

000 001 002 003 004 005 GOLDENSTART: Q-GUIDED PRIORS AND ENTROPY 006 CONTROL FOR DISTILLING FLOW POLICIES 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

ABSTRACT

032 Flow-matching policies hold great promise for reinforcement learning (RL) by
033 capturing complex, multi-modal action distributions. However, their practical ap-
034 plication is often hindered by prohibitive inference latency and ineffective on-
035 line exploration. Although recent works have employed one-step distillation for
036 fast inference, the structure of the initial noise distribution remains an overlooked
037 factor that presents significant untapped potential. This overlooked factor, along
038 with the challenge of controlling policy stochasticity, constitutes two critical ar-
039 eas for advancing distilled flow-matching policies. To overcome these limitations,
040 we propose GoldenStart (GS-flow), a policy distillation method with Q-guided
041 priors and explicit entropy control. Instead of initializing generation from unin-
042 formed noise, we introduce a Q-guided prior modeled by a conditional VAE. This
043 state-conditioned prior repositions the starting points of the one-step generation
044 process into high-Q regions, effectively providing a “golden start” that shortcuts
045 the policy to promising actions. Furthermore, for effective online exploration,
046 we enable our distilled actor to output a stochastic distribution instead of a deter-
047 ministic point. This is governed by entropy regularization, allowing the policy to
048 shift from pure exploitation to principled exploration. Our integrated framework
049 demonstrates that by designing the generative startpoint and explicitly controlling
050 policy entropy, it is possible to achieve efficient and exploratory policies, bridging
051 the generative models and the practical actor-critic methods. We conduct exten-
052 sive experiments on offline and online continuous control benchmarks, where our
053 method significantly outperforms prior state-of-the-art approaches.

1 INTRODUCTION

034 Recent advances in policy learning have increasingly leveraged generative models to capture com-
035 plex and multimodal policies (Chi et al., 2023; Ghugare & Eysenbach, 2025; Black et al., 2024a).
036 Unlike traditional methods that assume a unimodal Gaussian distribution Schulman et al. (2015;
037 2017); Haarnoja et al. (2018), these approaches model the rich action distributions required for so-
038 phisticated control tasks. However, this expressive power comes at a cost: The iterative nature of
039 the generation process, which requires multiple steps to produce a single action, leads to prohibitive
040 inference latency. This bottleneck makes such models impractical for real-time scenarios, such as
041 Vision-Language-Action (VLA) models (Zhai et al., 2024; Black et al., 2025).

042 Flow matching has recently emerged as a more efficient alternative to diffusion models (Lipman
043 et al., 2023; Liu et al.; Albergo & Vanden-Eijnden, 2023; Geng et al., 2025). This has spurred
044 research into the acceleration of generative policies using flow matching (Braun et al., 2024;
045 Agrawalla et al., 2025; Espinosa-Dice et al., 2025), although these approaches often still require
046 multiple denoising steps at the inference stage. To address this, a more aggressive solution using
047 one-step distillation proves particularly effective by training a student network to emulate the en-
048 tire multi-step transformation in a single forward pass (Park et al., 2025b). Although effective in
049 reducing latency, these methods overlook two critical opportunities to improve policies.

050 First, their generative process begins from a fixed, uninformed prior, typically a standard Gaus-
051 sian distribution. However, an emerging perspective in generative modeling suggests that initial
052 noise is a critical component that can guide generation (Zhou et al., 2025; Ma et al., 2025b).

We posit that an optimized starting point (a “golden start”) can create a powerful learning shortcut to high-value actions. As illustrated in Figure 1, an informed prior (yellow) strategically shifted towards high-value regions provides a more direct path to optimal actions, compared to an uninformed Gaussian distribution (gray). The second opportunity stems from the deterministic mapping inherent in the distilled policies. Given a specific prior noise, the generator learns a “point-to-point” mapping, transforming a single noise vector into a single deterministic action. This architecture inherently lacks explicit control over policy stochasticity, which is crucial for effective online exploration (Ma et al., 2025a).

To overcome these challenges, we introduce GoldenStart (GS-flow), a novel distillation framework that unifies high-speed inference with precise exploitation and adaptive exploration. Our work is built upon two key innovations: (1) First, we propose a Q-Guided Generative Prior, learned via a lightweight conditional VAE. This prior replaces the uninformative Gaussian noise with a state-aware distribution biased toward high-value actions, as identified by the critic. This provides the “golden start”, effectively shortcircuiting the policy learning to optimal modes with negligible latency overhead. (2) Second, we introduce Entropy-Regularized Distillation, where the student policy learns a full distribution over actions, not just deterministic ones. This transforms the conventional “point-to-point” mapping into a more expressive “point-to-distribution” paradigm. During the online RL stage, an entropy regularization mechanism is activated, allowing the policy to dynamically modulate its stochasticity for robust exploration.

By co-optimizing the generative starting point and the output distribution, our framework improves the policy’s ability to represent high-value actions while merging flow-based distillation models with adaptive exploration control. To this end, our approach, GS-flow, is extensively evaluated on continuous control benchmarks, including OGBench and D4RL (Park et al., 2025a; Fu et al., 2020). The results demonstrate that our method establishes a new state-of-the-art in overall performance. It particularly excels on complex tasks requiring multi-modal action representations and principled exploration, where it significantly outperforms prior methods.

2 PRELIMINARY

2.1 PROBLEM DEFINITION

A reinforcement learning problem is formulated as a Markov Decision Process (MDP) (Sutton et al., 1998), defined by the tuple (S, A, P, r, γ) . S is the state space, A is the action space, $P : S \times A \times S \rightarrow [0, 1]$ is the state transition probability function, $r : S \times A \rightarrow \mathbb{R}$ is the reward function, and $\gamma \in [0, 1]$ is the discount factor. A policy $\pi(a|s)$ is a distribution over actions given a state. The objective is to learn an optimal policy π^* that maximizes the expected discounted cumulative reward, $J(\pi) = \mathbb{E}_{\tau \sim \pi} [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)]$, where $\tau = (s_0, a_0, s_1, a_1, \dots)$ is a trajectory sampled by executing the policy π . Offline RL involves learning from a static transition dataset $\mathcal{D} = \{(s_t, a_t, r_t, s_{t+1})\}_{t=1}^N$ without environmental interaction, where N is number of steps in the dataset (Levine et al., 2020). The Offline-to-Online RL setting extends this problem by introducing a subsequent online interaction phase, also with the aim of maximizing the return function $J(\pi)$.

2.2 DISTILLATION FROM FLOW-MATCHING POLICY

The significant inference cost of iterative flow-matching policies has motivated researchers to distill them into single-step, fast student policies (Park et al., 2025b). This approach, named FQL, operates within an actor-critic structure and trains the student actor with a hybrid objective: concurrently minimizing a distillation loss against the flow-matching teacher while maximizing the Q value. The framework utilizes two distinct models:

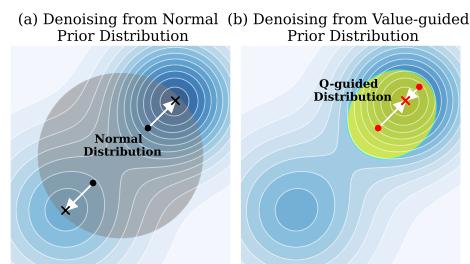


Figure 1: An illustration of denoising from an uninformed Gaussian prior (a) versus an informed, value-guided prior (b). Deeper blue indicates higher value.

108 **Teacher Policy (π_ϕ):** The flow-matching teacher policy is trained on the offline dataset \mathcal{D} using a
 109 behavioral cloning (BC) objective. For a given state-action pair (s, a) sampled from the dataset and a
 110 noise sample $x_0 \sim \mathcal{N}(0, I)$, the training objective is to learn a conditional velocity field $v_\phi(x_t, s, t)$.
 111 This field is parameterized by a time variable $t \in [0, 1]$ and defines a straight path between the noise
 112 x_0 and the action a (Lipman et al., 2023; Liu et al.). Assuming t is sampled uniformly from this
 113 interval ($t \sim U(0, 1)$), the interpolated action along this path is $x_t = (1-t)x_0 + ta$. The Conditional
 114 Flow Matching (CFM) loss then trains the network to match the constant velocity of this path:

$$\mathcal{L}_{\text{CFM}}(\phi) = \mathbb{E}_{t \sim U(0,1), (s,a) \sim \mathcal{D}, x_0 \sim \mathcal{N}(0,I)} [\|v_\phi(x_t, s, t) - (a - x_0)\|^2] \quad (1)$$

117 During inference, the teacher policy π_ϕ generates a final action a^{teacher} by using the trained v_ϕ to
 118 iteratively denoise an initial noise sample over multiple steps.

120 **Student Policy (π_φ):** The separate student network is trained for fast inference. It takes a state s
 121 and a noise vector x_0 as input and produces an action in a single forward pass. The student policy
 122 π_φ is trained to concurrently maximize the Q-value while staying close to the teacher's output. This
 123 is achieved by minimizing a compound loss function that combines a Q-learning objective with a
 124 distillation loss:

$$\mathcal{L}_{\text{Distill}}(\varphi) = \mathbb{E}_{s \sim \mathcal{D}, x_0 \sim \mathcal{N}(0,I)} [-Q(s, \pi_\varphi(s, x_0)) + \alpha \|\pi_\varphi(s, x_0) - \pi_\phi(s, x_0)\|^2], \quad (2)$$

125 where Q is the critic function learned within an actor-critic framework (Haarnoja et al., 2018) and
 126 the hyperparameter α controls the strength of the behavioral cloning (BC) regularization (Tarasov
 127 et al., 2023). In particular, π_φ requires no iterative denoising at inference, as it is trained to directly
 128 approximate the multi-step denoising action in a single step.

131 2.3 MULTI-CRESCENT TASK

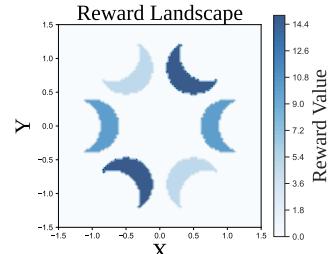
133 To demonstrate our insight, we design the Multi-Crescent environment, shown in Figure 2. The
 134 environment consists of six separate, nonconvex, crescent-shaped regions of high reward, designed
 135 to challenge agents that are prone to Q-value overestimation. The reward is structured into three
 136 levels: the top-left/bottom-right crescents provide a moderate reward, the middle-left/middle-right
 137 crescents provide a higher reward, and the globally optimal top-right/bottom-left crescents offer the
 138 maximum reward. All other areas yield zero reward. This setup emulates a complex environment
 139 with multiple levels of local optima.

140 When constructing the offline dataset, we deliberately excluded
 141 all samples from the two highest-reward crescent regions (top-
 142 left/bottom-right), as shown by the blue scatter points in Figure 5a.
 143 This environment poses two challenges to the algorithms: 1) During
 144 the offline learning phase: The algorithm needs to identify and
 145 converge to the higher-reward mode present within the dataset (middle-
 146 left/middle-right) while suppressing Q-value overestimation for un-
 147 seen regions. 2) During the online exploration phase: The algo-
 148 rithm must demonstrate efficient exploration to discover and exploit
 149 the globally optimal modes (top-left/bottom-right) that were never
 150 present in the initial dataset. This environment allows us to assess
 151 whether an algorithm can escape the pull of a suboptimal data dis-
 152 tribution to find the globally optimal policy. More details can be found in the Appendix D.

153 3 METHODOLOGY

155 3.1 OVERVIEW OF THE ALGORITHM

157 Our method, GS-flow, is designed to mitigate the two challenges of imprecise exploitation and in-
 158 effective exploration common in existing distilled policies through a two-phase training process, as
 159 illustrated in Figure 3. The first phase, Q-Guided Prior Learning, focuses on solving the suboptimal
 160 starting point problem. Instead of beginning the generation process from a standard, uninformed
 161 Gaussian noise, we use the Advantage Noise Selection module to actively identify advantage ini-
 tial noises, which lead to high-value actions. We then train a conditional Variational Autoencoder



162 Figure 2: The visualization of
 163 the multi-crescent task.

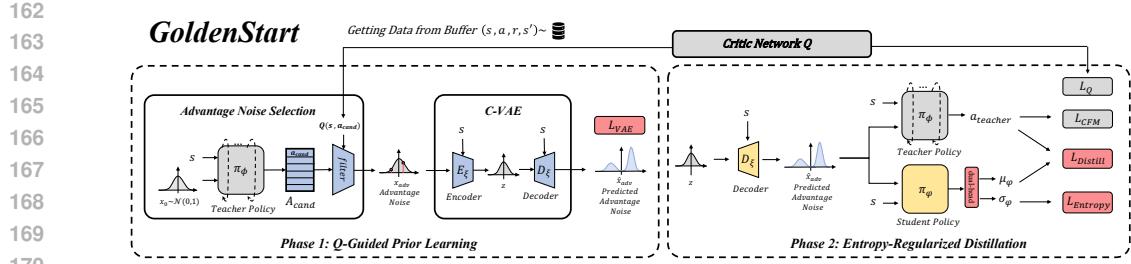


Figure 3: Overview of our algorithm. During training, we first learn a structured prior for the initial noise, which is then used to distill the teacher policy. For online exploration, actions are sampled from the student’s entropy-regularized distribution. During evaluation, the deterministic mean of the policy’s output is used. The critic update steps are omitted for clarity, detailed in Appendix B.

(CVAE) to model the distribution of these advantage noises, effectively learning an informed, state-conditioned prior. The second phase, Entropy-Regularized Distillation, uses the learned prior to train a highly capable student policy. Both the teacher and student policies are provided with an initial noise sampled from our learned prior. Furthermore, the student model is designed as a stochastic policy and trained with a hybrid objective that combines distillation with an entropy regularization term. This endows the final actor with controllable stochasticity, allowing it to explore intelligently during online fine-tuning. The complete training pipeline, which integrates these two phases with standard actor-critic updates, is detailed in Algorithm 1.

At inference time, GS-flow operates with high efficiency using only the VAE decoder and the student policy, which are highlighted in yellow in Figure 3. Given the current state, the VAE decoder generates an advantage prior. This prior is then fed into the student actor to produce an action distribution. For online exploration, an action is sampled from this distribution with its learned mean and variance. For evaluation, we only use the mean to maximize exploitation.

Algorithm 1 GS-flow

```

1: Initialize: Critic  $Q_\theta$ , VAE  $(E_{\xi_1}, D_{\xi_2})$ , Teacher Policy  $\pi_\phi$ , Student Policy  $\pi_\varphi$ .
2: for each training step do
3:   Sample a batch  $\{(s, a, r, s')\}$  from dataset  $\mathcal{D}$ .
4:   # — 1. Update Critic —
5:   Update critic parameters  $\theta$  using Temporal Difference (TD) learning.
6:   # — 2. Update Prior Learning Network —
7:   For each state  $s$ , generate  $N_{\text{cand}}$  candidate actions  $A_{\text{cand}} = \{a_j\}_{j=1}^{N_{\text{cand}}}$  using  $\pi_\phi$ .
8:   Find the prior noise  $x_{\text{adv}}$  corresponding to the highest-Q action (Eq. 4).
9:   Update VAE parameters  $\xi_1, \xi_2$  by minimizing the CVAE loss (Eq. 5).
10:  # — 3. Update Student Policy —
11:  Update teacher policy parameters  $\phi$  using the flow matching loss (Eq. 1).
12:  Generate a sampled prior for the current state:  $\hat{x}_{\text{adv}} \leftarrow D_{\xi_2}(s, \mathcal{N}(\mathbf{0}, \mathbf{I}))$ .
13:  Generate the teacher’s target action:  $a_{\text{teacher}} \leftarrow \pi_\phi(s, \hat{x}_{\text{adv}})$ .
14:  Update student policy parameters  $\varphi$  by minimizing the actor loss  $\mathcal{L}_{\text{Actor}}$  (Eq. 9).
15: end for
16: return Trained student policy  $\pi_\varphi$ .

```

3.2 Q-GUIDED PRIOR LEARNING

To realize our first insight of initiating the denoising process from golden starting points, we propose learning a Q-Guided Prior to model the distribution of what we named “advantage noises”, denoted as x_{adv} . For this purpose, we employ a conditional Variational Autoencoder (CVAE) due to its flexibility in learning arbitrary multi-modal distributions. To achieve this, we first need to construct samples \mathcal{B}_{adv} of these advantage noises for model training.

Advantage Noise Selection. We introduce a data collection module named Advantage Noise Selection, shown in Phase 1 of Figure 3. Given the state s , we first collect a set of N_{cand} candidate

actions, denoted as $a_{\text{cand}} \in A_{\text{cand}}$, generated by the teacher policy π_ϕ with N_{cand} different initial noises x_0 , which is sampled from a normal distribution:

$$A_{\text{cand}} = \{a_j = \pi_\phi(s, x_j) \mid x_j \sim \mathcal{N}(\mathbf{0}, \mathbf{I})\}_{j=1}^{N_{\text{cand}}}. \quad (3)$$

Although these candidate actions are all feasible behaviors learned from the dataset, they are not necessarily optimal. To identify the most promising starting point, we leverage the critic Q to evaluate all candidate actions. The initial noise that generates the action with the highest Q-value is designated as the advantage noise for s :

$$x_{\text{adv}}(s) = \arg \max_{x_j} Q(s, \pi_\phi(s, x_j)). \quad (4)$$

This selection process is applied on-the-fly within each training step, using the most up-to-date teacher policy to generate a new batch of pairings, $\mathcal{B}_{\text{adv}} = \{(s, x_{\text{adv}}(s))\}$. This batch then serves as the target distribution for the CVAE update.

State Conditional VAE. With the data collected before, we then train a Conditional Variational Autoencoder (CVAE) (Kingma & Welling, 2013) to model the state-conditioned distribution $p_{\xi_2}(x_{\text{adv}}|s)$. The CVAE consists of a conditional encoder $E_{\xi_1}(x, s)$ and a conditional decoder $D_{\xi_2}(z, s)$, where z is the latent vector. The encoder maps a prior-state pair to a latent distribution, while the decoder reconstructs the prior from a latent sample. The model is trained by minimizing the weighted sum of a reconstruction loss and a KL-divergence regularization term:

$$\mathcal{L}_{\text{VAE}}(\xi_1, \xi_2) = \mathcal{L}_{\text{recon}} + \lambda_{\text{KL}} \mathcal{L}_{\text{KL}}, \quad (5)$$

where λ_{KL} is the scalar weight. The KL-divergence term \mathcal{L}_{KL} regularizes the latent space by encouraging the encoded distribution to be close to a standard normal distribution $\mathcal{N}(0, I)$:

$$\mathcal{L}_{\text{KL}} = \mathbb{E}_{(s, x_{\text{adv}}) \sim \mathcal{B}_{\text{adv}}} [D_{\text{KL}}(q_{\xi_1}(z | x_{\text{adv}}, s) \parallel \mathcal{N}(0, I))], \quad (6)$$

where q_{ξ_1} is the approximate posterior distribution, a diagonal Gaussian parameterized by the encoder E_{ξ_1} : $q_{\xi_1}(z | x_{\text{adv}}, s) = \mathcal{N}(\mu_{\xi_1}(x_{\text{adv}}, s), \Sigma_{\xi_1}(x_{\text{adv}}, s))$. Assuming \hat{x}_{adv} denotes the prior predicted by $D_{\xi_2}(z, s)$, the loss of reconstruction $\mathcal{L}_{\text{recon}}$ can be calculated as follows:

$$\mathcal{L}_{\text{recon}} = \mathbb{E}_{(s, x_{\text{adv}}) \sim \mathcal{B}_{\text{adv}}, z \sim q_{\xi_1}(z | x_{\text{adv}}, s)} [\|\hat{x}_{\text{adv}} - x_{\text{adv}}\|^2]. \quad (7)$$

Notably, CVAE is capable of approximating an arbitrarily potentially multimodal prior distribution, offering an advantage over methods that learn a Gaussian distribution.

Validation. We validate the effectiveness of our Q-guided prior in the MultiCrescent environment. Figure 4 visualizes the distribution generated by the VAE decoder during inference. The red points represent \hat{x}_{adv} , and the red region generated via KDE (Silverman, 2018) represents the predicted prior distribution. After the offline phase (left panel), the prior captures the high-value modes (middle-left/middle-right) within the static dataset. After online fine-tuning (right panel), the prior adapts its density to focus on the newly discovered, globally optimal action modes (top-left/bottom-right). This demonstrates that our learned prior captures the distribution of advantage noises. Furthermore, Figure 5c shows that the actions generated from \hat{x}_{adv} yield higher Q values compared to the baseline shown in Figure 5b.

3.3 ENTROPY-REGULARIZED DISTILLATION

Previous flow-matching policy distillation methods produce a deterministic actor. Although efficient for exploitation, it is ill-suited for online exploration due to its lack of inherent stochasticity. This can be viewed as a point-to-point generation process, where a starting noise is mapped to a single target action. Inspired by recent approaches that augment generative models with distributional models (Dong et al., 2025), we propose an entropy-regularized distillation method. This transforms the

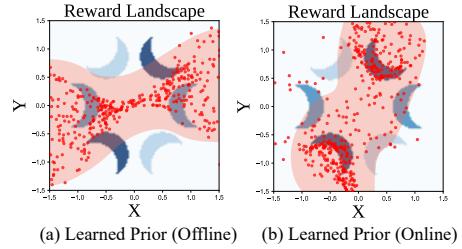


Figure 4: Visualization of the learned prior distribution after different training stages.

270

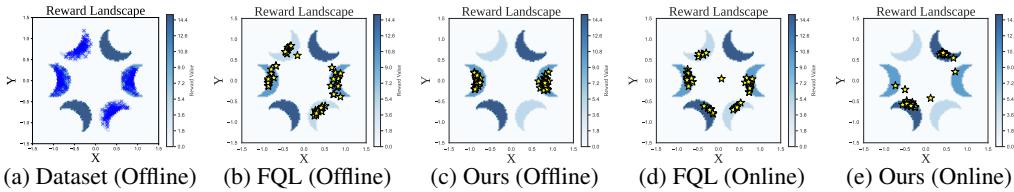


Figure 5: Results on the multi-crescent task. Blue crosses denote samples from the offline dataset, while yellow stars represent the actions produced by the policies. (a): shows the offline dataset, which excludes the two globally optimal modes. (b, c): shows action distributions after the offline phase. Our method captures the higher-value modes within the dataset, while the baseline shows a less focused distribution. (d, e): shows action distributions after the online fine-tuning phase. Our method quickly discovers and converges to both highest-reward modes. In contrast, the baseline only finds one. More results on this task can be found in Appendix 8.

distillation from a point-to-point mapping into a point-to-adaptive-distribution process, providing the agent with a principled method for balancing the exploration-exploitation trade-off.

To achieve this, we parameterize the student policy $\pi_\varphi(a|s, \hat{x}_{\text{adv}})$ as a Gaussian distribution using a dual-headed architecture that outputs both a mean $\mu_\varphi(s, \hat{x}_{\text{adv}})$ and a standard deviation $\sigma_\varphi(s, \hat{x}_{\text{adv}})$. The action a_φ for exploration is computed as:

$$a_\varphi(s, \hat{x}_{\text{adv}}, \epsilon) = \mu_\varphi(s, \hat{x}_{\text{adv}}) + \sigma_\varphi(s, \hat{x}_{\text{adv}}) \odot \epsilon, \quad \text{where } \epsilon \sim \mathcal{N}(0, I). \quad (8)$$

The actor policy is trained by minimizing a composite objective that balances three key components: imitation of the teacher, value maximization, and entropy regularization. The training objective for our entropy-regularized actor is a composite loss function designed to balance three key objectives: (1) imitating the high-quality teacher policy, (2) maximizing expected return according to the critic, and (3) maintaining sufficient policy entropy to encourage exploration. Therefore, with the advantage noise $\hat{x}_{\text{adv}} = D_{\xi_2}(z, s)$, the total actor loss is defined as follows:

$$\mathcal{L}_{\text{Actor}} = \mathbb{E}_{z \sim \mathcal{N}(0, I), s \sim \mathcal{D}} [\alpha_1 \mathcal{L}_{\text{Distill}} + \mathcal{L}_Q - \alpha_2 \mathcal{H}(\pi_\varphi(\cdot|s, \hat{x}_{\text{adv}}))]. \quad (9)$$

The distillation term $\mathcal{L}_{\text{Distill}}$ anchors the mean behavior of the student policy to the high-quality teacher actions, and α_1 is the scalar weight to control BC behavior. Two details are critical to ensure that this process has a low-variance and stable training signal. First, both teacher and student policies are conditioned on identical advantage noise \hat{x}_{adv} . Second, the loss is computed using only the student’s deterministic mean $\mu_\varphi(s, \hat{x}_{\text{adv}})$ rather than a stochastic sample. These design choices reduce the variance of the loss signal and improve training stability. The loss is defined as follows:

$$\mathcal{L}_{\text{Distill}} = \|\mu_\varphi(s, \hat{x}_{\text{adv}}) - a_{\text{teacher}} = \pi_\phi(s, \hat{x}_{\text{adv}})\|^2. \quad (10)$$

The value maximization term \mathcal{L}_Q encourages the policy to seek actions that the critic evaluates as having a high value (Fujimoto & Gu, 2021). Following the standard approach in Soft Actor-Critic (SAC) (Haarnoja et al., 2018), we use a sampled action a_φ from the policy: $a_\varphi \sim \pi_\varphi(\cdot|s, \hat{x}_{\text{adv}})$. The loss is then calculated as its negative Q-value:

$$\mathcal{L}_Q = -Q(s, a_\varphi). \quad (11)$$

The third entropy bonus term $\mathcal{H}(\pi_\varphi(\cdot|s, \hat{x}_{\text{adv}}))$ is the entropy of the policy under \hat{x}_{adv} . To automate the trade-off between reward and entropy, the temperature parameter α_2 is learned by minimizing a separate loss function that aims to match the entropy to a predefined target entropy $\mathcal{H}_{\text{target}}$. This allows the agent to dynamically adjust its stochasticity, exploring more when the entropy is below the target and exploiting more when it is sufficient. These two components are calculated as follows:

$$\mathcal{H}(\pi_\varphi(\cdot|s, \hat{x}_{\text{adv}})) = -\mathbb{E}_{a_\varphi \sim \pi_\varphi} [\log \pi_\varphi(a_\varphi|s, \hat{x}_{\text{adv}})], \quad (12)$$

$$\mathcal{L}_{\alpha_2} = \mathbb{E}_{s \sim \mathcal{D}} [\alpha_2 (\mathcal{H}(\pi_\varphi(\cdot|s, \hat{x}_{\text{adv}})) - \mathcal{H}_{\text{target}})]. \quad (13)$$

Validation. The online fine-tuning results, shown in Figures 5d and 5e, highlight the superiority of our exploration mechanism. Our method effectively explores the action space and identifies both of the highest Q-value peaks (top-left/bottom-right). In contrast, the baseline lacks an exploration strategy and finds just one of the peaks. Even better, our method finds both modes using significantly fewer samples. This demonstrates the clear efficiency of its entropy-regularized exploration.

324 Table 1: Offline performance on OGBench and D4RL benchmarks, averaged over 5 seeds (3 for
 325 Visual Environments due to computational cost). Best results are in **bold**. The performance of
 326 baseline methods is reported from Park et al. (2025b).

Task	Gaussian Policies			Diffusion Policies			Flow Policies				
	BC	IQL	ReBRAC	IDQL	SRPO	CAC	FAWAC	FBRAC	IFQL	FQL	Ours
OGBench											
AntMaze Large Navigate	0 ± 0	48 ± 9	91 ± 10	0 ± 0	0 ± 0	42 ± 7	1 ± 1	70 ± 20	24 ± 17	80 ± 8	88.4 ± 2.7
AntMaze Giant Navigate	0 ± 0	0 ± 0	27 ± 22	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 1	0 ± 0	4 ± 5	10.4 ± 5.9
HumanoidMaze Medium	1 ± 0	32 ± 7	16 ± 9	1 ± 1	0 ± 0	38 ± 19	6 ± 2	25 ± 8	69 ± 19	19 ± 12	45.0 ± 19.7
HumanoidMaze Large	0 ± 0	3 ± 1	2 ± 1	0 ± 0	0 ± 0	1 ± 1	0 ± 0	0 ± 1	6 ± 2	7 ± 6	4.6 ± 4.4
AntSoccer Arena	1 ± 0	3 ± 2	0 ± 0	0 ± 1	0 ± 0	0 ± 0	12 ± 3	24 ± 4	16 ± 9	39 ± 6	46.0 ± 10.5
Cube Single Play	3 ± 1	85 ± 8	92 ± 4	96 ± 2	82 ± 16	80 ± 30	81 ± 9	83 ± 13	73 ± 3	97 ± 2	95.6 ± 4.1
Cube Double Play	0 ± 0	1 ± 1	7 ± 3	16 ± 10	0 ± 0	2 ± 2	2 ± 1	22 ± 12	9 ± 5	36 ± 6	51.3 ± 6.2
Scene Play	1 ± 1	12 ± 3	50 ± 13	33 ± 14	2 ± 2	50 ± 40	18 ± 8	46 ± 10	0 ± 0	76 ± 9	88.0 ± 8.6
Puzzle-3x3 Play	1 ± 1	2 ± 1	2 ± 1	0 ± 0	0 ± 0	0 ± 0	1 ± 1	2 ± 2	0 ± 0	16 ± 5	25.2 ± 10.7
Puzzle-4x4 Play	0 ± 0	5 ± 2	10 ± 3	26 ± 6	7 ± 4	1 ± 1	0 ± 0	5 ± 1	21 ± 11	11 ± 3	16.7 ± 4.1
Average	0.7	19.1	29.7	17.2	9.1	21.4	12.1	27.7	21.8	38.5	47.1
D4RL AntMaze											
AntMaze U-Maze	55	77	98	94	97	66 ± 5	90 ± 6	94 ± 3	92 ± 6	96 ± 2	99.6 ± 0.8
AntMaze U-Maze Diverse	47	54	84	80	82	66 ± 11	55 ± 7	82 ± 9	62 ± 12	89 ± 5	93.2 ± 7.1
AntMaze Medium Play	0	66	90	84	81	49 ± 24	52 ± 12	77 ± 7	56 ± 15	78 ± 7	77.2 ± 9.0
AntMaze Medium Diverse	1	74	84	85	75	0 ± 1	44 ± 15	77 ± 6	60 ± 25	71 ± 13	75.5 ± 11.0
AntMaze Large Play	0	42	52	64	54	0 ± 0	10 ± 6	32 ± 21	55 ± 9	84 ± 7	86.5 ± 5.2
AntMaze Large Diverse	0	30	64	68	54	0 ± 0	16 ± 10	20 ± 17	64 ± 8	83 ± 4	84.8 ± 5.2
Average	17.2	57.2	78.7	79.2	73.8	30.2	44.5	63.7	64.8	83.5	86.1
Visual Environments											
Visual Cube Single Play	—	70 ± 12	83 ± 6	—	—	—	—	55 ± 8	49 ± 7	81 ± 12	92.7 ± 4.1
Visual Cube Double Play	—	34 ± 23	4 ± 4	—	—	—	—	6 ± 2	8 ± 6	21 ± 11	42.0 ± 11.8
Visual Scene Play	—	97 ± 2	98 ± 4	—	—	—	—	46 ± 4	86 ± 10	98 ± 3	100.0 ± 0.0
Visual Puzzle-3x3	—	7 ± 15	88 ± 4	—	—	—	—	7 ± 2	100 ± 0	94 ± 1	88.67 ± 9.0
Visual Puzzle-4x4	—	0 ± 0	26 ± 6	—	—	—	—	0 ± 0	8 ± 15	33 ± 6	31.00 ± 7.1
Average	—	41.6	59.8	—	—	—	—	22.8	50.2	65.4	70.9

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

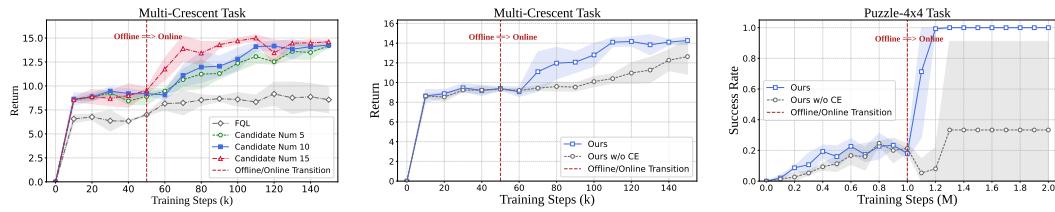
We test our method across the OGBench (Park et al., 2025a) tasks, the standard D4RL AntMaze (Fu et al., 2020) tasks, and a set of challenging Visual Environments (Park et al., 2025a). The baselines range from standard Gaussian policies (BC, IQL, ReBRAC) (Kostrikov et al., 2022; Tarasov et al., 2023), to more expressive Diffusion Policies (IDQL, SRPO, CAC) (Hansen-Estruch et al., 2023; Chen et al., 2024; Ding & Jin, 2024), and finally to Flow Policies (FAWAC, FBRAC, IFQL) (Nair et al., 2021; Wang et al., 2023; Park et al., 2025b). And state-of-the-art flow-matching distillation model FQL (Park et al., 2025b). For offline-to-online, we also compared with Cal-QL and RLPD (Nakamoto et al., 2023; Ball et al., 2023). We validate our model in both offline and offline-to-online fine-tuning settings to demonstrate the effectiveness of our two contributions. More details on environments and baselines are shown in Appendices E and F.

4.2 RESULTS AND ANALYSIS

The Impact of the Learned Prior on Offline Performance. The results in Table 1 demonstrate the effectiveness of our proposed method, GS-flow. GS-flow achieves new state-of-the-art performance on average, outperforming all baselines. This advantage is particularly pronounced on several tasks with multi-modal action spaces, where our method shows significant gains over the strong FQL baseline. According to the results in OGBench, the strength can be illustrated by the contrasting results on the Cube tasks. On Cube Single Play, a task with a relatively unimodal optimal policy, GS-flow performs comparably to the strong FQL baseline. In contrast, on the more complex Cube Double Play, which requires coordinating two objects and therefore presents a significantly more multimodal Q landscape, the offline score of GS-flow (51.3%) dramatically outperforms all competing methods. The contrast underscores our algorithm’s specialized capability in multi-modal challenges. The advantage is further substantiated in other complex manipulation tasks such as Puzzle-3x3 and Puzzle-4x4, and in challenging locomotion environments such as HumanoidMaze Medium Navigate, where GS-flow achieves more than double the score of FQL. Furthermore, GS-flow achieves the highest average scores on the remaining two benchmarks, D4RL AntMaze and Visual Environments, demonstrating the effectiveness of our algorithm in the offline setting.

378 Table 2: Offline-to-online performance comparison. Similar to Table 1, we report the results over 5
 379 seeds. The best online results are highlighted in **bold**.

Task	IQL	ReBRAC	Cal-QL	RLPD	IFQL	FQL	Ours
HumanoidMaze Medium	$21 \pm 13 \rightarrow 16 \pm 8$	$16 \pm 20 \rightarrow 1 \pm 1$	$0 \pm 0 \rightarrow 0 \pm 0$	$0 \pm 0 \rightarrow 8 \pm 10$	$56 \pm 35 \rightarrow \mathbf{82} \pm 20$	$12 \pm 7 \rightarrow 22 \pm 12$	$45 \pm 20 \rightarrow 67 \pm 6$
AntSoccer Arena	$2 \pm 1 \rightarrow 0 \pm 0$	$0 \pm 0 \rightarrow 0 \pm 0$	$0 \pm 0 \rightarrow 0 \pm 0$	$0 \pm 0 \rightarrow 0 \pm 0$	$26 \pm 15 \rightarrow 39 \pm 10$	$28 \pm 8 \rightarrow \mathbf{86} \pm 5$	$46 \pm 10 \rightarrow 77 \pm 9$
Cube Double Play	$0 \pm 1 \rightarrow 0 \pm 0$	$6 \pm 5 \rightarrow 28 \pm 28$	$0 \pm 0 \rightarrow 0 \pm 0$	$0 \pm 0 \rightarrow 0 \pm 0$	$12 \pm 9 \rightarrow 40 \pm 5$	$40 \pm 11 \rightarrow 92 \pm 3$	$51 \pm 6 \rightarrow \mathbf{99} \pm 1$
Scene Play	$14 \pm 11 \rightarrow 10 \pm 9$	$55 \pm 10 \rightarrow \mathbf{100} \pm 0$	$1 \pm 2 \rightarrow 50 \pm 53$	$0 \pm 0 \rightarrow \mathbf{100} \pm 0$	$0 \pm 1 \rightarrow 60 \pm 39$	$82 \pm 11 \rightarrow \mathbf{100} \pm 1$	$88 \pm 9 \rightarrow \mathbf{100} \pm 0$
Puzzle-4x4 Play	$5 \pm 2 \rightarrow 1 \pm 1$	$8 \pm 4 \rightarrow 14 \pm 35$	$0 \pm 0 \rightarrow 0 \pm 0$	$0 \pm 0 \rightarrow \mathbf{100} \pm 1$	$23 \pm 6 \rightarrow 19 \pm 33$	$8 \pm 3 \rightarrow 38 \pm 52$	$17 \pm 4 \rightarrow \mathbf{100} \pm 0$
Average	$8.4 \rightarrow 5.4$	$17.0 \rightarrow 28.6$	$0.2 \rightarrow 10.0$	$0.0 \rightarrow 41.6$	$23.4 \rightarrow 48.0$	$34.0 \rightarrow 67.6$	$49.4 \rightarrow \mathbf{88.6}$
AntMaze U-Maze	$77 \rightarrow 96$	$98 \rightarrow 75$	$77 \rightarrow \mathbf{100}$	$0 \pm 0 \rightarrow 98 \pm 3$	$94 \pm 5 \rightarrow 96 \pm 2$	$97 \pm 2 \rightarrow 99 \pm 1$	$100 \pm 1 \rightarrow \mathbf{100} \pm 1$
AntMaze U-Maze Diverse	$60 \rightarrow 64$	$74 \rightarrow 98$	$32 \rightarrow 98$	$0 \pm 0 \rightarrow 94 \pm 5$	$69 \pm 20 \rightarrow 93 \pm 5$	$79 \pm 16 \rightarrow \mathbf{100} \pm 1$	$93 \pm 7 \rightarrow 98 \pm 3$
AntMaze Medium Play	$72 \rightarrow 90$	$88 \rightarrow 98$	$72 \rightarrow \mathbf{99}$	$0 \pm 0 \rightarrow 98 \pm 2$	$52 \pm 19 \rightarrow 93 \pm 2$	$77 \pm 7 \rightarrow 97 \pm 2$	$77 \pm 9 \rightarrow 98 \pm 1$
AntMaze Medium Diverse	$64 \rightarrow 92$	$85 \rightarrow \mathbf{99}$	$62 \rightarrow 98$	$0 \pm 0 \rightarrow 97 \pm 2$	$44 \pm 26 \rightarrow 89 \pm 4$	$55 \pm 19 \rightarrow 97 \pm 3$	$76 \pm 11 \rightarrow 98 \pm 2$
AntMaze Large Play	$38 \rightarrow 64$	$68 \rightarrow 32$	$32 \rightarrow \mathbf{97}$	$0 \pm 0 \rightarrow 93 \pm 5$	$64 \pm 14 \rightarrow 80 \pm 5$	$66 \pm 40 \rightarrow 84 \pm 30$	$86 \pm 5 \rightarrow 91 \pm 10$
AntMaze Large Diverse	$27 \rightarrow 64$	$67 \rightarrow 72$	$44 \rightarrow 92$	$0 \pm 0 \rightarrow 94 \pm 3$	$69 \pm 6 \rightarrow 86 \pm 5$	$75 \pm 24 \rightarrow 94 \pm 3$	$85 \pm 5 \rightarrow \mathbf{96} \pm 4$
Average	$56.3 \rightarrow 78.3$	$80.0 \rightarrow 79.0$	$53.2 \rightarrow \mathbf{97.3}$	$0.0 \rightarrow 95.7$	$65.3 \rightarrow 89.5$	$74.8 \rightarrow 95.2$	$86.2 \rightarrow 96.8$
Pen Cloned	$84 \rightarrow 102$	$74 \rightarrow 138$	$-3 \rightarrow -3$	$3 \pm 2 \rightarrow 120 \pm 10$	$77 \pm 7 \rightarrow 107 \pm 10$	$53 \pm 14 \rightarrow \mathbf{149} \pm 6$	$71 \pm 6 \rightarrow 146 \pm 6$
Door Cloned	$1 \rightarrow 20$	$0 \rightarrow 102$	$-0 \rightarrow -0$	$0 \pm 0 \rightarrow 102 \pm 7$	$3 \pm 2 \rightarrow 50 \pm 15$	$0 \pm 0 \rightarrow 102 \pm 5$	$1 \pm 1 \rightarrow \mathbf{105} \pm 4$
Hammer Cloned	$1 \rightarrow 57$	$7 \rightarrow 125$	$0 \rightarrow 0$	$0 \pm 0 \rightarrow 128 \pm 29$	$4 \pm 2 \rightarrow 60 \pm 14$	$0 \pm 0 \rightarrow 127 \pm 17$	$10 \pm 3 \rightarrow 132 \pm 5$
Relocate Cloned	$0 \rightarrow 0$	$1 \rightarrow 7$	$-0 \rightarrow -0$	$0 \pm 0 \rightarrow 2 \pm 2$	$-0 \pm 0 \rightarrow 5 \pm 3$	$0 \pm 1 \rightarrow 62 \pm 8$	$0 \pm 0 \rightarrow \mathbf{63} \pm 12$
Average	$21.5 \rightarrow 44.8$	$20.5 \rightarrow 93.0$	$-0.8 \rightarrow -0.8$	$0.8 \rightarrow 88.0$	$21.0 \rightarrow 55.5$	$13.2 \rightarrow 110.0$	$20.5 \rightarrow \mathbf{111.5}$



400 (a) Effect of the candidate number. (b) Ablation on Multi-Crescent. (c) Ablation on Puzzle-4x4.
 401
 402 Figure 6: Ablation studies on the offline-to-online transition. **(a):** The plot analyzes the impact of
 403 the candidate number on learning efficiency. **(b, c):** The plots demonstrate the effectiveness of our
 404 controllable entropy, showing significant performance gains of our full method over a deterministic
 405 variant in both the Multi-Crescent environment and the Puzzle-4x4 task.

406
 407 **Effective Online Exploration via Controllable Entropy.** The second key advantage of GS-
 408 flow, its capacity for effective online exploration, is enabled by its controllable entropy mechanism
 409 based on the output of the distribution actor. The performance improvements on online finetuning
 410 shown in Table 2 are comparable, especially in tasks that require extensive exploration. The Puzzle-
 411 4x4 environment serves as a powerful case study. As noted by the authors of FQL (Park et al.,
 412 2025b), this task is particularly challenging for methods with limited exploration capabilities. The
 413 baseline FQL reflects this, improving from 8% to 38% after online training. In the contrast, GS-
 414 flow leverages its entropy-regularized stochastic policy to achieve a score from 17% to 100%,
 415 matching the performance of specialized online methods like RLPD (Ball et al., 2023). Furthermore,
 416 our method significantly outperforms RLPD on other complex tasks such as AntSoccer and Cube
 417 Double. These results demonstrate that our entropy-regularized distillation successfully combines
 418 the high performance of the teacher model with the advantage of principled, controllable exploration
 419 found in traditional Gaussian policies (Haarnoja et al., 2018). We believe the idea of moving beyond
 420 a “point-to-point” mapping to a “point-to-distribution” process is simple yet valuable, allowing GS-
 421 flow to effectively balance exploitation and exploration.

422 4.3 FURTHER ANALYSIS

423
 424 **The Importance of the Learned Prior.** To analyze the impact of our proposed prior learning
 425 mechanism, we evaluate its performance while varying the number of candidate actions, N_{cand} ,
 426 used in the Advantage Noise Selection module. As depicted in Figure 6a, there is a clear trend:
 427 increasing the number of candidates improves both sample efficiency and final performance. The
 428 red curve ($N_{\text{cand}} = 15$) achieves the highest return, while the green curve ($N_{\text{cand}} = 5$) learns more
 429 slowly. However, even with only five candidates, our method significantly outperforms the FQL (the
 430 gray curve), which can be viewed as a degenerate case of our approach without the Q-guided prior
 431 learning module ($N_{\text{cand}} = 0$). This strongly validates the effectiveness of learning a structured prior.
 432 Given the trade-off between performance and computational overhead of the selection module, we
 433 chose $N_{\text{cand}} = 10$ (the blue curve) as a balanced setting for all main experiments.

432 **The Importance of the Controllable Entropy.** To isolate the contribution of our controllable
 433 entropy, we conduct ablation studies in the Multi-Crescent and Puzzle-4x4 environments. As shown
 434 in Figures 6b and 6c, our full method (the blue curve), which uses a dual-headed architecture with
 435 an entropy-regularized loss, demonstrates significantly higher learning efficiency during the online
 436 phase compared to a deterministic variant that uses only our learned prior module (the gray curve,
 437 denoted “Ours w/o CE”). In particular, the online performance of the gray curve in the Puzzle-
 438 4x4 task is similar to that of the FQL (as seen in Table 1). This similarity in performance strongly
 439 suggests that our controllable entropy mechanism is the key component that provides superior online
 440 exploration, effectively addressing this known limitation in prior work.

441 **Computational Cost Analysis.** We demonstrate that
 442 significant performance gains of our method do not come
 443 at a prohibitive computational cost, particularly during
 444 the critical inference phase. We compare the wall-clock
 445 time for a single training step and a single inference step
 446 against FQL and IFQL. As presented in Figure 7, the
 447 inference time of GS-flow(0.51 ms) is only marginally
 448 higher than that of FQL (0.42 ms), which is caused by
 449 the VAE Decoder model (D_{ξ_2}) and remains significantly
 450 faster than the multi-step IFQL (0.97 ms). This confirms
 451 that our method preserves the single-step efficiency of the
 452 distillation paradigm. Although the training time for GS-flow(3.10 ms) is higher due to the addi-
 453 tional inference in the Advantage Noise Selection module under candidate number $N_{\text{cand}} = 10$, this
 454 one-time training cost is a well-justified trade-off for the substantial improvements in both policy
 455 quality and online adaptability.

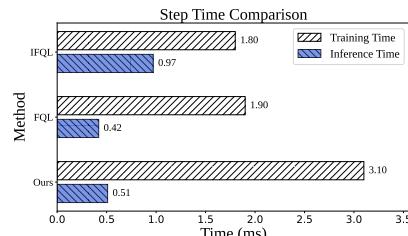
456 5 RELATED WORKS

457 **Efficient Inference for Generative Policies.** Generative policies, including diffusion (Ho et al.,
 458 2020) and flow-matching models (Liu et al.; Albergo & Vanden-Eijnden, 2023; Geng et al., 2025),
 459 excel in representing multimodal action distributions in RL (Chi et al., 2023; Hansen-Estruch et al.,
 460 2023; Ding & Jin, 2024; Nair et al., 2021). However, their practical adoption is hindered by high
 461 inference latency (Shi & Zhang; Zhai et al., 2024). While one-step distillation methods (Park et al.,
 462 2025b) have improved inference speed, they often overlook the impact of the noise prior on optimi-
 463 zation, a factor shown to be promising in the image generation field (Zhou et al., 2025). DSRL
 464 (Wagenmaker et al., 2025) takes advantage of this idea by learning a Gaussian prior distribution
 465 for online adaptation, without optimizing for inference latency. In contrast, our method integrates a
 466 more flexible prior while introducing negligible inference overhead.

467 **Online Exploration for Generative Policies.** Another key challenge for generative policies is prin-
 468 cipled online exploration (Fan et al., 2025). One line of research focuses on introducing stochasticity
 469 into the inference denoising process (Yang et al., 2023; Black et al., 2024b; Chen et al., 2025). An-
 470 other line focuses on the training phase, using techniques such as reweighted score matching (Ma
 471 et al., 2025a) and entropy estimation with Gaussian Mixture Models, which can be computationally
 472 expensive (Wang et al., 2024). Recently, EXPO (Dong et al., 2025) enhances sample efficiency by
 473 training an additional Gaussian edit policy with entropy regularization. In contrast to these methods,
 474 our approach is more lightweight, integrating entropy control directly into the distillation process.

475 6 CONCLUSION

476 In this work, we introduced GS-flow, a novel framework for distilling flow-matching policies. Our
 477 method makes two key contributions: it learns a Q-Guided Generative Prior to provide a “golden
 478 start” that shortcuts the policy to high-value actions, and it uses Entropy-Regularized Distillation to
 479 endow the policy with controllable, principled exploration. Extensive experiments show that GS-
 480 flow establishes a new state-of-the-art in overall performance on challenging benchmarks, particu-
 481 larly excelling on complex tasks that require multi-modal actions and effective exploration. Our
 482 framework successfully bridges the gap between expressive generative models and practical actor-
 483 critic methods, delivering a potent combination of inference speed, precision, and exploratory power.



484 Figure 7: Average step time required on
 485 cube-double task.

486 REFERENCES
487

488 Bhavya Agrawalla, Michal Nauman, Khush Agarwal, and Aviral Kumar. floq: Training critics via
489 flow-matching for scaling compute in value-based rl. *arXiv preprint arXiv:2509.06863*, 2025.

490 Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
491 interpolants. In *The Eleventh International Conference on Learning Representations*, 2023. URL
492 <https://arxiv.org/abs/2209.15571>.

493 Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
494 with offline data. In *International Conference on Machine Learning*, pp. 1577–1594. PMLR,
495 2023.

496 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò
497 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. *pi_0*: A vision-language-action flow
498 model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024a.

499 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
500 models with reinforcement learning. In *The Twelfth International Conference on Learning Rep-
501 resentations*, 2024b. URL <https://openreview.net/forum?id=YCWjhGrJFD>.

502 Kevin Black, Manuel Y Galliker, and Sergey Levine. Real-time execution of action chunking flow
503 policies. *arXiv preprint arXiv:2506.07339*, 2025.

504 Max Braun, Noémie Jaquier, Leonel Rozo, and Tamim Asfour. Riemannian flow matching policy
505 for robot motion learning. In *2024 IEEE/RSJ International Conference on Intelligent Robots and
506 Systems (IROS)*, pp. 5144–5151. IEEE, 2024.

507 Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimiza-
508 tion through diffusion behavior. In *The Twelfth International Conference on Learning Repres-
509 entations*, 2024. URL <https://openreview.net/forum?id=xCRr9DrolJ>.

510 Tianyi Chen, Haitong Ma, Na Li, Kai Wang, and Bo Dai. One-step flow policy mirror descent. *arXiv
511 preprint arXiv:2507.23675*, 2025.

512 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
513 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The Inter-
514 national Journal of Robotics Research*, pp. 02783649241273668, 2023.

515 Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
516 learning. In *The Twelfth International Conference on Learning Representations*, 2024. URL
517 <https://openreview.net/forum?id=v8jdwkUNXb>.

518 Perry Dong, Qiyang Li, Dorsa Sadigh, and Chelsea Finn. Expo: Stable reinforcement learning with
519 expressive policies. *arXiv preprint arXiv:2507.07986*, 2025.

520 Nicolas Espinosa-Dice, Yiyi Zhang, Yiding Chen, Bradley Guo, Owen Oertell, Gokul Swamy,
521 Kiante Brantley, and Wen Sun. Scaling offline rl via efficient and expressive shortcut models.
522 *arXiv preprint arXiv:2505.22866*, 2025.

523 Jiajun Fan, Shuaikе Shen, Chaoran Cheng, Yuxin Chen, Chumeng Liang, and Ge Liu. Online
524 reward-weighted fine-tuning of flow matching with wasserstein regularization. In *The Thirteenth
525 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=2IoFFexvuw>.

526 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
527 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.

528 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
529 *Advances in neural information processing systems*, 34:20132–20145, 2021.

530 Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
531 actor-critic methods. In *International Conference on Machine Learning (ICML)*, pp. 1587–1596.
532 PMLR, 2018.

540 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
 541 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.

542

543 Raj Ghugare and Benjamin Eysenbach. Normalizing flows are capable models for rl, 2025. URL
 544 <https://arxiv.org/abs/2505.23527>.

545

546 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 547 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference on machine learning*, 2018.

548

549 Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
 550 Idql: Implicit q-learning as an actor-critic method with diffusion policies. *arXiv preprint arXiv:2304.10573*, 2023.

551

552 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.

553

554 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.

555

556 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 557 learning. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=68n2s9ZJWF8>.

558

559 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
 560 review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

561

562 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 563 matching for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.

564

565 Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
 566 with rectified flow. In *The Eleventh International Conference on Learning Representations*.

567

568 Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning
 569 for diffusion policy, 2025a. URL <https://arxiv.org/abs/2502.00361>.

570

571 Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
 572 Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Scaling inference time compute for diffusion
 573 models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 2523–
 574 2534, 2025b.

575

576 Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online re-
 577inforcement learning with offline datasets, 2021. URL <https://arxiv.org/abs/2006.09359>.

578

579 Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
 580 Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
 581 tuning. *Advances in Neural Information Processing Systems*, 36:62244–62269, 2023.

582

583 Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
 584 offline goal-conditioned RL. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=M992mjgKzI>.

585

586 Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. In *Forty-second International
 587 Conference on Machine Learning*, 2025b. URL <https://openreview.net/forum?id=KVF2SFL1pi>.

588

589 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
 590 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,
 591 2015.

592

593 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 594 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

594 Chang Shi and Amy Zhang. Fastdp: Deployable diffusion policy for fast inference speed. In *RLC*
 595 *2025 Workshop on Practical Insights into Reinforcement Learning for Real Systems*.
 596

597 Bernard W Silverman. *Density estimation for statistics and data analysis*. Routledge, 2018.

598 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 599 press Cambridge, 1998.
 600

601 Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
 602 imalist approach to offline reinforcement learning. *Advances in Neural Information Processing*
 603 *Systems*, 2023.

604 Andrew Wagenmaker, Mitsuhiro Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub,
 605 Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with
 606 latent space reinforcement learning. *arXiv preprint arXiv:2506.15799*, 2025.
 607

608 Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
 609 Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator.
 610 *Advances in Neural Information Processing Systems*, 37:54183–54204, 2024.

611 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 612 class for offline reinforcement learning. In *The Eleventh International Conference on Learning*
 613 *Representations*, 2023. URL <https://openreview.net/forum?id=AHvFDPi-FA>.

614 Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting Wen,
 615 Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for rein-
 616 force learning. *arXiv preprint arXiv:2305.13122*, 2023.

617

618 Yuxiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Sain-
 619 ing Xie, Yann LeCun, Yi Ma, and Sergey Levine. Fine-tuning large vision-language models as
 620 decision-making agents via reinforcement learning. In *The Thirty-eighth Annual Conference on*
 621 *Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=nBjmMF2IZU>.

622

623 Zikai Zhou, Shitong Shao, Lichen Bai, Shufei Zhang, Zhiqiang Xu, Bo Han, and Zeke Xie. Golden
 624 noise for diffusion models: A learning framework. In *International Conference on Computer*
 625 *Vision*, 2025.

626

627

A USE OF LARGE LANGUAGE MODELS

630 We utilized Large Language Models as a tool to assist in the preparation of this paper. Specifically,
 631 LLMs were used for polishing the language, correcting grammar, and providing suggestions for
 632 LaTeX formatting to improve the manuscript’s presentation. Our use of LLMs is in full compliance
 633 with the ICLR 2026 policy. We reviewed all LLM-generated outputs and take full responsibility for
 634 the scientific claims and all content in this work.

B CRITIC UPDATE DETAILS

635 Our critic network, denoted as $Q_\theta(s, a)$, is trained to estimate the expected discounted cumulative
 636 reward (the Q-value) for taking action a in state s . To improve training stability and mitigate the
 637 overestimation of Q-values, we employ standard techniques from modern actor-critic methods (Fuji-
 638 moto et al., 2018; Haarnoja et al., 2018). Specifically, we use a twin-critic architecture, maintaining
 639 two separate Q-networks ($Q_{\theta_1}, Q_{\theta_2}$), and use slowly-updated target networks ($Q_{\theta'_1}, Q_{\theta'_2}$) to con-
 640 struct the Bellman target. The critic parameters are optimized by minimizing the Mean Squared
 641 Bellman Error (MSBE). For a given transition (s, a, r, s') from the replay buffer, we first compute
 642 the target value, y . The next action, a' , is sampled from our stochastic student policy, π_φ , and the
 643 target value includes an entropy term to maintain consistency with the actor’s objective:
 644

$$645 \quad y = r + \gamma \left(\min_{i=1,2} Q_{\theta'_i}(s', a') - \alpha_2 \log \pi_\varphi(a' | s') \right), \quad \text{where } a' \sim \pi_\varphi(\cdot | s'). \quad (14)$$

648 The total loss for the critic networks is the sum of the MSBE for each critic with respect to this
 649 common target value:
 650

$$651 \quad 652 \quad 653 \quad \mathcal{L}_{\text{Critic}}(\theta_1, \theta_2) = \mathbb{E}_{(s, a, r, s') \sim \mathcal{D}} \left[\sum_{i=1,2} (Q_{\theta_i}(s, a) - y)^2 \right]. \quad (15)$$

654 The target network parameters θ' are updated via Polyak averaging with the main critic parameters
 655 θ at each training step: $\theta' \leftarrow \tau\theta + (1 - \tau)\theta'$, where τ is a small interpolation factor.
 656

657 C THEORETICAL ANALYSIS

659 C.1 PRELIMINARIES AND NOTATION

661 Let us formalize the key concepts:
 662

- 663 • **Optimal noise set:** $\mathcal{X}^*(s) = \{x_0 : Q(s, \pi_\phi(s, x_0)) = \max_a Q(s, a)\}$
- 664 • **Optimal prior:** $p^*(x_0|s)$ - uniform over $\mathcal{X}^*(s)$
- 665 • **Learned prior:** $p_{\text{adv}}(x_0|s)$ - our CVAE-based prior
- 666 • **Baseline prior:** $p_0(x_0) = \mathcal{N}(0, I)$
- 667 • **Value function:** $J(\pi; p, s) = \mathbb{E}_{x_0 \sim p(\cdot|s)}[Q(s, \pi(s, x_0))]$

670 **Assumption 1 (Lipschitz Continuity):** $Q(s, a)$ is L_Q -Lipschitz in a , and $\pi_\phi(s, x_0)$ is L_π -Lipschitz
 671 in x_0 .
 672

673 C.2 VALUE BOUND VIA WASSERSTEIN DISTANCE

674 **Lemma 1** (Value Sensitivity). *Under Assumption 1, for any priors p, p' :*

$$676 \quad |J(\pi; p, s) - J(\pi; p', s)| \leq L_Q L_\pi \cdot W_1(p(\cdot|s), p'(\cdot|s))$$

677 where W_1 is the 1-Wasserstein distance.
 678

679 *Proof.* By Lipschitz continuity, $f(x_0) = Q(s, \pi(s, x_0))$ is L_f -Lipschitz with $L_f = L_Q L_\pi$. The
 680 result follows from the dual formulation of W_1 . \square
 681

682 **Corollary 1.** *For any prior p :*

$$683 \quad J(\pi; p, s) \geq J(\pi; p^*, s) - L_f \cdot W_1(p, p^*)$$

685 C.3 SUPERIORITY OF THE LEARNED PRIOR

687 **Lemma 2** (Prior Improvement). *Under our training procedure:*

$$688 \quad 689 \quad W_1(p_{\text{adv}}, p^*) \leq W_1(p_0, p^*) - \Delta(s)$$

690 where $\Delta(s) > 0$ quantifies the improvement.
 691

692 *Proof.* Let $\hat{p}_{N_{\text{cand}}}^*$ be the empirical distribution of the N advantage noise samples drawn from the true
 693 advantage distribution p^* (Eq. 4). According to the triangle inequality, the distance $W_1(p_{\text{adv}}, p^*)$ is
 694 bounded as:

$$695 \quad 696 \quad W_1(p_{\text{adv}}, p^*) \leq \underbrace{W_1(p_{\text{adv}}, \hat{p}_{N_{\text{cand}}}^*)}_{\text{Optimization Error}} + \underbrace{W_1(\hat{p}_{N_{\text{cand}}}^*, p^*)}_{\text{Statistical Error}}$$

697 For the **optimization error**, the VAE's training objective, \mathcal{L}_{VAE} , is designed to minimize the divergence
 698 between p_{adv} and $\hat{p}_{N_{\text{cand}}}^*$. For a sufficiently expressive and well-trained VAE, this error can be
 699 made small Kingma & Welling (2013).
 700

701 For the **statistical error**, which measures how well N finite samples represent the true distribution
 p^* . This error converges to zero as the number of samples N increases ($\mathbb{E}[W_1(\hat{p}_{N_{\text{cand}}}^*, p^*)] \propto 1/\sqrt{N}$).

In contrast, the prior p_0 is fixed, and its distance to the optimal prior, $W_1(p_0, p^*)$, is a fixed positive constant $C_0 > 0$. Since the sum of the optimization and statistical errors for our method can be made smaller than C_0 , there exists a positive $\Delta(s)$ such that:

$$W_1(p_{\text{adv}}, p^*) \leq W_1(p_0, p^*) - \Delta(s)$$

□

C.4 MAIN THEORETICAL RESULT

Theorem 1 (Value Lower Bound Improvement). *Let LB_{adv} and LB_0 be the respective performance lower bounds for our method (using prior p_{adv}) and the baseline (using prior p_0). Under Assumption 1, with high probability:*

$$LB_{\text{adv}} \geq LB_0 + L_f \cdot \Delta(s)$$

where $\Delta(s) = W_1(p_0, p^*) - W_1(p_{\text{adv}}, p^*) > 0$, and $L_f = L_Q L_\pi$.

Proof. From the corollary, we have the performance lower bounds for our method and the baseline:

$$J(\pi; p_{\text{adv}}, s) \geq J(\pi; p^*, s) - L_f \cdot W_1(p_{\text{adv}}, p^*) \quad (16)$$

$$J(\pi; p_0, s) \geq J(\pi; p^*, s) - L_f \cdot W_1(p_0, p^*) \quad (17)$$

We define the right-hand side of inequalities equation 16 and equation 17 as the lower bounds LB_{adv} and LB_0 , respectively. Then we have:

$$\begin{aligned} LB_{\text{adv}} - LB_0 &= (J(\pi; p^*, s) - L_f \cdot W_1(p_{\text{adv}}, p^*)) - (J(\pi; p^*, s) - L_f \cdot W_1(p_0, p^*)) \\ &= L_f \cdot (W_1(p_0, p^*) - W_1(p_{\text{adv}}, p^*)) \end{aligned} \quad (18)$$

A successfully trained VAE ensures that $W_1(p_{\text{adv}}, p^*) < W_1(p_0, p^*)$. Therefore, the term $\Delta(s) = W_1(p_0, p^*) - W_1(p_{\text{adv}}, p^*)$ is strictly positive, leading to the conclusion:

$$LB_{\text{adv}} - LB_0 = L_f \cdot \Delta(s) > 0.$$

□

D ADDITIONAL STUDIES IN THE MULTI-CRESCENT ENVIRONMENT

To further validate the effectiveness of our custom Multi-Crescent Environment at highlighting key algorithmic challenges, we conducted a broader set of experiments with different baseline settings, as shown in Figure 8 in the main text. In this analysis, the gray bars represent the final offline training performance, while the blue bars show the performance after the subsequent online fine-tuning phase. The hyperparameter α corresponds to the weight of the behavioral cloning (BC) term in the FQL loss function (Equation 2). A smaller α places a relatively larger emphasis on the Q-maximization term. The primary results in the main body compare our method against FQL with a high BC weight ($\alpha = 100$).

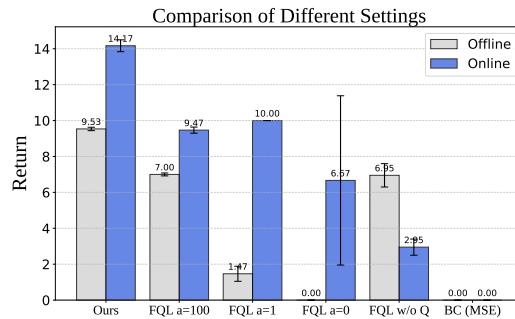


Figure 8: Additional Studies in the Multi-Crescent Environment

By lowering α , we test the hypothesis that our non-convex environment can induce Q-value overestimation in the baseline. The experimental results confirm this hypothesis. When $\alpha = 1$, FQL's

756 offline performance drops sharply. The policy learns to target points overestimated by the critic—
 757 locations between the tips of the crescent shapes but outside the actual high-reward regions—leading
 758 to a significant decrease in return. In the extreme case where $\alpha = 0$ (i.e., pure Q-maximization), the
 759 offline return predictably falls to zero, further demonstrating our environment’s ability to challenge
 760 methods susceptible to Q-value overestimation. The final two columns in the figure are designed to
 761 evaluate the performance of pure imitation learning. The “FQL w/o Q” baseline isolates the effect of
 762 imitation learning via flow-matching, while “BC (MSE)” represents a standard behavioral cloning
 763 approach. Our method outperforms both of these baselines. Notably, the standard FQL provides
 764 only a marginal improvement over “FQL w/o Q.” This is because the reward modes in our environ-
 765 ment are disconnected; when the Q-guidance is too weak (high α), the policy struggles to jump from
 766 one mode to another, and when it is too strong (low α), the policy is misled by critic overestimation.
 767 In contrast, our algorithm learns an initial noise distribution that directly fits the inherently high-Q
 768 actions from the dataset, making it significantly more robust to the effects of Q-value overestimation.
 769

770 E BENCHMARK DESCRIPTIONS

772 E.1 OGBENCH

774 OGBench (Offline Goal-Conditioned RL Benchmark) Park et al. (2025a) is a high-quality bench-
 775 mark designed for offline goal-conditioned reinforcement learning. It aims to systematically evalu-
 776 ate the capabilities of algorithms across several key dimensions, such as trajectory stitching, long-
 777 horizon reasoning, handling high-dimensional inputs (e.g., pixels), and coping with environmen-
 778 tal stochasticity. We utilize a variety of environments from OGBench in our experiments, span-
 779 ning locomotion, manipulation, and visual tasks. Notably, we evaluate on the default task for
 780 each environment. For instance, in the `cube-double-play` environment, we exclusively use
 781 the `cube-double-play-singletask-task2-v0` task, which can be found in Park et al.
 782 (2025a;b).

783 The specific environments used in our work include:

- 785 • **AntMaze and HumanoidMaze:** These are maze navigation tasks requiring an agent to
 786 control a complex quadruped robot (Ant) or a 21-DoF humanoid robot (Humanoid), re-
 787 spectively, to reach a target location. We employ various maze layouts, including “Large”
 788 and “Giant”, with the “Navigate” dataset type to test long-horizon planning and hierarchical
 789 control capabilities.
- 790 • **AntSoccer:** This is a more challenging locomotion task that requires the Ant agent to
 791 dribble a soccer ball while navigating. We use the “Arena” (open-field) version of this
 792 environment.
- 793 • **Cube:** This is a robotic manipulation task involving multi-block pick-and-place operations.
 794 The agent must move, stack, or swap single or multiple cubes according to a goal config-
 795 uration. We use the “Single Play” and “Double Play” versions to test the agent’s ability to
 796 learn generalizable multi-object manipulation skills from unstructured, random trajectories.
- 797 • **Scene:** This is a complex sequential manipulation task requiring the robot arm to interact
 798 with various household objects, including a drawer, a window, button locks, and a cube. It
 799 is designed to challenge the agent’s sequential and long-horizon reasoning abilities.
- 800 • **Puzzle:** In this task, a robot arm must solve a “Lights Out” puzzle. The agent presses
 801 buttons on a grid to toggle the color of the pressed button and its neighbors to match a goal
 802 configuration. We use the 3×3 and 4×4 grid versions to specifically test for combinatorial
 803 generalization.
- 804 • **Visual Environments:** Many tasks in OGBench, particularly the manipulation suite, sup-
 805 port both state-based and pixel-based inputs. We evaluate our methods in the correspond-
 806 ing visual environments (e.g., Visual Cube, Visual Scene, Visual Puzzle), which require the
 807 agent to learn control policies directly from 64×64 RGB images.

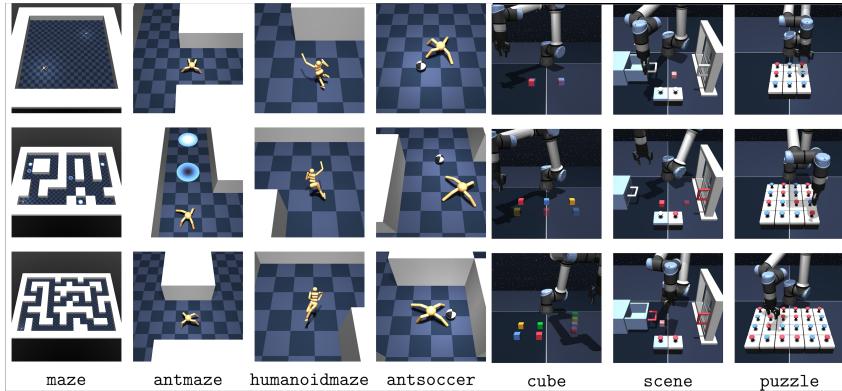


Figure 9: Visualization of the OGBench tasks.

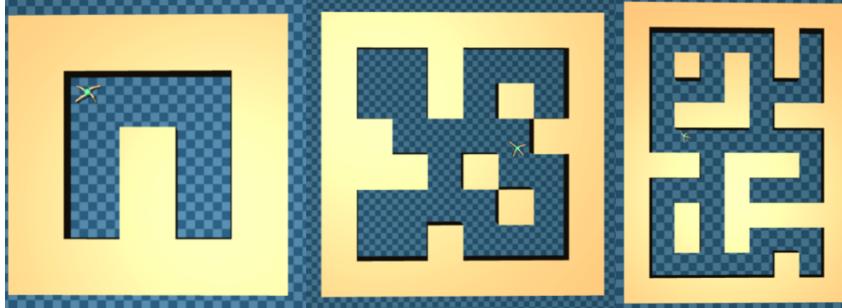


Figure 10: Visualization of the D4RL tasks.

E.2 D4RL

D4RL (Datasets for Deep Data-Driven Reinforcement Learning) Fu et al. (2020) is a public benchmark focused on offline reinforcement learning. It is designed to provide datasets that reflect challenges present in real-world applications, such as narrow data distributions, undirected multi-task data, sparse rewards, and suboptimal data. These characteristics make D4RL an essential benchmark for evaluating the robustness and generalization of offline RL algorithms.

Our experiments primarily make use of the **AntMaze** environment from D4RL. This is a popular navigation task that requires an 8-DoF ‘Ant’ quadruped robot to reach a specified goal in a maze. The task features sparse rewards (a reward is only given upon reaching the goal), and the datasets are generated by a non-Markovian controller. This setup is designed to test an algorithm’s ability to stitch effective trajectories from undirected data to solve long-horizon, sparse-reward tasks. We also implement on the Adroit domain, which involves controlling a 24-DoF robotic hand. Task examples are shown in Figure 10

F DETAILS ON ADDITIONAL BASELINE METHODS

In this section, we provide additional details on the baseline methods used in the paper (except FQL, which is introduced in Preliminary), categorized by their underlying policy structure and learning paradigm. The settings for all baseline methods are adopted directly from the original paper (Park et al., 2025b) for comparison. You can find more implement details in their paper.

F.1 OFFLINE RL BASELINES

For the offline RL experiments, we compare with 10 recent and representative methods to demonstrate our contributions.

Gaussian Policies. For standard offline RL methods that use Gaussian policies, we consider **BC**, **IQL** (Kostrikov et al., 2022), and **ReBRAC** (Tarasov et al., 2023). In particular, ReBRAC is known to perform well on many D4RL tasks (Fu et al., 2020), which are based on a behavior-regularized actor-critic framework.

Diffusion Policies. For methods based on diffusion policies, we compare against **IDQL** (Hansen-Estruch et al., 2023), **SRPO** (Chen et al., 2024), and Consistency-AC (**CAC**) (Ding & Jin, 2024). These methods employ different policy extraction techniques: IDQL is based on rejection sampling, whereas SRPO and CAC utilize policy distillation. CAC trains the distillation policy within the behavior-regularized actor-critic framework and is based on consistency models.

Flow Policies. We also consider several flow-based variants of existing algorithms to cover different policy extraction schemes. Flow Advantage-Weighted Actor-Critic (**FAWAC**) is a flow-based variant of AWAC (Nair et al., 2021), which uses the Advantage-Weighted Regression (AWR) objective for policy learning. Flow Behavior-Regularized Actor-Critic (**FBRAC**) is the flow counterpart to Diffusion-QL (DQL) (Wang et al., 2023), which is based on the original Q-loss with backpropagation through time. Implicit Flow Q-Learning (**IFQL**) is the flow counterpart to IDQL, based on a rejection sampling scheme.

F.2 OFFLINE-TO-ONLINE FINETUNING BASELINES

The offline methods include **IQL**, which learns a policy implicitly through advantage-weighted regression over learned Q and Value functions; **ReBRAC**, a stable behavior-regularized actor-critic algorithm; and **IFQL**, a flow-based policy utilizing rejection sampling. We also include two methods designed for data-driven online RL: **Cal-QL** (Nakamoto et al., 2023), which calibrates the Q-function with the offline dataset to enable safer online exploration, and **RLPD** (Ball et al., 2023), which employs a balanced sampling strategy from both offline and online data buffers to accelerate fine-tuning.

G HYPERPARAMETERS

G.1 HYPERPARAMETERS SETTINGS

Table 4 lists the hyperparameters used for the cube-double experiment, based on the provided execution command.

The ‘Offline Alpha’ and ‘Online Alpha’ refer to the pre-set values of the hyperparameter α_1 in Equation 9 for the offline-to-online transition. This distinction is made because the confidence in the critic’s estimates differs between the offline and online phases. It is a common phenomenon in offline RL that the critic often overestimates Q-values, necessitating regulation of the Behavior Cloning (BC) weight. However, during the online phase, excessive reliance on the BC term can stifle exploration, which is why these values are set in advance.

Additionally, when running the online phase for the puzzle environment, we utilized the balanced sampling technique from Ball et al. (2023). To ensure a fair comparison, we also applied this technique to our FQL agent. We found that only our method showed performance improvements with this technique.

G.2 THE EFFECT OF LATENT DIMENSION.

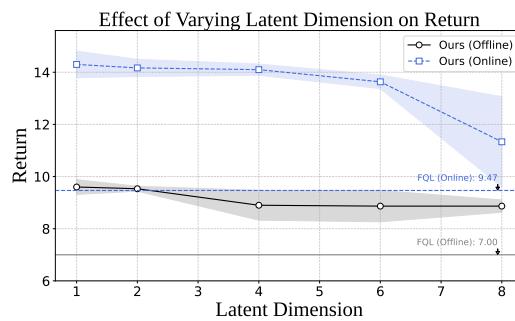
We investigate the sensitivity of our learned prior to the VAE’s latent dimension. Figure 11 illustrates the results. We observe that a low-dimensional, compact latent space is optimal for this task, with performance peaking at a dimension of 1 or 2 for both offline and online settings. As the latent dimension increases, performance gradually degrades, particularly during the online phase. This suggests that a higher-dimensional space may increase the difficulty of learning a meaningful prior, potentially introducing noise or leading to overfitting. However, our method still outperforms the FQL across different tested dimensions in both settings. This demonstrates the fundamental robustness and benefit of our learned prior, even when its key hyperparameter is not perfectly tuned.

918
919
920 Table 3: Hyperparameters for the cube-double experiment.
921
922

Hyperparameter	Value
Offline Steps	1,000,000
Online Steps	1,000,000
Seed	0,2,4,8,16
Latent Dimension	8 (default)
KL Weight	0.1 (default)
Reconstruction Weight	1 (default)
Number of Candidates	10 (default)
Offline Alpha1	300
Online Alpha1	50
Offline Temperature	0 (default)
Target Entropy Multiplier	0.5 (default)

934
935
936
937
938 Table 4: Hyperparameters for the Puzzle 3x3 experiment.
939
940

Hyperparameter	Value
Offline Steps	1,000,000
Online Steps	1,000,000
Seed	0,2,4,8,16
Latent Dimension	8 (default)
KL Weight	0.1 (default)
Reconstruction Weight	1 (default)
Number of Candidates	10 (default)
Offline Alpha1	1000
Online Alpha1	10
Offline Temperature	0 (default)
Target Entropy Multiplier	0.5 (default)
Balanced Sampling(Ball et al. (2023))	True

968 Figure 11: The effect of the VAE’s latent dimension on the final return in both offline (black) and
969 online (blue) settings.
970
971