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ABSTRACT

Online continual learning is challenging as it requires fast adaptation over a stream
of data in a non-stationary environment without forgetting the knowledge acquired
in the past. To address this challenge, in this paper, we introduce Amphibian - a
gradient-based meta-learner that learns to scale the direction of gradient descent
to achieve the desired balance between fast learning and continual learning. For
this purpose, using only the current batch of data, Amphibian minimizes a meta-
objective that encourages alignments of gradients among given data samples along
selected basis directions in the gradient space. From this objective, it learns a
diagonal scale matrix in each layer that accumulates the history of such gradi-
ent alignments. Using these scale matrices Amphibian updates the model online
only in the directions having positive cumulative gradient alignments among the
data observed for far. With evaluation on standard continual image classification
benchmarks, we show that such meta-learned scaled gradient descent in Amphib-
ian achieves state-of-the-art accuracy in online continual learning while enabling
fast learning with less data and few-shot knowledge transfer to new tasks. Finally,
with loss landscape visualizations, we show such gradient updates incur minimum
loss to the old task enabling fast continual learning in Amphibian.

1 INTRODUCTION

Autonomous intelligent systems are envisioned to operate in non-stationary environments where
distribution of online data streams changes over time. In such environments, Al models (usually
artificial neural networks, ANNs) need to acquire knowledge quickly while maintaining the stabil-
ity of past experiences. This is a challenging scenario as the learning method needs to strike the
right balance between learning without forgetting and fast learning objectives. However, standard
gradient-based training methods for ANNs overwrite the past knowledge with the information from
the new batch of data - leading to ‘catastrophic forgetting” (Mccloskey & Cohen, [1989). Such for-
getting prevents effective knowledge transfer from the past thus also hampering fast learning ability.

To address these challenges, a popular line of work in continual learning (CL) (Ring}, |1998} Hadsell
et al |2020) uses memory rehearsal (Robins| [1995}; |(Chaudhry et al., 2019b; Lopez-Paz & Ranzato,
2017) - where a subset of past data is stored in a memory buffer and used with the current batch of
data to jointly train the model. Such rehearsal-based strategy guides the optimization process such
that losses of the past data do not increase, preventing catastrophic forgetting. However, effective-
ness of these methods depends on large memory storage which also arises data privacy concerns.
In contrast, rehearsal-free methods (Kirkpatrick et al., 2017; Zenke et al.l 2017} |Saha et al., [2021b;
Serra et al.,[2018) in continual learning use explicitly designed regularization objectives and/or con-
strained gradient update rules to prevent forgetting. Though these methods are effective in offline
(multi-epoch) CL setups, compared to rehearsal-based methods they underperform in online contin-
ual learning (OCL) (Mai et al} [2022). This is primarily due to the added objective or constraints
that focus on forgetting mitigation rather than encouraging fast learning. From fast learning view-
point, meta-learning (Finn et al.| [2017) or ‘learning to learn’ (Thrun & Pratt, [2012) is an exciting
proposition since it optimizes a meta-objective that encourages representation learning in ANNs
suitable for fast adaptation. Such meta-objective is adapted in|Javed & White (2019)); Beaulieu et al.
(2020); |Caccia et al.| (2020) for pre-training models offline, then deployed for continual learning
tasks. In contrast, Riemer et al.| (2019); |Gupta et al.| (2020) adapted the meta-objective for fully
online continual learning. However, they use memory rehearsal to mitigate forgetting.
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In this paper, we propose a meta-learner - Amphibian - that learns fast with minimum forgetting
during online continual learning. Without any memory rehearsal, Amphibian achieves better bal-
ance between learning without forgetting and fast learning with three key components. First, to
obtain meta-gradients, it optimizes a meta-objective that on top of minimizing loss on the given
batch of samples, encourages their gradient alignments along the selected basis directions represent-
ing the gradient space. Second, from the same meta-objective, it learns diagonal scaling matrices
that contain learning/scaling rates along each gradient basis. In our formulation, each scale value
accumulates the history of gradient alignments (along the corresponding basis) among the observed
samples over the entire learning sequence. Finally, it scales the meta-gradients with scaling matri-
ces to update the model along the directions with cumulative positive gradient alignments among
the observed data. Thus, the combination of meta-objective optimization and meta-learned gradient
scaling enables Amphibian to learn fast and continually. We evaluate Amphibian in various online
continual learning setups (Gupta et al., 2020; [Shim et al., 2021)) on long and diverse sequences of
image classification tasks (including ImageNet-100) using different network architectures (includ-
ing ResNet) and achieve better performance in both continual and fast learning metrics compared to
the twelve most relevant baselines. We summarize the contributions of this paper as follows:

* We introduce Amphibian which minimizes a novel meta-objective and uses meta-learned
gradient scaling to enable fast online continual learning without rehearsal.

* With evaluation on long sequences of tasks, we show that Amphibian not only learns con-
tinually with SOTA accuracy but also demonstrates the ability of a truly fast learner by
learning fast with less data and enabling few-shot knowledge transfer to the new tasks.

* We analyze a regularized version of Amphibian - Amphibian-3 and provide insight that
regularized objectives or constraints used by the representative rehearsal-free methods to
minimize forgetting restrict the fast learning ability of the model in OCL.

* With visualization of loss landscapes of sequential tasks, we show that scaled model up-
date in Amphibian along gradient directions with positive cumulative gradient alignments
induces minimum to no increase in loss of the past tasks which enables continual learning.

2 RELATED WORKS

Online Continual Learning (OCL). We consider a supervised learning setup where 7' tasks
[71, T2, ..77] are learnt by observing their training data [D!, D?,. D] sequentially. At any time-
step 7, the learning model receives a batch of data, B} or simply B; = {(zJ,,47)}2%, as the set of
N; input-label pairs randomly drawn from the current data stream, D;. In online continual learn-
ing (Mai et al.l 2022), the model needs to learn from a single pass over these data streams with
the objective of minimizing the empirical risk on the data from all the ¢ tasks seen so far. The
objective (Gupta et al.| [2020; \tferwimp et al.[|2021) is givten by:

> Eg, [6i(0;B:)] = Es,., Y _[:(0;B:)]. (D
i=1 i=1
Here ¢;(.;.) is the loss function to be minimized for task 7; by updating the model parameters 6.

Rehearsal-based Methods. The above risk minimization requires all the data, By.;—; from past
tasks which may not be accessible to OCL agents at the same time. Rehearsal or experience replay
(ER) (Robins,|1995; (Chaudhry et al.,|2019b) methods offer a solution by storing a limited amount of
past data in episodic memory, D™. Such techniques then sample a memory batch, Bf\:/t[—1 ~ DM
(that approximates B1.¢_1) for jointly minimizing the objective in Equation[T|with the current batch,
B;. Later works built on this idea where they differ in the way memory is selected and replayed. For
instance: GSS (Aljundi et al.,|2019b) selects memory based on gradients, MIR (Aljundi et al.,[2019al)
selects memory that incurs maximum change in loss, ASER [Shim et al.| (2021) performs memory
selection and retrieval using Shapley value scores. To improve replay, RAR [Zhang et al.[(2022) uses
repeated augmented rehearsal, CLS-ER (Arani et al., 2022) proposes dual memory learning and
DER Buzzega et al|(2020) uses logit distillation loss. Gradient Episodic Memory (GEM) (Lopez-
Paz & Ranzato, 2017) and Averaged-GEM (A-GEM) (Chaudhry et al., 2019a) use memory data to
compute gradient constraints for new task so that loss on past the tasks does not increase.

Rehearsal-free Methods. One line of work in this category expands the network (Rusu et al.,
20164 |Yoon et al.| 2018) for continual learning but they are not evaluated for OCL. Other methods
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under this category minimize the loss (Eg, [I;(6; B;)]) on the current batch with additional regu-
larization terms and/or constraints on gradient updates. For example, Elastic Weight Consolidation
(EWC) (Kirkpatrick et al.l |2017) and Synaptic Intelligence (SI) (Zenke et al.l [2017) add quadratic
regularization terms that penalize changes in the important parameters for the past task. While EWC
computes parametric importance from the Fisher diagonal matrix after training, SI finds them online
during training from the loss sensitivity of the parameters. Gradient projection methods (Zeng et al.,
2019; [Farajtabar et al., [2020; |Saha et al.| 2021b; |Saha & Royl 2023)) constrain the current gradient,
Vol; to be orthogonal to the past gradient directions. For instance, Gradient Projection Memory
(GPM) (Saha et al.,[2021b)) optimizes a new task in the orthogonal directions to the gradient spaces
important for the past tasks, whereas Scaled Gradient Projection (SGP) (Saha & Roy}|2023)) relaxes
the constraint in GPM to allow gradient updates along the old gradient spaces. Natural Continual
Learning (NCL) (Kao et al., 2021) learns continually by combining gradient projection with regu-
larization. Our proposed Amphibian is also a rehearsal-free method. However, unlike these methods
it does not need any explicit regularization or constraints; rather it meta-learns from data to scale
the gradients for fast continual learning. In the next section, we introduce a meta-learning method -
MAML (Finn et al.||2017) and then discuss relevant meta-learning-based continual learning works.

3 PRELIMINARIES

Model-Agnostic Meta-Learning (MAML). MAML (Finn et al} [2017) is a widely used gradient-
based meta-learner that utilizes bi-level (inner-loop and outer-loop) optimization to obtain model
parameters, 0 that is amenable to fast adaptation to new tasks. MAML trains the model on a set of
T tasks simultaneously where each task, 7; has a dataset, D™ = {D]’ D[} partitioned for inner

and outer loop optimization. One step of inner-loop optimization on task 7; is defined as:

U0 D) = 67 = 05 — aVir.bin(65: DEL), @
where U (.; .) is a stochastic gradient descent (SGD) operator, « is learning rate and ¢;,, is inner-loop
loss function. U can be composed for k such updates as Uy (0'; D;) = U..oUoU(65'; D) = 6}
In the outer-loop optimization, loss for each task is computed at corresponding, §;* on D;, and
expected loss over all the tasks (meta-loss) is minimized (Equation [3) to obtain the parameters, 6.

n;in Ery ., [lout (05 Doit)] ®)

Meta-learning and Continual Learni(;lg. The above meta-loss minimization trains a model for fast
adaptation, however it does not explicitly encourage continual learning. Thus,|{Javed & White|(2019)
proposed online-aware meta-learning where at first, a model is pre-trained offline on a set of tasks to
learn a better representation for CL, then keeping that representation frozen, the rest of the network
is fine-tuned on CL tasks. The authors in [Beaulieu et al.| (2020); |[Lee et al.| (2021)); |Caccia et al.
(2020) used such meta-learning-based offline pre-training strategy, while allowing varying degrees
of adaptation to the model during CL tasks. In contrast, Meta Experience Replay (MER) (Riemer
et al., 2019) combines meta-objective of Reptile (Nichol et al.| [2018) with memory rehearsal for
OCL, whereas La-MAML (Gupta et al., 2020) minimizes the MAML objective (Equation E]) in
online setup where losses on the past tasks are computed on the memory batch, B\ | ~ DM,
Unlike these methods, we train a model from scratch with a meta-objective (Section @) without
rehearsal for fast online continual learning.

Representation of the Gradient Space in Neural Network: Since SGD updates lie in the span of
input data points (Zhang et al.,2017)), gradients (or gradient space) in each layer of the ANN can be
represented by low-dimensional basis vectors (Saha et al., 2021b). Let, g € R€>*CiXk*k represent
filters in a convolutional (Conv) layer, where C; (C,,) is the number of input (output) channels of that
layer and k is the kernel size of the filters. Following [Saha et al.[{(2021b)), 6y (hence gradient, V,¢)
can be reshaped into a (C; x k x k) x C, dimensional matrix. Thus gradients in a Conv layer can be
described by (C; x k X k) dimensional space (instead of C, x C; x k x k). Similarly, if §y € R™*"
represents a weight matrix in a fully-connected (FC) layer where m (n) is the dimension of outgoing
(incoming) hidden units, the gradient space will be n dimensional (instead of m X n) in this layer.

4 CONTINUAL LEARNING WITH AMPHIBIAN

Here, we describe the steps (illustrated in Figure[I]) for online continual learning in Amphibian.

Learning Overview: At any time j over the learning sequence, Amphibian receives a batch of data,
B; ~ D7 with N; input-label data pairs from current task, 7;. We aim to update the current model,
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Figure 1: Illustration of continual learning in Amphibian on a batch of data. Given the model, 96 and
scale matrix, A7, first we perform k inner-loop gradient update on 06 to obtain 9£ with the samples
of the current batch, 3;. In second step, we compute the meta-loss on Hi, with the entire batch, (; to
obtain meta gradients. In third step we update A’ and finally the model, 96 with these gradients.

6} using the update rule:

00" = 00 — N grera(67)- @)
Here g.,,¢t, 1S the gradient obtained from the meta (inner-outer loop) learning process using only the
current data, 3;. In our method, we use the gradient space formulation as described in SectionE] and
consider the standard bases (e;) of appropriate dimensions as the bases of gradient space to represent
the gradients inside the neural network. We introduce a scaling matrix, A in the update rule. This
is a diagonal matrix where each diagonal element, \; is initialized with AY and then meta-learned
simultaneously with g,,erq. Over the continual learning trajectory, A accumulates the history of
gradient alignment among observed data samples. Then it scales the meta-gradient (Equation |4) ac-
cordingly to update the model along the direction of positive gradient alignments. Thus A essentially
learns the learning rate of the bases of the gradient space during continual learning.

Meta-Learning Step-1: At first, on the given batch B; we perform k inner-loop updates on 03 to

J
ool 0 GO0 = 6 = 0 3 ATV (03BN, ®
k=0
These inner-loop steps differ in two ways from MAML inner-update step (Equation [2). First, for
each inner update, we use one sample (if & = IV;) or a subset of samples (if £ < N;) from B;
without replacement, whereas MAML uses entire batch (Dfn = B;). Second, in our method, each
inner gradient is scaled by the A7 matrix, whereas MAML uses a constant scalar learning rate, c.
Though meta-learnable per parametric learning rate (L1 et al., 2017} |Gupta et al., 2020) vector, o
and block diagonal preconditioners (Park & Oliva, 2019) have been used in such updates, we learn

diagonal A which differs in dimensions and interpretation.

Meta-Learning Step-2: In this online learning setup, unlike MAML, Amphibian does not have
access to the data from all the tasks seen so far. Moreover, as Amphibian is a rehearsal-free learner,
we can not store past examples in memory and use them to approximately minimize the outer-loop
MAML objective (Equation[3) as in Gupta et al.| (2020). Instead, in the outer loop of meta-learning,
we compute the meta-loss, £, On current data (B; = Dyy) at 67, and minimize the following
objective :

min EBi [gout (e‘liﬂ Bz)] = 1’1’1111 EBZ' Mout(Uk (967 Aj; Bz)a Bz)] . (6)

03,A7 03,9

Minimizing this objective with respect to 03 is equivalent to (see Appendix Blfor full derivation):

. i . 8Eout 8&71( )
min Eg, [0 (07; B;)] = min | £, 93 E J cejel 00 7
6 Bl[ t( k )] 0 ( t g 893 89] ) )

where M is the dimension of gradient space. Here, £,,; is computed on entire batch 53; while ¢,
is computed on a sample (or subset) from ;. First term on the right-hand side of the objective in
Equation [7] minimizes the loss on current batch of data, B;. The second term encourages positive
alignment (inner product) of gradients computed on samples of 5; along selective gradient basis
directions (e;) depending on scale \;. For instance, for positive \;, inner product of data gradients
along e; is maximized whereas for zero or negative A;, such gradient alignments are not encouraged.
Gradient of this objective is given by gmeta(H ) which is used for model update in Equation |4
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Scale Update Step: Next, gradient of the meta-objective (in Equation [6) with respect to each scale,
Al in A7 can be simply expressed (using first-order approximation (Finn et al.l 2017)) as follows:

agout(ei) . -eie; T Z g 9]/

67,
Full derivation is given in Appendix [Bl Equation [8] denotes that if outer-loop gradient gou: =
0. (0 ) and accumulated inner-loop gradient g;, = " 10 2, (67,) has positive inner product
(aligned) along e;, then Gmeta(X]) will be negative, Whereas if the inner product is zero (negative)
then gmem(}\i) will be zero (positive). The scale update rule: A/ +1 )\] — ngmem()\J ) can be

expressed as:
N =N 40l (0])-emel, Z ¢, (61,) =X\ —H]Z ( Lt (01) - emel, Z ¢, (6) ) , (9)
=0

A

— 9 (07,

: ) _
Jy — ) —_y J
gmeta(Ai) - 14 89%, Zout 0 (8)

k’'=0

D

where 7 is the learning rate for the scales. This update rule pro-
vides two valuable insights. First, the value of a scale will in-
crease (decrease) if, along the corresponding basis, e; direction
outer- and inner-loop gradient trajectories have positive (nega-
tive) inner product or alignment (interference). Second, over
the entire continual learning sequence up to time j, )\f accu- scale
mulates the history of such gradient alignments or interferences. Zm
Now if we do not use accumulation and update the scales as e
M= A9 — gera(A) with current gp,era (M) and use these ]
scales for model update (Equation ), we would get fast learn-

ing on the current data but model will forget past data. In con-
trast, by using cumulatively updated (Equation [9) A in Equa-
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Figure 2: Conceptual illus-
tration.  Along es (e1) Gout

tion 4 we ensure that the gradient step on each incoming data
is accelerated along the direction of positive cumulative align-
ment, whereas blocked along the direction of zero or negative
alignments thus minimizing catastrophic forgetting. Therefore,
this online accumulation of gradient alignments in scale matrices
over the learning sequence enables Amphibian to learn continu-

and g;, has alignment (interfer-
ence), hence Ay (A1) will in-
crease (decrease). Considering,
gmeta(eé) ~ Gout> Ymeta iS
scaled accordingly in model up-
date to reflect alignment history.

ally with minimum forgetting without any data rehearsal.

Model Update Step: Finally, with g1, (03) and the updated scale A7™! we perform model update
on the current batch as in Equationd] As the scales, \; can take both positive and negative values, to
prevent gradient ascent (both in Equation[d|and inner loop Equation[5)) we only use their positive part
using (A\;)+ = 1x,>0\; function, where 1 >0 : R — {0, 1}. In the meta-learning steps, we ensure
differentiability of this function using the straight-through estimator (Bengio et al., |2013; |Von Os-
wald et al., [2021). With the updated model 98“ and scale matrix A7*!, we (continually) learn the
next batch of data. The pseudocode of the algorithm is provided in Algorithm 1 in Appendix [C]

5 EXPERIMENTAL SETUP

Datasets and Models. We evaluate Amphibian and the baselines in online continual learning
(OCL) (Mai et al.},[2022) setups where models learn from the single pass over the data stream. We use
5 standard image classification benchmarks in continual learning: 20 tasks split CIFAR-100 (Gupta
et al.| [2020), 40 tasks split TinyImagenet (Deng et al., [2021), 25 tasks split S-Datasets (Saha et al.,
2021b), 20 tasks split ImageNet-100 (Yan et al., |2021) and 10 tasks split minilmageNet (Shim
et al.,[2021). Similar to|Gupta et al.| (2020); Deng et al.|(2021), we use 5-layer network for CIFAR-
100 and 5-Datasets, and 6-layer network for Tinylmagenet. For ImageNet-100 and minilmageNet
experiments we use ResNet-18 (Lopez-Paz & Ranzato, |2017) model. Details on the dataset statis-
tics/splits, and network architectures are provided in the Appendix and [D.2respectively.

Baselines and Training. We compare Amphibian with rehearsal-free methods: EWC (Kirkpatrick
et al., 2017) and SI (Zenke et al., 2017) which use parametric regularization; GPM (Saha et al.,
2021b) and SGP (Saha & Roy, 2023)) which use gradient projection; and NCL (Kao et al.| [2021)
which uses both gradient projection and regularization. Although comparisons with rehearsal-free
and rehearsal-based methods are not always fair (especially with large data memory), we compare
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Table 1: Performance (mean = std from 3 runs with random seeds) comparisons in online continual
learning. (*) indicates results for CIFAR-100 and TinyImagenet are taken from Gupta et al.| (2020).

CIFAR-100 TinyImagenet 5-Datasets
Rehearsal Methods ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)
ER* 478+0.73 -124+0.83 393 +0.38 -143+0.89 834+0.69 -943+1.24
GEM* 482 +£1.10 -13.7+£0.70 40.5+£0.79 -13.5+£0.65 869+ 1.09 -7.43+0.61
A-GEM* 469 £031 -134+144 389+047 -13.6+1.73 824+ 1.18 -9.66+0.82
v MER* 513+1.05 -134+1.44 389+047 -13.6+1.73 88.5+0.28 -7.00+0.33
DER++ 534+175 -8.16+1.12 44.1£0.29 -145+0.49 86.7+0.86 -4.54+1.09
CLS-ER 60.5+0.45 0.90 £ 0.50 51.8+1.01 159 +£0.71 89.1+1.29 7.13+£0.09
La-MAML* 61.1 £1.44 -9.00+0.20 525+135 -370+1.22 89.0+ 145 -597+2.00
EWC 504+ 1.88 -1.53+0.98 43.6 £0.83 -0.83£1.17 80.1 +£1.76 -8.06+ 1.22
SI 51.1£0.69 -0.73+0.24 423 +343 -1.60£0.14 809+ 1.71 -596+245
X GPM 59.1+£1.26 -0.00+£0.12 483 +£2.69 -0.30=£1.00 84.3+2.57 -2.06+0.94
SGP 61.3+£1.25 -0.00+0.13 527+£0.26 -0.00+0.44 86.1 £3.52 -556+3.20
NCL 56.5+1.08 -0.00=+0.18 49.7+091 -0.83+0.05 85.5+0.58 -0.00+0.05
X Amphibian  65.0 + 0.96 - 1.30 +0.25 548 £0.60 -0.72+0.22 89.3 +1.24 -4.87+0.96

with : ER (Chaudhry et al., 2019b), GEM (Lopez-Paz & Ranzato| 2017), A-GEM (Chaudhry et al.,
2019a), DER++ (Buzzega et al.;[2020) and CLS-ER (Arani et al.,2022) having moderate data mem-
ory (100 to 400 samples). We also compare with MER (Riemer et al., 2019) and La-MAML (Gupta
et al., |2020) which uses meta-learning and memory rehearsal for OCL. Following baselines, we do
not use any offline pre-trained models, rather we train models from scratch. In Amphibian, scale
learning rate (1)) and initial scale value (\?) hyperparameters were set with grid search (as in|Gupta
et al.| (2020)) with held out validation data from training sets. Similarly, all the hyperparameters of
the baselines were tuned. Details of training setup, implementations and a list of all the hyperpa-
rameters considered in the baselines and our method is given in Appendix

Evaluation Metrics. We measure OCL performance with two metrics: ACC - measures average
test classification accuracy of all tasks and BWT (backward transfer) - measures influence of new
learning on the past knowledge with negative BWT denotes forgetting. They are defined as:

1 I =
ACC = ;RT,Z, BWT = — ; Rr; — Ris. (10)
Here, T is the total number of tasks and Rr; is the accuracy of the model on it" task after learn-
ing the 7" task. Higher ACC in online setup signifies fast continual learning ability, however to
gain better insight on the fast learning ability we introduce two additional metrics - task learning
efficiency (TLE) and few-shot forward transfer (FWTgrg). TLE (Finn et al., 2019) is defined as
the size of D; required to achieve certain (7%) classification accuracy on that task, ¢. This metric
implies if less data (small TLE) is required to achieve a certain performance level, then the model
can transfer knowledge faster, hence is a fast learner. For comparisons among the baselines, we set
~ as 90% of the final Amphibian accuracies on each task, ¢. Additionally, in meta-learning (Finn
et al.| 2017} Nichol et al., [2018)), fast learning capability is measured with N-way K-shot adaptation
accuracy where a meta-learned model is trained on NK examples with few gradient steps and then
tested. Thus a truly fast learner should also perform well under this setup. To evaluate this, after
learning each OCL task, ¢ we sample K examples from each of the N classes from the next task and
fully adapt the model for n steps. Then record the test accuracy on this new task as FW Tk - the
few-shot forward transfer capacity of the model learned after task ¢. For all the tasks we measure

and compare this capacity as FWTpg = % Z:l FWThg.

6 RESULTS AND ANALYSES

6.1 CONTINUAL LEARNING AND FAST LEARNING PERFORMANCE COMPARISONS

Accuracy and Forgetting. First, we evaluate and compare the performance in task-incremental
OCL setups where each task has a separate classifier and task identity is used during inference. In
Table[I] we provide comparisons of ACC and BWT among various methods within this setup across
3 different datasets. Among the rehearsal-based methods, meta-learner La-MAML achieves better
accuracy. Even without memory rehearsal, Amphibian outperforms La-MAML (by up to ~8.5%
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Figure 3: (a) Task learning efficiency (TLE) of Amphibian. (b) Average TLE of all the methods for
CIFAR-100 tasks. (c) TLE of Amphibian and (d) Average TLE of all the methods for Tinylmagenet.

in ACC) with less forgetting. Since the rehearsal-free methods are under-explored for OCL and
Amphibian is a rehearsal-free method, in the following analyses and discussions we focus primar-
ily on rehearsal-free methods. EWC and SI achieve similar performance, however, compared to
Amphibian they severely underperform (by up to ~14% in ACC). This shows that the parametric
importance-based regularization used in these methods to ensure stability of knowledge (as indi-
cated by small forgetting in Table I]) is not favorable for fast learning required in OCL. In contrast,
gradient projection methods such as GPM and SGP achieve up to ~10% ACC gain over EWC and
SI. However, Amphibian outperforms these methods by up to ~4% in ACC with marginally higher
forgetting. This shows without any explicit constraints of orthogonal gradient projections (as in
GPM and SGP), Amphibian properly learned to scale the gradient updates from the online data to
perform better in OCL. NCL performance lies in between gradient projection and regularization-
based methods and is outperformed by Amphibian. Moreover, in challenging 5-Dataset tasks where
data arrives from dissimilar domains over time, Amphibian obtains the best performance over all
the methods. Next, in Table[2] we compare Amphibian’s performance with the baselines on 20 split
ImageNet-100 tasks using the ResNet-18 model. Here, Amphibian archives ~ 2.4% better accu-
racy, demonstrating its scalability to larger datasets and complex networks. Finally, we evaluate
our method in a class-incremental OCL setup. Following Shim et al.| (2021}, we train a ResNet-18
model from scratch on 10 minilmageNet tasks and during inference, task identity is not used. In
Figure [fa), we compare the average accuracy of the model trained with different rehearsal-based
and free methods. After 10 tasks, our method achieves better accuracy than the best rehearsal-based
method - CLS-ER. All the following analyses are performed in task-incremental setups.

Task Learning Efficiency (TLE). As discussed in Sec- Taple 2: Performance comparisons for
tion[5] a fast online continual learner should achieve high »( TamgeNet-100 tasks on ResNet-18.
performance with less amount of data (smaller TLE per ImageNet-100
task). In Figure a) we show TLE of Amphibian for each

CIFAR-100 task. Averaging over all the tasks we obtain ~Methods ACC (%) BWT(%)
an average TLE of 21% for Amphibian. This means, on GPM 4554133 -0.00+0.23
average, a new task in Amphibian can be learned to 90% La-MAML  51.7 £ 1.15 -5.60 & 0.80
of its final achievable accuracy by learning on 21.%. of the Amphibian  54.1+ 0.76 - 0.34 + 0.20
data from that task. In Figure 3[c) TLE of Amphibian for
each TinyImageNet task is shown which gives an Average
TLE of 35%. We compare the Average TLE of all the rehearsal-free methods in Figure [3(b) and
(d). In both datasets, Amphibian outperforms all the other methods, indicating that Amphibian can
obtain a high accuracy level on given tasks very quickly by observing fewer examples from the data
stream, hence it is a fast learner.

Few-shot Forward Transfer (FWTrg). In Figure b) we compare FWT g of different algorithms
for CIFAR-100 and TinyImagenet datasets, where higher FWT g means better few-shot (rapid)
learner. For each FWT%. ¢, we use 5-way 5-shot training data and adapt the network with ny = 10
steps. Compared to the rehearsal-free methods, Amphibian achieves up to ~ 5% better FWTgg,
which demonstrates the fast learning ability developed in the model from online continual learning
in Amphibian. Here we show the performance of (meta-learned) La-MAML, which also achieves
better performance than other rehearsal-free baselines but outperformed by Amphibian. This shows
meta-learning plays a key role in building fast learning capability in Amphibian and La-MAML.

Memory overhead and Training Times. In Figure f{c) we compare the memory overhead during
training in each method for either storing the old model, important parameters and/or past data. The
numbers are normalized by the memory overhead of Amphibian. For both datasets, all the baseline
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Figure 4: (a) Average accuracy for minilmageNet tasks in online class-incremental learning.(b) Few-
shot forward transfer, FWT rg (higher the better). (c) Training time memory overhead comparisons.

Table 3: Comparison of Amphibian with candidate rehearsal-free meta-learning methods for OCL.

CIFAR-100 TinyImagenet
Methods ACC (%) BWT(%) FWTps(%) ACC (%) BWT(%) FWTps(%)
Amphibian 65.0+096 -130+0.25 47.6+197 5484+ 0.60 -0.72+0.22 40.6+0.87
La-MAML (No Rehearsal) 56.1 +£0.87 -12.8+0.17 46.7+1.89 4924055 -723+0.16 39.5+0.75
Online Meta-SGD 51.3+254 -157+250 459+ 144 45.1+131 -10.7+£0.57 37.7+044
Online MAML 49.0+1.81 -18.0+£2.00 422+1.48 404 £0.57 -8.10+£0.74 31.8+0.45

methods use orders of magnitude more memory than Amphibian. For instance, where Amphibian
only requires up to ~ 0.5% extra memory compared to network size for gradient scale (\) storage
(scale numbers given in Appendix , La-MAML requires 100% extra memory for per parametric
learning rate storage and up to 179% extra memory for replay buffer. Among all the methods NCL
has the highest memory overhead for model and projection matrix storage. Thus Amphibian most
memory-efficient learner for OCL. Training time comparisons are provided in Appendix [E.1]

6.2 ANALYSIS OF AMPHIBIAN: ABLATION STUDIES, AMPHIBIAN-/3, LOSS LANDSCAPES

Amphibian vs. Online Rehearsal-free Meta-Learning. To our knowledge, there are no rehearsal-
free meta-learners for OCL, so we adapt popular meta-learning approaches for OCL and compare
them with Amphibian in Table First method is La-MAML(No Rehearsal), where we remove the
memory buffer from La-MAML and compute the meta-loss with only current data (as Amphibian).
The notable difference between this method and the Amphibian is that it learns learning rates for
each parameter and uses that in inner- and outer-loop gradient updates, whereas Amphibian learns a
diagonal scale matrix at each layer and scale the gradient directions accordingly. From Table[3] we
find that La-MAML(No Rehearsal) vastly under-performs Amphibian, particularly it suffers from
large forgetting (up to ~ 11.5% more than Amphibian). This shows the novel meta-objective opti-
mization and gradient scaling with the learned scale matrix (A) enable Amphibian to learn contin-
ually without rehearsal. In second method, we replace the meta-learned learning rate in outer-loop
update from La-MAML(No Rehearsal) with a constant learning rate, whereas inner-loop still uses
learnable learning rates. This converts the method to online Meta-SGD (Li et al [2017). Results
show that ACC drops further, forgetting increases and fast learning capability reduces. Finally, we
use constant inner- and outer-loop learning rates in online Meta-SGD, which converts the method to
online MAML (Finn et al.;,[2017). With no learnable scale matrix or learning rate to encode the his-
tory of past data, this method performs the worst in OCL setup. In summary, these analyses clearly
show the functional difference between our method and La-MAML and MAML, and highlight the
importance of meta-learned gradient scaling in Amphibian for fast OCL performance.

Amphibian-3 . Here, we introduce a regularized version of Amphibian - Amphibian-3 to un-
derstand the relationship between fast learning and forgetting. Amphibian-3 uses the same online
continual learning steps as Amphibian except it performs model update using the following rule:
J
03 =0 — NV grera(03) — BOF — 63) = 00 — Z(l = BY TN e (0.
§'=0

(11

So far, used j was used as the time index over the entire learning sequence (spreading across tasks).
Here, we denote j as j'" time step at task 7;. Thus, at the start of task 7;, 6 would denote optimum
parameter learned till task 7;_1. Here, 5 € [0, 1]. For 8 = 0 it reduces to Amphibian update whereas
for 3 = 1 the model parameter stays at initial point §3. Thus increasing 3 from 0 we can regularize
the Amphibian update to stay near the solution of the past tasks. This is a useful concept in continual
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Figure 5: Variations of (a) ACC, (b) BWT, with 8 in Amphibian-3. ACC vs. FWT g comparisons
for various Amphibian-3 with rehearsal-free baselines for (c) CIFAR-100 and (d) TinyImagenet.

learning as staying close to the old solution point provides a degree of protection against catastrophic
forgetting. In Figure Eka) and (b) we show how ACC and BWT vary when 3 is varied (from O
to 0.1). For all datasets, increasing 3 reduces forgetting in Amphibian (Figure [5(b)), especially
for B > 1le~2 there is no forgetting. However, with increasing 3, ACC degrades (Figure a)).
These results indicate that explicit regularization for forgetting reduction restricts the fast continual
learning capacity of Amphibian. In Figure Ekc) and (d) we plot ACC vs FWT gg for Amphibian-3
with rehearsal-free baselines for CIFAR-100 and TinyImagenet. These plots show as we increase /3,
both continual and fast learning performance of Amphibian becomes similar to the baselines. Such
functional similarities provide valuable insight that explicit regularization or constraints used in
these rehearsal-free methods primarily focus on forgetting mitigation at the expense of fast learning,
hence they underperform in OCL setup. These analyses call for a rethinking of regularization or
constraint design in rehearsal-free methods and provide motivation for exploring Amphibian-like
learner that learns the required constraints for optimal balance between fast and continual learning.

Understating Continual Learning Dynamics in (a) Task 1 test loss (b) Task 5 test loss

Amphibian. Continual learning works on the 2>2
principle that learning a new task should not (or 1.0 s
minimally) increase the loss of the old tasks. Am- 05 13
phibian does not explicitly minimize any such ob- ) 11
jectives, instead, it continually updates models 0.0 0.9
in the direction of positive cumulative gradient 07
alignments among the observed data. To under- 025 00 05 10 -05 00 05 10 o

stand how Amphibian enables continual learning Figure 6: Dynamics of continual learning in

we use loss landscape visualizations (Verwimp| , - op.
- ! phibian. Loss contour of (a) Task 1 and (b)
let al,[2021; Mirzadeh et al[2020). In Figure[6|a) Task 5 plotted on 2D planes defined by parame-
we plot the loss contour of task 1 from CIFAR- ters (9, 010, 629) and (9%, 0'°, 629) respectively.

100 in 2D plane. Here 6! indicates the network

model after learning task ¢. Here, the black line indicates the learning trajectory, with each cross
point representing the projection of learned models on the plane along the trajectory. In Amphibian
when we sequentially learn from task 1 to task 20, along the learning trajectory (91 — 019 — 620 in
Figure Eka)) loss of task 1 only increase minimally from the initial point (9'). A similar trend can be
seen for task 5 (in Figure [6|b), where along the learning trajectory (§° — 015 — 62°) loss increases
in task 5 is minimal. Similar pattern is also found for TinyImagenet tasks (Appendix [E.2). Thus, in
Amphibian, model updates along the directions with positive cumulative gradient alignments prevent
a significant increase in the loss of past data enabling continual learning with minimum forgetting.

7 CONCLUSIONS

In this paper, we introduce a rehearsal-free meta-learner - Amphibian that in a fully online manner
learns to scale the gradient updates to enable fast online continual learning. To this end, Amphibian
optimizes a novel meta-objective and learns scale matrices that accumulate the history of gradient
alignments among the data samples observed over the learning trajectory. Using these scale matrices
it updates the model in the direction of positive cumulative gradient alignments. On various contin-
ual image classification tasks, we show that such meta-learned scaled gradient update in Amphibian
enables memory-efficient, data-efficient, and fast online continual learning. In conclusion, we be-
lieve Amphibian offers a unified framework for exploring meta-learning and continual learning,
making it a valuable tool for dissecting inherent trade-offs and ultimately facilitating the develop-
ment of improved algorithms that strike a desired balance between fast and continual learning.
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APPENDIX

Derivation of Amphibian meta-objective and meta-gradients are provided in Section [A] and [B]re-
spectively. Pseudocode of the Amphibian algorithm is given in Section [C] Experimental details
including dataset statistics, network architectures, a list of hyperparameters along with implemen-
tation details are provided in Section [D] Additional results and analyses are provided in Section [E]
Amphibian source codes are attached as supplementary material in the ‘Amphibian_CODE’
folder.

A DERIVATION OF AMPHIBIAN META-OBJECTIVE

In this section, we will show that when we optimize the following meta-objective in Amphibian:

min Eg, [(out (67; B;)] = min Eg, [Coue (Ui (65, A7; B:); By))]. (12)
6 6

where each of the k inner-update is taken using a sample (or subset of samples) from current batch,
B, from task 7; and the meta-loss, /,,,; is computed on the entire current batch data,B;, it is equivalent
to minimizing the following objective:

o ,
Olout(0) i (63
min | Loy (6) — Z N i -emeﬁﬂ ) (13)
o) = o) 00}
For that, let us define,
Ol ot (0],
i = M (gradient of meta-loss at 67) (14)
a0,
0oyt (6
ﬁ (gradient of meta-loss at 6} ) (15)
00}
_ Otun(0]) R
grr = 207 (gradient of inner-loss at 0;,, where k' < k) (16)
k./
_ agln( ) 7 /
Jrr = W (gradient of inner-loss at 6, where k' < k) 17
Qi, 11 = 9,@ — Mgy (sequence of parameter vectors) (18)
H, = (",,(6}) (Hessian of meta-loss at 6 ) (19)
Hys = ¢7,(6}) (Hessian of inner-loss at 6} ) (20)

First, let’s write the gradient of meta-loss (outer-loop loss) at 9',1 from Equation as (using Taylor’s
expansion (Nichol et al.| [2018])):
9k = gout(gj) - él

out

= g + H(0) — 6)) + O(]|0] — 63||%) (using definition of i, Hy)

k—1 k—1
S 0O i~ =~ 5 W, ool
k=0 k=0

k—1
=g~ Hy Y Mgy +O(A?) (using giw = gir + O(A))

k'=0

k—1
=g, — Hy Z g,g‘/ + O(A?%) (let scaled update, g,{,‘, =MNgy)

k'=0

(21)

13

(0%) + £2,,(62) (0 — 63) + O(||62 — 63]]*) (' implies derivative w.r.t argument)
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Now, let’s derive _the meta-gradient (or MAML gradient (Finn et al., 2017))) for parameters 96, de-
noted as geta (07):

v Do (8]) _ 0loun(03) OU(B]_y)

9meta (00) = i : :
06] o6l 6]
ouU (6] 1) OU(B] , :
= g ( .k_l) ( .0) (repeatedly applying chain rule and using, 6, = U (6 _,))
o6l o8]
k-1
O ,
=11 (aj(% - Ang«)) g
k'=0 ok’
k-1
o .
=11 | =i - gz@)) Ik
=0 (39%
k-1 ,
= H (I — Hp) g, (where, H}) is Hessian of scaled gradient, g;» at 67,)
k=0

(22)

Using Taylor’s theorem and dropping higher order (O(A?)) terms (Nichol et al., 2018), we can write
H} ~ H}} and then using g, from Equation21]in Equation 22] we get:

k—1 k—1
meta () = (H i H>> (gk S g) +o(?)

k=0 k=0
k=1 k-l
= (I H,g)) <gk — Hy, Z g;@) JrO(AQ) (23)
k'=0 k=0
k=1 k-1
= gk — Rk — Hy > g+ O(A%)
&'=0 k=0

Now, using k£ = 1 in Equation[23| we can derive the equivalent objective in Equation For higher
k, the form of objective becomes complicated but has a similar set of terms. Thus putting £ = 1 in

Equation 23}

Ol s (07 N zA- &
% = Gmeta(03) = 1 — Hi' g1 — H1gd + O(A?)
0

_ 0 A R N S|
= - — . using — . =H + H
a0 8%(gl 90) ( ga%(gl 9) 001 190)

J J (P
= M — i Olout (.90) A 8&"(.00) (expressing terms as derivatives)
06] oo\ o) 06
) Mo J - (p
_ i gout (9%) _ Z )\gn a‘€ou15 (00) . €m€£ 8€2n (90) ,
6] P 9]

(24)

which is precisely the gradient of the Amphibian meta-objective in Equation

14
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B DERIVATION OF META-GRADIENTS

In this section we first derive the meta-gradients of scales \/, which is defined as:

Olout(07) _ 0lowi(6]) 067

gmeta()\gn) =

N, 00l o,
0o (0]) D i
=B (Vi)
Cout (6] j 7 Olin (6]
_ a t(. k) . 6 9‘]1‘ . ()\] )+€m m ( k— 1)
a0, Oy, 89; 1
ot (67 : i (6]
= 0 t(' L) ' a‘ Op1— a' (M) +eme mi( ko)
a0, N, Oy, 0],
_ ‘%out(loi) . ( 54 QIJC' = el aéiN(ei—l) 3(%{,?)+>
00, 0Ny, 20, _, 0N
Ol (0]) - .
(taking o0 as constant w.r.t A7, to get the first-order MAML approximation
k—1
as in|Nichol et al.| (2018); |Gupta et al.[ (2020))
) (04 )
a0, N, 90, _,
O+ .
( is equal to identity using approximations from straight-through estimation

O,
as inBengio et al.| (2013)); [Von Oswald et al.| (2021))

j . Dl (0]
_ ou6]) < O 1l ) — et inllhc 1)>

00! N, 08},
O (60) ( O i o = afm(e-,i,)>
= o %0~ EmCny a7

001 N, = 0],

(repeatedly expanding and differentiating the update function U (.))

i k—1 j

6,, "= 08,

gmeta()\gn) = -
(assuming initial parameters, 96 at time 75 is constant w.r.t 2, )
(25)
This meta-gradient is used in Equation 9] for scale updates.
Next to obtain the meta-gradients of (weight) parameters, 96 lets recall Equation

k—1 k—1

j 8 ] agm

Imeta @) = [] T—HS) g = [ | =504 — (] )> 9k (26)
w0 r=o \ 905 06,

Setting all the first-order terms as constant in the right-hand side of this equation (to ignore the
second-order derivatives), we get the first-order approximation of the meta-gradient as:

gmeta(aj) =09k = Eout(e )’ (27)

which is used in model updates in Equation @] This approximation drastically reduces memory
consumption while preserving the performance. This allows scaling of Amphibian to the larger
networks with complex datasets (Table 2).
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C AMPHIBIAN ALGORITHM

The pseudocode of the Amphibian algorithm is provided in Algorithm[I} For the given online batch
of data, BB;, Amphibian performs k inner-loop updates, where in each update it uses a sample (or

a subset of samples) from B; (Line 8). On the final parameters obtained after inner-updates, 67,
it evaluates meta-loss on the entire batch, B; to obtain meta-gradients for scales, V AL Eout(%; B;)
and weights, Vg_g fm(e{;; B;). With this meta-gradients, Ampibian first update the scales (Line 10)

and then model weights (Line 11). In inner-updates (Line 8) and outer-update (Line 11), to avoid
gradient ascent, only positive parts of the scales are used using: (A\;,)+ = 1x,, >0\ function,
where 1 > : R — {0, 1}. For bias parameters in each layer, we use X vectors instead of diagonal A
matrices in inner-updates (Line 8) and outer-update (line 11). Each element of A, learns the learning
rate of the corresponding bias parameter which is updated using the similar update step in Line 10.

Algorithm 1 Amphibian Algorithm for Online Continual Learning
1: Inputs: 0: neural network parameters (weights), ¢;,,: inner-objective, £,,;: outer (meta) objec-
tive, A9: initial values for all the scales, 7: scale learning rate, 7": number of tasks.
2: 540,00« 6 > Initialize

3: A «+ initialize (\°) > For weights/filters in each layer initialize diagonal matrix A° with
)\O

4: form; € 1,2,.....;, T do

5: for batch, B, ~ D" do > D™ is data stream of current task 7;
6: k « size(B;)

7: for i’ =0tok —1do _

8: 0, =06, —N Veilfm(ﬁfc,; B;i[K']) > Inner-loop updates
9: end for ) 4
10: )\Z;l = )\_3,1 =1V 35 Lout (07; Bl) > Update scales in A7
11: 96“ =6) — Aj+1vageout(9;; B;) > Update model parameters
12: j—i+1
13: end for

14: end for

D EXPERIMENTAL DETAILS

D.1 DATASET SPLITS AND STATISTICS

Split CIFAR-100 has 20 tasks each having 5 distinct classes from CIFAR-100 (Krizhevskyl, |2009).
Split TinyImagenet has 40 tasks where each task has 5 distinct classes from TinyImagenet-200 (Le
& Yang| 2015). Finally, we use a sequence of 5-Datasets including CIFAR-10, MNIST, SVHN,
Fashion MNIST, and notMNIST where each dataset is split into five tasks (each having a 2 classes)
to obtain a total of 25 tasks in the split 5-Datasets sequence. Dataset statistics used in these ex-
periments are given in Table @] and [5] Split minilmageNet (Shim et al.l 2021) consists of splitting
the minilmageNet dataset (Vinyals et al., |2016)) into 10 disjoint tasks, where each task contains 10
classes. Here each image is of size 3 x 84 x 84. ImageNet-100 is built by selecting 100 classes from
the ImageNet-1k (Deng et al.| 2009) dataset. Split ImageNet-100, which is used in our experiment,
consists of splitting the ImageNet-100 into 20 disjoint tasks, where each task contains 5 classes.
Here each image is of size 3 x 224 x 224. For both split minilmageNet and ImageNet-100, 2%
training data from each task is kept aside as validation sets.

D.2 NETWORK ARCHITECTURE DETAILS

For split CIFAR-100 experiments, similar to La-MAML (Gupta et al., 2020), we used a 5-layer
neural network with 3 convolutional layers each having 160 filters with 3 x 3 kernels, followed by
two fully connected layers having 320 units each. For split 5-Datasets, we used a 5-layer neural
network with 3 convolutional layers each having 200 filters with 3 x 3 kernels, followed by two
fully connected layers having 400 units each. For split Tinylmagenet experiments, similar to La-
MAML (Gupta et al., 2020), we used a 6-layer neural network with 4 convolutional layers each
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Table 4: Dataset Statistics. 10% training data from each task is kept aside as validation sets.

Split CIFAR-100 Split Tinyimagenet Split 5-Datasets
num. of tasks 20 40 25
input size 3x32x32 3 x 64 x 64 3 x32x32
# Classes/task 5 5 2
# Training samples/tasks 2,250 2,250 See Table
# Validation Samples/tasks 250 250 See Table
# Test samples/tasks 500 250 See Table

Table 5: 5-Datasets statistics (Saha et al.,[2021b). For the datasets with monochromatic images, we
replicate the image across all RGB channels so that size of each image becomes 3 x 32 x 32. In split
5-Datasets, each dataset (in this table) is split into 5 tasks, each with 2 disjoint classes. 10% training
data from each task is kept aside as validation sets.

CIFAR-10 MNIST SVHN Fashion MNIST notMNIST

# Classes 10 10 10 10 10
# Training samples 45,000 54,000 65,931 54,000 15,167
# Validation Samples 5,000 6,000 7,325 6,000 1,685
# Test samples 10,000 10,000 26,032 10,000 1,873

having 160 filters with 3 x 3 kernels, followed by two fully connected layers having 640 units each.
For ImageNet-100 and minilmageNet experiments, we have used ResNet-18 model. This network
consists of a front convolutional layer followed by 4 residual blocks each having four convolutional
layers followed by a classifier layer. We used 40 filters in front convolutional layer and in the first
residual block layers. For second, third and fourth residual blocks we used 80, 120 and 160 filters
respectively. For ImageNet-100, in the front convolution layer, we used convolution with 7 x 7
kernel with stride 5. For minilmageNet, in the front convolution layer, we used convolution with
3 x 3 kernel with stride 2. For both of these cases, we used 2 x 2 average-pooling with stride 1 before
the classifier layer. All the networks use ReLU in the hidden units and softmax with cross-entropy
loss in the final layer.

D.3 LIST OF HYPERPARAMETERS

A list of hyperparameters in our method and baseline approaches is given in Table[§] As in|Gupta
et al.| (2020), hyperparameter for all the approaches are tuned by performing a grid-search using
validation sets. For all the experiments, except split ImageNet-100, a batch size of 10 was used for
training. In split ImageNet-100 experiments a batch size of 25 samples was used.

D.4 BASELINE IMPLEMENTATIONS

For rehearsal-based methods - ER, GEM, A-GEM, MER and La-MAML, we used the implementa-
tion provided in La-MAML (Gupta et al., [2020). CLS-ER and DER++ are implemented by adapt-
ing the codes by |Arani et al.[(2022). EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017) and
NCL (Kao et al. [2021) are implemented adapting the codes fro GPM (Saha et al.| 2021b)) and
SGP (Saha & Royl 2023) are implemented using the respective official open-sourced code reposito-
ries.

D.5 AMPHIBIAN IMPLEMENTATION: SOFTWARE, HARDWARE AND CODE

We implemented Amphibian in python (version 3.7.6) with pytorch (version
1.5.1) and torchvision (version 0.6.1) libraries.We ran the codes on a single
NVIDIA TITAN Xp GPU (CUDA version 12.1) and reported the results in the paper. To
ensure reproducibility of these results, we attach the source codes of Amphibian with necessary
instructions in ‘Amphibian_Codes’ folder as the supplementary materials.

"https://github.com/GMvande Ven/continual-learning (MIT License)
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Table 6: Hyperparameters grid considered for the baselines and Amphibian. The best values are
given in parentheses. Here, ‘I’ represents the learning rate. All the methods use SGD optimizer
unless otherwise stated. The number of epochs in the OCL setup for all methods is 1. To maximally
utilize the current batch of data in OCL, each method has a hyperparameter called glances (Gupta
et al.| |2020; Zhang et al.l 2022) which indicates the number of gradient updates or meta-updates
made on each of these batches. In the table we represent Split CIFAR-100 as ‘cifar’, Split TinyIma-

genet as ‘tinyimg’ and Split 5-Datasets as ‘Sdata’.

Methods

Hyperparameters

ER

Ir : 0.01 (5data), 0.03 (cifar), 0.1 (tinyimg); glances : 1 (5data), 10 (cifar, tinyimg)
memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

GEM

Ir : 0.01 (5data), 0.03 (cifar, tinyimg); glances : 1 (5data), 2 (cifar, tinyimg)
memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

A-GEM

Ir: 0.01 (tinyimg, Sdata), 0.03 (cifar); glances : 1 (5data), 2 (cifar, tinyimg)
memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

MER

Ir (@) : 0.05 (5data), 0.1 (cifar, tinyimg)

Ir (B) : 0.1 (cifar, tinyimg, Sdata)

Ir (y) : 1.0 (cifar, tinyimg, Sdata)

glances : 1 (5data), 10 (cifar, tinyimg)

memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

DER++

Ir : 0.01 (5data), 0.03 (cifar), 0.1 (tinyimg) ; glances : 1 (5data), 2 (tinyimg), 10 (cifar)
a: 0.1 (tinyimg), 0.2 (cifar, 5data) ; 8: 0.5 (cifar, tinyimg), 1.0 (5data)
memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

CLS-ER

Ir: 0.01, 0.03, 0.05 (cifar, tinyimg, 5data) ; glances : 1 (5data), 2 (tinyimg), 10 (cifar)
rs: rpi 0.3 (5data), 0.5 (cifar), 0.9 (tinyimg) ; r,,: 0.5 (cifar), 0.8 (tinyimg), 1.0 (5data)
A: 0.1 (cifar, tinyimg, Sdata), 0.15

memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

La-MAML

ap : 0.1 (cifar, tinyimg, Sdata)

Ir () : 0.25 (5data), 0.3 (cifar, tinyimg)

glances : 1 (5data), 2 (tinyimg), 10 (cifar)

memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

EWC

Ir: 0.1 (cifar, tinyimg, 5data)
regularization coefficient, A : 1e2, le? (cifar), le?, 2e* (5data), 1e® (tinyimg)
glances : 1 (5data), 2 (tinyimg), 5 (cifar)

SI

optimizer : Adam (cifar, tinyimg, Sdata)

Ir : 1e=3 (cifar, tinyimg, Sdata)

regularization coefficient, ¢ : 1, 50 (tinyimag, Sdata), 100 (cifar), 1000
glances : 1 (5data), 2 (tinyimg), 5 (cifar)

GPM

Ir: 0.05, 0.1 (cifar, tinyimg, Sdata)

€, ¢ 0.96 (tinyimg), 0.975 (5data), 0.98 (cifar)
€4, (increment/task) : 0.001 (cifar, tinyimg, Sdata)
ng : 120 (cifar, tinyimg, Sdata)

glances : 1 (5data), 2 (tinyimg), 5 (cifar)

SGP

Ir: 0.05, 0.1 (cifar, tinyimg, Sdata)

€p, ¢ 0.96 (tinyimg), 0.975 (Sdata), 0.98 (cifar)

€, (increment/task) : 0.001 (cifar, tinyimg, Sdata)
scale coefficient () : 1 (5data), 5 (cifar), 10 (tinyimg)
ns : 120 (cifar, tinyimg, Sdata)

glances : 1 (5data), 2 (tinyimg), 5 (cifar)

NCL

Ir: 0.05, 0.1 (cifar, S5data), 0.2 (tinyimg)
P2 : 2250 (cifar, tinyimg), 9000 (5data)
glances : 1 (5data), 2 (tinyimg), 5 (cifar)

Amphibian

A0: 0.1, 0.25 (tinyimg), 0.5 (cifar, 5data)
Ir () : 0.25, 0.5 (tinyimg), 1.0 (cifar, Sdata)
glances : 1 (5data), 2 (tinyimg), 5 (cifar)
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E ADDITIONAL RESULTS

E.1 MEMORY OVERHEAD AND TRAINING TIME

In Figure [7{a) we show memory overhead comparisons during training for 5-Datasets tasks. In
this case also, we observe that other baseline methods have orders of magnitude more memory
overhead than Amphibian. Wall-clock training time comparisons among different methods for all
three datasets are shown in Figure[7(b). Training times for all the tasks in the continual learning se-
quence for different experiments are measured on a single NVIDIA TITAN Xp GPU. As Amphibian
uses inner-and outer-loop meta-learning steps, it requires more wall clock time for each model up-
date during training compared to the other rehearsal-free baselines. However, other rehearsal-based
meta-learners such as La-MAML and MER take up to ~2.7x and ~70x more training time than
Amphibian.

~ (a) o (b)
o N
81 s
© £
g 102 g 101
=4 o
= £
£ 210 I
9 IS
= 10° g
5-Datasets CIFAR-100 TinylmageNet  5-Datasets
mm EWC e S GPM  mmm SGP mmm NCL ®sw La-MAML msm Amphibian == MER

Figure 7: (a) Comparison of memory overhead (normalized by the Amphibian memory overhead)
during training for 5-Datasets experiments. (b) Wall-clock training time comparisons for sequential

training of all the tasks in different datasets. Normalized with respect to the time taken by Amphib-
ian.

(a) Task 2 test loss (b) Task 7 test loss (c) Task 11 test loss
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Figure 8: Dynamics of continual learning in Amphibian. Loss contours of (a) Task 2, (b) Task 7,
and (c) Task 11 from split TinyImagenet dataset are plotted on 2D planes defined by parameters
(6%,0%0,0%0), (07,620, 64°) and (0!, #%°, 90) respectively. Black lines indicate learning trajecto-
ries.

E.2 CONTINUAL LEARNING DYNAMICS IN AMPHIBIAN: A LOSS LANDSCAPE VIEW

Loss Contour Plots. We used visualization tools developed in [Mirzadeh et al.| (2020); [Verwimp
to plot the loss contours (in Figure[6|and[§]) on 2D planes defined by model parameters
(6%). Each of these hyperplanes in the parameter space is defined by three points ', #? and 6°.
Orthogonalizing #? — #' and #3 — #' gives a two dimensional coordinate system with base vectors
u and v. The value at point (z, y) is then calculated as the loss of a model with parameters 6! + v -
x + v - y. Please see the code/appendix in[Mirzadeh et al. (2020) for more details.

Continual Learning Dynamics in Amphibian. In Figure [§] we showed that Amphibian updates
incur minimum to no increase in losses of the past tasks for split CIFAR-100 tasks. Here, in Figure[§]
we show the loss contours for three split TinyImagenet tasks. In Figure[8[a) we plot the loss contour
of task 2 from TinyImagenet in a 2D plane. This figure shows when we sequentially learn from task
2 to task 40, along the entire learning trajectory (62 — 620 — 640) loss of task 2 only increases
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minimally from the initial point (§?). A similar trend is also observed for other tasks. Here we show
such trends for task 7 (Figure[§(b)) and task 11 (Figure[§|c)).

E.3 NUMBER OF GRADIENT SCALES IN AMPHIBIAN

As we adopt low-dimensional gradient space representation (as discussed in Section [3) for gradi-
ents of weights/filters in the neural network, the number of learnable scales for gradient bases (in
scale matrix, A) in Amphibian is very small compared to the size of the weights/filters. Table
shows the number of meta-learnable scales for each layer. Such a small number of scales explains
the extremely low memory overhead of Amphibian during training as shown in Figure [4[c) and

Figure[/(a).

Table 7: Number of meta-learnable gradient scales (in diagonal matrix, A) in each layer in Amphib-

1an.

Network Layer Size of Filters / Weights Number of Scales
(Co xCi; x kx k)l (m xn) (in Scale Matrix, A)
5-layer Network Convl 160 x 3 x 3 x 3 27
(CIFAR-100) Conv2 160 x 160 x 3 x 3 1400
Conv3 160 x 160 x 3 x 3 1400
FC1 320 x 2560 2560
FC2 320 x 320 320
6-layer Network Convl 160 x 3 x 3 x 3 27
(TinyImagenet) Conv2 160 x 160 x 3 x 3 1400
Conv3 160 x 160 x 3 x 3 1400
Conv4 160 x 160 x 3 x 3 1400
FC1 640 x 2560 2560
FC2 640 x 640 640
5-layer Network Convl 200 x 3 x 3 x3 27
(5-Datasets) Conv2 200 x 200 x 3 x 3 1800
Conv3 200 x 200 x 3 x 3 1800
FCl 400 x 3200 3200
FC2 400 x 400 400
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