Hierarchical Agents by Combining Language
Generation and Semantic Goal Directed RL

Bharat Prakash', Nicholas Waytowich?, Tim Oates', Tinoosh Mohsenin'
University of Maryland, Baltimore County
US Army Research Lab 2

Abstract

Learning to solve long horizon temporally extended tasks with reinforcement learn-
ing has been a challenge for several years now. We believe that it is important to
leverage both the hierarchical structure of complex tasks and to use expert supervi-
sion whenever possible to solve such tasks. This work introduces an interpretable
hierarchical agent framework by combining sub-goal generation using language
and semantic goal directed reinforcement learning. We assume access to certain
spatial and haptic predicates and construct a simple and powerful semantic goal
space. These semantic goal representations act as an intermediate representation
between language and raw states. We evaluate our framework on a robotic block
manipulation task and show that it performs better than other methods, including
both sparse and dense reward functions. We also suggest some next steps and
discuss how this framework makes interaction and collaboration with humans
possible.

1 Introduction

Deep reinforcement learning has been successful in many tasks, including robotic control, games,
energy management, etc. Mnih et al.|[2015]][Schulman et al.| [2017] Warnell et al.| [2018]]. However,
it has many challenges, such as exploration under sparse rewards, generalization, safety, etc. This
makes it difficult to learn good policies in a sample efficient way. Popular ways to tackle these
problems include using expert feedback Christiano et al.|[2017] [Warnell et al.| [2018] and leveraging
the hierarchical structure of complex tasks. There is a long list of prior work which learns hierarchical
policies to break down tasks into smaller sub-tasks [Sutton et al.| [1999] [Fruit and Lazaric| [2017]]
Bacon et al.|[2017]. Some of them discover options or sub-tasks in an unsupervised way. On the other
hand, using some form of supervision, either by providing details about the sub-tasks, intermediate
rewards or high-level guidance is a recent approach |Prakash et al.|[2021] Jiang et al.| [2019]] |Le et al.
[2018].

This paper presents a framework for solving long-horizon temporally extended tasks with a hier-
archical agent framework using semantic goal representations and goal generation using language.
The agent has two levels of control and the ability to easily incorporate expert supervision and
intervention. The high-level policy is a small text generation model which generates sub-goals
in the form of text commands, given a high level goal and current state. The low-level policy
is a goal-conditioned multi-task policy which is able to achieve sub-goals where these goals are
specified using a semantic goal representation. There is an intermediate module which converts
these text goals to semantic goal representation. The semantic goal representation is constructed
using several predicate functions which define the behavior space of the agent. This representation
has many benefits because it is much simpler than traditional state-based goal spaces as shown in
Akakzia et al.|[2020]. The language interface makes the framework more interpretable and easier
for an expert to intervene and provide high-level feedback. The sub-goals which are in the form
of language can be observed by a human expert and they may provide corrections if necessary.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

. . ° Optional intervetion
We evaluate the framework using a robotic block ant

manipulation environment. Our experiments
show that this approach is able to solve differ-
ent tasks by combining grasping, pushing and
stacking blocks. Our contributions can be sum- State

High-level Policy Language

Sub-goal

Language
Subgoal
Generator

marised as follows: A |

* A hierarchical agent framework where Every N T
the high-level policy is a language steps E?%%E
generator and the low-level policy is B] BE
learned using semantic goal represen- { Low-level
tations. ey

* A language interface that can map nat- q
ural language commands to symbolic
goals. This module is also a natural Action
interface humans to intervene and pro-
vide corrections. Figure 1: The low-level policy receives semantic goals

* Evaluation on complex long horizon and is trained to execute primitive actions in the environ-
robotic block manipulation tasks to ment to achieve the goal. Given a high level goal, the

show feasibility and sample efficiency high-level polic.y outputs a sub-goalvin terms of lgnguage
commands. This is then converted into semanntic goals

before feeding it to the low-level policy.

2 Methods

In this section, we present a framework for solving long horizon temporally extended tasks. We first
describe the semantic goal representation and low-level policy training. Then, we show how the
high-level policy is obtained using the sub-goal instruction generator and solve long horizon tasks.

2.1 Semantic goal representations

We represent goals using a list of semantic predicates which are determined based on domain
knowledge. In our case we consider three spatial predicates - close, above, in-bin and one haptic
predicate - holding. As demonstrated by|Akakzia et al.|[2020], these predicates define a much simpler
behavior space instead of the traditional more complicated state space. This representation eliminates
the need to write reward functions for every desired behavior. All these predicates are binary functions
applied to pairs of objects. The close predicate is order-invariant. close(o1,02) denotes whether
objects (in our case blocks) o; and oz are close to each other or not. The above predicate is applied to
all permutations of objects. above(o1,02) is use to denote if 01 is above 0y. The in-bin predicate is
used to denote whether the block is inside the bin. Finally, holding is used to denote if the robot arm
is holding an object using holding(o). With these predicates we can form a semantic representation
of the state by simply concatenating all the predicate outputs as shown in Fig[I]

2.2 Training the low-level policy

The low-level policy is trained to perform several individual sub-tasks, which can eventually by used
to solve longer high-level tasks. We use Hindsight experience replay (HER) /Andrychowicz et al.
[2017]] along with Soft-Actor critic (SAC)|Haarnoja et al.|[2018] to train the goal conditioned policy.
Goals are sampled from a set of configurations based on the environment where an expert can be
used to optionally create a curriculum. The semantic goal representation makes is easier to do both
of these things. The agent explores the environment to collect experience and updates its policy
using SAC. As stated earlier, there is no need to write reward functions for each desired behavior. A
reward can be generated by checking whether the current semantic configuration matches the goal
configuration. Example sub-goals for the three environments we use are listed in Table|[T]

2.3 Training the high-level policy

The high-level policy is a sub-goal instruction generator which takes in the current state and high-level
task description and outputs a sub-goal in the form of a language instruction. It is trained using a

2 Blocks 3 Blocks Desk Cleanup

pick up the red block pick up the blue block grasp red block

grab green block put blue block close to red block drop red block in the bin
put red block close to green block drop green block away from blue block put green block on the table
stack red block above green block

Table 1: This table shows the sub-goals used in our tasks. The semantic goal representation is built
using these sub-goals as described in the previous section. The high level policy generates subgoals
from the above set of phrases as described in section 2.3

small dataset of demonstrations where the sub-tasks are labeled using language instructions by human
experts. The sub-goal instruction generator is a neural network which receives the current state, s;
and the high level goal L, and is processed using a recurrent neural network. It then uses another
recurrent neural network to output a sub goal L,,. The dataset consists of high-level goal, current
state and sub-goal tuples. We use around 300-500 (100 trajectories) samples each of the tasks. The
language phrases are replaced with synonyms and similar phrases. The dataset size increases 5 X
after this simple data augmentation. The language goal is then converted into semantic goals, which
is used to train the low-level policy using a small module which its trained using the same dataset.
The low-level policy performs N environment steps before the high-level takes control and provides a
new sub-goal.

3 Experiments

3.1 Environment setup and tasks

We design two versions of the Fetch manipulation environment with 2 and 3 blocks.

2 blocks environment Here we have the robotic arm as mentioned earlier and two blocks: red and
green. We consider all three predicates for this version, close, above and holding. We design 3
high-level tasks in this environment (1) Move blocks close: Here the task is initialized with the 2
blocks far away from each other. The goal is to bring them close to each other. (2) Move blocks apart:
Here the task is initialized with blocks close to each other. The goal is to move them apart. (3) Swap
blocks: Here the task is initialized with blocks on top of each other in random order. The goal is to
swap the order.

3 blocks environment Here we have the robotic arm and 3 blocks: red and green and blue. For
this version, we only consider 2 predicates, close and holding. We design 2 high-level tasks in this
environment (1) Move blocks close: Here the task is initialized with all the 3 blocks far away from
each other. The goal is to bring them close to each other. (2) Move block apart: Here the task is
initialized with blocks close to each other. The goal is to move them apart.

Desk cleanup environment Here we have a robotic arm several blocks on the desk. The desk also a
bin and the blocks are places randomly on the desk. The task is to clean up the desk and place all the
blocks inside the bin. We use 2 predicates here, holding and in-bin. We have 3 versions with 2, 3 and
4 blocks.

3.2 Baselines

1. Flat semantic: Here the agent has a single level flat policy but the goals are still represented using
the semantic goal representations. 2. Flat Continuous: Here the goals are represented using the actual
block positions of the desired configuration. The dense reward function is based on the distance
between current and desired block locations and hence it is a dense reward function. 3. Option Critic:
This is a hierarchical reinforcement learning baseline. It has two levels of control where we can
provide the number of desired options. 3. H-Planner: This is a hierarchical planning agent where the
architecture is similar to our but the high level policy is a STRIPS planner |Alkhazraji et al.|[2020]
which outputs a high-level plan. This is then executed sequentially by the low-level policy.

Init State

PR TR TR IR TR T R
arimlvin oo o it L

Swap-2

Goal State

Figure 2: This figure show all the tasks we used in our experiments. The top row shows examples of random
initial states and bottom row shows the goal states. MC-2: Move 2 blocks closer, MA-2: Move 2 blocks away,
Swap-2: Swap 2 stacked blocks, MC-3: Move 3 blocks closer, MA-3: Move 3 blocks away, DC-2 to DC-4:
Desk clean up with 2, 3 and 4 blocks

Tasks
Method MC-2 MA-2 Swap-2 MC-3 MA-3 DC-2 DC-3 DC4
Flat Semantic 10% 80% 0% 5% 10% 30% 0% 0%
Flat Continuous 5% 10% 0% 0% 0% 0% 0% 0%
Option Critic 5% 5% 0% 0% 0% 0% 0% 0%
H-Planner 95% 100 % 92% 95% 96 % 94% 91% 90 %

H-Lang (Ours) 91% 94% 90% 90% W% 92% 90% 85%

Table 2: Task completion % This table shows the task completion % for our experiments. The tasks
names are explained in Figure 4. As seen, our method consistently outperforms all the other baselines.
We train each agent for 2M steps and roll out 50 episodes using the trained policy. The values are an
average of runs from three different seeds.

3.3 Results

We calculate task completion % for all the tasks using the fully trained agent. We train each agent
for 2M steps and roll out 50 episodes using the trained policy. The values are an average of runs
from three different seeds. As seen in Table@ only the 2 methods, H-Planner and our method is able
to solve all the tasks. H-Planner uses an off the shelf planner which is makes use of the semantic
predicates and produces a plan. the subtasks in the place are then sequentially executed by the
low-level policy. Although it slightly outperforms our method, it is less interpretable and does not
have a natural language interface for humans to intervene. Our method, denoted by H-Lang on the
other hand, shows comparable performance and outperforms the other baselines.

4 Conclusion

In this paper we show that combining a high-level language generator, semantic goal representations
and a low-level goal conditioned reinforcement learning policy is indeed a promising approach to
build interpretable hierarchical agents. This also makes it easier for a human to intervene at the
high-level to provided appropriate sub-goals using language in case there is a failure in the high-level
policy.

There are several directions in which this framework can be extended. With the current state space,
we assumed access to predicate functions. But with more complex observation like images, one can
learn these predicate functions using a small amount of labelled data. To further demonstrate the
capabilities of the framework we plan to perform experiments on more complex environments, real
robots and qualitative analysis using human users. To measure the benefits of the language interface
more systematically, user studies could be performed with humans and real robots to perform a
qualitative analysis. This work is a step towards simple and interpretable hierarchical agents and we
hope to build upon it.

References

A. Akakzia, C. Colas, P-Y. Oudeyer, M. Chetouani, and O. Sigaud. Grounding language to
autonomously-acquired skills via goal generation. arXiv preprint arXiv:2006.07185, 2020.

Y. Alkhazraji, M. Frorath, M. Griitzner, M. Helmert, T. Liebetraut, R. Mattmiiller, M. Ortlieb, J. Seipp,
T. Springenberg, P. Stahl, and J. Wiilfing. Pyperplan. https://doi.org/10.5281/zenodo!
3700819, 2020. URL https://doi.org/10.5281/zenodo.3700819.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural information
processing systems, 30, 2017.

P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. In Advances in Neural Information Processing Systems, pages
42994307, 2017.

R. Fruit and A. Lazaric. Exploration-exploitation in mdps with options. In Artificial Intelligence and
Statistics, pages 576-584. PMLR, 2017.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

Y. Jiang, S. S. Gu, K. P. Murphy, and C. Finn. Language as an abstraction for hierarchical deep
reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

H. Le, N. Jiang, A. Agarwal, M. Dudik, Y. Yue, and H. Daumé III. Hierarchical imitation and
reinforcement learning. In International conference on machine learning, pages 2917-2926.
PMLR, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529, 2015.

B. Prakash, N. Waytowich, T. Oates, and T. Mohsenin. Interactive hierarchical guidance using
language. arXiv preprint arXiv:2110.04649, 2021.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999.

G. Warnell, N. Waytowich, V. Lawhern, and P. Stone. Deep tamer: Interactive agent shaping in
high-dimensional state spaces. AAAI Conference on Artificial Intelligence, pages 1545-1553, 2018.
URL https://aaai.org/ocs/index.php/AAAI/AAAT18/paper/view/16200.

https://doi.org/10.5281/zenodo.3700819
https://doi.org/10.5281/zenodo.3700819
https://doi.org/10.5281/zenodo.3700819
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16200

	Introduction
	Methods
	Semantic goal representations
	Training the low-level policy
	Training the high-level policy

	Experiments
	Environment setup and tasks
	Baselines
	Results

	Conclusion

