

ADVERSARIAL ATTACKS ALREADY TELL THE ANSWER: DIRECTIONAL BIAS-GUIDED TEST-TIME DEFENSE FOR VISION-LANGUAGE MODELS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Vision-Language Models (VLMs), such as CLIP, have shown strong zero-shot
 014 generalization but remain highly vulnerable to adversarial perturbations, posing
 015 serious risks in real-world applications. Test-time defenses for VLMs have
 016 recently emerged as a promising and efficient approach to defend against adversarial
 017 attacks without requiring costly large-scale retraining. In this work, we uncover
 018 a surprising phenomenon: under diverse input transformations, adversarial im-
 019 ages in CLIP’s feature space consistently shift along a dominant direction, in con-
 020 trast to the dispersed patterns of clean images. We hypothesize that this dominant
 021 shift, termed the Defense Direction, opposes the adversarial shift, pointing fea-
 022 tures back toward their correct class centers. Building on this insight, we propose
 023 **Directional Bias-guided Defense (DBD)**, a test-time framework that estimates
 024 the Defense Direction and employs a DB-score-based two-stream reconstruction
 025 strategy to recover robust representations. Experiments on 15 datasets demon-
 026 strate that DBD not only achieves SOTA adversarial robustness while preserving
 027 clean accuracy, but also reveals the counterintuitive result that robust accuracy
 028 can even surpass clean accuracy. This demonstrates that adversarial perturbations
 029 inherently encode directional priors about the true decision boundary.

1 INTRODUCTION

030 Vision-Language Models (VLMs) such as CLIP (Radford et al., 2021), pre-trained on large-scale
 031 image-text pairs, enable strong cross-modal understanding and zero-shot generalization, and are now
 032 widely applied across vision and multimodal tasks (Zhang et al., 2024b). Despite its success, CLIP
 033 is highly vulnerable to adversarial perturbations: even imperceptible input distortions (Szegedy
 034 et al., 2013) can cause severe prediction errors. Such fragility poses critical safety risks in security-
 035 sensitive applications, making adversarial robustness a key challenge for reliable deployment.

036 Adversarial training (Madry et al., 2017; Zhang et al., 2019) is a well-studied strategy for improv-
 037 ing model robustness. When extended to VLMs like CLIP, methods such as Adversarial Fine-
 038 Tuning (Mao et al., 2022; Wang et al., 2024; Schlarmann et al., 2024) and Adversarial Prompt
 039 Tuning (Li et al., 2024; Zhou et al., 2024) have achieved notable progress in strengthening ad-
 040 versarial resistance. However, these approaches rely on task-specific annotated datasets, making
 041 training costly and less accessible. Optimization on limited data may also weaken generalization
 042 and zero-shot transferability. To address these limitations, recent studies have explored test-time de-
 043 fenses that require no additional training, broadly categorized as prompt-based and transforma-
 044 tion-based approaches. Prompt-based defenses (Sheng et al., 2025; Wang et al., 2025) adapt textual
 045 prompts for each instance, effectively mitigating attacks but substantially increasing inference la-
 046 tency. Transformation-based methods, such as counterattack perturbation (Xing et al., 2025) and
 047 Gaussian noise injection (Tong et al., 2025), offer a simple and efficient way to enhance adversarial
 048 robustness by modifying inputs, yet they may degrade performance on clean images.

049 Given their effectiveness and computational efficiency, transformation-based methods have emerged
 050 as a promising approach for test-time defense. Prior studies (Guo et al., 2017; Cohen et al., 2019;
 051 Dziugaite et al., 2016; Xie et al., 2017) have shown that various image transformations can mitigate
 052 adversarial effects. However, the underlying mechanism of how and why the adversarial effects

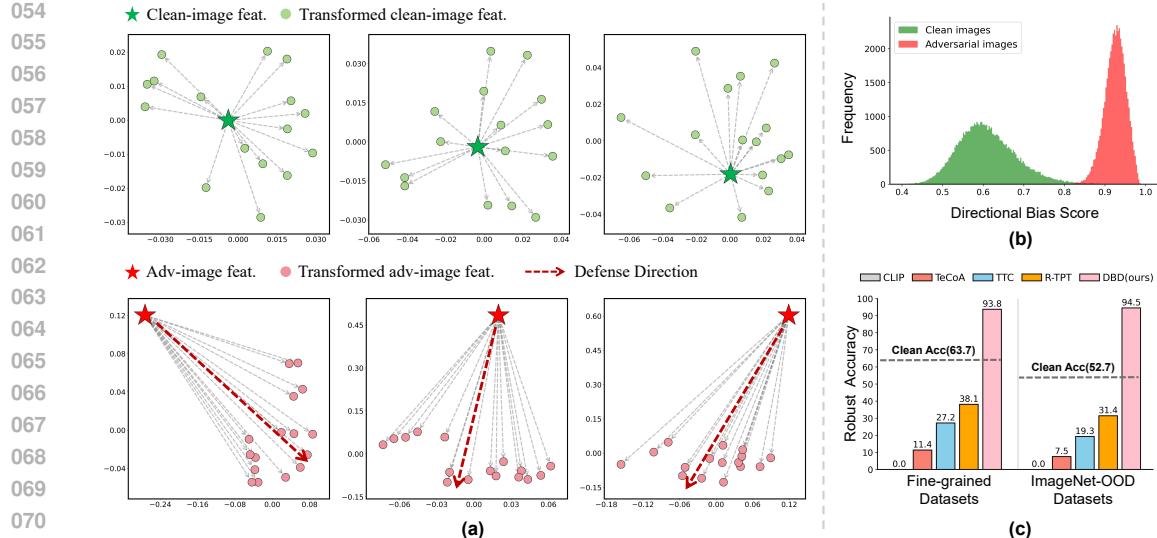


Figure 1: **Illustration of the proposed Directional Bias (DB) analysis:** (a) Visualization of image features under various transformations for clean (first row) and adversarial (second row) inputs, obtained via Multidimensional Scaling (MDS) with $1 - \cosine$ similarity as the distance metric. Clean inputs yield dispersed feature patterns, whereas adversarial inputs exhibit strong directional bias. (b) Histogram of DB-scores on ImageNet, showing clear separation between clean and adversarial images. (c) Comparison of average robust accuracy across multiple methods on ten fine-grained datasets (left) and five ImageNet-OOD datasets (right). Our DBD consistently surpasses previous SOTA methods and even outperforms clean accuracy across all datasets. Adversarial images are generated using 100-step PGD ($\ell_\infty, \epsilon = 4/255$, step size 1/255) on CLIP-ViT-B/32.

are alleviated remains unexplored, limiting further progress in defense design. To address this, we analyze the latent feature space to investigate how diverse transformations alter image features and thereby mitigate adversarial effects. As shown in Fig. 1(a), when applying various transformations to an input image, the transformed features of a clean image tend to scatter around the original feature, whereas those of an adversarial image consistently shift toward a specific direction, presenting a skewed pattern. To quantify this phenomenon, we further introduce a **Directional Bias (DB)** score to measure the directional concentration of transformed features. As shown in Fig. 1(b), the DB-score exhibits a clear bimodal distribution, effectively distinguishing adversarial from clean ones, as adversarial images consistently exhibit high and concentrated scores.

The above observation prompts a key question: *what does the direction of transformed features represent?* Recall that adversarial attacks work by shifting features away from original class centers, thereby inducing misclassification. We therefore hypothesize that this dominant direction could be anti-parallel to the adversarial shift, pointing features back toward their correct class centers. Building on this insight, we propose **Directional Bias-guided Defense (DBD)**, a test-time framework for VLMs that leverages this specific direction, referred to as **Defense Direction**, to uncover discriminative features. To capture robust Defense Direction, DBD applies a wide range of transformations across spatial, pixel, and frequency domains to obtain diverse augmented features, and then uses entropy-based filtering to retain high-quality ones. Leveraging the DB-score to distinguish between adversarial and clean inputs, we propose a two-stream feature reconstruction strategy to enhance test-time defense: for high DB-score examples, adversarial features are linearly shifted along the Defense Direction to restore correct representations; while for low DB-score examples, the average transformed features are used as test-time augmentation for stabilizing representations.

We conduct extensive experiments across ten fine-grained classification datasets and five ImageNet-OOD datasets. The results demonstrate that our method not only preserves performance on clean images but also achieves substantial improvements over previous state-of-the-art defenses on adversarial examples across all datasets. Remarkably, as shown in Fig. 1(c), the classification accuracy on adversarial images even surpasses that on clean images. *This counterintuitive result justifies that the generation of adversarial examples guided by ground-truth labels implicitly encodes directional priors about the true decision boundary, which we exploit to achieve effective defense.*

108 Our main contributions are as follows: (1) To the best of our knowledge, we are the first to show that
 109 adversarial perturbations implicitly encode directional priors of the true decision boundary, which
 110 can be reliably estimated using multiple transformations. (2) We propose Directional Bias-guided
 111 Defense (DBD), a test-time framework that leverages these directional priors through Defense Di-
 112 rection estimation and a two-stream reconstruction strategy based on the proposed DB-score, en-
 113 abling effective and efficient defense. (3) We validate DBD on 15 datasets, demonstrating superior
 114 adversarial robustness while preserving zero-shot performance on clean images. In some cases, our
 115 method even surpasses the performance on clean images when evaluated on adversarial images.

117 2 RELATED WORKS

119 **Vision-Language Models (VLMs).** CLIP (Radford et al., 2021), trained on large-scale image-text
 120 pairs, has become a cornerstone vision-language model (VLM) with strong zero-shot generalization
 121 and cross-modal reasoning (Zhang et al., 2024b). Building on this paradigm, ALIGN (Jia et al.,
 122 2021) and BLIP-2 (Li et al., 2023) further scale or refine the alignment of image-text pairs, while
 123 LLaVA (Liu et al., 2023) extends VLMs toward instruction-following and conversational tasks. By
 124 aligning modalities in a shared embedding space, these models provide powerful task-agnostic rep-
 125 resentations. However, prior studies (Zhao et al., 2023; Schlar mann & Hein, 2023) have shown that
 126 VLMs are highly vulnerable to adversarial attacks, posing a critical barrier to their deployment in
 127 safety-sensitive applications.

128 **Adversarial Attacks and Defenses.** Adversarial perturbations are small but carefully crafted input
 129 distortions that can drastically mislead deep neural networks (Szegedy et al., 2013). Early works
 130 proposed gradient-based attacks such as FGSM (Goodfellow et al., 2014), iterative methods like
 131 PGD (Madry et al., 2017), and optimization-based approaches such as CW (Carlini & Wagner,
 132 2017). More recent efforts have introduced adaptive attacks such as AutoAttack (AA) (Croce &
 133 Hein, 2020b), a robust benchmark combining four attacks: the score-based black-box Square (An-
 134 driushchenko et al., 2020), the minimal- ℓ_p -perturbation FAB (Croce & Hein, 2020a), APGD-CE
 135 (using cross-entropy loss), and APGD-DLR (using difference-of-logits-ratio loss). To counter ad-
 136 versarial threats, defenses have been extensively explored. Adversarial training (Madry et al., 2017;
 137 Zhang et al., 2019; Shafahi et al., 2019; Wong et al., 2020) optimizes models on perturbed exam-
 138 ples to enhance robustness. Input purification (Guo et al., 2017; Xie et al., 2017) transforms inputs
 139 toward the clean distribution. Recent diffusion-based purification methods (Nie et al., 2022; Chung
 et al., 2022) show promise in removing perturbations but often incur high computational cost.

140 **Adversarial Robustness of VLMs.** For VLMs such as CLIP, several extensions of adversarial
 141 training (Mao et al., 2022; Wang et al., 2024; Schlar mann et al., 2024; Li et al., 2024; Zhou et al.,
 142 2024) have been proposed to enhance robustness. TeCoA (Mao et al., 2022) examines the effect
 143 of fine-tuning and visual prompt tuning on the zero-shot adversarial robustness of VLMs. Adver-
 144 sarial Prompt Tuning methods, including APT (Li et al., 2024) and AdvPT (Zhang et al., 2024a),
 145 focus on optimizing textual prompts without modifying model parameters. However, these methods
 146 rely on annotated data and may weaken generalization, motivating test-time defenses that require
 147 no additional training. Prompt-based test-time methods such as R-TPT (Sheng et al., 2025) and
 148 TAPT (Wang et al., 2025) adapt prompts on a per-instance basis, achieving reasonable robustness
 149 at the cost of substantial inference overhead. Transformation-based methods mitigate adversarial
 150 attacks by modifying input images. For example, TTC (Xing et al., 2025) generates counterattack
 151 perturbations for adversarial images, and AOM (Tong et al., 2025) injects Gaussian noise into in-
 152 puts. These approaches can improve robustness in practice but often degrade performance on clean
 153 images. Our method exploits directional bias in latent feature space to reconstruct features under
 154 diverse transformations, enhancing adversarial robustness while preserving clean performance, and
 achieving an efficient balance between robustness and computational cost.

157 3 METHOD

159 3.1 PRELIMINARIES

161 **Zero-shot classification of CLIP.** CLIP (Radford et al., 2021) is a VLM that projects images and
 texts into a shared embedding space and measures their relationships using cosine similarity. For

zero-shot classification, CLIP consists of two pre-trained encoders: a visual encoder \mathcal{E}_v and a text encoder \mathcal{E}_t . For an C -class classification task, given an image x_{test} and a set of class names with prompts $T_c, c \in [1, C]$, CLIP computes text features: $\mathbf{f}_{t_c} = \mathcal{E}_t(T_c)$, for each class c , and image feature $\mathbf{f}_v = \mathcal{E}_v(x_{\text{test}})$. The prediction probability for class c is calculated as:

$$P_{\text{CLIP}}(y = c \mid x_{\text{test}}) = \frac{\exp(\cos(\mathbf{f}_{t_c}, \mathbf{f}_v)/t)}{\sum_{c'=1}^C \exp(\cos(\mathbf{f}_{t_{c'}}, \mathbf{f}_v)/t)}, \quad (1)$$

where $\cos(\cdot, \cdot)$ is the cosine similarity between the features, and t is a temperature parameter that controls the sharpness of the distribution. The final classification decision is determined by selecting the class with the highest probability:

$$\hat{y} = \arg \max_{c \in [1, C]} P_{\text{CLIP}}(y = c \mid x_{\text{test}}), \quad (2)$$

where \hat{y} represents the predicted class label.

Adversarial attacks for CLIP. Despite its strong zero-shot performance, CLIP is particularly sensitive to small adversarial perturbations (Szegedy et al., 2013). Following recent SOTA test-time method R-TPT (Sheng et al., 2025), we consider a threat model where the attacker has full access to the vanilla CLIP model, but no knowledge of the defense mechanism. This reflects real-world deployment: foundation models like CLIP have publicly available weights, while test-time defenses are typically deployed privately. In this setting, adversarial examples are crafted against CLIP as:

$$\delta = \arg \max_{\delta'} \mathcal{L}(\text{CLIP}(x + \delta', T), y), \quad \text{s.t. } \|\delta'\|_p \leq \epsilon, \quad (3)$$

where y is the ground-truth label of input image x , T is a set of class names with prompts, \mathcal{L} is a loss function (typically cross-entropy loss), and ϵ is the attack budget controlling the magnitude of perturbations to remain imperceptible.

3.2 DBD FOR VLMs

We propose Directional Bias-guided Defense (DBD), a test-time framework for defending VLMs against adversarial attacks. The core idea of DBD is to leverage multiple input transformations to construct diverse reference features, analyze their directional bias relative to the original features, and use this property to guide feature reconstruction. The overall framework consists of three main components: input transformations & feature filtering, Directional Bias (DB) computation, and two-stream feature reconstruction, as illustrated in Fig. 2.

Image Transformations & Feature Filtering. Since individual transformations have inherent drawbacks, relying on a single transformation may produce unreliable features. For example, random cropping is stochastic and may capture mostly background, while filtering can excessively blur important details. To improve robustness, we apply a diverse set of transformations to generate multiple feature candidates, which leverages complementary strengths across transformations to both preserve task-relevant information and disrupt adversarial noise.

We construct an image transformation library covering diverse transformations across three domains: (1) *Spatial domain*: including random cropping, scaling, and flipping. These geometric operations alter object position, size, and orientation, thereby disrupting the structured alignment of adversarial perturbations and weakening their effect. (2) *Pixel domain*: including bit-depth compression (quantization), JPEG compression-decompression, and additive Gaussian noise. These pixel-level modifications distort or overwrite fine-grained perturbations, making them less effective in misleading the model. (3) *Frequency domain*: including Gaussian, mean, and median filtering. By smoothing or suppressing high-frequency components, these filters reduce adversarial noise while largely preserving the semantic content of the image.

Transformed features exhibit varying quality across different transformations, so we apply a feature filtering step to select the most informative and reliable representations. Following common practice in test-time adaptation (Shu et al., 2022), we use the entropy of the model’s prediction as a quality

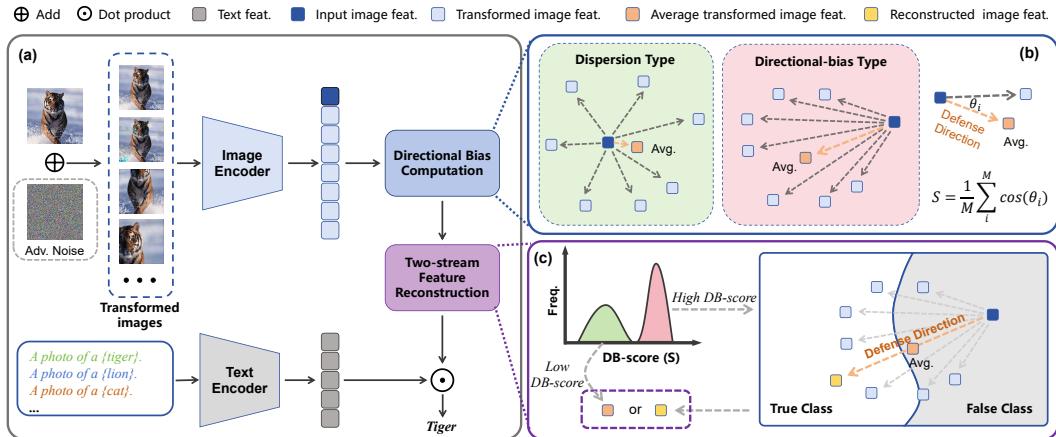


Figure 2: **Overview of the proposed Directional Bias-guided Defense (DBD).** (a) Framework: multiple transformations are applied to the input image, and high-quality transformed features are retained by entropy-based filtering; then the Defense Direction and DB-score are computed for feature reconstruction and classification. (b) Directional Bias (DB) Computation: the Defense Direction is defined from the original feature to the average transformed feature, and the DB-score is the mean cosine similarity between the Defense Direction and each individual displacement vector. (c) Two-stream Feature Reconstruction: for high DB-score (likely adversarial images), the original features are shifted further along the Defense Direction to obtain more robust representations; for low DB-score (likely clean images), the average transformed features are used as test-time augmentation for stabilizing representations.

metric. Specifically, given n transformed images, we pre-compute their features $\mathbf{f}_i (i = 1, 2, \dots, n)$ and classification probabilities with CLIP, then calculate the entropy for each:

$$E_i = - \sum_c p_{i,c} \log p_{i,c}, \quad (4)$$

where $p_{i,c}$ denotes the predicted probability of the i -th transformed image feature for class c . We then select the k transformed image features with the lowest entropy as high-quality features for subsequent processing:

$$\mathcal{F}_{\text{ref}} = \{\mathbf{f}_i \mid i \in \mathcal{I}_k\}, \quad \mathcal{I}_k = \arg \min_{i \subset \{1, \dots, n\}, |i|=k} \sum_{j \in i} E_j. \quad (5)$$

Directional Bias (DB) Computation. After applying multiple transformations and feature filtering, we obtain a set of high-quality transformed image features. Visualization (Fig. 1(a)) shows that for clean images, the transformed features exhibit a dispersed pattern around the original feature. In contrast, for adversarial inputs, they consistently shift toward a specific direction, presenting a directional bias pattern. This occurs because transformations partially mitigate adversarial perturbations, aligning the features closer to the clean feature distribution.

Given a set of transformed features $\mathcal{F}_{\text{ref}} = \{\mathbf{f}_i \mid i = 1, \dots, k\}$ and the original feature \mathbf{f}_0 , we define the direction vectors for each transformed feature \mathbf{f}_i as unit vectors $\mathbf{d}_i = (\mathbf{f}_i - \mathbf{f}_0) / \|\mathbf{f}_i - \mathbf{f}_0\|_2$, and compute the Defense Direction \mathbf{d}_{def} as

$$\bar{\mathbf{d}} = \frac{1}{k} \sum_{i=1}^k (\mathbf{f}_i - \mathbf{f}_0), \quad \mathbf{d}_{\text{def}} = \frac{\bar{\mathbf{d}}}{\|\bar{\mathbf{d}}\|_2}, \quad (6)$$

where $\|\cdot\|_2$ denotes the ℓ_2 norm (Euclidean distance). The DB-score is computed as the average cosine similarity between each direction and the Defense Direction:

$$S_{\text{db}} = \frac{1}{k} \sum_{i=1}^k \langle \mathbf{d}_i, \mathbf{d}_{\text{def}} \rangle, \quad (7)$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product. As shown in Fig. 1(b), the DB-score exhibits a clear bimodal distribution for clean and adversarial images, allowing simple thresholding to separate them.

270 **Two-stream Feature Reconstruction.** Adversarial perturbations shift image features away from
 271 the true classification region, thereby inducing misclassification. Intuitively, the Defense Direction
 272 \mathbf{d}_{def} could be anti-parallel to the adversarial shift, pointing features back toward their correct clas-
 273 sification region. Guided by this intuition, we reconstruct more robust features by linearly shifting
 274 the input feature along the Defense Direction. However, due to stochasticity or imperfections in the
 275 transformations, the computed Defense Direction may be inaccurate. To reduce the negative impact
 276 of inaccurate Defense Direction, we propose a two-stream reconstruction strategy based on the DB-
 277 score: (1) High DB-score stream: a high S_{db} indicates a likely adversarial image and a more reliable
 278 Defense Direction. In this case, we shift the feature along the Defense Direction to enhance its dis-
 279 tinction from the original. (2) Low DB-score stream: a low S_{db} suggests a likely clean image with
 280 less reliable direction. For these examples, we use the average of transformed features as test-time
 281 augmentation for stabilizing representations. Formally, we introduce a threshold τ on DB-score S_{db} :
 282

$$\hat{\mathbf{f}} = \mathbf{f}_0 + l \cdot \mathbf{d}_{\text{def}}, \quad l = \begin{cases} \|\bar{\mathbf{d}}\|_2, & S_{db} \leq \tau \\ \lambda \cdot \|\bar{\mathbf{d}}\|_2, & S_{db} > \tau \end{cases}, \quad (8)$$

283 where $\hat{\mathbf{f}}$ is the reconstructed feature and λ is a hyperparameter controlling the magnitude of the
 284 feature shift. In practice, we use the distance from the average transformed features to the original
 285 feature $\|\bar{\mathbf{d}}\|_2$ as a reference for the shift magnitude, which is then scaled by λ . Finally, we use the
 286 reconstructed image feature $\hat{\mathbf{f}}$ to compute the predicted classification result, as given in Eq.1.
 287

289 4 EXPERIMENTS

291 4.1 EXPERIMENT SETUP

293 **Datasets.** Following prior works (Sheng et al., 2025; Li et al., 2024) on the adversarial robust-
 294 ness of CLIP, we evaluate our proposed test-time DBD on ten fine-grained classification datasets
 295 and five ImageNet-based out-of-distribution(OOD) benchmarks. The fine-grained datasets span di-
 296 verse domains: general objects (*Caltech101* (Fei-Fei et al., 2004)), animals (*Pets* (Parkhi et al.,
 297 2012)), plants (*Flower102* (Nilsback & Zisserman, 2008)), vehicles (*Cars* (Krause et al., 2013),
 298 *Aircraft*) (Maji et al., 2013), textures (*DTD* (Cimpoi et al., 2014)), satellite imagery (*EuroSAT* (Hel-
 299 ber et al., 2019)), human actions (*UCF101* (Soomro et al., 2012)), scenes (*SUN397* (Xiao et al.,
 300 2010)), and food (*Food101* (Bossard et al., 2014)). For ImageNet-OOD evaluation, we use *Im-
 301 ageNet* (Deng et al., 2009) and four established variants: *ImageNet-A* (Hendrycks et al., 2021b),
 302 *ImageNet-V2* (Recht et al., 2019), *ImageNet-R* (Hendrycks et al., 2021a), and *ImageNet-S* (Wang
 303 et al., 2019). Since our method targets test-time adversarial robustness, we do not require access to
 304 any training sets.

305 **Implementation details.** We use official pre-trained CLIP backbones (ResNet-50 (He et al., 2016),
 306 ViT-B/32, and ViT-B/16 (Dosovitskiy et al., 2020)) as the base models. Adversarial images are gen-
 307 erated with PGD (Madry et al., 2017) under the L_∞ norm constraint. Following prior works (Sheng
 308 et al., 2025; Li et al., 2024), we evaluate two threat levels. For low-strength attack, we use PGD-10
 309 with $\epsilon = 1/255$ on CLIP-ResNet50; for high-strength attack, we use PGD-100 with $\epsilon = 4/255$ on
 310 CLIP-ViT-B/32 and CLIP-ViT-B/16. The step size for all attacks is $\alpha = \epsilon/4$. For our DBD, we
 311 apply $n = 31$ transformations per input, yielding 32 images including the original, and then select
 312 $k = 16$ transformed image features via entropy-based filtering. The DB-score threshold is $\tau = 0.8$,
 313 and the feature shift magnitude is set to $\lambda = 2.5$. Both are estimated from ImageNet validation set
 314 (50k images). Experiments are conducted in PyTorch on RTX 3090 GPUs.

315 **Baselines.** We compare DBD with several existing methods, including adversarial fine-tuning on
 316 ImageNet (TeCoA (Mao et al., 2022)), adversarial prompt tuning on downstream datasets with 16
 317 shots (APT (Li et al., 2024)), test-time prompt tuning (R-TPT (Sheng et al., 2025)), test-time input
 318 transformation method (TTC (Xing et al., 2025)), and the original CLIP (Radford et al., 2021)
 319 models. Except for APT, which uses few-shot tuning, all other methods operate in a zero-shot
 320 setting. Baseline results are obtained from official reports or reproduced using official code.

321 4.2 MAIN RESULTS

322 **Results on fine-grained datasets.** We evaluate the adversarial robustness of DBD on ten fine-
 323 grained classification datasets, with results summarized in Table 1. Under the CLIP-ViT-B/32 and

324
 325 Table 1: Results (%) of clean accuracy (Acc.) and robust accuracy (Rob.) of various defense
 326 methods on ten **fine-grained classification datasets**. Robust accuracies are highlighted with
 327 gray background. Best clean accuracies are (**bold**), and best robust accuracies are (**bold red**).
 328

Method	Caltech101		Pets		Cars		Flower102		Aircraft		DTD		EuroSAT		UCF101		SUN397		Food101		Avg.	
	Acc.	Rob.																				
PGD-10 ($\epsilon = 1/255$) on CLIP-ResNet50																						
CLIP	89.1	2.1	85.0	0.0	57.3	0.0	65.9	0.0	19.6	0.0	48.5	0.4	37.5	0.0	59.7	0.0	62.7	0.0	75.6	0.0	60.1	0.3
TeCoA	78.2	64.1	76.2	54.4	24.1	9.2	32.6	17.3	6.6	2.4	30.7	21.4	23.8	19.0	40.4	21.8	38.6	19.7	29.2	12.3	38.1	24.2
R-TPT	86.0	79.9	84.7	73.4	58.4	42.1	60.7	51.0	18.1	12.3	41.1	34.3	21.2	15.8	59.2	50.3	60.8	50.7	73.3	57.8	56.3	46.8
DBD	90.1	98.7	86.0	95.9	60.0	86.2	65.9	88.3	21.6	56.3	47.9	85.2	29.4	81.3	60.6	88.9	63.8	93.2	75.0	97.4	60.0	87.1
PGD-100 ($\epsilon = 4/255$) on CLIP-ViT-B/32																						
CLIP	93.3	0.1	86.6	0.0	61.2	0.0	67.0	0.0	20.6	0.0	49.9	0.0	50.8	0.0	63.6	0.0	65.7	0.0	78.7	0.0	63.7	0.0
TeCoA	81.5	46.1	64.4	16.7	11.5	1.1	30.1	9.5	6.7	0.6	29.3	12.7	13.8	11.1	34.0	6.3	34.7	6.5	22.4	3.0	32.8	11.4
APT	86.6	57.6	66.6	17.2	41.9	9.9	84.4	47.0	28.7	6.8	47.5	21.4	67.2	23.5	58.2	18.9	46.6	10.5	33.3	6.8	56.1	22.0
TTC	89.5	47.6	61.0	41.5	45.9	21.3	65.5	29.2	15.4	11.1	39.5	20.4	44.8	15.4	60.8	27.6	46.3	25.7	74.4	32.2	54.3	27.2
R-TPT	91.0	77.8	84.8	57.7	63.3	28.3	63.3	38.8	19.6	10.1	42.7	29.9	31.9	6.5	63.1	44.2	64.0	44.1	78.5	43.5	60.2	38.1
DBD	93.8	99.0	86.8	96.2	63.7	91.2	68.7	94.7	22.4	66.3	51.5	88.3	41.7	92.6	65.3	92.2	67.1	94.2	80.1	98.4	64.1	91.3
PGD-100 ($\epsilon = 4/255$) on CLIP-ViT-B/16																						
CLIP	94.2	0.0	90.3	0.0	66.2	0.0	73.0	0.0	27.1	0.0	53.2	0.0	55.7	0.0	67.0	0.0	67.9	0.0	84.2	0.0	67.9	0.0
TTC	90.3	16.1	57.9	17.7	57.4	11.3	68.5	19.8	21.7	2.8	41.5	15.3	44.7	0.6	64.8	4.9	51.5	15.7	81.0	21.2	58.0	12.5
R-TPT	93.7	83.1	87.4	63.3	67.0	36.0	68.1	46.4	24.0	14.4	46.6	34.9	34.6	10.2	67.8	47.3	65.7	46.5	84.3	49.7	63.9	43.2
DBD	94.8	99.4	90.7	97.1	67.8	93.4	73.6	97.5	29.7	71.9	54.5	92.3	44.9	93.3	68.2	95.9	69.0	97.4	84.7	99.5	67.8	93.8

339
 340 Table 2: Results (%) of clean accuracy (Acc.) and robust accuracy (Rob.) of various defense meth-
 341 ods on five **ImageNet-OOD datasets**. Robust accuracies are highlighted with gray background.
 342 Best clean accuracies are (**bold**), and best robust accuracies are (**bold red**).
 343

Attack & Model	Method	ImageNet Acc.	ImageNet Rob.	ImageNet-A Acc.	ImageNet-A Rob.	ImageNet-V2 Acc.	ImageNet-V2 Rob.	ImageNet-R Acc.	ImageNet-R Rob.	ImageNet-S Acc.	ImageNet-S Rob.	Avg.	
		Acc.	Rob.	Acc.	Rob.	Acc.	Rob.	Acc.	Rob.	Acc.	Rob.	Acc.	Rob.
PGD-10 ($\epsilon = 1/255$) on CLIP-ResNet50	CLIP	61.5	0.0	23.8	0.0	54.7	0.0	60.0	0.4	35.6	0.3	47.1	0.2
	TeCoA	48.4	28.1	4.9	1.2	39.6	21.7	40.6	25.7	18.3	11.6	30.3	17.7
	R-TPT	60.8	47.3	28.0	14.2	54.7	41.6	57.7	46.6	34.0	26.0	47.0	35.1
	DBD	63.1	94.5	23.0	89.0	55.7	93.0	63.0	94.0	38.1	73.7	48.6	88.8
PGD-100 ($\epsilon = 4/255$) on CLIP-ViT-B/32	CLIP	64.4	0.0	31.1	0.0	57.2	0.0	68.3	0.0	42.5	0.0	52.7	0.0
	TeCoA	39.5	9.7	4.2	0.3	32.4	7.3	38.0	12.7	18.5	7.6	26.5	7.5
	TTC	35.4	25.7	27.5	8.4	41.3	21.4	53.4	28.1	29.8	12.8	37.5	19.3
	R-TPT	64.2	40.4	36.6	11.0	58.0	34.3	70.0	47.9	41.7	23.6	54.1	31.4
PGD-100 ($\epsilon = 4/255$) on CLIP-ViT-B/16	CLIP	69.6	0.0	50.6	0.0	63.4	0.0	77.1	0.0	49.1	0.0	62.0	0.0
	TTC	37.8	17.4	46.6	9.9	48.9	16.1	63.3	12.4	38.5	1.9	47.0	11.5
	R-TPT	69.4	46.6	57.9	20.7	63.9	40.2	77.0	57.6	47.9	30.3	63.2	39.1
	DBD	71.1	97.7	52.1	98.9	64.7	97.3	79.5	99.4	51.1	95.3	63.7	97.7

353 PGD-100 ($\epsilon = 4/255$) setting, the original CLIP model demonstrates strong zero-shot classification
 354 performance (63.7%) but is almost entirely vulnerable to adversarial attacks (0.0%). Adversarial
 355 fine-tuning (TeCoA) improves defense to 11.4%, but at the cost of reduced zero-shot performance
 356 on clean images (63.7% \rightarrow 32.8%). Adversarial prompt tuning (FAP) further enhances robustness
 357 (0.0% \rightarrow 22.0%) while mitigating the drop in clean accuracy (63.7% \rightarrow 56.1%), though its few-shot
 358 setting introduces data dependency. Test-time input transformation method (TTC) achieves moderate
 359 robustness on CLIP-ViT-B/32 (0.0% \rightarrow 27.2%) but are sensitive to model architecture, with
 360 only 12.5% on CLIP-ViT-B/16. Previous state-of-the-art test-time prompt tuning method (R-TPT)
 361 attains better robustness (0.0% \rightarrow 38.1%) and largely preserves zero-shot performance on clean images
 362 (63.7% \rightarrow 60.2%). In contrast, ours DBD maintains zero-shot performance close to the original
 363 CLIP across all three backbones (even exceeding it on CLIP-ViT-B/32) and achieves substantially
 364 higher robustness on adversarial examples, reaching 93.8% on CLIP-ViT-B/16, significantly surpassing
 365 both R-TPT and the performance on clean examples.

366 **Results on ImageNet-OOD datasets.** Results on ImageNet-OOD benchmarks are summarized in
 367 Table 2. The original CLIP model demonstrates strong robustness to distribution shifts but remains
 368 highly vulnerable to adversarial attacks. Notably, our DBD method not only preserves but slightly
 369 improves zero-shot classification on clean images (e.g., 52.7% \rightarrow 55.0% on CLIP-ViT-B/32), which
 370 we attribute to the combination of diverse image transformations and entropy-based feature filtering
 371 that produces more robust and accurate features. Across all three backbones, DBD substantially
 372 outperforms the previous state-of-the-art R-TPT on adversarial examples, achieving up to 97.7% on
 373 CLIP-ViT-B/16, a performance that even surpasses the classification accuracy on clean examples.

374 **Discussion.** Remarkably, the classification accuracy on adversarial images significantly exceeds
 375 that on clean images. This counterintuitive result suggests that the generation of adversarial ex-
 376 amples guided by ground-truth labels implicitly encodes directional priors about the true decision
 377 boundary. Our method leverages this by applying multiple image transformations to estimate the
 378 Defense Direction, then linearly shifting features along it to reconstruct robust representations.

378 4.3 MORE ANALYSIS
379380 Table 3: Robust accuracy (%) under PGD-100 ($\epsilon = 4/255$) on CLIP-ViT-B/16 using **pseudo-labels**
381 across six fine-grained datasets. The last row shows the clean accuracy as a reference.
382

Method	Caltech101	Pets	Flower102	Aircraft	DTD	UCF101	Avg.
CLIP	1.7	3.1	2.7	1.5	4.2	4.5	2.9
R-TPT	84.1	66.1	49.8	18.2	37.1	52.7	51.3
DBD	94.1	88.6	72.3	26.3	53.1	66.5	66.8
Clean	94.2	90.3	73.0	27.2	53.2	67.0	67.5

383 **Analysis under PGD attack with pseudo-label.** The previous experiments demonstrate that when
384 PGD generates adversarial examples using ground-truth labels, our method achieves robust accuracy
385 which significantly exceeds clean accuracy. To further validate its effectiveness without relying on
386 ground-truth labels, we consider a pseudo-label setting. Specifically, we use CLIP’s own predictions
387 on clean images as pseudo-labels to guide PGD in generating adversarial examples. As shown in
388 Table 3, under this setting the vanilla CLIP model remains highly vulnerable. In contrast, our method
389 consistently outperforms R-TPT and achieves robust accuracy comparable to clean accuracy (e.g.,
390 67.5% \rightarrow 66.8% on CLIP-ViT-B/16). This indicates that our method is able to fully leverage the
391 directional prior information carried by adversarial examples.
392

393 **Analysis under various attacks.** To demonstrate the generality of our method, we evaluate DBD
394 and baseline methods under additional adversarial attacks, including FGSM (Goodfellow et al.,
395 2014), CW (Carlini & Wagner, 2017), AutoAttack (AA) (Croce & Hein, 2020b), and four com-
396 ponent attacks of AA: Square Attack (Andriushchenko et al., 2020), targeted FAB (Croce & Hein,
397 2020a), untargeted APGD-CE, and targeted APGD-DLR. We evaluate various attacks on the same
398 six fine-grained datasets in Table 3, with the results summarized in Table 4. DBD consistently
399 demonstrates robust defense performance across all attack types, significantly outperforming R-
400 TPT. Notably, under AA on CLIP-ViT-B/16, DBD achieves an average robust accuracy of 69.8%,
401 surpassing the average clean accuracy of 67.5%.
402

403 Table 4: Average robust accuracy (%) across six fine-grained datasets under **various attacks** on
404 CLIP-ViT-B/16. All attacks are conducted under the ℓ_∞ norm with perturbation budget $\epsilon = 4/255$.
405

Method	FGSM	CW	AA	FAB	Square	APGD-CE	APGD-DLR	Avg.
CLIP	11.8	1.0	0.0	12.9	11.7	0.1	0.1	5.1
R-TPT	38.9	55.6	45.0	59.5	59.2	45.0	48.8	50.4
DBD	75.2	69.1	69.8	69.3	65.1	69.8	68.5	69.2

412 **Analysis of inference efficiency.** We com-
413 pare DBD’s inference efficiency with baseline
414 methods. Table 5 reports the training time of
415 APT and the inference time of test-time de-
416 fenses R-TPT, TTC, and DBD on UCF101 us-
417 ing CLIP-ViT-B/32. Training-time defenses in-
418 incur substantial training costs, while test-time
419 defenses avoid this but increase inference over-
420 head. DBD achieves a favorable balance be-
421 tween robustness and efficiency, outperforming
422 R-TPT in both accuracy and inference speed.
423

424 4.4 ABLATION STUDY

425 **Ablation of the feature shift magnitude factor λ .** To evaluate the impact of the shift magnitude
426 factor λ on the performance of DBD, we test three attack settings across 15 datasets. The average
427 robust accuracy of all is shown in Fig.3(a). When $\lambda = 0$, the reconstructed feature reduces to the
428 original feature, yielding nearly no defense. With $\lambda = 1.0$, the reconstructed feature becomes the
429 average of transformed features, achieving an average robust accuracy of 34.8%. At $\lambda = 2.5$, DBD
430 reaches 92.1% accuracy, demonstrating that linearly shifting the original feature along the Defense
431 Direction reconstructs robust features that align with the correct class. This highlights the reliability
432 of the Defense Direction identified by DBD.
433

434 Table 5: Running time and robust accuracies (%)
435 of different defense methods against adversarial
436 attacks on UCF101 dataset using CLIP-ViT-B/32.
437 APT is evaluated with 16 shots, while R-TPT and
438 DBD are evaluated with 32 views.
439

Method	Stage	Running time	Rob.
APT	Training time	22m47s / 200 epochs	18.9
TTC	Test time	0.008s / image	27.6
R-TPT	Test time	0.181s / image	44.3
DBD	Test time	0.025s / image	92.2

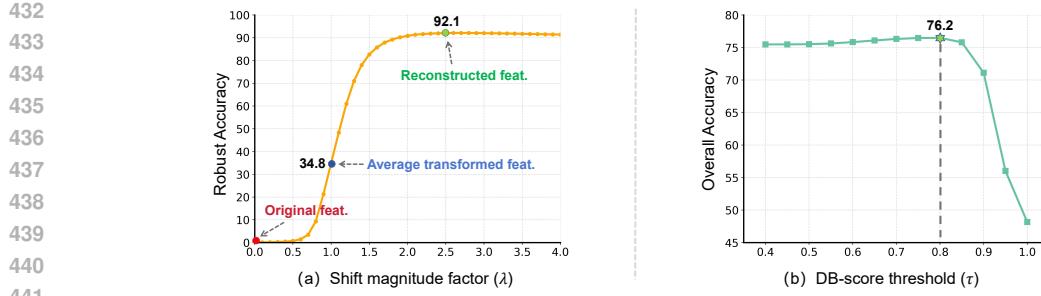


Figure 3: (a) Average robust accuracy (%) across 15 datasets under three attack settings for different values of the feature shift magnitude factor λ . (b) Average overall accuracy (%) for different values of the DB-score threshold τ , computed by averaging both clean and robust accuracies across all datasets and attack settings.

Table 6: **Ablation study.** Results (%) of clean accuracy (Acc.) and robust accuracy (Rob.) are average over 15 datasets and three attack settings. The left five columns correspond to different image transformation types, while the middle two columns represent DBD mechanisms (linear feature shifting and DB-score-based thresholding).

	Random Crop-Resize-Flip	Bit-depth Reduction	JPEG Compression	Gaussian Noise	Image Filtering	Feature Shift	DB-score Threshold	Acc.	Rob.
451	-	-	-	-	-	-	-	60.6	0.0
452	✓	-	-	-	-	✓	-	53.0	91.2
453	-	✓	-	-	-	✓	-	24.1	82.4
454	-	-	✓	-	-	✓	-	55.7	88.4
455	-	-	-	✓	-	✓	-	36.1	85.5
456	-	-	-	-	✓	✓	-	43.9	87.3
457	✓	✓	✓	✓	✓	-	-	61.5	34.8
	✓	✓	✓	✓	✓	✓	✓	58.9	92.1
								61.2	91.7

Ablation of the DB-score threshold τ . DBD employs a DB-score threshold τ to distinguish high-score examples (likely adversarial) from low-score examples (likely clean). We evaluate the effect of τ under three attack settings across 15 datasets, reporting the overall mean accuracy obtained by averaging both clean and adversarial performance across all datasets and attack settings (Fig.3(b)). The results show that setting $\tau = 0.8$ yields the best overall performance. At this threshold, DBD successfully reconstructs robust features for the majority of adversarial images, while simultaneously avoiding inaccurate shifts in most clean examples, thereby achieving a well-balanced trade-off between robust and clean accuracy.

Ablation of DBD mechanisms. We conduct ablation experiments on all DBD components, with results average over 15 datasets and three attack settings (Table 6). Our analysis reveals four key findings: (1) Using a single type of image transformation with feature shifting provides strong adversarial defense but reduces clean image performance. (2) Aggregating multiple transformations without linear shifting gives the best clean accuracy but weak defense. (3) Adding linear shifting on top of multiple transformations substantially improves adversarial robustness, at the cost of some clean performance. (4) Applying the DB-score-based threshold to handle high-score and low-score examples separately achieves the best trade-off between clean accuracy and adversarial robustness.

5 CONCLUSION

In this work, we found that adversarial examples exhibit a strong directional bias under multiple input transformations, in contrast to the dispersed behavior of clean examples. Building on this observation, we proposed Directional Bias-guided Defense (DBD), a test-time framework that leverages the directional bias to reconstruct robust features through Defense Direction estimation and a two-stream reconstruction strategy based on the proposed DB-score. Experiments on 15 datasets under three attack settings demonstrate that DBD achieves state-of-the-art adversarial robustness while preserving zero-shot performance on clean images. Remarkably, robust accuracy even surpasses clean accuracy, highlighting that adversarial perturbations implicitly encode directional priors about the true decision boundary. We believe that our work sheds light on new perspectives for training-free defenses in VLMs.

486 REFERENCES
487

488 MakSYM Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
489 tack: a query-efficient black-box adversarial attack via random search. In *European conference*
490 *on computer vision*, pp. 484–501. Springer, 2020.

491 Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
492 curity: Circumventing defenses to adversarial examples. In *International conference on machine*
493 *learning*, pp. 274–283. PMLR, 2018.

494 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
495 nents with random forests. In *European conference on computer vision*, pp. 446–461. Springer,
496 2014.

497 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017*
498 *ieee symposium on security and privacy (sp)*, pp. 39–57. Ieee, 2017.

499 Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
500 posterior sampling for general noisy inverse problems. *arXiv preprint arXiv:2209.14687*, 2022.

501 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
502 scribing textures in the wild. In *Proc. CVPR*, 2014.

503 Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
504 smoothing. In *international conference on machine learning*, pp. 1310–1320. PMLR, 2019.

505 Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive
506 boundary attack. In *International conference on machine learning*, pp. 2196–2205. PMLR, 2020a.

507 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
508 of diverse parameter-free attacks. In *ICML*, 2020b.

509 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
510 hierarchical image database. In *Proc. CVPR*, 2009.

511 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
512 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
513 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
514 *arXiv:2010.11929*, 2020.

515 Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M Roy. A study of the effect of jpg
516 compression on adversarial images. *arXiv preprint arXiv:1608.00853*, 2016.

517 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
518 examples: An incremental bayesian approach tested on 101 object categories. In *Proc. CVPR*
519 *Workshops*, 2004.

520 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
521 examples. *arXiv preprint arXiv:1412.6572*, 2014.

522 Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Countering adversarial
523 images using input transformations. *arXiv preprint arXiv:1711.00117*, 2017.

524 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
525 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
526 770–778, 2016.

527 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
528 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected*
529 *Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

530 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
531 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
532 analysis of out-of-distribution generalization. In *Proc. ICCV*, 2021a.

540 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 541 examples. In *Proc. CVPR*, 2021b.

542

543 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan
 544 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 545 with noisy text supervision, 2021. URL <https://arxiv.org/abs/2102.05918>.

546 Hoki Kim. Torchattacks: A pytorch repository for adversarial attacks. *arXiv preprint*
 547 *arXiv:2010.01950*, 2020.

548

549 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 550 categorization. In *Proc. ICCV Workshops*, 2013.

551

552 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 553 pre-training with frozen image encoders and large language models. In *International conference*
 554 *on machine learning*, pp. 19730–19742. PMLR, 2023.

555

556 Lin Li, Haoyan Guan, Jianing Qiu, and Michael Spratling. One prompt word is enough to boost
 557 adversarial robustness for pre-trained vision-language models. In *Proceedings of the IEEE/CVF*
 558 *Conference on Computer Vision and Pattern Recognition*, pp. 24408–24419, 2024.

559

560 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

561 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 562 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
 563 2017.

564

565 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 566 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

567

568 Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-shot
 569 adversarial robustness for large-scale models. *arXiv preprint arXiv:2212.07016*, 2022.

570

571 Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar.
 572 Diffusion models for adversarial purification. *arXiv preprint arXiv:2205.07460*, 2022.

573

574 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 575 of classes. In *Proc. ICVGIP*, 2008.

576

577 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *Proc.*
 578 *CVPR*, 2012.

579

580 Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? generating
 581 customized prompts for zero-shot image classification. In *Proceedings of the IEEE/CVF*
 582 *international conference on computer vision*, pp. 15691–15701, 2023.

583

584 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 585 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 586 models from natural language supervision. In *International conference on machine learning*, pp.
 587 8748–8763. PmLR, 2021.

588

589 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 590 generalize to imagenet? In *Proc. ICML*, 2019.

591

592 Christian Schlarbmann and Matthias Hein. On the adversarial robustness of multi-modal foundation
 593 models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 594 3677–3685, 2023.

595

596 Christian Schlarbmann, Naman Deep Singh, Francesco Croce, and Matthias Hein. Robust clip: Un-
 597 supervised adversarial fine-tuning of vision embeddings for robust large vision-language models.
 598 *arXiv preprint arXiv:2402.12336*, 2024.

599

600 Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
 601 Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! *Advances*
 602 *in neural information processing systems*, 32, 2019.

594 Lijun Sheng, Jian Liang, Zilei Wang, and Ran He. R-tpt: Improving adversarial robustness of vision-
 595 language models through test-time prompt tuning. In *Proceedings of the Computer Vision and*
 596 *Pattern Recognition Conference*, pp. 29958–29967, 2025.

597

598 Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and
 599 Chaowei Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models.
 600 *Advances in Neural Information Processing Systems*, 35:14274–14289, 2022.

601 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. A dataset of 101 human action classes
 602 from videos in the wild. *Center for Research in Computer Vision*, 2(11):1–7, 2012.

603

604 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 605 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

606 Baoshun Tong, Hanjiang Lai, Yan Pan, and Jian Yin. On the zero-shot adversarial robustness of
 607 vision-language models: A truly zero-shot and training-free approach. In *Proceedings of the*
 608 *Computer Vision and Pattern Recognition Conference*, pp. 19921–19930, 2025.

609

610 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
 611 tions by penalizing local predictive power. In *Proc. NeurIPS*, 2019.

612 Sibo Wang, Jie Zhang, Zheng Yuan, and Shiguang Shan. Pre-trained model guided fine-tuning for
 613 zero-shot adversarial robustness. In *Proceedings of the IEEE/CVF conference on computer vision*
 614 *and pattern recognition*, pp. 24502–24511, 2024.

615

616 Xin Wang, Kai Chen, Jiaming Zhang, Jingjing Chen, and Xingjun Ma. Tapt: Test-time adversarial
 617 prompt tuning for robust inference in vision-language models. In *Proceedings of the Computer*
 618 *Vision and Pattern Recognition Conference*, pp. 19910–19920, 2025.

619 Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training.
 620 *arXiv preprint arXiv:2001.03994*, 2020.

621

622 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 623 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on*
 624 *computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.

625 Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial
 626 effects through randomization. *arXiv preprint arXiv:1711.01991*, 2017.

627

628 Songlong Xing, Zhengyu Zhao, and Nicu Sebe. Clip is strong enough to fight back: Test-time
 629 counterattacks towards zero-shot adversarial robustness of clip. In *Proceedings of the Computer*
 630 *Vision and Pattern Recognition Conference*, pp. 15172–15182, 2025.

631

632 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
 633 Theoretically principled trade-off between robustness and accuracy. In *International conference*
 634 *on machine learning*, pp. 7472–7482. PMLR, 2019.

635

636 Jiaming Zhang, Xingjun Ma, Xin Wang, Lingyu Qiu, Jiaqi Wang, Yu-Gang Jiang, and Jitao Sang.
 637 Adversarial prompt tuning for vision-language models. In *European conference on computer*
 638 *vision*, pp. 56–72. Springer, 2024a.

639

640 Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
 641 A survey. *IEEE transactions on pattern analysis and machine intelligence*, 46(8):5625–5644,
 642 2024b.

643

644 Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Man Cheung, and Min
 645 Lin. On evaluating adversarial robustness of large vision-language models. *Advances in Neural*
 646 *Information Processing Systems*, 36:54111–54138, 2023.

647

648 Yiwei Zhou, Xiaobo Xia, Zhiwei Lin, Bo Han, and Tongliang Liu. Few-shot adversarial prompt
 649 learning on vision-language models. *Advances in Neural Information Processing Systems*, 37:
 650 3122–3156, 2024.

702 **Text Prompts.** For text prompts, we use a mix of hand-crafted prompts and GPT-3-generated
 703 prompts provided by CuPL (Pratt et al., 2023), and average text features over multiple prompts per
 704 class.

705 **Attacks.** All attacks are implemented using the torchattack (Kim, 2020) library. For PGD and
 706 FGSM attacks, we follow the baseline R-TPT (Sheng et al., 2025) configuration by using cross-
 707 entropy loss in untargeted mode. For the CW attack (Carlini & Wagner, 2017), we use a learning
 708 rate of 0.01 with the Adam optimizer. For AutoAttack (AA, (Croce & Hein, 2020b)), we use the
 709 standard mode, which includes four components: untargeted APGD-CE (1 restart), targeted APGD-
 710 DLR (10 target classes), targeted FAB (10 target classes, (Croce & Hein, 2020a)), and Square Attack
 711 (5000 queries, (Andriushchenko et al., 2020)). To remain consistent with the baseline setup, EOT
 712 was not applied. When verifying these 4 components, we keep the parameters unchanged.

714 Table 7: Details of image transformations used in DBD.
 715

716 Domain	717 Transformations
717 Spatial	718 Random cropping-scaling-flipping (16 times)
718 Pixel	719 Bit-depth compression (quantization): <code>floor</code> , <code>round</code> , <code>ceil</code> (bits = 3) 720 JPEG compression-decompression: <code>quality</code> = 50, 60, 75 721 Add Gaussian noise: $\gamma = 0.1$ (6 times)
721 Frequency	722 Gaussian filter: <code>kernel_size</code> = 5 723 Mean filter: <code>kernel_size</code> = 5 724 Median filter: <code>kernel_size</code> = 5

725

A.3 DATASETS

726 We evaluate our method on 10 fine-grained classification datasets and 5 ImageNet-OOD datasets.
 727 Table 8 summarizes their detailed information, including their content, number of categories, num-
 728 ber of images and corresponding hand-crafted prompt.

731 Table 8: Introduction of all datasets involved in experiments.
 732

733 Dataset	734 Description	735 # Classes	736 # Test	737 Hand-crafted Prompt
734 Caltech101	735 Object images	736 100	737 2,465	738 a photo of a [CLASS]
735 Pets	736 Pet images	737 37	738 3,669	739 a photo of a [CLASS], a type of pet
736 Cars	737 Car images	738 196	739 8,041	740 a photo of a [CLASS]
737 Flower102	738 Flower images	739 102	740 2,463	741 a photo of a [CLASS], a type of flower
738 Aircraft	739 Aircraft images	740 100	741 3,333	742 a photo of a [CLASS], a type of aircraft
739 DTD	740 Describable textures images	741 47	742 1,692	743 [CLASS] texture
740 EuroSAT	741 Sentinel-2 satellite images	742 10	743 8,100	744 a centered satellite photo of a [CLASS]
741 UCF101	742 Human action images	743 101	744 3,783	745 a photo of a person doing [CLASS]
742 SUN397	743 Scene recognition images	744 397	745 19,850	746 a photo of a [CLASS]
743 Food101	744 Food images	745 101	746 30,300	747 a photo of a [CLASS], a type of food
744 ImageNet	745 Object and scene images	746 1,000	747 50,000	748 a photo of a [CLASS]
745 ImageNet-A	746 Adversarially filtered images	747 200	748 7,500	749 a photo of a [CLASS]
746 ImageNet-V2	747 New test images	748 1,000	749 10,000	750 a photo of a [CLASS]
747 ImageNet-R	748 Rendered images	749 200	750 30,000	751 a photo of a [CLASS]
748 ImageNet-S	749 Sketch-style images	750 1,000	751 50,889	752 a photo of a [CLASS]

748

A.4 EXPERIMENTS

749 **Detailed results under PGD attack with pseudo-label.** Due to space constraints, Table 3 in the
 750 main text reports only a subset of the results. Here we provide the complete version in Table 9,
 751 which includes results on six fine-grained datasets and three attack settings.

752 **Detailed results under various attacks.** We evaluate DBD and baseline methods under additional
 753 adversarial attacks, including FGSM (Goodfellow et al., 2014), CW (Carlini & Wagner, 2017), and
 754 AutoAttack (AA) (Croce & Hein, 2020b). AA is a stronger, ensemble-based attack that combines
 755 targeted FAB (Croce & Hein, 2020a), Square Attack (Andriushchenko et al., 2020), untargeted

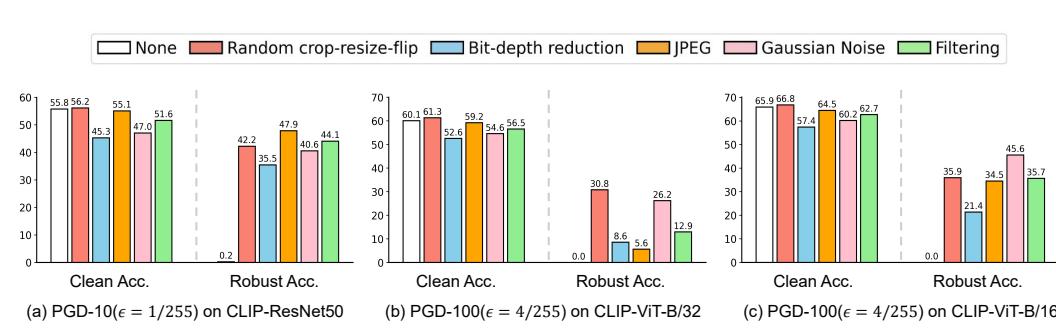
756
757 Table 9: robust accuracy (%) under three PGD attack settings using **pseudo-labels** on six fine-
758 grained datasets.

Attack & Model	Method	Caltech101	Pets	Flower102	Aircraft	DTD	UCF101	Avg.
Clean		89.1	85.0	65.9	19.6	48.5	59.7	61.3
PGD-100 ($\epsilon = 1/255$) on CLIP-ResNet50	CLIP	7.5	5.6	6.4	1.6	8.2	6.3	5.9
	R-TPT	81.7	77.7	53.2	15.1	35.6	54.3	52.9
	DBD	88.8	82.4	64.4	16.9	47.5	59.0	59.8
Clean		93.3	86.6	67.0	20.6	49.9	63.6	63.5
PGD-100 ($\epsilon = 1/255$) on CLIP-ViT-B/32	CLIP	2.3	3.4	3.8	0.8	3.8	4.9	3.2
	R-TPT	79.9	62.7	43.1	13.9	32.9	49.9	47.1
	DBD	93.0	84.4	66.1	19.5	49.5	62.7	62.5
Clean		94.2	90.3	73.0	27.2	53.2	67.0	67.5
PGD-100 ($\epsilon = 1/255$) on CLIP-ViT-B/16	CLIP	1.7	3.1	2.7	1.5	4.2	4.5	2.9
	R-TPT	84.1	66.1	49.8	18.2	37.1	52.7	51.3
	DBD	94.1	88.6	72.3	26.3	53.1	66.5	66.8

768
769 Table 10: Results (%) of clean accuracy (Acc.) and robust accuracy (Rob.) of various attacks on six
770 fine-grained classification datasets.

Method	Caltech101			Pets			Flower102			Aircraft			DTD			UCF101			Avg.		
	CLIP	R-TPT	DBD	CLIP	R-TPT	DBD	CLIP	R-TPT	DBD	CLIP	R-TPT	DBD	CLIP	R-TPT	DBD	CLIP	R-TPT	DBD	CLIP	R-TPT	DBD
Attacks on CLIP-ResNet50																					
FGSM	49.6	79.2	94.2	11.1	72.1	91.1	6.2	49.3	80.8	0.3	12.1	38.2	16.6	33.3	72.0	13.9	48.0	77.2	16.3	49.0	75.6
CW	5.1	79.6	90.6	0.8	74.7	86.6	0.9	51.2	65.6	0.9	14.9	18.8	2.2	33.7	50.1	2.4	51.5	62.0	2.1	50.9	62.3
AA	0.9	81.0	91.4	0.0	76.8	86.0	0.0	53.3	67.6	0.0	15.2	21.1	0.4	35.2	52.2	0.0	53.6	64.6	0.2	52.5	63.8
FAB	33.8	81.8	90.5	1.9	78.7	86.3	1.0	54.8	64.5	0.0	15.2	18.7	10.2	36.3	49.6	8.3	54.4	62.2	9.2	53.5	62.0
Square	50.5	83.2	87.7	36.5	80.4	83.1	33.7	57.7	56.5	1.2	15.8	15.6	19.6	37.3	44.4	18.1	56.7	56.3	26.6	55.2	57.3
APGD-CE	2.7	81.0	91.4	0.0	76.8	85.9	0.0	53.2	67.6	0.0	15.2	21.0	0.7	35.0	52.3	0.0	53.5	64.6	0.6	52.5	63.8
APGD-DLR	1.2	82.1	91.3	0.0	79.0	87.3	0.0	55.3	66.4	0.0	15.4	19.0	0.2	35.8	51.7	0.1	54.4	64.1	0.3	53.6	63.3
Attacks on CLIP-ViT-B/32																					
FGSM	47.2	75.1	87.9	7.1	49.8	88.0	3.7	37.1	69.1	0.2	8.4	36.0	12.9	27.6	51.0	9.7	40.7	61.0	13.5	39.8	65.5
CW	3.0	84.7	92.8	0.4	73.9	87.5	0.9	55.3	69.1	0.2	16.8	22.9	1.5	36.4	50.7	1.4	55.9	64.8	1.2	53.8	64.6
AA	0.4	75.3	93.1	0.0	51.9	87.7	0.0	39.2	69.9	0.0	14.0	24.3	0.0	32.0	52.8	0.0	46.7	67.1	0.1	43.2	65.8
FAB	46.5	78.9	93.5	17.9	78.8	88.1	17.5	58.8	69.3	0.8	17.4	22.4	14.3	39.3	52.2	16.3	59.1	66.0	18.9	56.9	65.3
Square	22.7	86.7	92.2	8.0	77.6	84.7	8.9	57.9	65.6	0.5	17.0	20.4	3.8	37.4	48.3	6.9	58.9	64.0	8.4	55.9	62.5
APGD-CE	1.1	75.3	93.1	0.0	51.9	87.7	0.0	39.2	69.9	0.0	14.0	24.3	0.0	32.0	52.8	0.0	46.7	67.1	0.2	43.2	65.8
APGD-DLR	0.6	79.6	92.3	0.0	60.0	87.1	0.0	46.4	68.8	0.0	14.8	22.7	0.0	33.6	51.5	0.0	50.3	64.8	0.1	47.4	64.5
Attacks on CLIP-ViT-B/16																					
FGSM	47.2	75.6	92.8	7.1	47.9	95.3	3.7	35.3	80.5	0.2	10.1	35.5	12.9	29.4	61.5	9.7	35.1	67.8	13.5	38.9	75.2
CW	3.0	87.3	94.7	0.4	73.4	92.1	0.9	55.7	73.9	0.2	20.0	28.8	1.5	39.5	56.2	1.4	57.4	69.2	1.2	55.6	69.1
AA	0.4	78.9	94.8	0.0	51.2	90.4	0.0	40.6	74.7	0.0	17.3	31.7	0.5	33.7	57.0	0.0	48.2	70.3	0.1	45.0	69.8
FAB	46.5	90.1	95.2	17.9	80.3	92.1	17.5	60.7	74.1	0.8	21.0	28.5	14.3	43.0	56.0	16.3	62.1	69.8	18.9	59.5	69.3
Square	22.7	89.6	93.5	8.0	77.7	87.8	8.9	62.9	68.8	0.5	21.2	24.7	3.8	41.3	50.4	6.9	62.5	65.3	8.4	59.2	65.1
APGD-CE	1.1	78.9	94.8	0.0	51.2	90.4	0.0	40.6	74.7	0.0	17.3	31.7	0.0	33.7	57.0	0.0	48.2	70.3	0.2	45.0	69.8
APGD-DLR	0.6	82.0	94.3	0.0	58.7	91.0	0.0	47.5	73.4	0.0	18.5	30.0	0.0	35.8	55.3	0.0	50.4	67.1	0.1	48.8	68.5

784 APGD-CE (Auto-PGD with Cross-Entropy loss), and targeted APGD-DLR (Auto-PGD with Dif-
785 ference of Logits Ratio loss), incorporating both gradient-based and gradient-free strategies to com-
786 prehensively challenge model robustness. We also separately evaluate defense performance against
787 each of these four constituent attacks. For our DBD, we set $\tau = 0.6$ and $\lambda = 2.5$ (with $\lambda = 5$
788 for FGSM). We assess the effectiveness of various attacks on six fine-grained datasets across three
789 attack settings, and detailed results are shown in Table 10.



801 Figure 4: Average results (%) of clean accuracy (Clean Acc.) and robust accuracy (Robust Acc.) for
802 various types of transformations across 15 datasets under three attack settings.

803
804 **Detailed analysis of various image transformations.** We ablate the individual image transfor-
805 mations used in DBD to assess their standalone effects (as Fig.4). JPEG compression-decompression
806 preserves clean accuracy while providing moderate defense against low-strength attacks, though
807 its effectiveness diminishes as attack strength increases. Random crop-resize-flip slightly improves
808 clean accuracy and shows robustness across different attack strengths and model backbones. Adding
809 Gaussian noise can yield strong defense in certain cases but substantially degrades clean accuracy.
By combining multiple transformations, DBD leverages their complementary strengths to gener-

ate more reliable features across diverse scenarios and model variants; moreover, integration of transformations mitigates the risk of defenses being circumvented by attacks tailored to a single transformation.

More ablation study on the DB-score threshold τ . We evaluate the detection performance of adversarial examples using the DB-score. Specifically, we assess the effect of threshold τ under three PGD attack settings across 15 datasets, reporting both the mean detection accuracy and mean F1-score averaged over all datasets and attack settings. Results are presented in Fig.5. The results show that $\tau = 0.8$ achieves near-optimal detection performance, and the metric remains stable in its neighborhood. This supports our choice and confirms that the DB-score provides a reliable signal for distinguishing adversarial from clean inputs.

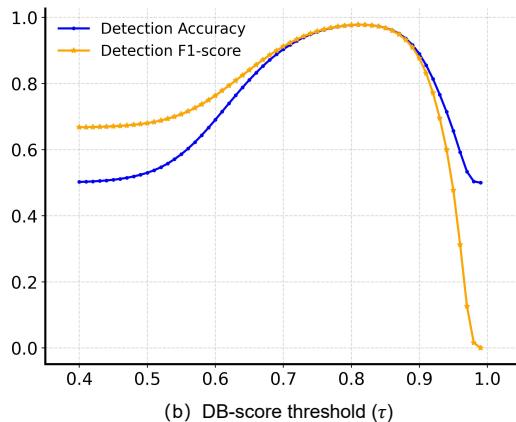


Figure 5: Average results of detection accuracy and F1-score for various types of transformations across 15 datasets under three attack settings.

Geometric Verification of the Proposed Defense Direction. To validate our hypothesis that the Defense Direction genuinely points toward the correct decision region, we conduct a geometric analysis by measuring the cosine similarity between the estimated Defense Direction and two critical reference directions. The first is the *Clean Direction*, defined as the vector from the adversarial image’s feature to its corresponding clean (unperturbed) counterpart’s feature. The second is the *Class Centroid Direction*, defined as the vector from the adversarial image’s feature to the centroid of features belonging to the true class (computed using correctly classified clean images).

Table 11 presents the average cosine similarities across multiple fine-grained datasets under the PGD-100 ($\epsilon=4/255$) attack on CLIP-ViT-B/16. The results demonstrate that our proposed Defense Direction exhibits extremely high similarity (≈ 0.95) with the Clean Direction and substantial similarity (≈ 0.90) with the Class Centroid Direction. These high cosine similarities provide strong geometric evidence that the Defense Direction indeed aligns closely with both the clean feature direction and the correct class centroid, supporting our hypothesis that the Defense Direction points back toward the correct decision region.

Table 11: Average cosine similarity between Defense Direction and reference directions across datasets under PGD-100($\epsilon = 4/255$) attack on CLIP-ViT-B/16.

Reference Direction	Pets	Caltech101	Food101	Cars	ImageNet
Clean Direction	0.957	0.945	0.939	0.943	0.951
Class Centroid Direction	0.932	0.917	0.898	0.905	0.892

Adaptive Attack with BPDA and EOT. While our primary evaluation based on the threat model described in Section 3.1, we additionally evaluate against adaptive, defense-aware attacks to assess potential vulnerabilities. Based on PGD attack, we implement BPDA (Backward Pass Differentiable Approximation, Athalye et al. (2018)) combined with EOT (Expectation Over Transformation, (Xie et al., 2017)) to approximate gradients through our differentiable DBD pipeline. During attack

864 optimization, non-differentiable components are replaced with identity functions in the backward
 865 pass, while gradients are averaged over multiple stochastic forward passes.
 866

867 We evaluate on Caltech101 dataset using strong adaptive attacks: PGD-10 ($\epsilon=1/255$) against CLIP-
 868 ResNet50 and PGD-100 ($\epsilon=4/255$) against CLIP-ViT-B/16. Results in Table 12 show that when
 869 attackers explicitly optimize through the full DBD pipeline, robust accuracy degrades significantly
 870 (to 50.79% and 1.29%, respectively). Notably, these adversarial images generated by adaptive
 871 attacks also perform substantially worse against the original CLIP model compared to standard
 872 attacks, suggesting overfitting to the defense mechanism.
 873

874 Critically, under the adaptive attack (PGD-100), the average DB-score remains high (0.89), with
 875 approximately 81% of adversarial samples exceeding our detection threshold ($\tau=0.80$). This reveals
 876 an important insight: *the directional bias pattern persists under adaptive attacks, but the estimated
 877 direction is manipulated to point away from the true class*. In other words, while adaptive attacks
 878 can subvert the defense functionality by distorting the Defense Direction, they cannot eliminate
 879 the underlying directional bias signal—making such attacks still detectable through our DB-score
 880 metric.
 881

880 Table 12: Robust accuracy (%) under adaptive attacks with BPDA+EOT on Caltech101.
 881

882 Attacks	883 Original CLIP	884 CLIP with DBD
883 PGD-10 ($\epsilon=1/255$)	84.26	50.79
884 PGD-100 ($\epsilon=4/255$)	81.05	1.29

885
 886 **A.5 USE OF LLMs**
 887

888 In this work, we used ChatGPT to assist in polishing the writing of this paper, focusing primarily
 889 on improving clarity, grammar, and style. The model was not involved in the generation of ideas or
 890 experimental designs. All the concepts, analyses, and conclusions presented are entirely our own.
 891