. In other words, while adaptive attacks
can subvert the defense functionality by distorting the Defense Direction, they cannot eliminate
the underlying directional bias signal—making such attacks still detectable through our DB-score
metric.

Table 12: Robust accuracy (%) under adaptive attacks with BPDA+EOT on Caltech101.

Attacks Original CLIP CLIP with DBD
PGD-10 (ϵ=1/255) 84.26 50.79
PGD-100 (ϵ=4/255) 81.05 1.29

A.5 USE OF LLMS

In this work, we used ChatGPT to assist in polishing the writing of this paper, focusing primarily
on improving clarity, grammar, and style. The model was not involved in the generation of ideas or
experimental designs. All the concepts, analyses, and conclusions presented are entirely our own.
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