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ABSTRACT

Flow-matching policies hold great promise for reinforcement learning (RL) by
capturing complex, multi-modal action distributions. However, their practical ap-
plication is often hindered by prohibitive inference latency and ineffective on-
line exploration. Although recent works have employed one-step distillation for
fast inference, the structure of the initial noise distribution remains an overlooked
factor that presents significant untapped potential. This overlooked factor, along
with the challenge of controlling policy stochasticity, constitutes two critical ar-
eas for advancing distilled flow-matching policies. To overcome these limitations,
we propose GoldenStart (GS-flow), a policy distillation method with Q-guided
priors and explicit entropy control. Instead of initializing generation from unin-
formed noise, we introduce a Q-guided prior modeled by a conditional VAE. This
state-conditioned prior repositions the starting points of the one-step generation
process into high-Q regions, effectively providing a “golden start” that shortcuts
the policy to promising actions. Furthermore, for effective online exploration,
we enable our distilled actor to output a stochastic distribution instead of a deter-
ministic point. This is governed by entropy regularization, allowing the policy to
shift from pure exploitation to principled exploration. Our integrated framework
demonstrates that by designing the generative startpoint and explicitly controlling
policy entropy, it is possible to achieve efficient and exploratory policies, bridging
the generative models and the practical actor-critic methods. We conduct exten-
sive experiments on offline and online continuous control benchmarks, where our
method significantly outperforms prior state-of-the-art approaches.

1 INTRODUCTION

Recent advances in policy learning have increasingly leveraged generative models to capture com-
plex and multimodal policies (Chi et al., 2023; Ghugare & Eysenbach, 2025; Black et al., 2024a).
Unlike traditional methods that assume a unimodal Gaussian distribution Schulman et al. (2015;
2017); Haarnoja et al. (2018), these approaches model the rich action distributions required for so-
phisticated control tasks. However, this expressive power comes at a cost: The iterative nature of
the generation process, which requires multiple steps to produce a single action, leads to prohibitive
inference latency. This bottleneck makes such models impractical for real-time scenarios, such as
Vision-Language-Action (VLA) models (Zhai et al., 2024; Black et al., 2025).

Flow matching has recently emerged as a more efficient alternative to diffusion models (Lipman
et al., 2023; Liu et al.; Albergo & Vanden-Eijnden, 2023; Geng et al., 2025). This has spurred
research into the acceleration of generative policies using flow matching (Braun et al., 2024;
Agrawalla et al., 2025; Espinosa-Dice et al., 2025), although these approaches often still require
multiple denoising steps at the inference stage. To address this, a more aggressive solution using
one-step distillation proves particularly effective by training a student network to emulate the en-
tire multi-step transformation in a single forward pass (Park et al., 2025b). Although effective in
reducing latency, these methods overlook two critical opportunities to improve policies.

First, their generative process begins from a fixed, uninformed prior, typically a standard Gaus-
sian distribution. However, an emerging perspective in generative modeling suggests that initial
noise is a critical component that can guide generation (Zhou et al., 2025; Ma et al., 2025b).
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Normal 
 Distribution

(a) Denoising from Normal 
 Prior Distribution

Q-guided 
 Distribution

(b) Denoising from Value-guided 
 Prior Distribution

Figure 1: An illustration of denoising from
an uninformed Gaussian prior (a) versus an
informed, value-guided prior (b). Deeper
blue indicates higher value.

We posit that an optimized starting point (a “golden
start”) can create a powerful learning shortcut to
high-value actions. As illustrated in Figure 1, an
informed prior (yellow) strategically shifted towards
high-value regions provides a more direct path to op-
timal actions, compared to an uninformed Gaussian
distribution (gray). The second opportunity stems
from the deterministic mapping inherent in the dis-
tilled policies. Given a specific prior noise, the gen-
erator learns a “point-to-point” mapping, transform-
ing a single noise vector into a single determinis-
tic action. This architecture inherently lacks explicit
control over policy stochasticity, which is crucial for
effective online exploration (Ma et al., 2025a).

To overcome these challenges, we introduce GoldenStart (GS-flow), a novel distillation framework
that unifies high-speed inference with precise exploitation and adaptive exploration. Our work is
built upon two key innovations: (1) First, we propose a Q-Guided Generative Prior, learned via
a lightweight conditional VAE. This prior replaces the uninformative Gaussian noise with a state-
aware distribution biased toward high-value actions, as identified by the critic. This provides the
“golden start”, effectively shortcutting the policy learning to optimal modes with negligible latency
overhead. (2) Second, we introduce Entropy-Regularized Distillation, where the student policy
learns a full distribution over actions, not just deterministic ones. This transforms the conventional
“point-to-point” mapping into a more expressive “point-to-distribution” paradigm. During the online
RL stage, an entropy regularization mechanism is activated, allowing the policy to dynamically
modulate its stochasticity for robust exploration.

By co-optimizing the generative starting point and the output distribution, our framework improves
the policy’s ability to represent high-value actions while merging flow-based distillation models
with adaptive exploration control. To this end, our approach, GS-flow, is extensively evaluated on
continuous control benchmarks, including OGBench and D4RL (Park et al., 2025a; Fu et al., 2020).
The results demonstrate that our method establishes a new state-of-the-art in overall performance.
It particularly excels on complex tasks requiring multi-modal action representations and principled
exploration, where it significantly outperforms prior methods.

2 PRELIMINARY

2.1 PROBLEM DEFINITION

A reinforcement learning problem is formulated as a Markov Decision Process (MDP) (Sutton
et al., 1998), defined by the tuple (S,A, P, r, γ). S is the state space, A is the action space,
P : S × A × S → [0, 1] is the state transition probability function, r : S × A → R is the re-
ward function, and γ ∈ [0, 1) is the discount factor. A policy π(a|s) is a distribution over actions
given a state. The objective is to learn an optimal policy π∗ that maximizes the expected discounted
cumulative reward, J(π) = Eτ∼π [

∑
t=0 γ

tr(st, at)], where τ = (s0, a0, s1, a1, . . . ) is a trajectory
sampled by executing the policy π. Offline RL involves learning from a static transition dataset
D = {(st, at, rt, st+1)}Nt=1 without environmental interaction, where N is number of steps in the
dataset (Levine et al., 2020). The Offline-to-Online RL setting extends this problem by introducing
a subsequent online interaction phase, also with the aim of maximizing the return function J(π).

2.2 DISTILLATION FROM FLOW-MATCHING POLICY

The significant inference cost of iterative flow-matching policies has motivated researchers to distill
them into single-step, fast student policies (Park et al., 2025b). This approach, named FQL, operates
within an actor-critic structure and trains the student actor with a hybrid objective: concurrently
minimizing a distillation loss against the flow-matching teacher while maximizing the Q value. The
framework utilizes two distinct models:
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Teacher Policy (πϕ): The flow-matching teacher policy is trained on the offline dataset D using a
behavioral cloning (BC) objective. For a given state-action pair (s, a) sampled from the dataset and a
noise sample x0 ∼ N (0, I), the training objective is to learn a conditional velocity field vϕ(xt, s, t).
This field is parameterized by a time variable t ∈ [0, 1] and defines a straight path between the noise
x0 and the action a (Lipman et al., 2023; Liu et al.). Assuming t is sampled uniformly from this
interval (t ∼ U(0, 1)), the interpolated action along this path is xt = (1−t)x0+ta. The Conditional
Flow Matching (CFM) loss then trains the network to match the constant velocity of this path:

LCFM(ϕ) = Et∼U(0,1),(s,a)∼D,x0∼N (0,I)

[
∥vϕ(xt, s, t)− (a− x0)∥2

]
(1)

During inference, the teacher policy πϕ generates a final action ateacher by using the trained vϕ to
iteratively denoise an initial noise sample over multiple steps.

Student Policy (πφ): The separate student network is trained for fast inference. It takes a state s
and a noise vector x0 as input and produces an action in a single forward pass. The student policy
πφ is trained to concurrently maximize the Q-value while staying close to the teacher’s output. This
is achieved by minimizing a compound loss function that combines a Q-learning objective with a
distillation loss:

LDistill(φ) = Es∼D,x0∼N (0,I)

[
−Q(s, πφ(s, x0)) + α∥πϕ(s, x0)− πφ(s, x0)∥2

]
, (2)

where Q is the critic function learned within an actor-critic framework (Haarnoja et al., 2018) and
the hyperparameter α controls the strength of the behavioral cloning (BC) regularization (Tarasov
et al., 2023). In particular, πφ requires no iterative denoising at inference, as it is trained to directly
approximate the multi-step denoising action in a single step.

2.3 MULTI-CRESCENT TASK

To demonstrate our insight, we design the Multi-Crescent environment, shown in Figure 2. The
environment consists of six separate, nonconvex, crescent-shaped regions of high reward, designed
to challenge agents that are prone to Q-value overestimation. The reward is structured into three
levels: the top-left/bottom-right crescents provide a moderate reward, the middle-left/middle-right
crescents provide a higher reward, and the globally optimal top-right/bottom-left crescents offer the
maximum reward. All other areas yield zero reward. This setup emulates a complex environment
with multiple levels of local optima.
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Figure 2: The visualization of
the multi-crescent task.

When constructing the offline dataset, we deliberately excluded
all samples from the two highest-reward crescent regions (top-
left/bottom-right), as shown by the blue scatter points in Figure 5a.
This environment poses two challenges to the algorithms: 1) During
the offline learning phase: The algorithm needs to identify and con-
verge to the higher-reward mode present within the dataset (middle-
left/middle-right) while suppressing Q-value overestimation for un-
seen regions. 2) During the online exploration phase: The algo-
rithm must demonstrate efficient exploration to discover and exploit
the globally optimal modes (top-left/bottom-right) that were never
present in the initial dataset. This environment allows us to assess
whether an algorithm can escape the pull of a suboptimal data dis-
tribution to find the globally optimal policy. More details can be found in the Appendix D.

3 METHODOLOGY

3.1 OVERVIEW OF THE ALGORITHM

Our method, GS-flow, is designed to mitigate the two challenges of imprecise exploitation and in-
effective exploration common in existing distilled policies through a two-phase training process, as
illustrated in Figure 3. The first phase, Q-Guided Prior Learning, focuses on solving the suboptimal
starting point problem. Instead of beginning the generation process from a standard, uninformed
Gaussian noise, we use the Advantage Noise Selection module to actively identify advantage ini-
tial noises, which lead to high-value actions. We then train a conditional Variational Autoencoder

3
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Figure 3: Overview of our algorithm. During training, we first learn a structured prior for the initial
noise, which is then used to distill the teacher policy. For online exploration, actions are sampled
from the student’s entropy-regularized distribution. During evaluation, the deterministic mean of the
policy’s output is used. The critic update steps are omitted for clarity, detailed in Appendix B.

(CVAE) to model the distribution of these advantage noises, effectively learning an informed, state-
conditioned prior. The second phase, Entropy-Regularized Distillation, uses the learned prior to
train a highly capable student policy. Both the teacher and student policies are provided with an ini-
tial noise sampled from our learned prior. Furthermore, the student model is designed as a stochastic
policy and trained with a hybrid objective that combines distillation with an entropy regularization
term. This endows the final actor with controllable stochasticity, allowing it to explore intelligently
during online fine-tuning. The complete training pipeline, which integrates these two phases with
standard actor-critic updates, is detailed in Algorithm 1.

At inference time, GS-flow operates with high efficiency using only the VAE decoder and the student
policy, which are highlighted in yellow in Figure 3. Given the current state, the VAE decoder
generates an advantage prior. This prior is then fed into the student actor to produce an action
distribution. For online exploration, an action is sampled from this distribution with its learned
mean and variance. For evaluation, we only use the mean to maximize exploitation.

Algorithm 1 GS-flow

1: Initialize: Critic Qθ, VAE (Eξ1 , Dξ2 ), Teacher Policy πϕ, Student Policy πφ.
2: for each training step do
3: Sample a batch {(s, a, r, s′)} from dataset D.

# — 1. Update Critic —
4: Update critic parameters θ using Temporal Difference (TD) learning.

# — 2. Update Prior Learning Network —
5: For each state s, generate Ncand candidate actions Acand = {aj}Ncand

j=1 using πϕ.
6: Find the prior noise xadv corresponding to the highest-Q action (Eq. 4).
7: Update VAE parameters ξ1, ξ2 by minimizing the CVAE loss (Eq. 5).

# — 3. Update Student Policy —
8: Update teacher policy parameters ϕ using the flow matching loss (Eq. 1).
9: Generate a sampled prior for the current state: x̂adv ← Dξ2(s,N (0, I)).

10: Generate the teacher’s target action: ateacher ← πϕ(s, x̂adv).
11: Update student policy parameters φ by minimizing the actor loss LActor (Eq. 9).
12: end for
13: return Trained student policy πφ.

3.2 Q-GUIDED PRIOR LEARNING

To realize our first insight of initiating the denoising process from golden starting points, we propose
learning a Q-Guided Prior to model the distribution of what we named “advantage noises”, denoted
as xadv. For this purpose, we employ a conditional Variational Autoencoder (CVAE) due to its
flexibility in learning arbitrary multi-modal distributions. To achieve this, we first need to construct
samples Badv of these advantage noises for model training.

Advantage Noise Selection. We introduce a data collection module named Advantage Noise Se-
lection, shown in Phase 1 of Figure 3. Given the state s, we first collect a set of Ncand candidate

4
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actions, denoted as acand ∈ Acand, generated by the teacher policy πϕ with Ncand different initial
noises x0, which is sampled from a normal distribution:

Acand = {aj = πϕ(s, xj) | xj ∼ N (0, I)}Ncand
j=1 . (3)

Although these candidate actions are all feasible behaviors learned from the dataset, they are not
necessarily optimal. To identify the most promising starting point, we leverage the critic Q to
evaluate all candidate actions. The initial noise that generates the action with the highest Q-value is
designated as the advantage noise for s:

xadv(s) = argmax
xj

Q(s, πϕ(s, xj)). (4)

This selection process is applied on-the-fly within each training step, using the most up-to-date
teacher policy to generate a new batch of pairings, Badv = {(s, xadv(s))}. This batch then serves as
the target distribution for the CVAE update.

State Conditional VAE. With the data collected before, we then train a Conditional Varia-
tional Autoencoder (CVAE) (Kingma & Welling, 2013) to model the state-conditioned distribu-
tion pξ2(xadv|s). The CVAE consists of a conditional encoder Eξ1(x, s) and a conditional decoder
Dξ2(z, s), where z is the latent vector. The encoder maps a prior-state pair to a latent distribution,
while the decoder reconstructs the prior from a latent sample. The model is trained by minimizing
the weighted sum of a reconstruction loss and a KL-divergence regularization term:

LVAE(ξ1, ξ2) = Lrecon + λKLLKL, (5)

where λKL is the scalar weight. The KL-divergence term LKL regularizes the latent space by encour-
aging the encoded distribution to be close to a standard normal distribution N (0, I):

LKL = E(s,xadv)∼Badv [DKL (qξ1(z | xadv, s) ∥ N (0, I))] , (6)

where qξ1 is the approximate posterior distribution, a diagonal Gaussian parameterized by the en-
coder Eξ1 : qξ1(z | xadv, s) = N (µξ1(xadv, s),Σξ1(xadv, s)). Assuming x̂adv denotes the prior
predicted by Dξ2(z, s), the loss of reconstruction Lrecon can be calculated as follows:

Lrecon = E(s,xadv)∼Badv,z∼qξ1 (z|xadv,s)

[
∥x̂adv − xadv∥2

]
. (7)

Notably, CVAE is capable of approximating an arbitrarily potentially multimodal prior distribution,
offering an advantage over methods that learn a Gaussian distribution.

(a) Learned Prior (Offline) (b) Learned Prior (Online)

Figure 4: Visualization of the learned prior
distribution after different training stages.

Validation. We validate the effectiveness of our Q-
guided prior in the MultiCrescent environment. Fig-
ure 4 visualizes the distribution generated by the VAE
decoder during inference. The red points represent
x̂adv, and the red region generated via KDE (Silver-
man, 2018) represents the predicted prior distribu-
tion. After the offline phase (left panel), the prior cap-
tures the high-value modes (middle-left/middle-right)
within the static dataset. After online fine-tuning (right
panel), the prior adapts its density to focus on the
newly discovered, globally optimal action modes (top-
left/bottom-right). This demonstrates that our learned
prior captures the distribution of advantage noises. Furthermore, Figure 5c shows that the actions
generated from x̂adv yield higher Q values compared to the baseline shown in Figure 5b.

3.3 ENTROPY-REGULARIZED DISTILLATION

Previous flow-matching policy distillation methods produce a deterministic actor. Although efficient
for exploitation, it is ill-suited for online exploration due to its lack of inherent stochasticity. This can
be viewed as a point-to-point generation process, where a starting noise is mapped to a single target
action. Inspired by recent approaches that augment generative models with distributional models
(Dong et al., 2025), we propose an entropy-regularized distillation method. This transforms the

5
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(a) Dataset (Offline)
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(b) FQL (Offline)
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(c) Ours (Offline)
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(d) FQL (Online)
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(e) Ours (Online)

Figure 5: Results on the multi-crescent task. Blue crosses denote samples from the offline dataset,
while yellow stars represent the actions produced by the policies. (a): shows the offline dataset,
which excludes the two globally optimal modes. (b, c): shows action distributions after the offline
phase. Our method captures the higher-value modes within the dataset, while the baseline shows a
less focused distribution. (d, e): shows action distributions after the online fine-tuning phase. Our
method quickly discovers and converges to both highest-reward modes. In contrast, the baseline
only finds one. More results on this task can be found in Appendix 8.

distillation from a point-to-point mapping into a point-to-adaptive-distribution process, providing
the agent with a principled method for balancing the exploration-exploitation trade-off.

To achieve this, we parameterize the student policy πφ(a|s, x̂adv) as a Gaussian distribution using a
dual-headed architecture that outputs both a mean µφ(s, x̂adv) and a standard deviation σφ(s, x̂adv).
The action aφ for exploration is computed as:

aφ(s, x̂adv, ϵ) = µφ(s, x̂adv) + σφ(s, x̂adv)⊙ ϵ, where ϵ ∼ N (0, I). (8)

The actor policy is trained by minimizing a composite objective that balances three key components:
imitation of the teacher, value maximization, and entropy regularization. The training objective for
our entropy-regularized actor is a composite loss function designed to balance three key objectives:
(1) imitating the high-quality teacher policy, (2) maximizing expected return according to the critic,
and (3) maintaining sufficient policy entropy to encourage exploration. Therefore, with the advan-
tage noise x̂adv = Dξ2(z, s), the total actor loss is defined as follows:

LActor = Ez∼N (0,I),s∼D [α1LDistill + LQ − α2H(πφ(·|s, x̂adv))] . (9)

The distillation term LDistill anchors the mean behavior of the student policy to the high-quality
teacher actions, and α1 is the scalar weight to control BC behavior. Two details are critical to
ensure that this process has a low-variance and stable training signal. First, both teacher and student
policies are conditioned on identical advantage noise x̂adv. Second, the loss is computed using only
the student’s deterministic mean µφ(s, x̂adv) rather than a stochastic sample. These design choices
reduce the variance of the loss signal and improve training stability. The loss is defined as follows:

LDistill = ∥µφ(s, x̂adv)− ateacher = πϕ(s, x̂adv)∥2. (10)

The value maximization term LQ encourages the policy to seek actions that the critic evaluates as
having a high value (Fujimoto & Gu, 2021). Following the standard approach in Soft Actor-Critic
(SAC) (Haarnoja et al., 2018), we use a sampled action aφ from the policy: aφ ∼ πφ(·|s, x̂adv). The
loss is then calculated as its negative Q-value:

LQ = −Q(s, aφ). (11)

The third entropy bonus termH(πφ(·|s, x̂adv)) is the entropy of the policy under x̂adv. To automate
the trade-off between reward and entropy, the temperature parameter α2 is learned by minimizing
a separate loss function that aims to match the entropy to a predefined target entropy Htarget. This
allows the agent to dynamically adjust its stochasticity, exploring more when the entropy is below
the target and exploiting more when it is sufficient. These two components are calculated as follows:

H(πφ(·|s, x̂adv)) = −Eaφ∼πφ
[log πφ(aφ|s, x̂adv)] , (12)

Lα2 = Es∼D [α2(H(πφ(·|s, x̂adv)−Htarget))] . (13)

Validation. The online fine-tuning results, shown in Figures 5d and 5e, highlight the superiority
of our exploration mechanism. Our method effectively explores the action space and identifies both
of the highest Q-value peaks (top-left/bottom-right). In contrast, the baseline lacks an exploration
strategy and finds just one of the peaks. Even better, our method finds both modes using significantly
fewer samples. This demonstrates the clear efficiency of its entropy-regularized exploration.
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Table 1: Offline performance on OGBench and D4RL benchmarks, averaged over 5 seeds (3 for
Visual Environments due to computational cost). Best results are in bold. The performance of
baseline methods is reported from Park et al. (2025b).

Task Gaussian Policies Diffusion Policies Flow Policies
BC IQL ReBRAC IDQL SRPO CAC FAWAC FBRAC IFQL FQL Ours

OGBench
AntMaze Large Navigate 0± 0 48± 9 91± 10 0± 0 0± 0 42± 7 1± 1 70± 20 24± 17 80± 8 88.4± 2.7
AntMaze Giant Navigate 0± 0 0± 0 27± 22 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 4± 5 10.4± 5.9
HumanoidMaze Medium 1± 0 32± 7 16± 9 1± 1 0± 0 38± 19 6± 2 25± 8 69± 19 19± 12 45.0± 19.7
HumanoidMaze Large 0± 0 3± 1 2± 1 0± 0 0± 0 1± 1 0± 0 0± 1 6± 2 7± 6 4.6± 4.4
AntSoccer Arena 1± 0 3± 2 0± 0 0± 1 0± 0 0± 0 12± 3 24± 4 16± 9 39± 6 46.0± 10.5
Cube Single Play 3± 1 85± 8 92± 4 96± 2 82± 16 80± 30 81± 9 83± 13 73± 3 97± 2 95.6± 4.1
Cube Double Play 0± 0 1± 1 7± 3 16± 10 0± 0 2± 2 2± 1 22± 12 9± 5 36± 6 51.3± 6.2
Scene Play 1± 1 12± 3 50± 13 33± 14 2± 2 50± 40 18± 8 46± 10 0± 0 76± 9 88.0± 8.6
Puzzle-3x3 Play 1± 1 2± 1 2± 1 0± 0 0± 0 0± 0 1± 1 2± 2 0± 0 16± 5 25.2± 10.7
Puzzle-4x4 Play 0± 0 5± 2 10± 3 26± 6 7± 4 1± 1 0± 0 5± 1 21± 11 11± 3 16.7± 4.1

Average 0.7 19.1 29.7 17.2 9.1 21.4 12.1 27.7 21.8 38.5 47.1
D4RL AntMaze
AntMaze U-Maze 55 77 98 94 97 66± 5 90± 6 94± 3 92± 6 96± 2 99.6± 0.8
AntMaze U-Maze Diverse 47 54 84 80 82 66± 11 55± 7 82± 9 62± 12 89± 5 93.2± 7.1
AntMaze Medium Play 0 66 90 84 81 49± 24 52± 12 77± 7 56± 15 78± 7 77.2± 9.0
AntMaze Medium Diverse 1 74 84 85 75 0± 1 44± 15 77± 6 60± 25 71± 13 75.5± 11.0
AntMaze Large Play 0 42 52 64 54 0± 0 10± 6 32± 21 55± 9 84± 7 86.5± 5.2
AntMaze Large Diverse 0 30 64 68 54 0± 0 16± 10 20± 17 64± 8 83± 4 84.8± 5.2

Average 17.2 57.2 78.7 79.2 73.8 30.2 44.5 63.7 64.8 83.5 86.1
Visual Environments
Visual Cube Single Play − 70± 12 83± 6 − − − − 55± 8 49± 7 81± 12 92.7± 4.1
Visual Cube Double Play − 34± 23 4± 4 − − − − 6± 2 8± 6 21± 11 42.0± 11.8
Visual Scene Play − 97± 2 98± 4 − − − − 46± 4 86± 10 98± 3 100.0± 0.0
Visual Puzzle-3x3 − 7± 15 88± 4 − − − − 7± 2 100± 0 94± 1 88.67± 9.0
Visual Puzzle-4x4 − 0± 0 26± 6 − − − − 0± 0 8± 15 33± 6 31.00± 7.1

Average − 41.6 59.8 − − − − 22.8 50.2 65.4 70.9

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We test our method across the OGBench (Park et al., 2025a) tasks, the standard D4RL AntMaze (Fu
et al., 2020) tasks, and a set of challenging Visual Environments (Park et al., 2025a). The baselines
range from standard Gaussian policies (BC, IQL, ReBRAC) (Kostrikov et al., 2022; Tarasov et al.,
2023), to more expressive Diffusion Policies (IDQL, SRPO, CAC) (Hansen-Estruch et al., 2023;
Chen et al., 2024; Ding & Jin, 2024), and finally to Flow Policies (FAWAC, FBRAC, IFQL) (Nair
et al., 2021; Wang et al., 2023; Park et al., 2025b). And state-of-the-art flow-matching distilla-
tion model FQL (Park et al., 2025b). For offline-to-online, we also compared with Cal-QL and
RLPD (Nakamoto et al., 2023; Ball et al., 2023). We validate our model in both offline and offline-
to-online fine-tuning settings to demonstrate the effectiveness of our two contributions. More details
on environments and baselines are shown in Appendices E and F.

4.2 RESULTS AND ANALYSIS

The Impact of the Learned Prior on Offline Performance. The results in Table 1 demonstrate
the effectiveness of our proposed method, GS-flow. GS-flowachieves new state-of-the-art perfor-
mance on average, outperforming all baselines. This advantage is particularly pronounced on several
tasks with multi-modal action spaces, where our method shows significant gains over the strong FQL
baseline. According to the results in OGBench, the strength can be illustrated by the contrasting re-
sults on the Cube tasks. On Cube Single Play, a task with a relatively unimodal optimal policy,
GS-flow performs comparably to the strong FQL baseline. In contrast, on the more complex Cube
Double Play, which requires coordinating two objects and therefore presents a significantly more
multimodal Q landscape, the offline score of GS-flow (51.3%) dramatically outperforms all com-
peting methods. The contrast underscores our algorithm’s specialized capability in multi-modal
challenges. The advantage is further substantiated in other complex manipulation tasks such as
Puzzle-3x3 and Puzzle-4x4, and in challenging locomotion environments such as HumanoidMaze
Medium Navigate, where GS-flowachieves more than double the score of FQL. Furthermore, GS-
flowachieves the highest average scores on the remaining two benchmarks, D4RL AntMaze and
Visual Environments, demonstrating the effectiveness of our algorithm in the offline setting.
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Table 2: Offline-to-online performance comparison. Similar to Table 1, we report the results over 5
seeds. The best online results are highlighted in bold.

Task IQL ReBRAC Cal-QL RLPD IFQL FQL Ours
HumanoidMaze Medium 21± 13→ 16± 8 16± 20→ 1± 1 0± 0→ 0± 0 0± 0→ 8± 10 56± 35→ 82± 20 12± 7→ 22± 12 45± 20→ 67± 6
AntSoccer Arena 2± 1→ 0± 0 0± 0→ 0± 0 0± 0→ 0± 0 0± 0→ 0± 0 26± 15→ 39± 10 28± 8→ 86± 5 46± 10→ 77± 9
Cube Double Play 0± 1→ 0± 0 6± 5→ 28± 28 0± 0→ 0± 0 0± 0→ 0± 0 12± 9→ 40± 5 40± 11→ 92± 3 51± 6→ 99± 1
Scene Play 14± 11→ 10± 9 55± 10→ 100± 0 1± 2→ 50± 53 0± 0→ 100± 0 0± 1→ 60± 39 82± 11→ 100± 1 88± 9→ 100± 0
Puzzle-4x4 Play 5± 2→ 1± 1 8± 4→ 14± 35 0± 0→ 0± 0 0± 0→ 100± 1 23± 6→ 19± 33 8± 3→ 38± 52 17± 4→ 100± 0

Average 8.4→ 5.4 17.0→ 28.6 0.2→ 10.0 0.0→ 41.6 23.4→ 48.0 34.0→ 67.6 49.4→ 88.6
AntMaze U-Maze 77→ 96 98→ 75 77→ 100 0± 0→ 98± 3 94± 5→ 96± 2 97± 2→ 99± 1 100± 1→ 100± 1
AntMaze U-Maze Diverse 60→ 64 74→ 98 32→ 98 0± 0→ 94± 5 69± 20→ 93± 5 79± 16→ 100± 1 93± 7→ 98± 3
AntMaze Medium Play 72→ 90 88→ 98 72→ 99 0± 0→ 98± 2 52± 19→ 93± 2 77± 7→ 97± 2 77± 9→ 98± 1
AntMaze Medium Diverse 64→ 92 85→ 99 62→ 98 0± 0→ 97± 2 44± 26→ 89± 4 55± 19→ 97± 3 76± 11→ 98± 2
AntMaze Large Play 38→ 64 68→ 32 32→ 97 0± 0→ 93± 5 64± 14→ 80± 5 66± 40→ 84± 30 86± 5→ 91± 10
AntMaze Large Diverse 27→ 64 67→ 72 44→ 92 0± 0→ 94± 3 69± 6→ 86± 5 75± 24→ 94± 3 85± 5→ 96± 4

Average 56.3→ 78.3 80.0→ 79.0 53.2→ 97.3 0.0→ 95.7 65.3→ 89.5 74.8→ 95.2 86.2→ 96.8

Pen Cloned 84→ 102 74→ 138 −3→ −3 3± 2→ 120± 10 77± 7→ 107± 10 53± 14→ 149± 6 71± 6→ 146± 6
Door Cloned 1→ 20 0→ 102 −0→ −0 0± 0→ 102± 7 3± 2→ 50± 15 0± 0→ 102± 5 1± 1→ 105± 4
Hammer Cloned 1→ 57 7→ 125 0→ 0 0± 0→ 128± 29 4± 2→ 60± 14 0± 0→ 127± 17 10± 3→ 132± 5
Relocate Cloned 0→ 0 1→ 7 −0→ −0 0± 0→ 2± 2 −0± 0→ 5± 3 0± 1→ 62± 8 0± 0→ 63± 12

Average 21.5→ 44.8 20.5→ 93.0 −0.8→ −0.8 0.8→ 88.0 21.0→ 55.5 13.2→ 110.0 20.5→ 111.5
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Figure 6: Ablation studies on the offline-to-online transition. (a): The plot analyzes the impact of
the candidate number on learning efficiency. (b, c): The plots demonstrate the effectiveness of our
controllable entropy, showing significant performance gains of our full method over a deterministic
variant in both the Multi-Crescent environment and the Puzzle-4x4 task.

Effective Online Exploration via Controllable Entropy. The second key advantage of GS-
flow, its capacity for effective online exploration, is enabled by its controllable entropy mechanism
based on the output of the distribution actor. The performance improvements on online finesetuning
shown in Table 2 are comparable, especially in tasks that require extensive exploration. The Puzzle-
4x4 environment serves as a powerful case study. As noted by the authors of FQL (Park et al.,
2025b), this task is particularly challenging for methods with limited exploration capabilities. The
baseline FQL reflects this, improving from 8% to 38% after online training. In the contrast, GS-
flow leverages its entropy-regularized stochastic policy to achieve a score from 17% to 100%,
matching the performance of specialized online methods like RLPD (Ball et al., 2023). Furthermore,
our method significantly outperforms RLPD on other complex tasks such as AntSoccer and Cube
Double. These results demonstrate that our entropy-regularized distillation successfully combines
the high performance of the teacher model with the advantage of principled, controllable exploration
found in traditional Gaussian policies (Haarnoja et al., 2018). We believe the idea of moving beyond
a “point-to-point” mapping to a “point-to-distribution” process is simple yet valuable, allowing GS-
flow to effectively balance exploitation and exploration.

4.3 FURTHER ANALYSIS

The Importance of the Learned Prior. To analyze the impact of our proposed prior learning
mechanism, we evaluate its performance while varying the number of candidate actions, Ncand,
used in the Advantage Noise Selection module. As depicted in Figure 6a, there is a clear trend:
increasing the number of candidates improves both sample efficiency and final performance. The
red curve (Ncand = 15) achieves the highest return, while the green curve (Ncand = 5) learns more
slowly. However, even with only five candidates, our method significantly outperforms the FQL (the
gray curve), which can be viewed as a degenerate case of our approach without the Q-guided prior
learning module(Ncand = 0). This strongly validates the effectiveness of learning a structured prior.
Given the trade-off between performance and computational overhead of the selection module, we
chose Ncand = 10 (the blue curve) as a balanced setting for all main experiments.
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The Importance of the Controllable Entropy. To isolate the contribution of our controllable
entropy, we conduct ablation studies in the Multi-Crescent and Puzzle-4x4 environments. As shown
in Figures 6b and 6c, our full method (the blue curve), which uses a dual-headed architecture with
an entropy-regularized loss, demonstrates significantly higher learning efficiency during the online
phase compared to a deterministic variant that uses only our learned prior module (the gray curve,
denoted “Ours w/o CE”). In particular, the online performance of the gray curve in the Puzzle-
4x4 task is similar to that of the FQL (as seen in Table 1). This similarity in performance strongly
suggests that our controllable entropy mechanism is the key component that provides superior online
exploration, effectively addressing this known limitation in prior work.
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ho
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Figure 7: Average step time required on
cube-double task.

Computational Cost Analysis. We demonstrate that
significant performance gains of our method do not come
at a prohibitive computational cost, particularly during
the critical inference phase. We compare the wall-clock
time for a single training step and a single inference step
against FQL and IFQL. As presented in Figure 7, the
inference time of GS-flow(0.51 ms) is only marginally
higher than that of FQL (0.42 ms), which is caused by
the VAE Decoder model (Dξ2 ) and remains significantly
faster than the multi-step IFQL (0.97 ms). This confirms
that our method preserves the single-step efficiency of the
distillation paradigm. Although the training time for GS-flow(3.10 ms) is higher due to the addi-
tional inference in the Advantage Noise Selection module under candidate number Ncand = 10, this
one-time training cost is a well-justified trade-off for the substantial improvements in both policy
quality and online adaptability.

5 RELATED WORKS

Efficient Inference for Generative Policies. Generative policies, including diffusion (Ho et al.,
2020) and flow-matching models (Liu et al.; Albergo & Vanden-Eijnden, 2023; Geng et al., 2025),
excel in representing multimodal action distributions in RL (Chi et al., 2023; Hansen-Estruch et al.,
2023; Ding & Jin, 2024; Nair et al., 2021). However, their practical adoption is hindered by high
inference latency (Shi & Zhang; Zhai et al., 2024). While one-step distillation methods (Park et al.,
2025b) have improved inference speed, they often overlook the impact of the noise prior on opti-
mization, a factor shown to be promising in the image generation field (Zhou et al., 2025). DSRL
(Wagenmaker et al., 2025) takes advantage of this idea by learning a Gaussian prior distribution
for online adaptation, without optimizing for inference latency. In contrast, our method integrates a
more flexible prior while introducing negligible inference overhead.

Online Exploration for Generative Policies. Another key challenge for generative policies is prin-
cipled online exploration (Fan et al., 2025). One line of research focuses on introducing stochasticity
into the inference denoising process (Yang et al., 2023; Black et al., 2024b; Chen et al., 2025). An-
other line focuses on the training phase, using techniques such as reweighted score matching (Ma
et al., 2025a) and entropy estimation with Gaussian Mixture Models, which can be computationally
expensive (Wang et al., 2024). Recently, EXPO (Dong et al., 2025) enhances sample efficiency by
training an additional Gaussian edit policy with entropy regularization. In contrast to these methods,
our approach is more lightweight, integrating entropy control directly into the distillation process.

6 CONCLUSION

In this work, we introduced GS-flow, a novel framework for distilling flow-matching policies. Our
method makes two key contributions: it learns a Q-Guided Generative Prior to provide a “golden
start” that shortcuts the policy to high-value actions, and it uses Entropy-Regularized Distillation to
endow the policy with controllable, principled exploration. Extensive experiments show that GS-
flowestablishes a new state-of-the-art in overall performance on challenging benchmarks, particu-
larly excelling on complex tasks that require multi-modal actions and effective exploration. Our
framework successfully bridges the gap between expressive generative models and practical actor-
critic methods, delivering a potent combination of inference speed, precision, and exploratory power.
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A USE OF LARGE LANGUAGE MODELS

We utilized Large Language Models as a tool to assist in the preparation of this paper. Specifically,
LLMs were used for polishing the language, correcting grammar, and providing suggestions for
LaTeX formatting to improve the manuscript’s presentation. Our use of LLMs is in full compliance
with the ICLR 2026 policy. We reviewed all LLM-generated outputs and take full responsibility for
the scientific claims and all content in this work.

B CRITIC UPDATE DETAILS

Our critic network, denoted as Qθ(s, a), is trained to estimate the expected discounted cumulative
reward (the Q-value) for taking action a in state s. To improve training stability and mitigate the
overestimation of Q-values, we employ standard techniques from modern actor-critic methods (Fuji-
moto et al., 2018; Haarnoja et al., 2018). Specifically, we use a twin-critic architecture, maintaining
two separate Q-networks (Qθ1 , Qθ2 ), and use slowly-updated target networks (Qθ′

1
, Qθ′

2
) to con-

struct the Bellman target. The critic parameters are optimized by minimizing the Mean Squared
Bellman Error (MSBE). For a given transition (s, a, r, s′) from the replay buffer, we first compute
the target value, y. The next action, a′, is sampled from our stochastic student policy, πφ, and the
target value includes an entropy term to maintain consistency with the actor’s objective:

y = r + γ

(
min
i=1,2

Qθ′
i
(s′, a′)− α2 log πφ(a

′|s′)
)
, where a′ ∼ πφ(·|s′). (14)
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The total loss for the critic networks is the sum of the MSBE for each critic with respect to this
common target value:

LCritic(θ1, θ2) = E(s,a,r,s′)∼D

∑
i=1,2

(Qθi(s, a)− y)
2

 . (15)

The target network parameters θ′ are updated via Polyak averaging with the main critic parameters
θ at each training step: θ′ ← τθ + (1− τ)θ′, where τ is a small interpolation factor.

C THEORETICAL ANALYSIS

C.1 PRELIMINARIES AND NOTATION

Let us formalize the key concepts:

• Optimal noise set: X ∗(s) = {x0 : Q(s, πϕ(s, x0)) = maxa Q(s, a)}
• Optimal prior: p∗(x0|s) - uniform over X ∗(s)

• Learned prior: padv(x0|s) - our CVAE-based prior
• Baseline prior: p0(x0) = N (0, I)

• Value function: J(π; p, s) = Ex0∼p(·|s)[Q(s, π(s, x0))]

Assumption 1 (Lipschitz Continuity): Q(s, a) is LQ-Lipschitz in a, and πϕ(s, x0) is Lπ-Lipschitz
in x0.

C.2 VALUE BOUND VIA WASSERSTEIN DISTANCE

Lemma 1 (Value Sensitivity). Under Assumption 1, for any priors p, p′:

|J(π; p, s)− J(π; p′, s)| ≤ LQLπ ·W1(p(·|s), p′(·|s))

where W1 is the 1-Wasserstein distance.

Proof. By Lipschitz continuity, f(x0) = Q(s, π(s, x0)) is Lf -Lipschitz with Lf = LQLπ . The
result follows from the dual formulation of W1.

Corollary 1. For any prior p:

J(π; p, s) ≥ J(π; p∗, s)− Lf ·W1(p, p
∗)

C.3 SUPERIORITY OF THE LEARNED PRIOR

Lemma 2 (Prior Improvement). Under our training procedure:

W1(padv, p
∗) ≤W1(p0, p

∗)−∆(s)

where ∆(s) > 0 quantifies the improvement.

Proof. Let p̂∗Ncand
be the empirical distribution of the N advantage noise samples drawn from the true

advantage distribution p∗(Eq. 4). According to the triangle inequality, the distance W1(padv, p
∗) is

bounded as:
W1(padv, p

∗) ≤W1(padv, p̂
∗
Ncand

)︸ ︷︷ ︸
Optimization Error

+W1(p̂
∗
Ncand

, p∗)︸ ︷︷ ︸
Statistical Error

For the optimization error, the VAE’s training objective, LVAE, is designed to minimize the diver-
gence between padv and p̂∗Ncand

. For a sufficiently expressive and well-trained VAE, this error can be
made small Kingma & Welling (2013).

For the statistical error, which measures how well N finite samples represent the true distribution
p∗. This error converges to zero as the number of samples N increases (E[W1(p̂

∗
Ncand

, p∗)] ∝ 1/
√
N ).
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In contrast, the prior p0 is fixed, and its distance to the optimal prior, W1(p0, p
∗), is a fixed positive

constant C0 > 0. Since the sum of the optimization and statistical errors for our method can be
made smaller than C0, there exists a positive ∆(s) such that:

W1(padv, p
∗) ≤W1(p0, p

∗)−∆(s)

C.4 MAIN THEORETICAL RESULT

Theorem 1 (Value Lower Bound Improvement). Let LBadv and LB0 be the respective performance
lower bounds for our method (using prior padv) and the baseline (using prior p0). Under Assumption
1, with high probability:

LBadv ≥ LB0 + Lf ·∆(s)

where ∆(s) = W1(p0, p
∗)−W1(padv, p

∗) > 0, and Lf = LQLπ .

Proof. From the corollary, we have the performance lower bounds for our method and the baseline:

J(π; padv, s) ≥ J(π; p∗, s)− Lf ·W1(padv, p
∗) (16)

J(π; p0, s) ≥ J(π; p∗, s)− Lf ·W1(p0, p
∗) (17)

We define the right-hand side of inequalities equation 16 and equation 17 as the lower bounds LBadv
and LB0, respectively. Then we have:

LBadv − LB0 = (J(π; p∗, s)− Lf ·W1(padv, p
∗))− (J(π; p∗, s)− Lf ·W1(p0, p

∗))

= Lf · (W1(p0, p
∗)−W1(padv, p

∗))
(18)

A successfully trained VAE ensures that W1(padv, p
∗) < W1(p0, p

∗). Therefore, the term ∆(s) =
W1(p0, p

∗)−W1(padv, p
∗) is strictly positive, leading to the conclusion:

LBadv − LB0 = Lf ·∆(s) > 0.

D ADDITIONAL STUDIES IN THE MULTI-CRESCENT ENVIRONMENT

To further validate the effectiveness of our custom Multi-Crescent Environment at highlighting key
algorithmic challenges, we conducted a broader set of experiments with different baseline settings,
as shown in Figure 8 in the main text. In this analysis, the gray bars represent the final offline
training performance, while the blue bars show the performance after the subsequent online fine-
tuning phase. The hyperparameter α corresponds to the weight of the behavioral cloning (BC) term
in the FQL loss function (Equation 2). A smaller α places a relatively larger emphasis on the Q-
maximization term. The primary results in the main body compare our method against FQL with a
high BC weight (α = 100).

Ours FQL a=100 FQL a=1 FQL a=0 FQL w/o Q BC (MSE)
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Figure 8: Additional Studies in the Multi-Crescent Environment

By lowering α, we test the hypothesis that our non-convex environment can induce Q-value over-
estimation in the baseline. The experimental results confirm this hypothesis. When α = 1, FQL’s

14
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offline performance drops sharply. The policy learns to target points overestimated by the critic—
locations between the tips of the crescent shapes but outside the actual high-reward regions—leading
to a significant decrease in return. In the extreme case where α = 0 (i.e., pure Q-maximization), the
offline return predictably falls to zero, further demonstrating our environment’s ability to challenge
methods susceptible to Q-value overestimation. The final two columns in the figure are designed to
evaluate the performance of pure imitation learning. The “FQL w/o Q” baseline isolates the effect of
imitation learning via flow-matching, while “BC (MSE)” represents a standard behavioral cloning
approach. Our method outperforms both of these baselines. Notably, the standard FQL provides
only a marginal improvement over “FQL w/o Q.” This is because the reward modes in our environ-
ment are disconnected; when the Q-guidance is too weak (high α), the policy struggles to jump from
one mode to another, and when it is too strong (low α), the policy is misled by critic overestimation.
In contrast, our algorithm learns an initial noise distribution that directly fits the inherently high-Q
actions from the dataset, making it significantly more robust to the effects of Q-value overestimation.

E BENCHMARK DESCRIPTIONS

E.1 OGBENCH

OGBench (Offline Goal-Conditioned RL Benchmark) Park et al. (2025a) is a high-quality bench-
mark designed for offline goal-conditioned reinforcement learning. It aims to systematically evalu-
ate the capabilities of algorithms across several key dimensions, such as trajectory stitching, long-
horizon reasoning, handling high-dimensional inputs (e.g., pixels), and coping with environmen-
tal stochasticity. We utilize a variety of environments from OGBench in our experiments, span-
ning locomotion, manipulation, and visual tasks. Notably, we evaluate on the default task for
each environment. For instance, in the cube-double-play environment, we exclusively use
the cube-double-play-singletask-task2-v0 task, which can be found in Park et al.
(2025a;b).

The specific environments used in our work include:

• AntMaze and HumanoidMaze: These are maze navigation tasks requiring an agent to
control a complex quadruped robot (Ant) or a 21-DoF humanoid robot (Humanoid), re-
spectively, to reach a target location. We employ various maze layouts, including “Large”
and “Giant”, with the “Navigate” dataset type to test long-horizon planning and hierarchical
control capabilities.

• AntSoccer: This is a more challenging locomotion task that requires the Ant agent to
dribble a soccer ball while navigating. We use the “Arena” (open-field) version of this
environment.

• Cube: This is a robotic manipulation task involving multi-block pick-and-place operations.
The agent must move, stack, or swap single or multiple cubes according to a goal config-
uration. We use the “Single Play” and “Double Play” versions to test the agent’s ability to
learn generalizable multi-object manipulation skills from unstructured, random trajectories.

• Scene: This is a complex sequential manipulation task requiring the robot arm to interact
with various household objects, including a drawer, a window, button locks, and a cube. It
is designed to challenge the agent’s sequential and long-horizon reasoning abilities.

• Puzzle: In this task, a robot arm must solve a “Lights Out” puzzle. The agent presses
buttons on a grid to toggle the color of the pressed button and its neighbors to match a goal
configuration. We use the 3×3 and 4×4 grid versions to specifically test for combinatorial
generalization.

• Visual Environments: Many tasks in OGBench, particularly the manipulation suite, sup-
port both state-based and pixel-based inputs. We evaluate our methods in the correspond-
ing visual environments (e.g., Visual Cube, Visual Scene, Visual Puzzle), which require the
agent to learn control policies directly from 64×64 RGB images.
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Figure 9: Visualization of the OGBench tasks.

Figure 10: Visualization of the D4RL tasks.

E.2 D4RL

D4RL (Datasets for Deep Data-Driven Reinforcement Learning) Fu et al. (2020) is a public bench-
mark focused on offline reinforcement learning. It is designed to provide datasets that reflect chal-
lenges present in real-world applications, such as narrow data distributions, undirected multi-task
data, sparse rewards, and suboptimal data. These characteristics make D4RL an essential bench-
mark for evaluating the robustness and generalization of offline RL algorithms.

Our experiments primarily make use of the AntMaze environment from D4RL. This is a popular
navigation task that requires an 8-DoF ‘Ant’ quadruped robot to reach a specified goal in a maze.
The task features sparse rewards (a reward is only given upon reaching the goal), and the datasets
are generated by a non-Markovian controller. This setup is designed to test an algorithm’s ability to
stitch effective trajectories from undirected data to solve long-horizon, sparse-reward tasks. We also
implement on the Adroit domain, which involves controlling a 24-DoF robotic hand. Task examples
are shown in Figure 10

F DETAILS ON ADDITIONAL BASELINE METHODS

In this section, we provide additional details on the baseline methods used in the paper (except FQL,
which is introduced in Preliminary) , categorized by their underlying policy structure and learning
paradigm. The settings for all baseline methods are adopted directly from the original paper (Park
et al., 2025b) for comparison. You can find more implement details in their paper.

F.1 OFFLINE RL BASELINES

For the offline RL experiments, we compare with 10 recent and representative methods to demon-
strate our contributions.
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Gaussian Policies. For standard offline RL methods that use Gaussian policies, we consider BC,
IQL (Kostrikov et al., 2022), and ReBRAC (Tarasov et al., 2023). In particular, ReBRAC is known
to perform well on many D4RL tasks (Fu et al., 2020), which are based on a behavior-regularized
actor-critic framework.

Diffusion Policies. For methods based on diffusion policies, we compare against IDQL (Hansen-
Estruch et al., 2023), SRPO (Chen et al., 2024), and Consistency-AC (CAC) (Ding & Jin, 2024).
These methods employ different policy extraction techniques: IDQL is based on rejection sampling,
whereas SRPO and CAC utilize policy distillation. CAC trains the distillation policy within the
behavior-regularized actor-critic framework and is based on consistency models.

Flow Policies. We also consider several flow-based variants of existing algorithms to cover dif-
ferent policy extraction schemes. Flow Advantage-Weighted Actor-Critic (FAWAC) is a flow-based
variant of AWAC (Nair et al., 2021), which uses the Advantage-Weighted Regression (AWR) objec-
tive for policy learning. Flow Behavior-Regularized Actor-Critic (FBRAC) is the flow counterpart
to Diffusion-QL (DQL) (Wang et al., 2023), which is based on the original Q-loss with backpropa-
gation through time. Implicit Flow Q-Learning (IFQL) is the flow counterpart to IDQL, based on a
rejection sampling scheme.

F.2 OFFLINE-TO-ONLINE FINETUNING BASELINES

The offline methods include IQL, which learns a policy implicitly through advantage-weighted re-
gression over learned Q and Value functions; ReBRAC, a stable behavior-regularized actor-critic
algorithm; and IFQL, a flow-based policy utilizing rejection sampling. We also include two meth-
ods designed for data-driven online RL: Cal-QL (Nakamoto et al., 2023), which calibrates the Q-
function with the offline dataset to enable safer online exploration, and RLPD (Ball et al., 2023),
which employs a balanced sampling strategy from both offline and online data buffers to accelerate
fine-tuning.

G HYPERPARAMETERS

G.1 HYPERPARAMETERS SETTINGS

Table 4 lists the hyperparameters used for the cube-double experiment, based on the provided exe-
cution command.

The ‘Offline Alpha’ and ‘Online Alpha’ refer to the pre-set values of the hyperparameter α1 in
Equation 9 for the offline-to-online transition. This distinction is made because the confidence in
the critic’s estimates differs between the offline and online phases. It is a common phenomenon
in offline RL that the critic often overestimates Q-values, necessitating regulation of the Behavior
Cloning (BC) weight. However, during the online phase, excessive reliance on the BC term can
stifle exploration, which is why these values are set in advance.

Additionally, when running the online phase for the puzzle environment, we utilized the balanced
sampling technique from Ball et al. (2023). To ensure a fair comparison, we also applied this tech-
nique to our FQL agent. We found that only our method showed performance improvements with
this technique.

G.2 THE EFFECT OF LATENT DIMENSION.

We investigate the sensitivity of our learned prior to the VAE’s latent dimension. Figure 11 illus-
trates the results. We observe that a low-dimensional, compact latent space is optimal for this task,
with performance peaking at a dimension of 1 or 2 for both offline and online settings. As the
latent dimension increases, performance gradually degrades, particularly during the online phase.
This suggests that a higher-dimensional space may increase the difficulty of learning a meaningful
prior, potentially introducing noise or leading to overfitting. However, our method still outperforms
the FQL across different tested dimensions in both settings. This demonstrates the fundamental
robustness and benefit of our learned prior, even when its key hyperparameter is not perfectly tuned.
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Table 3: Hyperparameters for the cube-double experiment.

Hyperparameter Value
Offline Steps 1,000,000
Online Steps 1,000,000
Seed 0,2,4,8,16
Latent Dimension 8 (default)
KL Weight 0.1 (default)
Reconstruction Weight 1 (default)
Number of Candidates 10 (default)
Offline Alpha1 300
Online Alpha1 50
Offline Temperature 0 (default)
Target Entropy Multiplier 0.5 (default)

Table 4: Hyperparameters for the Puzzle 3x3 experiment.

Hyperparameter Value
Offline Steps 1,000,000
Online Steps 1,000,000
Seed 0,2,4,8,16
Latent Dimension 8 (default)
KL Weight 0.1 (default)
Reconstruction Weight 1 (default)
Number of Candidates 10 (default)
Offline Alpha1 1000
Online Alpha1 10
Offline Temperature 0 (default)
Target Entropy Multiplier 0.5 (default)
Balanced Sampling( Ball et al. (2023)) True
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Figure 11: The effect of the VAE’s latent dimension on the final return in both offline (black) and
online (blue) settings.
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